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Transient superconductivity without superconductivity
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Recent experiments on K3C60 and layered copper-oxide materials have reported substantial changes in the
optical response following application of an intense THz pulse. These data have been interpreted as the
stimulation of a transient superconducting state even at temperatures well above the equilibrium transition
temperature. We propose an alternative phenomenology based on the assumption that the pulse creates a
nonsuperconducting, though nonequilibrium, situation in which the linear response conductivity is negative.
The negative conductivity implies that the spatially uniform prepulse state is unstable and evolves to a new
state with a spontaneous electric polarization. This state exhibits coupled oscillations of entropy and electric
charge whose coupling to incident probe radiation modifies the reflectivity, leading to an apparently super-
conductinglike response that resembles the data. Dependencies of the reflectivity on polarization and angle of
incidence of the probe are predicted and other experimental consequences are discussed.
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There has been substantial interest in the use of intense
radiation fields to drive materials into nonequilibrium states
[1]. Particular excitement has been generated by reports [2–4]
of dramatic changes in the electromagnetic response of K3C60

and layered copper-oxide materials after their exposure to
intense THz radiation. The key features of the data are as
follows: (i) Before the application of the pump pulse, the
material is in the normal (unbroken symmetry) state; (ii) after
photoexcitation of the material by the pump, the reflectivity
R(ω) is measured as a function of the frequency ω of a probe
field; and (iii) for some time after the pump excitation, R(ω)
is found to be substantially enhanced at low frequency (see
the insets in Fig. 1). This enhancement has been interpreted in
terms of the creation, by the pulse, of a superconducting (SC)
state.

Theories proposed to date [5–11] are all based on the
premise that the pump pulse changes the interactions and/or
structure in a way that enables a transition to a broken
symmetry SC state at a temperature much higher than that
of the equilibrium transition. In this Rapid Communication,
we point out that the data do not require this interpretation;
instead, the observations can be understood within a general
phenomenology that does not involve SC.

The essence of our model is as follows: (i) We argue on
general grounds that a nonequilibrium system can exhibit a
negative linear response conductivity; (ii) in this case the spa-
tially homogeneous state is unstable and evolves to a new state
characterized by domains of constant electric field bounded
by sheets of charge [Fig. 2(a)]; and (iii) in the experimentally
relevant situation where the nonequilibrium state is produced
by a pulse and thereafter evolves with a conserved energy,
we show that the system sustains collective modes strongly
coupled to incident radiation, leading to the reflectivity curves
shown in Fig. 1.

(i) Consider the system out of equilibrium. The sample
occupies the half space z > 0. Pump radiation incident from

z < 0 creates a nonequilibrium situation, which we assume
relaxes rapidly to a quasisteady nonequilibrium state; in the
simplest case this state is characterized by one parameter,
ζ (�r, t ), which relaxes slowly to its equilibrium value ζ = 0.
The precise microscopic description of ζ is not important
here. For ζ �= 0, entropy density S is produced; we describe
this production by a generation function G0(ζ ) with G0(ζ �=
0) > 0. Electric fields E and currents j produce entropy via
the Joule heating term jE, leading to (T is a pseudotempera-
ture defined later)

T ∂tS = σ �E2 + G0(ζ ) = ρ �j 2 + G0(ζ ). (1)

Here, the conductivity (resistivity) σ (ρ) depends on ζ, T .
The second law of thermodynamics requires dS

dt
� 0. At

equilibrium G0(ζ = 0) = 0, implying ρ � 0. This means that
in a system which is superconducting (ρ = 0 for a range
of T ), ρ(T ) cannot be an analytic function of T : In other
words, the onset of a superconducting state is necessarily via
a phase transition (gauge symmetry breaking). However, in
nonequilibrium, G0 > 0 so ρ or σ can cross zero without
any nonanalyticity. Indeed, calculations have found negative
conductivities in several models of continuously driven sys-
tems [12–17] and other models with similar properties may
exist [18].

(ii) A state with �E = 0 and σ < 0 is unstable towards the
formation of domains of an electric field [see Fig. 2(a)]. To
see this, we combine the continuity and Poisson equations

∇ · �jD = 0, �jD = �j + (4π )−1∂t
�D, ∇ × �E = 0, (2)

with the constitutive equation �j = σ �E. Here, �D = εr
�E is

the electric displacement and εr is the electric permittivity
(for simplicity, we treat εr , σ as isotropic). If σ < 0, the
E = 0 solution is unstable: Small fluctuations in E (i.e.,
charge) grow exponentially with time. Then, the nonlinear
dependence of the current on the electric field becomes im-
portant. In particular, at some finite value of the electric field
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FIG. 1. Calculated (solid lines) and experimental (insets, dashed
lines) reflectivities for (a) K3C60 and (b) La2-xBaxCuO4 (LBCO) (b)
for equilibrium (red) and nonequilibrium (blue) situations. In (a) the
data are taken from Fig. 2(a) of Ref. [2] and the calculations are done
as described in the text for angle of incidence θ = 45◦ using param-
eters ωE = 110 THz, γ = 3.2 THz, l0 = 600 Å, κ = 3 cm2 s−1. In
(b) the data are taken from Fig. 2(b2) of Ref. [3] and the solid curves
are calculated for θ = 45◦ using ωE = 1200 THz, γ = 0.6 THz,
l0 = 4500 Å, κ = 0.2 cm2 s−1. The anisotropy of LBCO was not
considered. The nonequilibrium data of Refs. [2,3] are processed
from raw data and report R(ω) as if the thickness of the nonequilib-
rium layer were infinite, thus magnifying the nonequilibrium effects
on R; a direct quantitative comparison with our calculations is not
possible, but the resemblance of the curves is very reasonable.

E = E∗(ζ ) the Joule heating vanishes again [ �E∗ �j (E∗, ζ ) →
0, see Fig. 2(b) and Refs. [14,16]], implying the formation of a
state characterized by domains of electric field ∼E∗ bounded
by thin sheets of electric charge. The thickness of the sheets
is determined by microscopic scales, and is not important for
the physics we consider. As usual for nonlinear equations, a
multiplicity of possible domain structures may occur. Their

Pump

FIG. 2. (a) Sketch of incident pump pulse leading to spontaneous
polarization in the active layer. (b) Sketch of the j -E characteristic
for a σ < 0 state. (c) Entropy and charge density profiles inside
the active layer; notice the thin surface charge accumulation on the
external boundary of the layer. (d) Incident and reflected probe waves
at an angle θ ; the reflection occurs in the x-z plane and the magnetic
field is along the y axis for TM polarization.

detailed analysis is a formidable but often unnecessary task
and they were studied extensively in several works [19].

(iii) We study the physical consequences of domain for-
mation under the main assumption that the nonequilibrium
effects are strong enough to have σ (E = 0) < 0 in some
region near the sample surface, leading to the formation of
a spontaneous polarization E∗(z) in an active layer 0 < z <

l0 [shaded region (red online) in the right-hand portion of
Fig. 2(a)]. We assume that the depth l0 of this active layer
and the spontaneous polarization change slowly with ζ as
the system relaxes to equilibrium, and that E∗ is determined
by the dynamics of ζ (z, t ), apart from the small fluctuations
considered below.

After the pump is switched off, the microscopic degrees
of freedom rapidly relax to their quasiequilibrium values; in
particular, the electric field relaxes to E∗[ζ (z, t )]. Because the
system is no longer driven, the total energy is conserved, so
the state is characterized by three slowly evolving variables:
the parameter ζ , the energy density ε(�r, t ), and the electric
field E [connected to the charge and current densities by
Eq. (2)]. The entropy density S is related to these dynamical
variables by the equation of state S(ε, �D, ζ ).

Conservation of energy means the energy density (which
includes the electric field energy) evolves only via the energy
current �jε,

∂tε + �∇ · �jε = 0. (3)

Let us note in passing that the Joule heating increases the
internal energy of the electron system but decreases the energy
of the electric field so that it cancels from (3).

The time evolution of ζ depends on ε as a parameter (since
for homogeneous systems ε is an integral of motion) and on ζ

itself [20],

∂t ζ = −I (ζ, ε), I (ζ = 0, ε) = 0. (4)

For the third dynamical equation we choose the entropy S

within the active layer as the independent variable with �D
determined from the equation of state,

(4π )−1 �E · d �D = dε − T dS + T ∂ζ Sdζ. (5)

This choice enables us to use the conservation of energy (3)
effectively. The entropy evolution can be written as

T ∂tS = G(ζ, ε) > 0, T −1 = (∂S/∂ε)ζ, �D. (6)

Entropy generation arises both from Joule heating and from
the entropy produced by the relaxation of ζ . The two effects
cannot be separated in the nonequilibrium regime we consider
and that is why they are joined in one kinetic term G. How-
ever, the ratio G/I = −T (∂S/∂ζ )ε, �D is determined directly
by the state function; it is analogous to a thermodynamic
quantity and does not depend on the kinetic coefficients.

To complete the system of equations we observe that in the
lowest order of the gradient expansion,

�jε = −κT �∇S, (7)

where κ is the thermal diffusion coefficient (related to the ther-
mal conductivity via the specific heat) [21]. The contribution
of the particle current to the energy current can be neglected
provided that all the relevant linear scale are much larger than
the screening radius.
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Equations (3)–(7) provide a complete description of the
dynamics of the system in the nonrelativistic limit (speed of
light c → ∞) and in the absence of incident radiation. It is
noteworthy that Eq. (5) shows that in the situation considered
here, �E 
 �E∗, fluctuations of energy and entropy are linearly
coupled to the electric field, in contrast to equilibrium where
the linear coupling is only via Seebeck and Peltier effects
which involves only spatial derivatives of the electric field.

For an isolated system, (ε0, S0, ζ0)(z,t ) slowly evolve ac-
cording to Eqs. (3)–(7). Let us consider small deviations
around this evolving state: We write ε(�r, t ) = ε0(�r, t ) + δε,
etc., and linearize Eqs. (3)–(7), obtaining

L̂

⎛
⎜⎝

δζ

δε

T δS

⎞
⎟⎠ = 0, L̂ =

⎛
⎜⎝

∂
∂t

+ ∂I
∂ζ

∂I
∂ε

0

0 ∂
∂t

−κ ∂2

∂z2

− ∂G
∂ζ

− ∂G
∂ε

∂
∂t

⎞
⎟⎠, (8)

with boundary conditions

∂zT δS|z=0 = 0, δS|z=l0 = 0. (9)

The first boundary condition says entropy does not flow into
the vacuum; the second one states that any excitation reaching
the internal boundary of the active layer is removed into the
bulk [22]. Notice that δε can be discontinuous at boundaries
due to charge accumulation.

The coefficients in L̂ depend slowly on time, justifying
the use of a quasistationary approximation for the response
to rapidly varying perturbations (perturbation frequency ω �
∂I
∂ζ

). For simplicity, we also assume that all coefficients of L̂ in
Eq. (8) do not depend on z within the layer 0 < z < l0 (lifting
this assumption leads to unimportant changes in numerical
coefficients). We seek solutions of the form

δζ, δε, T δS ∼ e−i
∫ t

dt1ω(t1 ) cos(kz). (10)

We define

ωE ≡ ∂εG, γ ≡ ∂εI (∂εG)−1∂ζG, (11)

and substitute Eq. (10) into Eq. (8), finding

k(ω) = ω/
√

κωE (1 − iγ /ω). (12)

From the second boundary condition in Eq. (9), kj l0 =
π (j + 1

2 ); the lowest eigenfrequency is then

2ω0 ≈
√

π2ωEκ/l2
0 − iγ . (13)

The frequency ω0 will determine the scale of the nonequilib-
rium anomaly in the reflectivity and depends on time through
ωE and l0. Equation (13) shows that the active layer sustains
underdamped fluctuations, originating from the combination
of plasmonic charge dynamics, the relaxation of ζ , and slow
fluctuations of the energy. The coupling between the charge
and energy/entropy fluctuations is large because charge fluc-
tuations produce electric fields which contribute to the energy
density, while even small changes in ε cause large changes
in the entropy production. Other oscillations involving such
quantities such as the spin density are possible, but their
coupling to the entropy fluctuations will be much weaker, as
the interactions with the corresponding densities are local.

We now turn to the reflectivity. Coupling the collective
mode (13) to an electromagnetic wave requires replacing

Eq. (2) with the complete set of Maxwell equations,

c �∇ × �B = 4π �jD, c �∇ × �E = −∂t
�B, (14)

where �B is the magnetic field (we assume permeability μ =
1). The magnetic field in Eq. (14) modifies the expression for
the energy current from Eq. (7) to

�jε = −κT �∇S + �P, 4π �P ≡ c �E × �B, (15)

where �P is the Poynting vector acting as an external source
for the energy dynamics inside the active layer.

We consider “probe” radiation incident at an angle θ

and distinguish two polarizations: when electric field δE‖ŷ
[transverse electric (TE) polarization] or when δE has a
component along z [transverse magnetic (TM) polarization,
see Fig. 2(d)]. Symmetry dictates that electric fields associated
with TE radiation cannot interact with the charge oscillations
of the longitudinal mode Eq. (10) so that no significant
changes in R(ω) may occur (the other way to see this is to
notice that the Poynting vector is �P‖ŷ but the only important
spatial variation is along x so �∇ · �P = 0). The absence
of a pump-dependent correction for TE polarization is a key
qualitative result of our model.

For TM polarization the Poynting vector of the incident
wave indeed acts as a source in the energy conservation
Eq. (3), modifying Eq. (8) to

4πL̂(δζ ; δε; T δS)T = c(∂xB )E∗(0; 1; 0)T , (16)

where the condition ωl0/c � 1 implies that the dependence of
B on z can be neglected. The linear perturbation of the layer is
maximal when the frequency of the probe is close to the real
part of the frequency ω0 [Eq. (13)].

We now calculate the frequency-dependent reflectivity
R = |r|2 in terms of the amplitude r (θ, ω) of the reflected
portion of a TM wave incident at angle θ ,

r (θ, ω) = (4π cos θ − cZ̃)/(4π cos θ + cZ̃). (17)

The total impedance Z̃(θ, ω) is defined as

1

Z̃(θ, ω)
≡ c

4π

By (z = 0)

Ex (z = 0)
=

∫ ∞
0 jx

Ddz

Ex (z = 0)
, (18)

where the last equation is obtained by integration of the first
Maxwell equation (14) over z within the sample.

The total displacement current is given by∫ ∞

0
jx
Ddz = [Z0(θ, ω)]−1Ex (z = l0) +

∫ l0

0
jx
Ddz, (19)

where Z0(θ, ω) is the equilibrium impedance in the bulk and
the second term is always small for ωl0/c � 1. It is the field
Ex that drastically changes across the active layer; in fact, for
ωl0/c � 1, �∇ × �E ≈ 0, and we obtain

Ex |z=l0 − Ex |z=0 =
∫ l0

0
∂xδEzdz =

∫ l0

0

∂xδDz

εr

dz. (20)

Finding δDz from Eqs. (5) and (16) we obtain the angular
dependence of the nonequilibrium impedance,

Z̃ = Z0(θ, ω) + Zneq(θ, ω), Zneq ≡ sin2 θ Y (ω), (21)

where Z0(θ, ω) has to be extracted from equilibrium experi-
mental measurements [23].
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FIG. 3. (a) Plot of the real (solid line) and imaginary (dashed
line) part of Y (ω). (b) Theoretical R(θ ) of K3C60 at ω = 6 meV =
1.44 THz in equilibrium (red) and nonequilibrium (blue); notice the
marked dependence on the angle and the presence of a region where
R > 1. Plots are for the parameters of Fig. 1(a).

The factorization of the nonequilibrium contribution Zneq

into angle- and frequency-dependent terms is a distinctive
feature of the active layer model. The specific θ dependence
shown in Eq. (21) is a consequence of the assumed domain
shape. A more complex domain structure would produce a
more complicated θ dependence.

The function Y (ω) is formally expressed as

c

4π
Y (ω) = 1

εr

ω2

c

∫ l0

0
dz1dz2

1

E∗(z1)
Lz1,z2E

∗(z2),

L = [(−G/I, 1,−1)L̂−1(0; 1; 0)T ]. (22)

We neglect the factor G/I which is of the order of the rate
at which the state relaxes back to equilibrium divided by
the frequency, G

I
∼ ∂I/∂ζ

ω
� 1. Explicit calculation within the

model leading to Eq. (13) gives

c

4π
Y (ω) = −ωEl0

εrc

(
1 − i

γ

ω

)(
tan[k(ω)l0]

k(ω)l0
− 1

)
, (23)

where k(ω) is found from Eq. (12). The function Y (ω) [see
Fig. 3(a)] vanishes as ω → 0. For small ω, Re(Y ) < 0, and
Y has poles at the eigenfrequencies given in Eq. (13). The
high-frequency behavior cannot be obtained from Eq. (23),

valid only for ω < c
l0

. The remarkable feature of Eq. (23) is
that the prefactor (ωEl0/c) can easily exceed unity; the origin
of this largeness is the sensitivity of the entropy production to
the integral of motion ε.

We used Eqs. (17), (21), and (23) to calculate the reflec-
tivity. From Eq. (21) we see that at θ = 0 (normal incidence)
the nonequilibrium effects are not visible in R, while from
Eq. (17) we see that at θ = π/2, |r| = 1 for both equilibrium
and nonequilibrium states. For 0 < θ < π/2, nonequilibrium
effects are evident in the reflectivity [see Fig. 3(b)]. Intuition
may be gained considering the Hagen-Rubens limit |Z̃| � 1
[24] in which R(ω) ≈ 1 − 4 Re[Z0 + sin2 θY (ω)]/ cos θ ,
showing that the reflectivity is enhanced relative to equilib-
rium for Y < 0 and suppressed for Y > 0. The large value
of ωEl0/c means that Re(Z) can become negative for ω �
Re(ω0), leading to R > 1; such amplification is allowed in
a nonequilibrium system. Notice, however, that there is no
spontaneous emission instability (no lasing).

We briefly mention nonlinear response effects implied by
our model: (i) Second harmonic generation (SHG) is made
possible by the nonzero value of the spontaneous polariza-
tion E∗, which reduces the symmetry to uniaxial. The SHG
signal is maximal for excitation frequencies near ω0/2 and
ω0, corresponding to resonances in the outgoing or incoming
state, respectively. (ii) A parametric resonance instability may
lead to radiation at frequencies ∼ω0 in response to an incident
wave of frequency close to 2ω0 [25]; the observable features
are the same as those of the recently discussed “Floquet time
crystal” state [26].

In conclusion, we plotted R(ω) = |r (ω, θ = 45◦)|2 for
“sensible” parameters values in Figs. 1(a) and 1(b). The
resemblance with the experimental data is very reasonable,
even though we cannot make any definite conclusion until the
data on polarization and angular dependence are available.
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