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Orbital-selective superconductivity in the nematic phase of FeSe
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The interplay between electronic orders and superconductivity is central to the physics of unconventional
superconductors, and is particularly pronounced in the iron-based superconductors. Motivated by recent
experiments on FeSe, we study the superconducting pairing in its nematic phase in a multiorbital model with
frustrated spin-exchange interactions. Electron correlations in the presence of nematic order give rise to an
enhanced orbital selectivity in the superconducting pairing amplitudes. This orbital-selective pairing produces a
large gap anisotropy on the Fermi surface. Our results naturally explain the striking experimental observations,
and shed light on the unconventional superconductivity of correlated electron systems in general.
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Introduction. High-temperature superconductivity in the
iron-based superconductors (FeSCs) is a major frontier of
condensed matter physics [1–3]. New phenomena and insights
continue to arise in this area, giving hope for deep understand-
ings of the ingredients that are central to the mechanism of
superconductivity. One such ingredient is the orbital-selective
Mott physics [2,4]. It has been advanced for multiorbital
models of the FeSCs [5–7], in which the lattice symme-
try dictates the presence of interorbital kinetic hybridiza-
tions, and has been observed by angle-resolved photoemission
spectroscopy (ARPES) [4,8–10]. The orbital-selective Mott
physics connects well with the bad-metal normal state [11,12],
as implicated by the room-temperature electrical resistivity
reaching the Mott-Ioffe-Regel limit and the Drude weight
having a large correlation-induced reduction [13]. Another
closely related ingredient is orbital-selective superconducting
pairing (OSSP), which was initially advanced for the purpose
of understanding the gap anisotropy of iron-pnictide super-
conductors [14].

Among the FeSCs, the bulk FeSe system is of particular
interest. It is the structural basis of the single-layer FeSe on
an SrTiO3 substrate, which holds the record for the super-
conducting transition temperature Tc in the FeSCs [15–18].
It has a nematic ground state, which reduces the C4 rotational
symmetry of a tetragonal lattice to C2 and in turn lifts the
degeneracy between the dxz and dyz orbitals.

More generally, FeSe provides a setting to study the in-
terplay between the orbital selectivity and electronic orders.
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Indeed, recent scanning tunneling microscopy (STM) mea-
surements in the nematic phase of FeSe have uncovered a sur-
prisingly large difference between the quasiparticle weights
of the dxz and dyz orbitals, suggesting the proximity to the
orbital-selective Mott phase [19]. Moreover, they suggest a
strongly orbital-selective superconducting state, as reflected in
an unusually large anisotropy of the superconducting gap [20]:
The ratio of the maximum to the minimum of the gap
�max/�min is at least about 4. Recently, several of us have
suggested a microscopic picture for the orbital-selective Mott
physics in the nematic but normal (i.e., nonsuperconducting)
state [21]. Within a slave-spin approach, electron correlations
in the presence of nematic order are found to yield a large
difference in the quasiparticle weights of the dxz and dyz

orbitals while the associated band splittings as seen in ARPES
are relatively small [22,23].

In this Rapid Communication, we study the pairing struc-
ture in the nematic phase of FeSe using this theoretical picture.
We show that the orbital selectivity in the normal state leads to
an orbital-selective pairing, which in turn produces a large gap
anisotropy that is consistent with the STM results. Our work
not only provides a natural understanding of the experimental
observations, but also sheds light on the interplay between the
orbital-selective pairing/Mott physics and electronic orders,
all of which appear to be important ingredients for the un-
conventional superconductivity in FeSCs and beyond.

Model and method. As a starting point, we consider
the five-orbital Hubbard model for FeSe. The Hamiltonian
reads as H = Ht + Hint. Here, Ht = ∑

ij,αβ t
αβ

ij c
†
i,α,σ cj,β,σ ,

where c
†
i,α,σ creates an electron in orbital α (∈

xz, yz, x2 − y2, xy, z2), spin σ , and at site i of an Fe-square
lattice. The tight-binding parameters are obtained by fitting
the ab initio density functional theory (DFT) band structure
of FeSe, and Hint describes the on-site interactions, which
include the intra- and interorbital Coulomb repulsions and
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the Hund’s coupling [see Supplemental Material (SM) [24]].
We use the U (1) slave-spin method [25,26] to study the
correlation effects of this model. In this representation, the
electron creation operator is expressed as c

†
i,α,σ = S+

i,α,σ f
†
i,α,σ ,

where S+
i,α,σ is the ladder operator of a quantum S = 1/2

slave spin and f
†
i,α,σ is the creation operator of a fermionic

spinon. The effective strength of the correlation effect in
orbital α is characterized by the quasiparticle spectral weight
Zα ∼ |〈S†

α〉|2 (here we have dropped the site and spin indices).
Zα > 0 describes the spectral weight for the coherent itinerant
electrons, while Zα = 0 refers to a Mott localization of the
corresponding orbital. We obtain Zα for each orbital in the
nematic normal (i.e., nonsuperconducting) state via solving
the slave-spin saddle-point equations detailed in Refs. [25,26].
Calculations in Ref. [21] for the nematic normal state yield
a strongly orbital-dependent spectral weight of the order
Zxz : Zyz : Zxy = 1 : 4 : 0.5, which is consistent with the
values extracted from the STM measurements [19,20,27].
We will adopt this ratio for our calculation. An important
advantage of the U (1) slave-spin approach in comparison
with, for instance, the Z2 counterpart [28–30], is that the
slave-spin operators can carry all the charge degrees of
freedom and the f fermions are left with carrying all the spin
degrees of freedom. Consequently, in the bad-metal regime,
we can get a low-energy effective model by integrating out
the incoherent part of the electron spectrum (via the quantum
fluctuation of the slave spins) [2,31,32]. The resulting
effective model can be written in terms of the f -fermion
operators as follows,

Heff =
∑
ij,αβ

(√
ZαZβt

αβ

ij − λαδαβ

)
f

†
i,α,σ fj,β,σ

−
∑
ij,αβ

J
αβ

ij f
†
j,β,↓f

†
i,α,↑fi,α,↓fj,β,↑. (1)

It takes the form of a multiorbital t-J model with the spin-
exchange couplings J

αβ

ij coming from the integrating-out pro-
cedure. The slave-spin calculations for the renormalization
factors, Zα for orbital α, are similar to those for the normal
nematic state of FeSe as described in Ref. [21], with a bare
Coulomb interaction being about 3.5 eV. The intraorbital
components J α

1 and J α
2 , for the nearest neighbor 〈ij 〉 and

next-nearest neighbor 〈〈ij 〉〉, will be used.
To study the superconductivity, we define the pairing am-

plitude of the f fermions to be �̃
αβ
e = 1

2N

∑
i〈fi,α,↑fi+e,β,↓ −

fi,α,↓fi+e,β,↑〉, where e ∈ {ex, ey, ex+y, ex−y} refers to a unit
vector connecting nearest- and next-nearest-neighboring sites.
We treat the four-fermion J terms through a Hubbard-
Stratonovich decoupling, and self-consistently solve the
pairing amplitudes �̃

αβ
e in the resulting effective model.

The pairing amplitude of the physical electrons �
αβ
e =

1
2N

∑
i〈ci,α,↑ci+e,β,↓ − ci,α,↓ci+e,β,↑〉 is

�αβ
e = √

ZαZβ�̃αβ
e . (2)

Nematic order. In the nematic phase, the breaking of C4

symmetry induces additional anisotropies to both the kinetic
energy and exchange interactions. To take this effect into ac-
count in a simple way, we introduce an anisotropy parameter η

−π 0 π
kx

−π

0

π

k
y φφ

FIG. 1. Calculated Fermi surface in the nematic normal phase of
FeSe with η = 0.07 and λ = −0.03.

in the nearest-neighbor hopping parameters and the exchange
couplings of the dxz/yz orbitals as follows,

tx/y = t (1 ± η), Jx/y = J (1 ± η)2. (3)

For example, the nearest-neighbor hopping terms of the dxz/yz

orbitals contain the following in the nematic phase,

η[t1(c†xz,icxz,i+ex
− c

†
yz,icyz,i+ey

)

+ t2(−c
†
xz,icxz,i+ey

+ c
†
yz,icyz,i+ex

)].

The latter corresponds to a combination of the s- and d-wave
bond nematic orders [33],

η

[
t1 − t2

2
[cos(kx ) + cos(ky )](nxz,k − nyz,k )

+ t1 + t2

2
[cos(kx ) − cos(ky )](nxz,k + nyz,k )

]
.

Fermi surface in the nematic phase. We use the notation of
the 1-Fe Brillouin zone (BZ). In Fig. 1, we show the Fermi
surface in the nematic phase for η = 0.07. An atomic spin-
orbit coupling (SOC), of the form λS · L, is included in the
calculation for Fig. 1. The superconductivity considered here
is mainly driven by the magnetic interactions. Because the
SOC is much smaller than the magnetic bandwidth, its effect
on the pairing will be neglected. With increasing η, the inner
hole pocket near the � point quickly disappears; this evolution
is shown in Fig. S1 of the SM [24]. The (outer) hole pocket
near the � point is elongated along the ky direction. The
electron pocket near the Mx [(π, 0)] point is also elongated,
along the kx direction. The electron pocket is dominated by
the dyz and dxy orbitals, whereas the hole pocket mainly
comprises the dxz and dyz orbitals (Fig. S2 [24]). The hole
pocket near the (π, π ) point, which appears in our model as a
result of the known artifact of the DFT calculations [34–36],
does not come into play in our main result.

Pairing structure in the nematic phase. We next analyze
the influence of nematic order on the pairing structure. The
pairing can be classified by the irreducible representations of
the point group associated with the lattice symmetry, which is
summarized in Table I and in the SM [24]. In the tetragonal
phase, the corresponding point group is D4h. For example,
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TABLE I. Symmetry classification of spin-singlet intraorbital
pairing channels by the D4h and D2h point groups. Here, τi are the
Pauli matrices in the dxz, dyz orbital basis. A complete list involving
these orbitals and the dxy orbital is given in the SM [24].

Pairing channel D4h D2h Pairing channel in real space

sx2+y2 τ0 A1g Ag

∑
e∈{ex ,ey }[�xz(e) + �yz(e)]

sx2y2 τ0 A1g Ag

∑
e∈{ex±ey }[�xz(e) + �yz(e)]

sx2y2 τz B1g Ag

∑
e∈{ex±ey }[�xz(e) − �yz(e)]

dx2−y2 τ0 B1g Ag

∑
α∈{xz,yz}[�α (ex ) − �α (ey )]

the usual s-wave and d-wave pairings have an A1g and a
B1g symmetry, respectively. In the nematic phase, the point
group is reduced to D2h. In this case, both the A1g and B1g

representations of D4h belong to the Ag representation of
the D2h group. As a consequence, the s- and d-wave pairing
channels will generically mix.

We now turn to detailed calculations. Because the rel-
evant electronic states are dominated by the dxz, dyz, and
dxy orbitals, we only consider the nearest-neighbor and next-
nearest-neighbor intraorbital exchange interactions for these
three orbitals. As in the previous study of orbital-selective
pairing in the tetragonal phase [37], we introduce two ratios
rL and rO . Here, rL = J1

J2
, for each orbital, quantifies the

magnetic frustration effect; rO = J
xy

2

J
xz/yz

2

= J
xy

1

J
xz/yz

1

reflects the

orbital-selective effect between the xz/yz and xy orbitals.
(The interorbital pairings are negligibly small [37].)

In Fig. 2, we present the evolution of the pairing amplitudes
of several pairing channels with rL. The top panel shows the
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FIG. 2. Top panel: Evolution of the pairing amplitudes (P.A.),
�, with magnetic frustration parameter rL for several channels
according to the D4h representations. The parameters are η = 0.07,
rO = 0.3, and J2,xz/yz = 0.3. Bottom panel: Same as the top panel but
shown according to the D2h representations, demonstrating a strong
orbital-selective pairing with �yz 	 �xz/xy .
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FIG. 3. Top: Variation of the superconducting gap on the hole
(top panel) and electron (bottom panel) pockets near � and Mx points
of the BZ, respectively. The angle φ is defined as in Fig. 1. Along
each pocket, the gap values are normalized by the corresponding
maximum. The calculations are for rL = 1.2, rO = 0.3, and η =
0.07.

pairing channels classified by the D4h group. The dominant
pairing always has an A1g symmetry. With increasing rL,
it crosses over from the sign-changing s wave (with form
factor cos kx cos ky) to an extended s wave (with form factor
cos kx + cos ky). It is more transparent to show the pairing
amplitudes according to the irreducible representations of the
D2h group. As illustrated in the bottom panel of Fig. 2, we
find strong orbital-selective pairing with |�yz|/|�xz/xy | > 2.
Such an orbital-selective pairing is quite robust within a wide
range of rL and rO values.

The strong orbital selectivity in the superconducting pair-
ing is connected with that of the normal state. To see this, note
that from Eq. (2) we have the ratio of the pairing amplitudes,

|�yz|
|�xz/xy | = Zyz

Zxz/xy

|�̃yz|
|�̃xz/xy |

. (4)

In other words, the orbital selectivity of the pairing amplitudes
is magnified by Zyz

Zxz/xy
, the ratio of the quasiparticle spectral

weights in the normal state.
Gap anisotropy. We now calculate the superconducting

gap on the normal-state Fermi surface. In Fig. 3 we plot the
gap variation on the hole (near �) and electron (near Mx)
Fermi pockets. Along each Fermi pocket, the gap values are
normalized by its corresponding maximal value, and the angle
φ is defined in Fig. 1. For the Fermi pocket near �, the
gap maximum appears at φ = 0/π and the minimum is at
φ = π

2 . For the pocket near Mx , the maximum is at φ = π
2

and the minimum is close to φ = 0. These positions of the
gap maximum/minimum, as well as the large gap anisotropy
on both Fermi pockets, are consistent with the experimental
results [20]. More specifically, (i) the ratio of the maximum
gap of the hole pocket to that of the electron pocket is of
order unity, about 1.01 in our calculation. Experimentally,
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FIG. 4. Top: Overall and orbital-resolved superconducting gaps
along the Mx electron pocket. Bottom: Weight distributions of the xy

and yz orbitals along the Mx electron pocket.

the ratio is comparable to this: It is 1.5 (1.0) when the
maximal gap on the hole pocket is inferred from the STM [20]
(laser-ARPES [38]) measurements. (ii) The calculated ratio
of the gap minimum to gap maximum for the electron pocket
(∼5%) is comparable to its experimental counterpart (in the
range 5%–30%) [20]. (iii) Likewise, the calculated ratio for
the hole pocket (∼25%) is comparable to its experimental
counterpart (4%–25%) [20].

Our results are understood as follows. At any given
point of the Fermi surface k, the overall gap �(k) =∑

�α (k)Wα (k). Here, Wα is the orbital weight, and �α (k) =∑
e∈{ex ,ey ,ex±ey } J αα

e �α (e) cos(k · e) is the orbital-resolved
gap. As an illustration, we show the distributions of the
orbital-resolved gap and the corresponding orbital weight on
the electron pocket near Mx in Fig. 4 (and for the hole pocket
in the SM [24]). Along the electron pocket, near φ = π

2 ,
the yz orbital has the largest orbital weight. Thus, the gap
there is dominated by the pairing in the yz orbital, namely,
�(φ = π

2 ) ≈ �yz. Similarly, near φ = 0, the xy orbital has
the largest orbital weight and then �(φ = 0) ≈ �xy . The
strong orbital selectivity in the pairing amplitude |�yz(e)| 	
|�xy (e)| gives rise to a large gap anisotropy |�(φ = π

2 )| ≈
|�yz| 	 |�xy | ≈ |�(φ = π

2 )|. A similar argument applies
to the hole pocket, where |�(φ = 0)| ≈ |�yz| 	 |�xz| ≈
|�(φ = π

2 )|, as seen in the SM [24].
Discussions. In principle, additional factors may influence

the gap anisotropy. For instance, it has been shown that
the magnetic frustration rL can tune the relative strength
of nearest-neighbor and next-nearest-neighbor pairings, and
gives rise to a moderate level of gap anisotropy along the
electron pocket in NaFeAs [14]. For FeSe, we have focused on
the regime rL ∼ 1: The absence of antiferromagnetic order in
the nematic state suggests a strong magnetic frustration with
rL ∼ 1, where the nearest-neighbor and next-nearest-neighbor
pairings are quasidegenerate.

In the calculations we have carried out, the nematicity
has multiple effects on the pairing structure. First, it
enhances the orbital selectivity in the spectral weight of the
coherent itinerant electrons, leading to strong orbital-selective
pairing amplitudes, as shown in Eq. (4). Second, the orbital
weights are largely redistributed along the distorted Fermi
surface as a combined effect of the additional anisotropy
and orbital-dependent band-structure renormalization in the
nematic phase. On each Fermi pocket, the dominant orbital
character has a large variation. Third, the nematicity induces
additional magnetic anisotropy, which enhances the pairing
in the ex direction but reduces the pairing in the ey direction.
While this last effect also contributes to the gap anisotropy,
it is not the dominant source in our case. In other words, the
gap anisotropy primarily originates from the first two effects,
which dictate the orbital-selective nature of the pairing
amplitudes.

The orbital-selective pairing concerns superconductivity
driven by short-range spin-exchange interactions between the
electrons associated with the multiple 3d orbitals. For FeSe,
direct evidence exists that the local Coulomb (Hubbard and
Hund’s) interactions are strong [39,40], and the orbitals thus
represent a natural basis to consider superconducting pairing.

We now discuss the broader implications of the orbital-
selective pairing. There is accumulating evidence that su-
perconductivity in the FeSCs is mainly driven by magnetic
correlations. Yet, the precise role of the nematicity on the
superconductivity remains an open question. Our study raises
the possibility that the main influence of the nematicity on the
magnetically driven superconductivity is through its influence
on the orbital selectivity.

Finally, the correlation effects provide intuition on how
to control low-energy physics by tuning local degrees of
freedom. For instance, the multiorbital nature affords a han-
dle for engineering the low-energy electronic states and
raising Tc. Even when the superconductivity is primarily
driven by magnetic correlations, tuning the orbital levels and
orbital-dependent couplings may optimize superconductivity.
This notion is consistent with experiments on single-layer
FeSe [41], which indicate a further increased Tc by varying
the weight of particular 3d orbitals near the Fermi energy.

Conclusions. We have studied the superconductivity in the
nematic phase of FeSe through a multiorbital model using a
U (1) slave-spin approach. The enhanced orbital selectivity
in the normal state by the nematic order is shown to yield
a strong orbital-selective superconducting pairing. The latter
produces sizable gap anisotropy on both the hole and electron
pockets, which naturally explains the recent experimental ob-
servations. The orbital-selective pairing raises the prospect of
harnessing the orbital degrees of freedom to realize still higher
Tc, even when superconductivity is magnetically driven, and
provides insights into the interplay between electronic orders
and superconductivity. As such, our results shed light not
only on the physics of the iron-based compounds but also
on the unconventional superconductivity in a variety of other
strongly correlated systems.

Acknowledgments. We thank E. Abrahams, S. V.
Borisenko, J. C. S. Davis, W. X. Ding, and X.-J. Zhou
for useful discussions. The work has in part been supported
by the U.S. Department of Energy, Office of Science, Basic

220503-4



ORBITAL-SELECTIVE SUPERCONDUCTIVITY IN THE … PHYSICAL REVIEW B 98, 220503(R) (2018)

Energy Sciences, under Award No. DE-SC0018197 and
the Robert A. Welch Foundation Grant No. C-1411 (H.H.
and Q.S.), by the National Science Foundation of China
Grant No. 11674392, Ministry of Science and Technology
of China, National Program on Key Research Project Grant
No. 2016YFA0300504 and the Research Funds of Remnin
University of China Grant No. 18XNLG24 (R.Y.), by ASU
Startup Grant (E.M.N.), by the U.S. DOE Office of Basic
Energy Sciences E3B5 (J.-X.Z.). It was also in part supported

by the Center for Integrated Nanotechnologies, a U.S.
DOE BES user facility. Q.S. acknowledges the support of
ICAM and a QuantEmX grant from the Gordon and Betty
Moore Foundation through Grant No. GBMF5305 (Q.S.), the
hospitality of University of California at Berkeley and of the
Aspen Center for Physics (NSF Grant No. PHY-1607611),
and the hospitality and the support by a Ulam Scholarship
from the Center for Nonlinear Studies at Los Alamos National
Laboratory.

[1] H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Mater.
Today 21, 278 (2018).

[2] Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017
(2016).

[3] P. Dai, Rev. Mod. Phys. 87, 855 (2015).
[4] M. Yi, Y. Zhang, Z.-X. Shen, and D. H. Lu, npj Quantum Mater.

2, 57 (2017).
[5] R. Yu and Q. Si, Phys. Rev. B 84, 235115 (2011).
[6] R. Yu and Q. Si, Phys. Rev. Lett. 110, 146402 (2013).
[7] L. de’ Medici, G. Giovannetti, and M. Capone, Phys. Rev. Lett.

112, 177001 (2014).
[8] M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K. Liu,

M. Lu, Y. T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C. W.
Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Phys. Rev. Lett. 110,
067003 (2013).

[9] M. Yi, Z.-K. Liu, Y. Zhang, R. Yu, J.-X. Zhu, J. J. Lee, R. G.
Moore, F. T. Schmitt, W. Li, S. C. Riggs, J.-H. Chu, B. Lv, J.
Hu, T. J. Liu, M. Hashimoto, S.-K. Mo, Z. Hussain, Z. Q. Mao,
C. W. Chu, I. R. Fisher, Q. Si, Z.-X. Shen, and D. H. Lu, Nat.
Commun. 6, 7777 (2015).

[10] Y. J. Pu, Z. C. Huang, H. C. Xu, D. F. Xu, Q. Song, C. H.
P. Wen, R. Peng, and D. L. Feng, Phys. Rev. B 94, 115146
(2016).

[11] Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008).
[12] K. Haule and G. Kotliar, New J. Phys. 11, 025021 (2009).
[13] M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D.

J. Singh, M. B. Maple, and D. N. Basov, Nat. Phys. 5, 647
(2009).

[14] R. Yu, J. X. Zhu, and Q. Si, Phys. Rev. B 89, 024509 (2014).
[15] Q. Wang, Z. Li, W. Zhang, Z. Zhang, J. Zhang, W. Li, H. Ding,

Y. Ou, P. Deng, K. Chang, J. Wen, C. Song, K. He, J. Jia, S. Ji,
Y. Wang, L. Wang, X. Chen, X. Ma, and Q. Xue, Chin. Phys.
Lett. 29, 037402 (2012).

[16] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.
Ou, Q. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu,
G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q.
Xue, and X. Zhou, Nat. Mater. 12, 605 (2013).

[17] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W.
Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P.
Devereaux, D.-H. Lee, and Z.-X. Shen, Nature (London) 515,
245 (2014).

[18] Z. Zhang, Y. Wang, Q. Song, C. Liu, R. Peng, K. Moler, D.
Feng, and Y. Wang, Sci. Bull. 60, 1301 (2015).

[19] A. Kostin, P. O. Sprau, A. Kreisel, Y. X. Chong, A. E. Böhmer,
P. C. Canfield, P. J. Hirschfeld, B. M. Andersen, and J. C.
Séamus Davis, Nat. Mater. 17, 869 (2018).

[20] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour,
P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen,
and J. C. S. Davis, Science 357, 75 (2017).

[21] R. Yu, J.-X. Zhu, and Q. Si, Phys. Rev. Lett. 121, 227003
(2018).

[22] M. D. Watson, A. A. Haghighirad, L. C. Rhodes, M. Hoesch,
and T. K. Kim, New J. Phys. 19, 103021 (2017).

[23] D. Liu, C. Li, J. Huang, B. Lei, L. Wang, X. Wu, B. Shen, Q.
Gao, Y. Zhang, X. Liu, Y. Hu, Y. Xu, A. Liang, J. Liu, P. Ai,
L. Zhao, S. L. He, L. Yu, G. Liu, Y. Mao, X. Dong, X. Jia, F.
Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, Y. Shi, J. P. Hu, T.
Xiang, X. H. Chen, Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev.
X 8, 031033 (2018).

[24] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.98.220503 for the tight-binding parameters,
pairing symmetry and the gap structure along the hole pocket.

[25] R. Yu and Q. Si, Phys. Rev. B 86, 085104 (2012).
[26] R. Yu and Q. Si, Phys. Rev. B 96, 125110 (2017).
[27] A. Kreisel, B. M. Andersen, P. O. Sprau, A. Kostin, J. C. S.

Davis, and P. J. Hirschfeld, Phys. Rev. B 95, 174504 (2017).
[28] L. de’ Medici, A. Georges, and S. Biermann, Phys. Rev. B 72,

205124 (2005).
[29] A. Rüegg, S. D. Huber, and M. Sigrist, Phys. Rev. B 81, 155118

(2010).
[30] R. Nandkishore, M. A. Metlitski, and T. Senthil, Phys. Rev. B

86, 045128 (2012).
[31] J. Dai, Q. Si, J. Zhu, and E. Abrahams, Proc. Natl. Acad. Sci.

USA 106, 4118 (2009).
[32] W. Ding, R. Yu, Q. Si, and E. Abrahams, arXiv:1410.8118.
[33] M. D. Watson, T. K. Kim, L. C. Rhodes, M. Eschrig, M. Hoesch,

A. A. Haghighirad, and A. I. Coldea, Phys. Rev. B 94, 201107
(2016).

[34] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B
78, 134514 (2008).

[35] M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M.
Imada, Phys. Rev. B 82, 064504 (2010).

[36] T. Miyake, K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc.
Jpn. 79, 044705 (2010).

[37] E. M. Nica, R. Yu, and Q. Si, npj Quantum Mater. 2, 24 (2017).
[38] T. Hashimoto, Y. Ota, H. Q. Yamamoto, Y. Suzuki, T. Shi-

mojima, S. Watanabe, C. Chen, S. Kasahara, Y. Matsuda, T.
Shibauchi, K. Okazaki, and S. Shin, Nat. Commun. 9, 282
(2018).

[39] M. D. Watson, S. Backes, A. A. Haghighirad, M. Hoesch, T. K.
Kim, A. I. Coldea, and R. Valenti, Phys. Rev. B 95, 081106(R)
(2017).

[40] D. V. Evtushinsky, M. Aichhorn, Y. Sassa, Z.-H. Liu, J. Maletz,
T. Wolf, A. N. Yaresko, S. Biermann, S. V. Borisenko, and B.
Büchner, arXiv:1612.02313.

[41] X. Shi, Z.-Q. Han, X.-L. Peng, P. Richard, T. Qian, X.-X. Wu,
M.-W. Qiu, S. C. Wang, J. P. Hu, Y.-J. Sun, and H. Ding, Nat.
Commun. 8, 14988 (2017).

220503-5

https://doi.org/10.1016/j.mattod.2017.09.006
https://doi.org/10.1016/j.mattod.2017.09.006
https://doi.org/10.1016/j.mattod.2017.09.006
https://doi.org/10.1016/j.mattod.2017.09.006
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1038/natrevmats.2016.17
https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.1103/RevModPhys.87.855
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1038/s41535-017-0059-y
https://doi.org/10.1103/PhysRevB.84.235115
https://doi.org/10.1103/PhysRevB.84.235115
https://doi.org/10.1103/PhysRevB.84.235115
https://doi.org/10.1103/PhysRevB.84.235115
https://doi.org/10.1103/PhysRevLett.110.146402
https://doi.org/10.1103/PhysRevLett.110.146402
https://doi.org/10.1103/PhysRevLett.110.146402
https://doi.org/10.1103/PhysRevLett.110.146402
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevLett.110.067003
https://doi.org/10.1103/PhysRevLett.110.067003
https://doi.org/10.1103/PhysRevLett.110.067003
https://doi.org/10.1103/PhysRevLett.110.067003
https://doi.org/10.1038/ncomms8777
https://doi.org/10.1038/ncomms8777
https://doi.org/10.1038/ncomms8777
https://doi.org/10.1038/ncomms8777
https://doi.org/10.1103/PhysRevB.94.115146
https://doi.org/10.1103/PhysRevB.94.115146
https://doi.org/10.1103/PhysRevB.94.115146
https://doi.org/10.1103/PhysRevB.94.115146
https://doi.org/10.1103/PhysRevLett.101.076401
https://doi.org/10.1103/PhysRevLett.101.076401
https://doi.org/10.1103/PhysRevLett.101.076401
https://doi.org/10.1103/PhysRevLett.101.076401
https://doi.org/10.1088/1367-2630/11/2/025021
https://doi.org/10.1088/1367-2630/11/2/025021
https://doi.org/10.1088/1367-2630/11/2/025021
https://doi.org/10.1088/1367-2630/11/2/025021
https://doi.org/10.1038/nphys1343
https://doi.org/10.1038/nphys1343
https://doi.org/10.1038/nphys1343
https://doi.org/10.1038/nphys1343
https://doi.org/10.1103/PhysRevB.89.024509
https://doi.org/10.1103/PhysRevB.89.024509
https://doi.org/10.1103/PhysRevB.89.024509
https://doi.org/10.1103/PhysRevB.89.024509
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1088/0256-307X/29/3/037402
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nmat3648
https://doi.org/10.1038/nature13894
https://doi.org/10.1038/nature13894
https://doi.org/10.1038/nature13894
https://doi.org/10.1038/nature13894
https://doi.org/10.1007/s11434-015-0842-8
https://doi.org/10.1007/s11434-015-0842-8
https://doi.org/10.1007/s11434-015-0842-8
https://doi.org/10.1007/s11434-015-0842-8
https://doi.org/10.1038/s41563-018-0151-0
https://doi.org/10.1038/s41563-018-0151-0
https://doi.org/10.1038/s41563-018-0151-0
https://doi.org/10.1038/s41563-018-0151-0
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevLett.121.227003
https://doi.org/10.1103/PhysRevLett.121.227003
https://doi.org/10.1103/PhysRevLett.121.227003
https://doi.org/10.1103/PhysRevLett.121.227003
https://doi.org/10.1088/1367-2630/aa8a04
https://doi.org/10.1088/1367-2630/aa8a04
https://doi.org/10.1088/1367-2630/aa8a04
https://doi.org/10.1088/1367-2630/aa8a04
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
https://doi.org/10.1103/PhysRevX.8.031033
http://link.aps.org/supplemental/10.1103/PhysRevB.98.220503
https://doi.org/10.1103/PhysRevB.86.085104
https://doi.org/10.1103/PhysRevB.86.085104
https://doi.org/10.1103/PhysRevB.86.085104
https://doi.org/10.1103/PhysRevB.86.085104
https://doi.org/10.1103/PhysRevB.96.125110
https://doi.org/10.1103/PhysRevB.96.125110
https://doi.org/10.1103/PhysRevB.96.125110
https://doi.org/10.1103/PhysRevB.96.125110
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1103/PhysRevB.95.174504
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.81.155118
https://doi.org/10.1103/PhysRevB.81.155118
https://doi.org/10.1103/PhysRevB.81.155118
https://doi.org/10.1103/PhysRevB.81.155118
https://doi.org/10.1103/PhysRevB.86.045128
https://doi.org/10.1103/PhysRevB.86.045128
https://doi.org/10.1103/PhysRevB.86.045128
https://doi.org/10.1103/PhysRevB.86.045128
https://doi.org/10.1073/pnas.0900886106
https://doi.org/10.1073/pnas.0900886106
https://doi.org/10.1073/pnas.0900886106
https://doi.org/10.1073/pnas.0900886106
http://arxiv.org/abs/arXiv:1410.8118
https://doi.org/10.1103/PhysRevB.94.201107
https://doi.org/10.1103/PhysRevB.94.201107
https://doi.org/10.1103/PhysRevB.94.201107
https://doi.org/10.1103/PhysRevB.94.201107
https://doi.org/10.1103/PhysRevB.78.134514
https://doi.org/10.1103/PhysRevB.78.134514
https://doi.org/10.1103/PhysRevB.78.134514
https://doi.org/10.1103/PhysRevB.78.134514
https://doi.org/10.1103/PhysRevB.82.064504
https://doi.org/10.1103/PhysRevB.82.064504
https://doi.org/10.1103/PhysRevB.82.064504
https://doi.org/10.1103/PhysRevB.82.064504
https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/10.1038/s41535-017-0027-6
https://doi.org/10.1038/s41535-017-0027-6
https://doi.org/10.1038/s41535-017-0027-6
https://doi.org/10.1038/s41535-017-0027-6
https://doi.org/10.1038/s41467-017-02739-y
https://doi.org/10.1038/s41467-017-02739-y
https://doi.org/10.1038/s41467-017-02739-y
https://doi.org/10.1038/s41467-017-02739-y
https://doi.org/10.1103/PhysRevB.95.081106
https://doi.org/10.1103/PhysRevB.95.081106
https://doi.org/10.1103/PhysRevB.95.081106
https://doi.org/10.1103/PhysRevB.95.081106
http://arxiv.org/abs/arXiv:1612.02313
https://doi.org/10.1038/ncomms14988
https://doi.org/10.1038/ncomms14988
https://doi.org/10.1038/ncomms14988
https://doi.org/10.1038/ncomms14988



