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Recent measurements in current-driven spin valves demonstrate magnetization fluctuations that deviate from
semiclassical predictions. We posit that the origin of this deviation is spin shot noise. On this basis, our
theory predicts that magnetization fluctuations asymmetrically increase in biased junctions irrespective of the
current direction. At low temperatures, the fluctuations are proportional to the bias, but at different rates for
opposite current directions. Quantum effects control fluctuations even at higher temperatures. Our results are
in semiquantitative agreement with recent experiments and are in contradiction to semiclassical theories of
spin-transfer torque.
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Spin-transfer torque (STT), the transfer of spin angular
momentum from spin-polarized currents to localized mag-
netic moments, is a cornerstone in spintronics [1–5]. The
low-power consumption and scalable architecture open a
promising path for STT-based devices in future data storage
and information-processing technologies. For example, STT
facilitates state-of-the-art nonvolatile random-access memory
[5–7] and spin-transfer nano-oscillators [8].

STT affects the magnetization dynamics via (an) a
(anti)dampinglike torque whose amplitude is proportional to
the current density. In the simplest manifestation, the mag-
netization dissipation is enhanced (antidamping torque) or
reduced (damping torque) and is captured by an effective
Gilbert damping constant. At finite temperatures, there are
additional random torques that fluctuate. In a semiclassi-
cal picture, stochastic temperature-dependent random mag-
netic fields model the fluctuations. These fields obey the
dissipation-fluctuation theorem; the two-point autocorrelation
function is proportional to the effective Gilbert damping pa-
rameter [9,10].

Recently, Zholud et al. measured an anomalous behavior in
the magnetization fluctuations in a current-driven spin valve
[11]. Measurements at low temperatures suppress thermal
fluctuations, but there were observations of magnetization
fluctuations irrespective of the current direction. These mea-
surements cannot be explained by semiclassical STT models
[1,2]. Rather, Ref. [11] suggests that quantum effects are
essential. Thus far, there have only been a few theoretical
works describing STT in a quantum picture [11,12].

In this Rapid Communication, we investigate the effects
of a particular type of quantum noise on STT phenomena.
Electronic shot noise is due to the discrete nature of elec-
tric charge [13,14]. Similarly, the discrete nature of itinerant
electron spin in units of h̄/2 causes spin shot noise [15].
We demonstrate that spin shot noise can explain the recent
experimental observations. At low temperatures and when
there is a current flowing through the spin valve, spin shot
noise dominates and affects the distribution of spin fluctua-
tions. These bias-driven quantum fluctuations exert additional
stochastic torques on the magnetization dynamics that do

not obey the fluctuation-dissipation theorem. As a result of
the competition between the fluctuations and the dissipation
(through the Gilbert damping), the magnons are driven out
of equilibrium. Consequently, our theory predicts that the
quantum magnetization fluctuations in spin valves depend on
the bias voltage amplitude at low temperatures.

Our main finding is a microscopic expression for the total
spin fluctuations in spin valves,

〈Nm〉 � 1

1 − I
Ic

[
fBE(�, T ) + 1

2
+ �(sh)(U, T )

]
, (1)

where I < Ic is the applied current, Ic is the threshold switch-
ing spin-polarized current in the ferromagnetic layer [4], fBE

is the Bose-Einstein distribution function at temperature T

and magnon frequency �, and U is the applied bias voltage.
In Eq. (1), the prefactor is due to the semiclassical STT.
The first term within the brackets is the contribution of
thermal magnons. The second term arises from the vacuum

FIG. 1. The spin fluctuations, which are proportional to angular-
dependent magnetoresistance, as a function of dimensionless applied
current at different temperatures. Solid lines and dashed lines show
the results with and without the contribution of the quantum spin shot
noise, respectively; see Eq. (21).
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FIG. 2. (a) A spin-valve structure attached to left (L) and right
(R) reservoirs with chemical potentials μL and μR , respectively.
FM1 is a hard ferromagnet, FM2 is a soft ferromagnet, and N

is a normal metal. (b) A two-terminal scattering representation of
the spin-valve structure in (a) with two spin-dependent scattering
matrices S (1) and S (2). âA and b̂A are fermion annihilation operators
representing incoming and outgoing electrons, respectively, in the
left lead (A = L), middle of the normal metal (A = N ), and the right
lead (A = R).

fluctuations [16]. Our main contribution is the third term that
originates from quantum spin shot noise. We will demonstrate
that �(sh)(U, T ) is an even function of the bias voltage U .

As an illustration, in Fig. 1, we plot the spin fluctuations
as a function of bias voltage for different temperatures. The
curve is in semiquantitative agreement with recent experi-
mental results [11]. Moreover, we can quantify the shot noise
contribution in terms of one parameter that we relate to the
microscopic details of the system. We give a good estimate for
this quantity. Beyond the scope of our work, we encourage
detailed ab initio evaluations of the shot noise parameter
to explore further the quantitative consistency between our
approach and measurements.

To explain our approach, we first review how Zholud
et al. [11] measured the magnetic fluctuations of Eq. (1). The
experimental observation is the angular dependency of mag-
netoresistance in a spin-valve nanopillar, shown in Fig. 2, as a
function of current. In spin valves, the anisotropic mag-
netoresistance depends on the relative angle θ between
the magnetization directions in the free layer, FM2, and
the polarizer, FM1 [17]. The resistance varies as R(θ ) =
R0 + �R(1 − cos θ )/2, where �R is the magnetoresis-
tance amplitude. Meanwhile, the number of spin fluc-
tuations is 〈Nm〉 = (MsV/2μB )(1 − cos θ ), where Ms is
the saturation magnetization and μB is the Bohr mag-
neton. Thus, there is a linear relation between the spin
fluctuations and the angular-dependent magnetoresistance:
〈Nm〉 = (MsV/μB )[R(θ ) − R(0)]/�R. Therefore, measur-
ing the magnetoresistance reflects the total magnetization
fluctuations. Reference [11] finds an asymmetric enhance-
ment of the magnetic fluctuations as a function of current,
which is in contradiction to semiclassical STT theory.

To model the aforementioned experiment, we consider the
spin-valve structure depicted in Fig. 2. This system consists
of a hard ferromagnetic layer, FM1; a normal metal spacer,

N ; and a free ferromagnetic layer, FM2, attached to two left
and right reservoirs, as shown in Fig. 2. We will derive Eq. (1)
and discuss its consequences. At finite temperature and when
there are spin currents, the stochastic Landau-Lifshitz-Gilbert
(LLG) equation describes the dynamics of the magnetization
direction m in the free layer [1,2,18],

ṁ = −γ m × [Heff + h(t )] + αm × ṁ + βm × (m × p̂),

(2)

where γ is the effective gyromagnetic ratio; Heff =
−(MsV )−1δF/δm is the effective magnetic field, which is
a functional derivative of the thermodynamic free energy F
with respect to the magnetization; h(t ) is the stochastic mag-
netic field arising from various sources of fluctuations; α is
the effective Gilbert damping parameter, β = γ h̄pI/(MsVe)
is the STT parameter, with h̄ the reduced Planck constant,
and p and p̂ parametrize the spin-current polarization and its
spin direction, respectively; and e is the electron charge. In
the LLG equation [Eq. (2)], the first term on the right-hand
side describes the magnetization precession around the local
effective magnetic field, while the second term introduces a
dissipative mechanism, the so-called Gilbert damping torque,
which slows down the precession and pushes the magnetiza-
tion towards the effective magnetic field. The third term is
the (anti)dampinglike STT or Slonczewski spin torque. An
additional fieldlike spin torque is also allowed in the LLG
equation but this torque is typically negligible in metallic spin
valves and we disregard it [4,5].

There are two contributions to the stochastic field h. First,
there are intrinsic contributions related to the intrinsic Gilbert
damping. According to the fluctuation-dissipation theorem,
a stochastic and uncorrelated thermal field describes these
effects. Our focus is on the second, extrinsic, contributions
to the random field. These fields relate to the fluctuations
of the spin transfer torque, the difference between the spin
currents to the left and the right of the free magnetic layer.
The spin-transfer torque fluctuations consist of equilibrium
thermal fluctuations arising from the spin-pumping-induced
enhancement of the Gilbert damping that just renormalized
the first intrinsic contribution, and bias-driven quantum spin
shot noise fluctuations.

We will now compute the stochastic field due to the spin-
transfer torque fluctuations. On both sides of the soft ferro-
magnet (FM2), we define currents with respect to the flow
towards the ferromagnet. The rate of change of the magnetiza-
tion direction, the STT, is then −γ Îσ ,abs(t )/(MsV ), where the
absorbed spin current is Îσ ,abs(t ) = ∑

A∈{N,R} Îσ ,A(t ). Since
the spin-transfer torque is transverse to the magnetization,
the associated stochastic magnetic field appearing in the LLG
equation is given by h(t ) = −(MsV )−1m × δ Îσ ,abs(t ), where
δ Îσ ,abs(t ) is the deviation of the absorbed current from its
average value. The extrinsic fluctuating fields vanish on aver-
age 〈hi (t )〉 = 0, and the transverse components are correlated
as [15]

〈hi (t )hj (t ′)〉 = − 1

M2
s V2

∑
A,B∈{N,R}

Cji,AB (t − t ′),

〈hi (t )hi (t
′)〉 = 1

M2
s V2

∑
A,B∈{N,R}

Cjj,AB (t − t ′), (3)
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where i �= j = x, y, Cij,AB (t − t ′) = 〈δIσi ,A(t )δIσj ,B (t ′)〉 is
the spin-current correlation function, and δIA

σi
is the deviation

of the vector component i ∈ {x, y, z} of the spin current in the
lead A, δIσi ,A(t ) = Iσi ,A(t ) − 〈Iσi ,A(t )〉.

The spin current is Îσ ,A = −(h̄/2e)
∑

α,β σ αβ Î
βα

A , where σ

is the vector of Pauli matrices. In a scattering formalism, the
components of the spin current tensor are

Î
αβ

A (t ) = e

h̄
[b̂†A,α (t )b̂A,β (t ) − â

†
A,α (t )âA,β (t )], (4)

where âAα and b̂Aα are vector operators containing all trans-
verse transport channels, which annihilate electrons with spin
α in lead A that move toward and away from the ferromagnets,
respectively. For simplicity, in expressing the formulas, we
drop all channel indices, but contributions from all channels
are taken into account in all of our calculations and results.

Since our system consists of two ferromagnets, we need
to explicitly compute the currents to the left and right of the
free layer, FM2. To this end, we must relate the scattering
properties in the subsystems. The outgoing and incoming
modes are, in the absence of spin-flip processes [19], related
via

(
b̂Lα

b̂Nα

)
=

(
s

(1)
LLα s

(1)
LNα

s
(1)
NLα s

(1)
NNα

)(
âLα

âNα

)
, (5)

(
âNα

b̂Rα

)
=

(
s

(2)
NNα s

(2)
NRα

s
(2)
RNα s

(2)
RRα

)(
b̂Nα

âRα

)
. (6)

The diagonal and off-diagonal elements of the scattering
matrices represent the reflection and the transmission co-
efficients, respectively. A scattering matrix that relates the
annihilation operators associated with incoming and outgoing
waves from the left and right leads is(

b̂Lα

b̂Rα

)
=

(
sLLα sLRα

sRLα sRRα

)(
âLα

âRα

)
. (7)

The scattering matrix of the total system S is related to the
scattering matrices of FM1, S (1), and FM2, S (2), via [20]

sRLα = s
(1)
NLαs

(2)
RNαDα, (8a)

sLRα = s
(2)
NRαs

(1)
LNαDα, (8b)

sLLα = s
(1)
LLα + s

(2)
NRαs

(1)
LNαs

(1)
NLαDα, (8c)

sRRα = s
(2)
RRα + s

(1)
NNαs

(2)
RNαs

(2)
NRαDα, (8d)

where Dα = [1 − s
(1)
NNαs

(2)
NNα]

−1
.

In order to compute the spin currents, we must express
the currents in Eq. (3) as functions of the properties of the
incoming modes in the left and right lead only, âL and âR .
Using Eqs. (5)–(8), we can rewrite the operators in the normal
spacer as a linear combination of the left and right leads as

âNα = Ka
LαâLα + Ka

RαâRα, (9a)

b̂Nα = Kb
LαâLα + Kb

RαâRα, (9b)

where

Ka
Lα = s

(2)
NNαs

(1)
NLαDα, (10a)

Ka
Rα = s

(2)
NRαDα, (10b)

Kb
Lα = s

(1)
NLαDα, (10c)

Kb
Rα = s

(1)
NNαs

(2)
NRαDα. (10d)

Using fermionic statistics and performing straightforward cal-
culations, we can find the total correlator of the transverse
components of the stochastic magnetic field as a function of
the scattering matrix elements. In the simplest limit, consider-
ing that the frequency of the spin-current noise is the lowest-
energy scale in the system, we can approximate Cij,AB (t −
t ′) � Cij,AB (ω = 0)δ(t − t ′). The correlation function at zero
frequency is given by

Cij,AB (ω = 0) = h̄

8π

∑
αβ∈{↑,↓}

σ
αβ

i σ
βα

j δAB

∫
dε{[G1(ε)

+G2(ε)]δAR + G3(ε)δAN }, (11)

where

G1 = Tr[2δAB − s
†
ABβ (ε)sABα (ε) − s

†
BAα (ε)sBAβ (ε)]

× fA(ε)[1 − fA(ε)], (12a)

G2 =
∑

C,D∈{L,R}
Tr[s†ACαsADβs

†
BDβsBCα]

× fC (ε)[1 − fD (ε)], (12b)

G3 =
∑

C,D∈{L,R}

∑
l,m∈{a,b}

Tr
[(

Kl
Cα

)†
Kl

Dβ

(
Km

Dβ

)†
Km

Cα

]
× fC (ε)[1 − fD (ε)]. (12c)

In Eqs. (12), the trace is a sum over the transverse channels
and fA(ε) is the Fermi-Dirac distribution at energy ε in lead
A with chemical potential μA.

The correlator of Eq. (11) can be further simplified. Typi-
cally, the thermal energy kBT , and the applied bias potential
eU ≡ μL − μR , are much smaller than the Fermi energy of
reservoirs εF. Thus the scattering matrix elements can then
be evaluated at the Fermi level. In this limit, we find that the
total correlator of spin currents, Eq. (11), can be decomposed
into two parts. The first part is the thermal contribution that
vanishes at zero temperature, and the second part is the shot
noise contribution, which is bias dependent and finite even at
zero temperature. Finally, by using Eqs. (3), (11), and (12), the
extrinsic stochastic thermal spin-current noise and spin shot
noise correlators become〈

h
(th)
i (t )h(th)

j (t ′)
〉 = ξ (th)δij δ(t − t ′), (13)〈

h
(sh)
i (t )h(sh)

j (t ′)
〉 = ξ (sh)δij δ(t − t ′), (14)

with the following correlator amplitudes,

ξ (th)(ω = 0) = 4παsp

γMsV
kBT , (15)

ξ (sh)(ω = 0) = h̄WRL

4πM2
s V2

(
eU

tanh
(

eU
2kBT

) − 2kBT

)
. (16)
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To derive the above results, we have used the following
integrals:

∫
dε(fL − fR )2 = eU coth(eU/2kBT ) − 2kBT and∫

dεfL(R)(1 − fL(R) ) = kBT . αsp is a Gilbert-type damping
parameter arising from the spin pumping that depends on the
spin-mixing conductance [21]. WRL is a function of the spin-
dependent scattering matrices evaluated at the Fermi level,

WRL = Tr[sRL↑s
†
RL↑sRR↓s

†
RR↓]ε=εF

+
∑

l,m∈{a,b}
Tr

[
Km

L↑
(
Kl

L↑
)†

Kl
R↓

(
Km

R↓
)†]

ε=εF
. (17)

The expression for WLR in Eq. (17) relates the strength of the
shot noise contribution of the magnetization fluctuations to the
microscopic features of the system. Hence, it is possible to
compute WLR by first-principles calculations. Such extensive
computations are beyond the scope of this work. Nevertheless,
we can give good estimates for WLR in a similar manner
that good estimates for the mixing conductance can be given
without carrying out detailed ab initio calculations. In the
Stoner model, we find that WRL ≈ N δε/εF, where N is the
number of transverse modes and δε is the exchange splitting
in the free ferromagnetic layer [15].

The extrinsic thermal spin-current noise of Eq. (15) is
proportional to the spin-pumping-induced enhancement of
the damping parameter αsp [21] and obeys the fluctuation-
dissipation theorem. This term is analogous to the intrinsic
contribution of the thermal noise arising from the intrinsic
Gilbert damping α0. Thus, we can take the latter contribution
into account by replacing αsp → α = αsp + α0, in Eq. (15).
At finite frequencies, we could rewrite the total thermal noise
correlator in the frequency domain as

〈
h

(th)
i (ω)h(th)

j (ω′)
〉 = ξ (th)(ω)δij δ(ω − ω′), (18a)

ξ (th)(ω) = 2παh̄ω

γMsV tanh
(

h̄ω
2kBT

) . (18b)

Now, we discuss the shot noise correlator of Eq. (16).
When the applied bias potential is larger than the thermal
energy, kBT  |eU |  εF, the shot noise amplitude is ξ (sh) ∝
|eU |, whereas in the opposite limit, |eU |  kBT  εF, we
obtain ξ (sh) ∝ e2U 2/(6kBT ).

Finally, we calculate the total magnetization fluctuations
in the presence of the spin shot noise as well as thermal
stochastic noise [Eqs. (14), (16), and (18)] for a uniaxial and
collinear ferromagnetic layer. The total free energy of the free
ferromagnetic layer consists of the anisotropy energy and the
Zeeman energy, F = V−1

∫
d r (−K (m · ẑ)2/2 − μB m · B),

where K > 0 is the uniaxial anisotropy energy and B =
Bẑ is the external magnetic field along the z direction. We
expand the unit vector along the magnetization in terms of
the transverse excitations δm, as m = √

1 − δm2ẑ + δm, with
ẑ · δm = 0. The number of spin fluctuations is proportional to
the small deviation of the magnetization along the equilibrium
z direction, 〈Nm〉 = (MsV/4μB )〈δm2〉. Linearizing the LLG
equation [Eq. (2)] in the presence of spin currents with a
polarization in the z direction results in an effective equation
of motion for spin fluctuations,

i(1 + iα)ψ̇ (t ) − (� + iβ )ψ (t ) = γ h̃(t ), (19)

where ψ (t ) = δmx (t ) − iδmy (t ), h̃(t ) = hx (t ) − ihy (t ), and
� = γ (K + μBB )/(MsV ) is the ferromagnetic resonance
frequency. Through a Fourier transformation, the solution of
Eq. (19) becomes

ψ (ω) = γ h̃(ω)

ω − � + i(αω − β )
. (20)

To obtain Eq. (1), we compute the spin fluctuations in the limit
of small damping and bias voltage as

〈Nm〉 = MsV
4μB

∫
dω

2π

dω′

2π
〈ψ (ω)ψ∗(ω′)〉

� 1

1 − I
Ic

[
fBE(�, T ) + 1

2
+ γMsV

4πh̄α�
ξ (sh)

]
, (21)

where the threshold switching current is given by Ic =
α�MsVe/(γ h̄p). The total spin fluctuation has three con-
tributions: The first term in Eq. (21) is the contribution of
thermal magnons that obey the Bose-Einstein statistics; the
second term is quantum zero-point fluctuations arising from
the uncertainly in the ground state of spin components [16];
and the third term is the contribution of the spin shot noise,
which has a purely quantum mechanical nature and is finite
even at zero temperature.

Figure 1 shows the total spin fluctuation number of Eq. (21)
as a function of the charge current for different temperatures.
We consider a ferromagnetic thin-film layer of permalloy in
the presence of a magnetic field of 1.5 T with a ferromagnetic
resonance of � = 100 GHz and an effective Gilbert damping
of α = 0.01. There is a zero-bias singularity in the magneti-
zation fluctuations at zero temperature [see Eq. (21)] that is
rapidly broadened by increasing the temperature (see Fig. 1).
This broadening is not due to the contribution of thermal
magnons but is rather the contribution of spin shot noise at
finite temperature. The piecewise and asymmetric dependence
of the magnetization fluctuations to the bias current survives
even at higher temperatures. In Fig. 1, we also compare the
magnon fluctuations with and without the contribution from
the quantum shot noise. In the absence of quantum shot noise
(dotted lines), depending on the direction of the applied bias
voltage, the magnetization fluctuations increase due to the
antidampinglike STT or decrease because of the dampinglike
STT. The quantum spin shot noise, on the other hand, leads
to an increase in the magnetization fluctuations irrespective of
the current direction.

Zholud et al. [11] introduce a phenomenological model
to describe the effects of localized spin fluctuations on
spin transfer. At zero temperatures, they find 〈N (I )〉 ≈
[(|I | + pI )/(2pIc )]/(1 − I/Ic ). In contrast, we microscopi-
cally compute that quantum spin shot noise carried by the
itinerant electrons significantly contributes to the spin fluc-
tuations. At zero temperatures, Eq. (21) becomes 〈Nm〉 ≈
(G0RWLR/8π )(|I |/2pIc )/(1 − I/Ic ), where G0 = 2e2/h is
the conductance quantum and R = V/I is the spin-valve
resistance. We suggest carrying out experiments with different
spin polarizations of the injected current into the free layer to
distinguish between the two contributions.

In summary, in addition to the semiclassical picture of STT
[1,2], there is an important and so far overlooked quantum
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effect arising from the spin shot noise contribution. This
effect originates from the discrete nature of itinerant electron
spins. At low temperatures, the resulting quantum fluctua-
tions strongly affect the total magnetization fluctuations in
spin valves. The result is in good agreement with the recent
observation of a piecewise-linear dependence of the quantum
magnetization fluctuation on the applied current measured by
Zhould et al.

Note added. Recently, we became aware of another paper
[22] that attributes the quantum STT [11] to the spin fluctua-
tions of magnetic junctions.

The research leading to these results was supported by the
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“Insulatronics,” and by the Research Council of Norway
through its Centres of Excellence funding scheme, Project No.
262633, “QuSpin.”

[1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[2] L. Berger, Phys. Rev. B 54, 9353 (1996).
[3] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B.

Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149
(2000).

[4] D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190
(2008).

[5] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372
(2012).

[6] H. Zhao, A. Lyle, Y. Zhang, P. K. Amiri, G. Rowlands,
Z. Zeng, J. Katine, H. Jiang, K. Galatsi, K. L. Wang, I.
N. Krivorotov, and J.-P. Wang, J. Appl. Phys. 109, 07C720
(2008).

[7] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008); S. Parkin and S. H. Yang, Nat. Nanotechnol. 10, 195
(2015).

[8] J. A. Katine and E. E. Fullerton, J. Magn. Magn. Mater. 320,
1217 (2008).

[9] Z. Li and S. Zhang, Phys. Rev. B 69, 134416 (2004).
[10] R. H. Koch, J. A. Katine, and J. Z. Sun, Phys. Rev. Lett. 92,

088302 (2004).
[11] A. Zholud, R. Freeman, R. Cao, A. Srivastava, and S. Urazhdin,

Phys. Rev. Lett. 119, 257201 (2017).

[12] Y. Wang and L. J. Sham, Phys. Rev. B 85, 092403 (2012); 87,
174433 (2013); Y. Wang, W.-q. Chen, and F.-C. Zhang, New J.
Phys. 17, 053012 (2015).

[13] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[14] Quantum Noise in Mesoscopic Physics, edited by Y. V. Nazarov

(Kluwer, Dordrecht, 2003).
[15] J. Foros, A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys.

Rev. Lett. 95, 016601 (2005); J. Foros, A. Brataas, G. E. W.
Bauer, and Y. Tserkovnyak, Phys. Rev. B 79, 214407 (2009).

[16] L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,
New York, 1980), Part I.

[17] G. E. W. Bauer, Y. Tserkovnyak, D. Huertas-Hernando, and A.
Brataas, Phys. Rev. B 67, 094421 (2003); A. Shpiro, P. M. Levy,
and S. Zhang, ibid. 67, 104430 (2003).

[18] W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
[19] F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees,

Phys. Rev. B 67, 085319 (2003).
[20] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, Cambridge, UK, 1999).
[21] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev.

Lett. 88, 117601 (2002).
[22] S. A. Bender, R. A. Duine, and Y. Tserkovnyak,

arXiv:1808.00777.

220408-5

https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevLett.84.3149
https://doi.org/10.1103/PhysRevLett.84.3149
https://doi.org/10.1103/PhysRevLett.84.3149
https://doi.org/10.1103/PhysRevLett.84.3149
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1016/j.jmmm.2007.12.019
https://doi.org/10.1038/nmat3311
https://doi.org/10.1038/nmat3311
https://doi.org/10.1038/nmat3311
https://doi.org/10.1038/nmat3311
https://doi.org/10.1063/1.3556784
https://doi.org/10.1063/1.3556784
https://doi.org/10.1063/1.3556784
https://doi.org/10.1063/1.3556784
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1038/nnano.2015.41
https://doi.org/10.1016/j.jmmm.2007.12.013
https://doi.org/10.1016/j.jmmm.2007.12.013
https://doi.org/10.1016/j.jmmm.2007.12.013
https://doi.org/10.1016/j.jmmm.2007.12.013
https://doi.org/10.1103/PhysRevB.69.134416
https://doi.org/10.1103/PhysRevB.69.134416
https://doi.org/10.1103/PhysRevB.69.134416
https://doi.org/10.1103/PhysRevB.69.134416
https://doi.org/10.1103/PhysRevLett.92.088302
https://doi.org/10.1103/PhysRevLett.92.088302
https://doi.org/10.1103/PhysRevLett.92.088302
https://doi.org/10.1103/PhysRevLett.92.088302
https://doi.org/10.1103/PhysRevLett.119.257201
https://doi.org/10.1103/PhysRevLett.119.257201
https://doi.org/10.1103/PhysRevLett.119.257201
https://doi.org/10.1103/PhysRevLett.119.257201
https://doi.org/10.1103/PhysRevB.85.092403
https://doi.org/10.1103/PhysRevB.85.092403
https://doi.org/10.1103/PhysRevB.85.092403
https://doi.org/10.1103/PhysRevB.85.092403
https://doi.org/10.1103/PhysRevB.87.174433
https://doi.org/10.1103/PhysRevB.87.174433
https://doi.org/10.1103/PhysRevB.87.174433
https://doi.org/10.1088/1367-2630/17/5/053012
https://doi.org/10.1088/1367-2630/17/5/053012
https://doi.org/10.1088/1367-2630/17/5/053012
https://doi.org/10.1088/1367-2630/17/5/053012
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1103/PhysRevLett.95.016601
https://doi.org/10.1103/PhysRevLett.95.016601
https://doi.org/10.1103/PhysRevLett.95.016601
https://doi.org/10.1103/PhysRevLett.95.016601
https://doi.org/10.1103/PhysRevB.79.214407
https://doi.org/10.1103/PhysRevB.79.214407
https://doi.org/10.1103/PhysRevB.79.214407
https://doi.org/10.1103/PhysRevB.79.214407
https://doi.org/10.1103/PhysRevB.67.094421
https://doi.org/10.1103/PhysRevB.67.094421
https://doi.org/10.1103/PhysRevB.67.094421
https://doi.org/10.1103/PhysRevB.67.094421
https://doi.org/10.1103/PhysRevB.67.104430
https://doi.org/10.1103/PhysRevB.67.104430
https://doi.org/10.1103/PhysRevB.67.104430
https://doi.org/10.1103/PhysRevB.67.104430
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1103/PhysRevB.67.085319
https://doi.org/10.1103/PhysRevB.67.085319
https://doi.org/10.1103/PhysRevB.67.085319
https://doi.org/10.1103/PhysRevB.67.085319
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
http://arxiv.org/abs/arXiv:1808.00777

