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Quantum metric and effective mass of a two-body bound state in a flat band
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We consider two-body bound states in a flat band of a multiband system. The existence of pair dispersion
predicts the possibility of breaking the degeneracy of the band and creating order, such as superconductivity.
Within a separable interaction potential approximation, we find that the finiteness of the effective mass of a
bound pair is determined by a band-structure invariant, which in the uniform case becomes the quantum metric.
The results offer a simple foundation to understand and predict flat-band superconductivity. We propose an
experiment to test the interaction-induced pair motion.
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The concept of a flat band refers to Bloch bands of periodic
systems, which are either perfectly dispersionless or where
the bandwidth is negligible compared to other energy scales.
The effects of interactions and disorder are enhanced in such
systems. This may lead to magnetic order [1–3] and fractional
Chern insulators [4]. Also, a high critical temperature for
Cooper pairing has been predicted [5–7] in the case of attrac-
tive (effective) interactions. The group velocity of a single par-
ticle is zero and its effective mass meff infinite in a flat band.
The conventional single-band prediction for supercurrent,
n/meff, where n is the superfluid density, would thus suggest
the absence of superfluidity. However, it has been predicted
that, in a multiband system, interaction-induced movement of
pairs is possible [8–11] while single particles remain localized
[12]. In recent experiments on bilayer graphene [13,14], su-
perconductivity was found to coincide with the formation of
flat bands at certain angles of the bilayer twist [15,16]. The
large number of differing theoretical descriptions for these
observations demonstrates the importance of understanding
the origin of flat-band superconductivity in as simple terms
as possible. Here, we show that the two-body problem can be
used to predict the possibility of superfluidity in a flat band.
We find that the pair effective mass is characterized by band
invariant quantities proportional to derivatives of the Bloch
functions, in particular, the quantum metric.

In the Cooper problem [17], the bound state energy of
two fermions of opposite spins was solved while restricting
the available phase space to a thin shell around the Fermi
sea. This revealed that the Fermi sea is unstable towards
the formation of Cooper pairs for arbitrarily small attractive
interactions, while without the Fermi sea, bound states require
a finite interaction. Since flat-band states are degenerate, a
Fermi level cannot be defined for noninteracting particles. To
form a many-body state with some symmetry broken order,
such as superconductivity, the degeneracy has to be lifted. We
now ask whether the tendency for breaking the degeneracy
can be predicted from the two-body problem. In contrast to
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the Cooper problem and conventional superconductivity, we
are interested in the instability of the degeneracy instead of
instability of the Fermi sea. In the flat-band case, showing
that a bound state exists is not as such sufficient: If the
bound pair energy remains degenerate, then condensation
to a certain pair momentum state—the basic mechanism of
superconductivity—is not likely. We argue that the existence
of a dispersion and finite effective mass for the pairs points
to breaking the degeneracy and the formation of super-
fluid/superconducting order in the many-body case. We now
proceed to find under which general conditions the flat-band
two-body problem in a multiband system may feature bound
states with a dispersion. Our goal and results are different
from the calculation of scattering states in a flat band [18],
and from the Cooper problem in a single dispersive band [19].

We consider two interacting particles in a periodic
potential and interacting via an interaction potential
λV (1, 2). The two-body Schrödinger equation is
[T1 + T2 + λV (1, 2)]|ψ (1, 2)〉 = E|ψ (1, 2)〉, where T1 + T2

contains the kinetic energies and the periodic potential.
The two particles can be either fermions or bosons. The
solution for λ = 0 is the two-particle state given by
(T1 + T2)|ϕn〉 = En|ϕn〉, where n contains all quantum
numbers (band index, lattice momentum, spin) of the
two-particle state. Let |ϕ0(1, 2)〉 denote the state of
the particles in the absence of interactions and E0 the
corresponding energy. We consider a flat band where
En = E0 (or En � E0). We denote by n the states in this
flat band and by n′ those in other dispersive or flat bands. The
solution that fulfills the Schrödinger equation is given by

|ψ (1, 2)〉 = |ϕ0(1, 2)〉 +
∑
n�=0

|ϕn〉
E − E0

〈ϕn|λV |ψ (1, 2)〉

+
∑
n′

|ϕn′ 〉
E − En′

〈ϕn′ |λV |ψ (1, 2)〉, (1)

E − E0 = 〈ϕ0|λV |ψ (1, 2)〉. (2)

We then assume the isolated flat-band limit: The low-
est/highest energies E′

min/max of the bands above/below the flat
band are separated from it by a band gap that is larger than the
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interactions, |E0 − E′
min/max| � |λ|. If we further assume that

E is close to E0 (weak interactions), then |E − E′
min/max| �|λ| and the last term of Eq. (1) becomes negligible. We

proceed with

|ψ (1, 2)〉 = |ϕ0(1, 2)〉 + 1

E − E0

∑
n�=0

|ϕn〉〈ϕn|λV |ψ (1, 2)〉,

Eb ≡ E − E0 = 〈ϕ0|λV |ψ (1, 2)〉, (3)

where n refers to quantum numbers in the isolated flat band,
and we introduced the notation Eb for the pair binding energy.
We use units where h̄ and the system volume are set to one.

We use the Bloch functions eik·xmk(x) of the flat band
where k is the lattice momentum and the band and spin
indices are not marked explicitly. Then, ϕ0(x1, x2) =
eik1·x1mk1 (x1)eik2·x2mk2 (x2) = eiq·Reik·rmk+ q

2
(x1)m−k+ q

2
(x2),

where q = k1 + k2, k = (k1 − k2)/2, R = (x1 + x2)/2,
r = x1 − x2 are the center-of-mass (c.m.) and relative
momenta and coordinates, respectively. We consider
interaction potentials V , whose dependence on the c.m.
coordinate has the same periodicity as the lattice, then the
c.m. momentum q of the two particles is conserved. Even
when we consider the two-body problem in the isolated
flat band, the multiband nature of the system is inherent
in the spatial dependence of the periodic part of the Bloch
function, mk(x). In the language of lattice models, it contains
the orbital dependence of the Bloch function. We consider
a general interaction potential V = V (x1, x2) [instead of
V = V (r)] to incorporate the possible effects arising from the
spatial (orbital) dependence of the interaction and the Bloch
functions.

We now make our second approximation: Consider a sep-
arable potential [20] V (x1, x2) −→ u(x1, x2)u(x′

1, x′
2), and

assume u real. Until Eq. (5), we adapt to the flat-band case the
calculations of Sec. 36 of Ref. [20], and the intermediate steps
are given in the Supplemental Material [21] (where we also
show that an alternative approach using a variational ansatz
produces the same results). The result becomes

Eb = λ
∑

k

|ũ(q, k)|2, (4)

ũ(q, k) = ∫
dx1dx2e

−ik·rm∗
k+ q

2
(x1)m∗

−k+ q
2
(x2)u(x1, x2), and

the momentum summation is over the first Brillouin zone.
This shows that, for attractive (effective) interactions (λ < 0),
a bound state (Eb < 0) exists whenever ũ(k1, k2) is nonzero
for a sufficiently large number of momenta so that the sum in
(4) is nonvanishing in the thermodynamical limit. Importantly,
the bound state energy is linearly proportional to the coupling
constant λ. Bardeen-Cooper-Schrieffer (BCS) mean-field the-
ory for a flat-band system predicts a linear dependence of
the order parameter (pairing gap) [6,22] and the superfluid
weight [11] on the coupling constant. Our result shows that
this dependence is predicted already at the two-body level.
The linear dependence is in striking contrast to the exponential
suppression by λ of the order parameter (pairing gap) in the
BCS theory and two-body Cooper problem in a dispersive
system. The bound state energy in dispersive systems is, for
small λ, proportional to λ2 in one dimension and exponen-
tially suppressed by λ in two dimensions [23], similarly to the

BCS result. The linear dependence of Eb in Eq. (4) is different
from these and independent of dimension.

To find out whether the bound pair has a dispersion, we
study |ũ(k1, k2)|2 further. We bring back the original interac-
tion potential using u(x1, x2)u(x′

1, x′
2) −→ V (x1, x2)δ(x1 −

x′
1)δ(x2 − x′

2). Furthermore, we assume a contact interaction
V (x1, x2) = V (x1)δ(x1 − x2), consider interacting particles
that have opposite spins, and use the relation (consequence
of time-reversal symmetry) m

↑
k = m

↓∗
−k ≡ mk. The potential

V (x1) has the periodicity of the lattice but may be different at
each site of the unit cell (orbital). We obtain

Eb = λ
∑

k

∫
dxV (x)|mk+ q

2
(x)mk− q

2
(x)|2. (5)

The result is intuitive: In a flat band, kinetic energy effects
are absent, thus the pairing energy is given solely by the
probability of the particles to overlap in space and the local
interaction potential.

We now expand the result (5) with respect to small pair
momentum, mk± q

2
= mk ± qi

2 ∂imk + 1
8qiqj ∂i∂jmk + O(q3).

Summation is assumed over repeated indices and ∂i ≡ ∂/∂ki .
This gives

Eb � λ
∑

k

∫
dxV (x)

[
Pk(x)2

− qiqj

4
[∂iPk(x)∂jPk(x) − Pk(x)∂i∂jPk(x)]

]
(6)

= λ
∑

k

∫
dxV (x)

[
Pk(x)2 − qiqj

2
∂iPk(x)∂jPk(x)

]
, (7)

where Pk(x) = m∗
k(x)mk(x) = 〈x|mk〉〈mk|x〉 is the diagonal

element of the Bloch state projector Pk = |mk〉〈mk|. The
effective mass tensor is therefore[

1

m∗

]
ij

= −λ
∑

k

∫
dxV (x)[∂iPk(x)∂jPk(x)]. (8)

This means that the existence of a finite, positive effective
mass, and thus the possibility of breaking the degeneracy
towards an ordered state, depends on the derivatives of the flat-
band projector in a simple way. The result is gauge invariant
and independent of the basis. In the case of a trivial flat band,
such as a single-band lattice model with vanishing hopping,
the periodic part of the Bloch function is independent of
momentum and the pair mass remains infinite, preventing
superfluidity. In a multiband lattice model, the derivatives can
be finite. Bear in mind that the separable potential approxi-
mation leads to only one bound state, which is the sum of the
exact bound states. However, we show in the following that,
for several interesting lattice models, only one (significantly)
dispersive bound state exists and therefore the result (8) is
actually an excellent estimate for the pair effective mass,
although the energy (7) has an offset from the exact value.

The superfluid weight Ds
ij , defined as the change in energy

density δE = Ds
ij qiqj /2 due to supercurrent q, has been

shown to be proportional to the quantum metric by multi-
band mean-field theory [11,24], dynamical mean-field theory,
density-matrix renormalization-group calculations and exact
diagonalization [12,25–27], as well as by semiclassical [28]
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and perturbative [29] approaches. The quantum metric [30]
(Fubini-Study metric) gij (k) can be defined via the infinitesi-
mal Bures distance between two quantum states D2

Bures = 1 −
|〈ψ (k)|ψ (k + dk)〉|2 � ∑

ij gij (k)dkidkj when a parameter
k is varied. The quantum metric is the real part of the quantum
geometric tensor whose imaginary part is the Berry curvature.
This connection allows us to determine the finite Chern num-
ber and Berry curvature as the lower bounds for superfluid
weight using multiband BCS theory [11,26]. Remarkably, the
essentials of such lower bounds can already be obtained from
the two-body problem in a flat band, as we will show below.

To make a connection to previous many-body results, let
us first note that the continuum results (5)–(8) can be mapped
to a tight-binding description (see Supplemental Material
[21]), with the only consequence being that in (8) the in-
tegration of the position coordinate becomes a summation
over the orbital coordinate within one unit cell (u.c.), and
we write the system volume, namely, the number of unit
cells Nc, explicitly. We consider now an interaction poten-
tial that does not depend on position (orbital-independent
potential), V (x) = 1. The inverse effective mass (8) then be-
comes −λ/Nc

∑
x∈u.c.〈x|∂iPk|x〉〈x|∂jPk|x〉. We approximate

this by −λ/(NcNorb)
∑

x,x′∈u.c.〈x|∂iPk|x′〉〈x′|∂jPk|x〉, where
Norb is the number of orbitals in the unit cell, which is valid
when 〈x|∂iPk|x′〉 ∼ 〈x|∂iPk|x〉. The approximation is further
motivated by its similarity to the BCS mean-field approach
(see Supplemental Material [21]). Using

∑
x∈u.c. |x〉〈x| = 1

we obtain [
1

m∗

]
ij

= −λ

NcNorb

∑
k

Tr[∂iPk∂jPk]

= −λ

NcNorb

∑
k

gij (k), (9)

where gij (k) is the quantum metric. In Refs. [11,26,29], the
superfluid weight Ds

ij was derived in the isolated flat-band
approximation and assuming uniform pairing (precisely, the
orbital-independent interaction and

∫
dk|mk(x)|2 being the

same for all x). The relation between the superfluid weight and
the effective mass in a flat band (see Supplemental Material
[21]) is Ds

ij � n(1/m∗)ij when the Cooper pair density n

is small. Using this, the effective mass given by Ref. [11]
becomes (1/m∗)ij = −λ/(NcNorb)

∑
k gij (k), which is the

same as the result (9) obtained by the two-body calculation.
The result (6) inspires us to introduce and calculate the in-

finitesimal difference in local (orbital-specific) wave-function
overlaps as follows,

Doverlap = |mk(x)mk(x)|2 − |mk+dk(x)mk−dk(x)|2

�
∑
ij

[∂iPk(x)∂jPk(x) − Pk(x)∂i∂jPk(x)]dkidkj

≡
∑
ij

glocal
ij (k, x)dkidkj , (10)

where we have have defined the “local quantum metric”
glocal

ij (k, x), which is of the same form as the usual quantum
metric but with the projector Pk = |mk〉〈mk| replaced by its
local matrix element Pk(x) = 〈x|mk〉〈mk|x〉 = m∗

k(x)mk(x).
The local quantum metric is both basis and gauge

FIG. 1. The energy dispersion of two-body bound states for (a)
the sawtooth ladder and (b) Lieb lattice. Dashed lines show the result
(7) obtained by the separable potential approximation, and solid lines
the exact solution of the two-body problem (a) for all bands or (b)
for an isolated flat band. The lattice structures and noninteracting
energy bands are shown on the left. For the Lieb lattice, the hopping
integrals along the thick and thin links are (1 + δ)t and (1 − δ)t with
δ = 0.2. The middle band is isolated from the other bands by a gap
proportional to δ. A nonzero δ breaks the fourfold rotational symme-
try, and this is reflected in the two-body dispersion. The interaction
strength is λ = −0.2t for the sawtooth ladder, and λ = −0.1t for the
Lieb lattice. The red curves show the quadratic dispersion with the
effective mass given by (9). For the Lieb lattice, the uniform pairing
condition is satisfied and the integrated quantum metric (9) agrees
very well with the numerical result. For the sawtooth ladder, the
uniform pairing condition is violated, therefore the quantum metric
approximation to the effective mass is not as good.

independent, unlike the conventional quantum metric and
Berry curvature that are gauge invariant but depend on the
basis [31,32], but on the other hand, it is not positive semidef-
inite and thus not a Riemannian metric. We have shown in (6)
that the local quantum metric determines the flat-band bound
pair effective mass, and can be connected to the usual (global)
quantum metric when assuming uniform pairing. Whether a
physically meaningful “local Berry connection (curvature)”
exists is a topic of future research.

We test the analytical results against exact numerical solu-
tions of the two-body Schrödinger equation in selected lattice
models that feature flat bands. The contact interaction is used.
For the one-dimensional (1D) sawtooth ladder, which has
one flat band [Fig. 1(a)], we solve the two-body problem
numerically by taking into account all the bands. We find
two bands formed by the bound states, and the dispersion of
the bound state energy obtained from the separable potential
approximation (7) agrees (with an offset) with that of the
exact lower band [see Fig. 1(a)]. For the two-dimensional
(2D) Lieb lattice, the middle band is flat and can be made
gapped from the lower and upper bands by staggered hop-
ping. We solve the Lieb lattice two-body problem within the
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FIG. 2. Wave-packet expansion dynamics of a propagating two-
body bound state in the sawtooth ladder. The initial wave-packet is
obtained by calculating the ground state of a trapping potential of the
form V (i, α) = V0 cos[2π (i + bα )/Nc], with bA = 0, bB = 1/2, and
Nc = 200, and then expressing it in terms of the propagating two-
body bound states of the sawtooth ladder. The wave packet is then
released and expands as shown in the inset for the specific case V0 =
−2t and λ = −3t . There, i is the unit cell label and ρ(i ) the density
distribution (identical for the two particles) summed over all orbitals
in unit cell i, at times 100/t , 250/t , and 350/t . In the main plot
the expansion velocity vexp is shown as a function of the interaction
strength |λ| for two different values of V0. Red lines show fits to |λ|γ ;
for details, see the text.

isolated band approximation by considering only the middle
band. Again, we find that the lower bound state band dis-
persion agrees with the result from the separable potential
approximation (7). For results on the Harper model (Landau
levels forming a flat band), see the Supplemental Material
[21].

Our results can be directly tested in ultracold quantum
gas experiments [33]. The propagation speeds of particles
have been studied in experiments (see, e.g., Ref. [34]) where
the lattice potential is initially combined with a harmonic
trapping potential that is later switched off, releasing the
particles for motion. In a flat band, noninteracting atoms
are expected to stay localized, while with interactions, pairs
should propagate with a speed that increases linearly with the
interaction strength and is essentially determined by Eq. (8).
This is strikingly different from the dispersive band case
where noninteracting particles propagate with a speed given
by the hopping t and pairs in the strong coupling limit with
t2/λ velocity. Figure 2 presents simulations of such an exper-
iment for two particles. The expansion velocity is obtained
by fitting the free-particle result 〈x̂2(t )〉 = 〈x̂2(0)〉 + v2

expt
2 to

the width 〈x̂2(t )〉 of the density distribution. The expansion
velocity is controlled by the mass and the initial spread of the
momentum distribution, since the effective mass approxima-
tion gives vexp =

√
〈 p̂2(0)〉/m∗. Using

√
〈 p̂2(0)〉 ∝ |λ|−1/4

and m∗ ∝ |λ|−1, one obtains vexp ∝ |λ|γ with γ = 0.75. The
value obtained by fitting of the data is γ = 0.74 for V0 =
−2t and γ = 0.72 for V0 = −0.3t , in good agreement with
the expected value. The m∗ ∝ |λ|−1 behavior characteristic
for a flat band is seen until |λ| becomes comparable to the
gap between the flat band and its neighboring bands (here,

|λ| � 2t). Experiments both for bosons and fermions would
be interesting, although only the latter connects directly to su-
perconductivity. By increasing the filling, an experiment could
test to which extent the two-body predictions also describe
the many-body case. Further, our results are symmetric in
the coupling, and for λ > 0, so-called repulsively bound pairs
could be observed [35].

In summary, we show that the energy of a two-body bound
state in a flat band is linearly proportional to the interaction
constant and depends on the overlap of the periodic part of
the Bloch functions and the orbital structure of the interaction
potential in a simple way. The pair momentum dependence of
the bound state energy can be used to determine the effective
mass. Within the separable potential approximation, we find
that it is essentially defined by a gauge- and basis-independent
quantity that we call the local quantum metric. With further
approximations on the uniformity of the interactions and
Bloch functions, we recover the dependence of the effective
mass on geometric quantities, such as the (global) quantum
metric and Berry curvature predicted earlier by many-body
approaches. We demonstrate the adequacy of our approximate
analytical results by comparison to exact solutions of the
two-particle problem in the sawtooth ladder, Lieb lattice,
and Harper models; these and other flat-band models can
be realized, for instance, with ultracold gases [36–40] or
designer materials [41,42], and the Brillouin zone integrated
quantum metric can be measured [43]. We propose a direct
signature of the predictions via an ultracold gas expansion
experiment.

Our results show that the two-particle problem already
gives the salient features of the corresponding BCS mean-
field (and other many-body) theory predictions. This suggests
that in understanding and predicting superconductivity in flat
bands of multiband systems, knowledge of the orbital depen-
dence of the interaction and the noninteracting band structure
can already be quite powerful. This may be advantageous
when the single-particle band structure alone is complex,
for instance, involving a large unit cell as in twisted bilayer
2D materials, and therefore formulating a suitable many-
particle lattice model is a challenge. Our approach can be
easily extended to different pairing symmetries. The two-body
approach may also be, due to its computational lightness, well
suited for materials discovery and optimization to find new
flat-band superconducting materials. The two-body effective
mass also gives the first-order estimate of the Berezinskii-
Kosterlitz-Thouless (BKT) temperature via the relation [44–
46] TBKT = π/2

√
det[Ds (TBKT)] � π/2

√
det[Ds (T = 0)] �

πn/2
√

det[1/m∗]. Furthermore, it gives a benchmark for
full many-body descriptions to distinguish strong correlation
effects. Our results highlight the role of the local and global
quantum metric in a flat band and provide intuitive insight to
the connection between superfluidity and quantum geometry.
While all flat bands have a high density of states, the distances
between the Bloch functions may differ in ways that are
decisive for superconductivity.
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