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Superconductivity occurring at low densities of mobile electrons is still a mystery since the standard theories
do not apply in this regime. We address this problem by using a microscopic model for ferroelectric (FE) modes,
which mediate an effective attraction between electrons. When the dispersion of modes, around zero momentum,
is steep, forward scattering is the main pairing process and the self-consistent equation for the gap function can be
solved analytically. The solutions exhibit unique features: Different momentum components of the gap function
are decoupled, and at the critical regime of the FE modes, different frequency components are also decoupled.
This leads to effects that can be observed experimentally: The gap function can be nonmonotonic in temperature
and the critical temperature can be independent of the chemical potential. The model is applicable to lightly
doped polar semiconductors, in particular, strontium titanate.
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Introduction. Superconductivity (SC) is one of the most
striking quantum phenomena in many-body physics. More
than a century after its discovery, it can be described by mi-
croscopic models only in a limited range of systems. The most
prominent theory is BCS [1], which assumes an attractive
interaction between electrons of the form

V (k, k′) =
{
g, ξk, ξk′ < ωD,

0, otherwise, (1)

where k and k′ are the momenta of the electrons, ξk and ξk′

are their energies, g is a coupling constant, and ωD is the De-
bye frequency of the phonons mediating the interaction. The
theory predicts a superconducting gap � = 2ωDe−1/gN (0),
where N (0) is the density of states at the Fermi surface
and a transition temperature Tc � 0.57�. The form of the
interaction in Eq. (1) can be reasonable in the so-called
adiabatic regime ωD � Ef , where Ef is the Fermi energy
of the electrons, in which the ions respond slowly compared
to the velocity of electrons. The retardation effect can result
in an effective attraction and also goes hand in hand with a
significant technical simplification, separating the dynamics
of the electrons and those of the phonons so N (0) is the only
relevant quantity regarding the electrons. In the nonadiabatic
regime it is hard to imagine that Eq. (1) is applicable and a
different physical picture is required.

Here, we suggest that SC in vanishing doping levels is
directly connected to quantum criticality. The connection is
made explicit by employing a specific type of microscopic
coupling between mobile electrons and structural modes of
the lattice. We model for these modes, using the quantum
Ising Hamiltonian, and obtain an effective electron-electron
interaction that is qualitatively different from Eq. (1). Similar
to the BCS case, the self-consistent equation for the gap
function with this interaction can be solved analytically. The
solutions represent a pairing mechanism that is significantly
different from BCS, as illustrated in Fig. 1. In our case
N (0) loses its pivotal role and the critical temperature Tc

can be independent of the chemical potential, so in principal
superconductivity can occur without a Fermi surface, i.e., in
an insulator. Furthermore, the gap function can be a non-
monotonous function of the temperature when the mediating
modes are in the critical regime.

The need for a nonadiabatic theory is emphasized by
experimental results with strontium titanate, which was found
to be superconducting at extremely low doping levels [2,3].
Besides framing the problem as an observed phenomenon,
SC in strontium titanate has attracted a lot of attention re-
garding interfaces with different materials [4–6] and due to
the polaronic behavior [7–10]. Recent experiments in this ma-
terial revealed an interesting effect of doping on the thermal
conductivity [11] and peculiar pairing at the interface [12]. A
good understanding of the bulk SC, which has been pursued
for many years [13–15] and is still debated [16–18], would be
highly valuable. In Ref. [19], ferroelectric (FE) modes close to
a quantum critical point (QCP) were suggested as the source
of SC and used to explain the vanishing SC for increased
levels of doping. An unusual isotope effect was proposed as
a method to study the phenomenology of the critical behavior
[20] and was experimentally observed [21], supporting the
connection of SC to the QCP. The coexistence of FE and SC
was observed [22] and strain was also proposed as a tuning
parameter [23] and experimentally investigated [24]. More
generally, a vast effort was focused on connections between
SC and a QCP in the past decades. Nonetheless, novel theo-
retical approaches [25] are presented and experimental studies
[26] are performed every so often.

The model. The full Hamiltonian of the system is H =
Hm + He + Hme, where Hm, He, and Hme are the Hamil-
tonians for the FE modes, electrons, and their interaction,
respectively. We start by deriving Hm and then use its (mean-
field) solution, together with Hme, in order to get an effective
electron-electron interaction, which would be the basis for SC.

In Ref. [20] it was already shown how FE modes can be de-
scribed by the quantum Ising Hamiltonian. For completeness,
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FIG. 1. An illustration of the pairing mechanism. (a) The stan-
dard BCS picture: Cooper pairs of quasiparticles with opposite
momentum interact only when their energy is within ωD from the
Fermi surface. (b) In the case of forward scattering the interaction
is localized in momentum space. The gap is forming in the region
where the energy of two quasiparticles is smaller than the interaction
energy 2ξk < g.

we go over this derivation here. Consider a single unit cell,
containing several ions where some are charged positively
and other negatively. The configuration of the positions of the
ions can have two degenerate energy minima while the most
symmetric configuration happens to be a local maximum, i.e.,
a double-well potential. A quantization of the system reveals
that the ground state of the system is an equal and symmetric
superposition of the two minima and the first excited state is
an antisymmetric superposition. Neglecting higher levels, we
can write the Hamiltonian for a single unit cell as H = 1

2�σx ,
where σx is the Pauli matrix, having the eigenstates | ↑x〉 and
| ↓x〉 with eigenvalues 1 and −1, respectively, and � is the
excitation energy (or the tunneling frequency).

The eigenstates of σx represent symmetric and antisym-
metric superpositions so the eigenstates of σz imply the con-
figuration of the ions is around one of the minima. These
configurations entail an electric dipole, due to the different
charge of the ions. The direction, and magnitude, of the dipole
�d is given by the details of the configuration on the minimum.
The dipoles for the two states | ↑z〉 = (| ↑x〉 + | ↓x〉)/

√
2

and | ↓z〉 = (| ↑x〉 − | ↓x〉)/
√

2 have the same magnitude and
opposite directions, so we can write the dipole pertaining to
these pair of minima as σα

z (i) �d, where i denotes the unit
cell and α denotes the minima pair. In general, there would
be other pairs of degenerate minima, with electric dipoles
pointing in different directions, typically one pair for each
spatial direction α = x, y, z (not to be confused with the
index of the Pauli matrices x, z which refer to the pseudospin
direction).

The electric field created by the dipole induces a cou-
pling between different unit cells (and also a coupling
to mobile electrons which we describe below). A gen-
eral dipole-dipole interaction can be written as Hdd =
− 1

2

∑
i,j,α,β J

α,β

i,j σ α
z (i)σβ

z (j ), where J
α,β

i,j is the interaction

energy. For simplicity, let us assume J
α,β

i,j ∼ δα,β , so different
modes are decoupled. We consider now a single mode and
suppress the mode index. Later, the effective interaction me-
diated by these modes will include a sum over them. Together
with the on-site energy, we obtain the Hamiltonian for the FE

modes in the form of the quantum Ising model,

Hm = −1

2
�

∑
i

σx (i) − 1

2

∑
i,j

Ji,j σz(i)σz(j ). (2)

This model, which was investigated vastly [27,28], describes
a quantum phase transition between a FE order 〈σz〉 �= 0 when
J  �, and a paraelectric phase 〈σz〉 = 0 when J � �, with
J being the scale of Ji,j . Using a mean-field approxima-
tion one can obtain a solution for the Heisenberg operators
σz(q) = ∑

j eiRj·qσz(j ) as σz(q, t ) = eiωqt σz(q, t = 0) with

ωq = √
�(� − Jq), where Jq = ∑

j eiRj·qJ0,j is the Fourier
transform of the dipole-dipole interaction Ji,j [28]. Since such
an interaction is highly anisotropic and peaked at q = 0, the
dispersion relation has a minimum at q = 0 and would depend
mostly on qα , the longitudinal component of q. At the QCP
ω0 = ωq=0 has to vanish and the critical regime of the system
is defined as ω0 < T , with T being the temperature.

In the standard treatment of electron-phonon coupling,
namely, the Frölich Hamiltonian, the phonons are assumed
to be harmonic structural modes. This assumption implies
that the excitation levels are equidistant and thus can be
described using bosonic creation and annihilation operators.
Our model is valid in the opposite regime, where a strong
anharmonicity, in the form of a double-well potential, allows
one to neglect levels higher than the first excitation and leads
to a pseudospin description. This description for the structural
modes, formulated by the quantum Ising model, is suitable
when the system is close to criticality [27].

The interaction between electrons and the FE mode is given
by Hme = ∑

i,j c
†
i ciσz(j )φi,j , where c(†) is the electronic an-

nihilation (creation) operator and φi,j is the electric potential
at site i due to a dipole at site j . Similar to the dispersion
ωq, this potential is strongly anisotropic. Moreover, its Fourier
transform φq = ∑

j eiRj·qφ0,j ∝ qα|q|−2 is peaked at q = 0,
in contrast to acoustic phonons, whose coupling to electrons
vanishes there.

The modes we are interested in are longitudinal, in the
sense that the coupling is to the component of q that is parallel
to α, which denotes the direction of the electric dipole. In the
case of a broken continuous symmetry, there will be gapless
Goldstone modes that are transverse. When the transition is
at finite temperature and the ground state breaks continuous
symmetry, only these transverse modes remain soft. Here,
we consider an Ising transition at zero temperature, so there
are no Goldstone modes and at the QCP there is no gap.
The longitudinal modes have a much stronger dispersion
but the difference in their frequency, compared to transverse
modes, has to be at least O(q ) and typically it is O(q2) (see
Supplemental Material [29] Secs. I and V for details).

Deriving a self-consistent equation. Using Hm and Hme,
and treating the electronic density as an external source, we
can write a solution for the FE Mastubara operators σ (τ ) =
eτH σe−τH as

σz(q, τ ) =
∫ β

−β

d3kdτ ′Dq(τ − τ ′)�c
†
k(τ ′)ck−q(τ ′)φ−q, (3)

where c(†)(τ ) = eτH c(†)e−τH are the electronic Mastubara
operators and Dq(τ ) = T

∑
ω

−eiωτ

ω2
q+ω2 is the Matsubara Green’s
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function for a single FE mode (see Supplemental Material [29]
Sec. II for details).

Once the solution for the FE modes is given, a standard
procedure can be followed to introduce an effective electron-
electron interaction and obtain a self-consistent equation for
the electronic gap function [30]. The main steps are sketched
below, using the method of solving the equations of motions
for the electronic Green’s functions (for a more detailed cal-
culation, see Supplemental Material [29] Sec. III). Assuming
a simple one-band model for the electrons, He = ∫

dkξkc
†
kck,

where ξk is the energy, the time derivative of the electronic
Matsubara operator is given by

−∂τ ck(τ ) = −[H, ck(τ )] = ξkck +
∫

dqφ−qck+qσ (q)

= ξkck +
∫

dpdqdτ ′V (q, τ − τ ′)

× ck+qc
†
p(τ ′)cp−q(τ ′), (4)

where in the second line we have inserted Eq. (3) and
V (q, τ ) = ∑

α Dα
q (τ )�|φα

q |2 is an effective retarded interac-
tion with a summation over FE modes.

We define the Matsubara Green’s functions in
momentum space G(k, τ ) = Tτ 〈ck(τ )c†k(0)〉, F †(k, τ ) =
Tτ 〈c†k(τ )c†−k(0)〉, where Tτ is the Matsubara time ordering
operator. Their time derivatives, ∂τG(k, τ ) and ∂τF

†(k, τ ),
after one inserts Eq. (4), include four-point functions
〈cc†cc†〉 and 〈c†c†cc†〉, which can be approximated by
introducing a mean field � ∝ 〈cc〉. A Fourier transform
to Matsubara frequency G(τ ) = T

∑
ω e−iωτG(ω),

F †(τ ) = T
∑

ω e−iωτF †(ω), with ω = πT (2n + 1), and
a definition of a gap function

�(k, ω) = T
∑
q,ω′

V (q, ω − ω′)F (k + q, ω′), (5)

where

V (q, ω) =
∫ β

−β

dτV (q, τ )eiωτ = −
∑

α

�
∣∣φα

q

∣∣2

(
ωα

q

)2 + ω2
, (6)

results in two coupled equations for G(k, ω) and F †(k, ω),
which can be solved analytically. Inserting a solution for
F †(k, ω), in terms of �(k, ω), back into Eq. (5), yields a
self-consistent equation

�(k, ω)=−T
∑
k′,ω′

V (k−k′, ω − ω′)
�(k′, ω′)

�2(k′, ω′) + ω′2 + ξ 2
k′

.

(7)

In the usual Eliashberg treatment [31], which relies on
Migdal’s theorem [32] for neglecting terms of order
O(ωD/Ef ), the frequency dependence of the gap function
comes from the self-energy of the electrons. In contrast, here,
the energy scales of the FE modes are comparable to those of
the mobile electrons and it is their dynamics that can lead to
a significant frequency dependence. We will use the physical
properties of the FE modes in order to approximate V (q, ω)
such that Eq. (7) can be solved.

Solving the self-consistent equation. We start with the
frequency dependence. To this end it is convenient to write the
Matsubara frequencies as ωn = T ω̃n with ω̃n = π (2n + 1)
and to note that since the interaction in Eq. (7) is a function of
the difference between two fermionic frequencies, it includes
a term V (q, ω = 0) ∝ ω−2

q while the rest of the terms are
∝T −2. At the critical regime ωq=0 < T , so if there is a suf-
ficient range of q where ωq � T , the term V (q) = V (q, ω =
0) will dominate the sum. Neglecting terms with n �= 0, we
have V (q, ωn) = V (q)δn, where δn is a Kronecker delta. Thus
the frequency sum in Eq. (7) is trivial and we get

�n(k) =
∑

k′
V (k − k′)

−T �n(k′)
�2

n(k′) + T 2ω̃2
n + ξ 2

k′
, (8)

with �n(k) = �(k, ωn). We now have a separate equa-
tion for each frequency component �n(k). In the oppo-
site regime, ωq  T , one can neglect the frequency de-
pendency of V (q, ω) which implies �(k, ω) = �(k) is
also frequency independent. Then, the frequency sum in
Eq. (7) can be done and the typical form of the equation is
obtained, �(k) = ∑

k′ V (k − k′)�(k′) tanh ( Ek′
2T

)/2Ek′ , with

Ek =
√

�2(k) + ξ 2
k .

We now turn to the momentum dependence of the inter-
action. Note that while φq, appearing in the numerator of
Eq. (6), is peaked at q = 0, ωq in the denominator has its
minimum there. So it is plausible to think that V (q) would
be strongly peaked at q = 0. If the width of this peak, which
depends on the properties of the FE modes, is small compared
to the other momentum dependency, due to ξk, then it can be
approximated by a Dirac delta V (q) � −gδ(q ), where g > 0
is a coupling constant. This limit, where forward scattering
is the main process for electron pairing, was discussed in a
wide range of systems such as the cuprates [33–36], FeSe
interfaces [4,37,38], and iron pnictides [39]. It was used to
explain anisotropies in the gap function, leading to different
symmetries [34,35,39], enhancement of Tc [4,38], pseudogap
behavior [33], and a broadening of the phonon line shape
[38]. It results in momentum decoupling [34] which makes
the momentum sum in Eq. (8) trivial, and we obtain a separate
equation for each component with the solutions

�n(k) = Re
√

gT − T 2ω̃2
n − ξ 2

k , (9)

T ±
c (n, k) = g±

√
g2−4ω̃2

nξ
2
k

2ω̃2
n

. For ξk = 0, we have �n(k) �= 0 for

T < Tc(n, kF ) = g/ω̃2
n, similar to the usual understanding of

a critical temperature. Away from the Fermi surface we have
two critical temperatures and �n(k) �= 0 in the range T −

c <

T < T +
c . As long as the normal state is metallic, T −

c might
be irrelevant, since other components of the gap can be finite
below it. For an insulator, this temperature might indicate
an insulator-superconducting transition, driven by thermally
excited carriers.

In the case ωq  T , using V (q) � −gδ(q ) yields a sep-
arate (transcendental) equation 2Ek = g tanh ( Ek

2T
) for each

Ek. At the Fermi surface the critical temperature is given by
Tc(kF ) = g/4, and at T = 0 the gap function is [33]

�(k) =
√

g2/4 − ξ 2
k . (10)
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(a) (b)

(d)(c)

FIG. 2. The dependency of the gap function � on temperature
and doping. (a) For ωq  T , a numerical solution of the gap equation
is shown for different values of ξk. (b) For ωq � T , the sum over
the analytical solutions in Eq. (9) at the Fermi surface, where each
one vanishes as

√
T for low temperatures, shows a finite result

limT →0
∑

n �n(kF ) = g/4, due to more terms activated at Tc(n) =
g/ω̃2

n. (c) Integration over ξk using a three-dimensional density of
states, for ωq � T , is showing the behavior described by Eq. (11).
High-frequency components are shown as dashed lines (more clearly
in the inset). (d) The dependency of � on doping showing a finite
value for μ < 0, i.e., insulator (only the case of ωq  T is plotted
since the plot for ωq � T is similar). In (c) and (d) the integration
over ξk requires introducing another parameter related to the density
of state.

A general solution for �(k), as a function of T and ξk, is
shown in Fig. 2(a).

As a comparison to these results, one can consider the
opposite regime of interaction that is momentum independent,
V (q) � −g. In the case ωq  T , the momentum integral
would diverge and the standard procedure, introducing a
cutoff ωD , results in Tc = ωDe−1/gN (0). In the case of Eq. (8),
the momentum integral does not diverge and can be done
analytically, using a typical density of states. The resulting
gap function is nonzero only for large temperature. A physical
interpretation of this scenario is an interesting question, which
we do not address in this Rapid Communication.

Discussion. The state described by Eq. (10) has some
similarities to the BCS case. The density of states N (ξ ) ∝
�(g − 2|ξ |)(∂ξk/∂k|ξk=ξ )−1 has a gap of Eg = g = 4Tc but
no square-root singularity. The ratio Eg/Tc differs by a fac-
tor of 1.14 from the BCS result, coming from the lack of
integration over momentum/energy. The case of Eq. (9) is
rather different. It is valid only in the critical regime of the

FE modes, which is mostly T > 0. It does include a single
point in the parameter space with T = 0, namely, the QCP,
but at this point ω0 → 0 and thus g → ∞. So it is not
straightforward to take the limit T → 0 in order to obtain, for
example, the retarded Green’s function, spectral function, etc.
This might imply that Eq. (9) does not describe any ground
state.

The results in Eqs. (9) and (10) do not depend directly on
the density of carriers, in strong contrast to the corresponding
expression in BCS theory where N (0) appears in the expo-
nent. This can be attributed to the infinite range of the forward
scattering process. The solutions in Eqs. (9) and (10) show
possible pairing channels but any observed phenomena, such
as persistent current, Meissner effect, Josephson effect, etc.,
might depend on how many channels contribute. In order to
study the possible dependence on the doping level and tem-
perature we consider the quantity � = ∑

n,k �n(k), which is
plotted in Figs. 2(c) and 2(d) as a function of temperature
and chemical potential μ [40], respectively. The results can
be observed experimentally by measuring, for example, the
critical current. The qualitative behavior can be inferred at
some limits. For a high level of doping μ  g [41], we have
� ∝ N (0)(T 2

c − T2) in the case of Eq. (10) and

� ∝ N (0)T Tc

(√
Tc

T
−

√
T

Tc

)
(11)

in the case of Eq. (9), where in both cases Tc ∝ g. For a
low level of doping μ � g, we have, in three dimensions,
� ∝ EF /Tc + 1, which implies SC does not vanish for μ = 0
and even for μ < 0, i.e., an insulator. This result is quite
generic, since for g > −μ > 0 it can be energetically favored
to excite a pair of carriers and allow them to form a bound
state. However, this might require extremely strong coupling
and low temperature.

The pairing mechanism introduced in this Rapid Com-
munication has the double benefit of being derived from a
microscopic model and resulting in unique features that can be
experimentally observed. While relying on a physical picture
that is different from BCS, this theory still possesses a major
advantage of BCS, namely, it is analytically tractable. The
concrete connection between QCP and SC can be employed
as a tool for a theoretical analysis in a wide range of systems.
The results might be used to explain prepairing observations
or the pseudogap phenomenon.
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