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Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems
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We address the hydrodynamics of operator spreading in interacting integrable lattice models. In these models,
operators spread through the ballistic propagation of quasiparticles, with an operator front whose velocity is
locally set by the fastest quasiparticle velocity. In interacting integrable systems, this velocity depends on the
density of the other quasiparticles, so equilibrium density fluctuations cause the front to follow a biased random
walk, and therefore to broaden diffusively. Ballistic front propagation and diffusive front broadening are also
generically present in nonintegrable systems in one dimension; thus, although the mechanisms for operator
spreading are distinct in the two cases, these coarse-grained measures of the operator front do not distinguish
between the two cases. We present an expression for the front-broadening rate; we explicitly derive this for a
particular integrable model (the “Floquet-Fredrickson-Andersen” model), and argue on kinetic grounds that it
should apply generally. Our results elucidate the microscopic mechanism for diffusive corrections to ballistic
transport in interacting integrable models.
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Introduction. How an initially local perturbation spreads
under time evolution is a central question in many-body
quantum dynamics. Recently, a general coarse-grained phe-
nomenology for such “operator spreading” was proposed
for many-body systems with chaotic dynamics; this de-
scription was motivated by the ansatz that chaotic systems
have essentially random time evolution, constrained only
by locality and a few local conservation laws [1–10]. In
one dimension, the coarse-grained description suggests that
operators spread ballistically, with a “front” that broadens
diffusively [6,7]. In chaotic systems, conventional response
functions do not diagnose the operator front, since conven-
tional observables relax locally; even in the case of con-
served quantities, the autocorrelation function spreads dif-
fusively while the front spreads ballistically [8,9,11–13].
Instead, the dynamics of the operator front can be cap-
tured by the out-of-time-order commutator (OTOC) [14–16],
which measures the “footprint” of the spreading operator,
C(x, t ) ≡ 1

2 〈[O0(t ),Wx]†[O0(t ),Wx]〉, where Wx,O0 are lo-
cal norm-one operators at position x and 0, and the ex-
pectation value is taken in a chosen equilibrium ensemble.
As O0(t ) spreads in a chaotic system, C(x, t ) grows to
order one inside a “light cone” bounded by the propagating
front.

Integrable systems have very different dynamics from
chaotic ones: They have ballistically propagating quasiparti-
cles and an extensive number of conservation laws [17–25].
Thus, one might expect the dynamics of operator spreading in
these systems to differ from that in chaotic systems; and, in-
deed, integrable systems that can be mapped to free fermions
have fronts that broaden subdiffusively as t1/3 [26–30]. A
quasiparticle description also holds for interacting integrable

systems, so it is tempting to conclude that such systems also
have t1/3 broadening of the operator front.

We argue here that interacting integrable systems in fact
have operator fronts that broaden diffusively, just as in non-
integrable systems. In interacting integrable systems, the
ballistically propagating quasiparticles also exhibit sublead-
ing diffusive spreading [27,31–42]. This subleading behavior
manifests itself in the shape of an operator near its front
[40]. Although operator fronts broaden diffusively in both
chaotic and interacting integrable systems, the mechanisms
are different: In the latter case, we expect diffusive broadening
of conventional response functions as well as OTOCs. Our
results show that the behavior of the OTOC at and beyond
the front does not distinguish between nonintegrable and
interacting integrable systems, despite the qualitatively dif-
ferent mechanisms governing operator spreading in the two
cases. Further, while OTOCs for some operators decay to zero
behind the front in noninteracting models, signaling a lack of
chaos [43], we argue below that we expect local operators in
interacting integrable models to generically have OTOCs that
saturate to a nonzero value as the operator “fills in” behind
the front. It is presently unclear whether this saturation value
is universal and distinct from the chaotic case.

We quantitatively address operator spreading in interacting
integrable systems using a generalized hydrodynamic frame-
work [44,45]. To this end, we develop a simple picture of
quasiparticle diffusion using kinetic theory, thinking of quan-
tum integrable systems as soliton gases [46–49]. According to
this picture, a quasiparticle experiences random time delays
as it propagates, owing to collisions with other quasiparticles,
and these random time delays cause diffusion. This pic-
ture is illustrated first for a specific integrable model, the
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FIG. 1. Geometric picture of quasiparticle diffusion: The world-
line of the “tagged” quasiparticle (thick black line), with mean
velocity v0, wanders owing to collisions with other quasiparticles
(dashed lines). In a time t , the tagged quasiparticle collides with
quasiparticles moving at velocity vi so long as those quasiparticles
started out in a spatial window of size |vi − v0|t ; their density
fluctuations inside this window govern front broadening.

Floquet-Fredrickson-Andersen (FFA) model [40,50,51], for
which we derive explicit closed-form expressions for the
diffusion constant. Our analytic and numerical results for
the FFA model are in excellent agreement with one another.
We generalize our results to other integrable models; in
the general case, our results can be regarded as a simple
kinetic-theory perspective on some of the results obtained in
Ref. [39] using apparently different methods.

Picture from kinetic theory. Our main result is a simple
quantitative framework for computing quasiparticle diffusion
within generalized hydrodynamics (GHD) [37,44–47,52–56].
One can understand the origin of diffusion as follows. In
an interacting integrable system, the velocity of a quasipar-
ticle depends on the densities of other quasiparticles near it.
Generically, this relationship is linear, ∂vk/∂ρq �= 0, where
k and q denote quantum numbers (quasimomenta, species,
etc.) of quasiparticles. Further, the densities of each type of
quasiparticle exhibit 1/

√
� fluctuations in a region of length

�. Thus, vk should vary by an amount ∼1/
√

� while passing
through such a region, and therefore the time a quasiparticle
takes to traverse the region will also fluctuate by

√
�. This

immediately implies diffusive broadening of the quasiparticle
front.

To develop a more quantitative understanding, we adopt a
coarse-grained description of an interacting integrable system
in terms of a soliton gas [46]. To leading order, quasiparticles
move ballistically with a speed renormalized by the densities
of the other quasiparticles, but they also diffuse because
of random shifts due to collisions with other quasiparticles.
These shifts are random because of thermal fluctuations.
Consider a quasiparticle (of type α and group velocity v0) that
starts at a position x = 0 and travels for a time t . In this time
interval, it collides with quasiparticles with velocities vi that
were initially at positions between 0 and xi (vi ) = (v0 − vi )t
(Fig. 1). When quasiparticles collide, they scatter elastically;
because of these scattering events, the velocity vα (k)—with k

the pseudomomentum or rapidity—depends on the densities
of all other quasiparticles. This is the basis of GHD [44,45].

To compute the diffusion of a tagged quasiparticle with
quantum numbers (α, k), we account for thermal fluctuations
of the densities of the other quasiparticles it collides with.

Even though the tagged quasiparticle will move nearly bal-
listically with velocity vα,k , it will also wander owing to
collisions with other quasiparticles. In a time t , the tagged
quasiparticle collides with quasiparticles moving at velocity
vβ,k′ if they started out in a spatial window of size |vα,k −
vβ,k′ |t (Fig. 1). The density fluctuations of these quasiparticles
govern the diffusive broadening of the ballistic trajectory of
the tagged quasiparticle as

δx2
α,k (t ) = [δvα,k]2t2 = t2

∑
β

∫
dk′

(
∂vα,k

∂nβ,k′

)2

[δnβ,k′ ]2,

(1)

where nβ,k′ denotes the occupation number (called “general-
ized Fermi factor,” to be defined more precisely below) of the
quasiparticles of type β with pseudomomentum k′. In that for-
mula, we used the fact that the equilibrium fluctuations of the
generalized Fermi factor are diagonal [57] 〈δnβ,k′δnγ,k′′ 〉 =
δβ,γ δ(k′ − k′′)Cβ (k′)/�, where the fluctuations are computed
over a region of size �. (The � dependence is as one would ex-
pect from central-limit arguments.) Crucially, the fluctuations
of nβ,k′ are computed over a region of size � = |vα,k − vβ,k′ |t .
Thus, the broadening of the tagged trajectory takes the form

δx2
α,k (t ) = t

∑
β

∫
dk′

(
∂vα,k

∂nβ,k′

)2
Cβ (k′)

|vα,k − vβ,k′ | . (2)

We derive explicit expressions for Cβ (k′) below. We note
that the geometric picture in principle allows us to compute
higher-order corrections to propagation beyond diffusion (if
we include the diffusive broadening in our estimate of the
region over which fluctuations are computed), but we will not
pursue these corrections here.

Equation (2) captures the diffusion of any type of quasipar-
ticle. To characterize the width of the “front” of a spreading
operator, we simply compute the broadening of the quasipar-
ticle with the largest velocity.

FFA model. We now explicitly check this result in the case
of the Floquet-Fredrickson-Andersen model, an adaptation
of Bobenko’s rule 54 cellular automaton [50]. The diffusive
broadening of operator fronts in this model was numerically
demonstrated in Ref. [40]. The dynamics of the model are
given by the sequence of unitary gates

U = W (odd → even)W (even → odd), (3)

where W (even → odd) applies the following rule to each odd
spin n: Apply the Pauli operator σx

n unless the neighboring
even sites, n − 1 and n + 1, are both in the |↓〉 state; likewise
for W (odd → even) with even and odd sites interchanged.
These rules are implemented using standard quantum gates
[40]. The unit cell consists of two sites; in what follows
we measure space in terms of unit cells. (The dynamics is
symmetric under simultaneous spatial translation by a single
lattice site and time translation by a half step, but not under
either operation separately.)

The dynamics of the FFA model can be described in terms
of left- and right-moving quasiparticles. Each quasiparticle of
either type has the same velocity, i.e., the dispersion relation
is purely linear. This strict dispersionlessness is a distinctive
feature of Floquet models, and cannot exist in a local lattice
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Hamiltonian. When two quasiparticles collide, each is delayed
by one time step; thus the model resembles a gas of hard rods
with length −1. Microscopically, a “free” right-moving quasi-
particle consists of two up spins, occupying an odd site and the
even site to its right; a left mover is similar, but occupies an
odd site and the even site to its left. A configuration of the form
↓↑↓ contains a left mover and a right mover on top of each
other; such composites form during collisions. We compute
coarse-grained densities of right/left movers ρR/L by simply
counting these configurations in the microscopic state.

In generic integrable systems, the density of quasiparticles
with each rapidity is separately conserved, so the conservation
laws of the model can all be understood in terms of the rapidity
distribution of quasiparticles. In the FFA model, by contrast,
there are only two velocities, so specifying the densities of left
and right movers is not enough to fix the conservation laws.
The remaining conservation laws are the asymptotic spacings
between adjacent left and right movers. The broadening of the
front couples to the velocities and not the spacings, so in what
follows we ignore the spacings.

Velocity renormalization and diffusion in the FFA model.
In the FFA model, right and left movers move ballistically
with the respective velocities vR and vL, which depend on the
densities as

vR/L = ±1 ∓ 2ρL/R

1 + ρR + ρL

. (4)

These formulas coincide with the prediction for a hard rod
gas with effective length a = −1, and can also be derived in
an elementary way [58] as the left movers slow down the right
movers and vice versa.

In order to include diffusive corrections, we incorporate
equilibrium fluctuations of the quasiparticle densities, which
lead to velocity fluctuations through Eq. (4). The density
fluctuations are not diagonal in the left/right-mover basis,
i.e., 〈δρLδρR〉 �= 0 with δρR/L = ρR/L − 〈ρR/L〉. However, we
can define the generalized “Fermi factor” nR/L = 3ρR/L/(1 +
ρR + ρL); note that 〈δnLδnR〉 = 0. The GHD equations de-
scribe the advection of these Fermi factors [58]. From Eq. (4),
the velocity of a right mover is given by vR = 1 − 2nL/3; we
have confirmed this expression numerically. (For simplicity,
we express our results for right movers, but exactly analogous
expressions can be written for left movers.) To compute the
velocity fluctuations, we need to compute the fluctuations
〈δnLδnL〉. We do this to leading order, by expanding δnL

in terms of δρR and δρL, and computing the fluctuations
of the densities. To do this we write a partition function
Z(μL,μR ) = ∑

{σ } exp(−μLNL − μRNR ), and compute Z

using a 4 × 4 transfer matrix, from which density fluctuations
can be evaluated by taking derivatives [58]. We specialize
to ρL = ρR = ρ; in this case, the density fluctuations fit the
analytic form 〈(δnL)2〉 = 9ρ(1−ρ)

(1+2ρ)4�
for a system of size �. Ac-

cording to our kinetic argument, we compute the fluctuations
over a distance � = t |vR − vL| = 2tvR . Plugging these results
into Eq. (1), we arrive at the following analytic expression for
the variance of the quasiparticle position,

δx2(t ) = t
2ρ(1 − ρ)

(1 + 2ρ)3
, (5)

FIG. 2. Upper panel: Biased random walk of a single right-
moving quasiparticle in the FFA model for a specific initial prod-
uct state (left) and diffusive broadening when averaged over 1000
product states (right). Lower panel: Variance of front position vs
filling for a system of size L = 400; numerical results (averaged over
1000 random product states) are in good agreement with the analytic
formula (5). We emphasize that there are no free parameters. Inset:
OTOCs in the FFA model generically fill in behind the front [40].

for a tagged quasiparticle propagating through an equilib-
rium state with density (filling) ρ. This prediction is in
good agreement with numerical simulation of the dynamics
(Fig. 2). The error bars indicate a least-squares error in the
fitting of the variance of the front. The small deviations
from the theoretical prediction can be attributed to the early-
time, subleading corrections that are relatively large in this
regime—the front is fitted after a few hundred time steps.
The simplicity of our model allows us to directly mea-
sure the dynamics of a tagged quasiparticle, as follows. We
evaluate the OTOC 〈[P↓(i − 1, B )σ+(i, A)σ+(i, B )σ−(i +
1, A)σ−(i + 1, B )P↓(i + 2, A), σ z

j (t )]2〉, where P↑/↓ are pro-
jectors onto up/down spins, and A and B label the two spins in
the ith unit cell. This corresponds to translating a single right
mover without creating or destroying any quasiparticles. In
hard-rod models generally, translating a quasiparticle does not
cause a butterfly effect; instead, the OTOC simply gives the
time trace of the tagged quasiparticle (Fig. 2). We emphasize
that the existence of operators that can tag and translate single
quasiparticles is a special feature of the FFA model; OTOCs
of other generic local operators in the FFA model fill in behind
the front and look similar to the chaotic case [40] (Fig. 2).

In general interacting integrable models, a local operator
that exclusively translates a single quasiparticle is unlikely
to exist. Acting with a local operator generically at least
changes the pseudomomenta of some quasiparticle(s) and thus
the phase shifts of all the others [59,60]. Therefore, OTOCs
of local operators should generically fill in behind the front.
Numerical results for the XXZ chain are shown in Ref. [58].
Our numerics do not settle whether the saturation value behind
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the front in the XXZ model is distinct from the chaotic case,
but the distinction, if present, is empirically weak for the
operators we have considered.

Generic integrable systems. Our picture can be straight-
forwardly generalized to other integrable systems with a
quasiparticle description, such as the XXZ spin chain. Such
systems can be described in terms of stable quasiparticles,
even at infinite temperature. Equilibrium states associated
with a generalized Gibbs ensemble (GGE) [61,62] correspond
to a distribution of occupied quasiparticle states ρα,k with α

the particle type and k a pseudomomentum [59,60]. After a
quench, we expect the system to locally approach a GGE
on a short timescale; our results apply for later times. Den-
sities ρk are related to the density of states ρ tot

α,k through the
so-called Bethe equation ρ tot

α,k + ∑
β

∫
dk′Kαβ (k, k′)ρβ,k′ =

∂kp
0
α,k/(2π ), where the kernel Kαβ (k, k′) encodes the two-

body phase shifts of the model [63], and p0
α,k is the momen-

tum. Ballistic transport in these models can be captured in
terms of GHD, where the quasiparticle densities are assumed
to be defined locally ρα,k (x, t ). The effective quasiparticle
velocity vα,k[ρ] depends on the densities of all the other
quasiparticles through some effective “dressing” operation by
the interaction kernel Kαβ (k, k′).

Diffusive broadening is captured by reintroducing fluc-
tuations in the GHD picture. In a GGE state, the fluc-
tuations of the generalized Fermi factor nα,k = ρα,k/ρ

tot
α,k

in an interval of length � are diagonal in k, and
are given by [57] 〈δnα,kδnβ,k′ 〉 = δα,βδ(k − k′)nβ,k′ (1 −
nβ,k′ )/(ρ tot

β,k′�). (Note that nk is a dimensionless quan-
tity.) In the basis of generalized Fermi factors, ther-
mal fluctuations are essentially free-fermion-like. From the
explicit form of the quasiparticle velocity in terms of
generalized Fermi factors, we find the functional deriva-
tive [58,64] ρ tot

α,kδvα,k/δnβ,k′ = (vα,k − vβ,k′ )ρ tot
β,k′Kdr

αβ (k, k′),
where Kdr

αβ (k, k′) is a “dressed” version of the scattering
kernel, which satisfies the integral equation Kdr

αβ (k, k′) =
Kαβ (k, k′) − ∑

γ

∫
dk′′Kαγ (k, k′′)Kdr

γβ (k′′, k′)nγ,k′′ . Plugging
this expression into (1), with the explicit form of the
Fermi factor fluctuations computed over a distance � =
|vα,k − vβ,k′ |t , we find

δx2
α,k (t ) = t

1(
ρ tot

α,k

)2

∑
β

∫
dk′|vα,k − vβ,k′ |

× [
Kdr

αβ (k, k′)
]2

ρβ,k′ (1 − nβ,k′ ). (6)

This formula gives an explicit expression for the diffusive
broadening of a quasiparticle α with pseudomomentum k

propagating through an homogeneous equilibrium state due
to thermal fluctuations. It can be evaluated explicitly for any
integrable model, and for the fastest quasiparticle, coincides
with the diffusive broadening of the operator spreading front.

Transport. In integrable systems, unlike chaotic ones, the
subleading diffusive quasiparticle spreading affects not just
OTOCs but also time-ordered correlators and transport prop-
erties. To see this, consider a GGE state characterized by
a generalized Fermi factor distribution n

eq
α,k . A small pertur-

bation n̂α,k (x, t ) over this GGE state propagates with mean
velocity vα,k[neq], but with diffusive broadening δx2

α,k (t ) =

2Dkt given by Eq. (6). The corresponding linear-response
hydrodynamic equation reads

∂t n̂α,k + vα,k[neq]∂xn̂α,k = Dk[neq]∂2
x n̂α,k + · · · , (7)

where the dots include higher-derivative corrections, but also
∂2
x n̂β,k′ terms with (β, k′) �= (α, k). In fact, although our

derivations seem quite distinct, our expression for the diagonal
diffusion constant Dk coincides with the very recent “Navier-
Stokes” corrections computed in Ref. [39] from a form-factor
(matrix-element) expansion of the Kubo formula; it will be
interesting to extend our argument to reproduce fully the
transport equation of Ref. [39].

We note that although fronts for OTOCs and time-ordered
correlation functions both broaden diffusively, there are im-
portant differences: First, operator spreading is dominated by
the fastest quasiparticle, whereas transport generally involves
all quasiparticles. Second, OTOCs saturate to a nonzero value
behind the front, while time-ordered correlators decay. Third,
different conserved quantities couple differently to quasi-
particles, leading to distinct transport properties (e.g., spin
transport in the XXZ model is subballistic for Jz � Jx =
Jy [18,55]) so time-ordered correlators may not detect the
ballistic operator front in all cases. Numerical results for
two-point correlators, OTOCs, and diffusive front broadening
for the XXZ model are shown in Ref. [58].

Discussion. This Rapid Communication used a simple,
physically motivated picture from kinetic theory to derive
diffusive corrections to ballistic quasiparticle spreading in
interacting integrable systems, and its implications for op-
erator spreading and transport. We showed that OTOCs in
interacting integrable models have diffusive front broaden-
ing just as in nonintegrable systems, although the mecha-
nisms are quite different. Nevertheless, coarse-grained mea-
sures of front dynamics are not able to discriminate between
these mechanisms. Whether our hydrodynamic approach can
be generalized to construct a fluctuating hydrodynamics of
integrable systems, or extended to situations such as the
isotropic Heisenberg chain for which the diffusion is anoma-
lous [65,66], are left for future work.

In addition to the diffusive effect discussed here, in-
teracting integrable systems have a subleading t1/3 front
broadening that they share with free-fermion models [26].
One might wonder if there are any natural circumstances in
which the diffusive broadening we predict might be absent,
causing the t1/3 effect to dominate. Equation (6) suggests
that this essentially never happens in an interacting sys-
tem, as all terms are non-negative and therefore the inte-
grand would have to vanish identically (which is plausible
in zero-entropy states, such as the ground state, but not
otherwise).

Acknowledgments. The authors thank Denis Bernard,
Vir Bulchandani, Pasquale Calabrese, Anushya Chandran,
Andrea De Luca, Jacopo De Nardis, Benjamin Doyon, Adam
Nahum, Vadim Oganesyan, Tomaz Prosen, and Brian Swingle
for helpful discussions and comments on the manuscript. This
work was supported by NSF Grant No. DMR-1653271 (S.G.),
DOE Grant No. DE-SC0016244 (D.A.H.), and U.S. Depart-
ment of Energy, Office of Science, Basic Energy Sciences,
under Award No. DE-SC0019168 (R.V.). V.K. is supported

220303-4



HYDRODYNAMICS OF OPERATOR SPREADING AND … PHYSICAL REVIEW B 98, 220303(R) (2018)

by the Harvard Society of Fellows and the William F. Milton
Fund. S.G., V.K., and R.V. are grateful to the KITP, which
is supported by the National Science Foundation under Grant
No. NSF PHY-1748958, and the program “The Dynamics of

Quantum Information,” where part of this work was com-
pleted. S.G. performed this work in part at the Aspen Center
for Physics, which is supported by NSF Grant No. PHY-
1607611.

[1] H. Liu and S. J. Suh, Phys. Rev. Lett. 112, 011601 (2014).
[2] H. Casini, H. Liu, and M. Mezei, J. High Energy Phys. 07

(2016) 077.
[3] M. Mezei and D. Stanford, J. High Energy Phys. 05 (2017) 065.
[4] W. Brown and O. Fawzi, arXiv:1210.6644.
[5] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Phys. Rev. X 7,

031016 (2017).
[6] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014

(2018).
[7] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L.

Sondhi, Phys. Rev. X 8, 021013 (2018).
[8] V. Khemani, A. Vishwanath, and D. A. Huse, Phys. Rev. X 8,

031057 (2018).
[9] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Phys.

Rev. X 8, 031058 (2018).
[10] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. X 8, 041019

(2018).
[11] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
[12] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, New J. Phys.

19, 063001 (2017).
[13] D. J. Luitz and Y. Bar Lev, Phys. Rev. B 96, 020406 (2017).
[14] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55,

2262 (1968) [Sov. Phys. JETP 28, 1200 (1969)].
[15] S. H. Shenker and D. Stanford, J. High Energy Phys. 03 (2014)

067.
[16] J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energy

Phys. 08 (2016) 106.
[17] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006).
[18] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011).
[19] J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203

(2013).
[20] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol,

and J.-S. Caux, Phys. Rev. Lett. 113, 117202 (2014).
[21] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler,

and T. Prosen, Phys. Rev. Lett. 115, 157201 (2015).
[22] E. Ilievski, M. Medenjak, T. Prosen, and L. Zadnik, J. Stat.

Mech.: Theory Exp. (2016) 064008.
[23] R. Vasseur and J. E. Moore, J. Stat. Mech.: Theory Exp. (2016)

064010.
[24] M. Fagotti, M. Collura, F. H. L. Essler, and P. Calabrese, Phys.

Rev. B 89, 125101 (2014).
[25] V. Alba and P. Calabrese, Proc. Natl. Acad. Sci. U.S.A. 114,

7947 (2017).
[26] T. Platini and D. Karevski, Eur. Phys. J. B 48, 225 (2005).
[27] M. Collura, A. De Luca, and J. Viti, Phys. Rev. B 97, 081111

(2018).
[28] V. Khemani, D. A. Huse, and A. Nahum, Phys. Rev. B 98,

144304 (2018).
[29] S. Xu and B. Swingle, arXiv:1802.00801.
[30] M. Fagotti, Phys. Rev. B 96, 220302 (2017).
[31] J. L. Lebowitz and J. K. Percus, Phys. Rev. 155, 122 (1967).
[32] G. El, Phys. Lett. A 311, 374 (2003).

[33] G. A. El and A. M. Kamchatnov, Phys. Rev. Lett. 95, 204101
(2005).

[34] C. Karrasch, J. E. Moore, and F. Heidrich-Meisner, Phys. Rev.
B 89, 075139 (2014).

[35] M. Medenjak, K. Klobas, and T. Prosen, Phys. Rev. Lett. 119,
110603 (2017).

[36] M. Kormos, C. P. Moca, and G. Zaránd, Phys. Rev. E 98,
032105 (2018).

[37] B. Doyon and H. Spohn, J. Stat. Mech.: Theory Exp. (2017)
073210.

[38] H. Spohn, J. Math. Phys. 59, 091402 (2018).
[39] J. De Nardis, D. Bernard, and B. Doyon, Phys. Rev. Lett. 121,

160603 (2018).
[40] S. Gopalakrishnan, Phys. Rev. B 98, 060302 (2018).
[41] K. Klobas, M. Medenjak, T. Prosen, and M. Vanicat,

arXiv:1807.05000.
[42] K. Klobas, M. Medenjak, and T. Prosen, arXiv:1808.07385.
[43] C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304

(2018).
[44] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev.

X 6, 041065 (2016).
[45] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys. Rev.

Lett. 117, 207201 (2016).
[46] B. Doyon, T. Yoshimura, and J.-S. Caux, Phys. Rev. Lett. 120,

045301 (2018).
[47] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore,

Phys. Rev. B 97, 045407 (2018).
[48] S. Sachdev and A. P. Young, Phys. Rev. Lett. 78, 2220

(1997).
[49] S. Sachdev and K. Damle, Phys. Rev. Lett. 78, 943 (1997).
[50] A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall,

Commun. Math. Phys. 158, 127 (1993).
[51] T. Prosen and C. Mejía-Monasterio, J. Phys. A 49, 185003

(2016).
[52] B. Doyon and T. Yoshimura, SciPost Phys. 2, 014 (2017).
[53] B. Doyon and H. Spohn, SciPost Phys. 3, 039 (2017).
[54] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E. Moore,

Phys. Rev. Lett. 119, 220604 (2017).
[55] E. Ilievski and J. De Nardis, Phys. Rev. Lett. 119, 020602

(2017).
[56] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura, Phys. Rev.

Lett. 119, 195301 (2017).
[57] P. Fendley and H. Saleur, Phys. Rev. B 54, 10845 (1996).
[58] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.98.220303 for microscopic continuity
equations for the FFA model, details about the thermodynamics
and hydrodynamics of the FFA model, a derivation of
quasiparticle diffusion for general integrable models, and
numerical results for the XXZ spin chain, which includes
Refs. [6,7,37,44,45,54,57,63,64,67,68].

[59] E. Ilievski, E. Quinn, J. D. Nardis, and M. Brockmann, J. Stat.
Mech.: Theory Exp. (2016) 063101.

220303-5

https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP07(2016)077
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
http://arxiv.org/abs/arXiv:1210.6644
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevB.96.020406
https://doi.org/10.1103/PhysRevB.96.020406
https://doi.org/10.1103/PhysRevB.96.020406
https://doi.org/10.1103/PhysRevB.96.020406
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.96.136801
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064010
https://doi.org/10.1088/1742-5468/2016/06/064010
https://doi.org/10.1088/1742-5468/2016/06/064010
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1140/epjb/e2005-00402-2
https://doi.org/10.1140/epjb/e2005-00402-2
https://doi.org/10.1140/epjb/e2005-00402-2
https://doi.org/10.1140/epjb/e2005-00402-2
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevB.98.144304
http://arxiv.org/abs/arXiv:1802.00801
https://doi.org/10.1103/PhysRevB.96.220302
https://doi.org/10.1103/PhysRevB.96.220302
https://doi.org/10.1103/PhysRevB.96.220302
https://doi.org/10.1103/PhysRevB.96.220302
https://doi.org/10.1103/PhysRev.155.122
https://doi.org/10.1103/PhysRev.155.122
https://doi.org/10.1103/PhysRev.155.122
https://doi.org/10.1103/PhysRev.155.122
https://doi.org/10.1016/S0375-9601(03)00515-2
https://doi.org/10.1016/S0375-9601(03)00515-2
https://doi.org/10.1016/S0375-9601(03)00515-2
https://doi.org/10.1016/S0375-9601(03)00515-2
https://doi.org/10.1103/PhysRevLett.95.204101
https://doi.org/10.1103/PhysRevLett.95.204101
https://doi.org/10.1103/PhysRevLett.95.204101
https://doi.org/10.1103/PhysRevLett.95.204101
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevLett.119.110603
https://doi.org/10.1103/PhysRevLett.119.110603
https://doi.org/10.1103/PhysRevLett.119.110603
https://doi.org/10.1103/PhysRevLett.119.110603
https://doi.org/10.1103/PhysRevE.98.032105
https://doi.org/10.1103/PhysRevE.98.032105
https://doi.org/10.1103/PhysRevE.98.032105
https://doi.org/10.1103/PhysRevE.98.032105
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1063/1.5018624
https://doi.org/10.1063/1.5018624
https://doi.org/10.1063/1.5018624
https://doi.org/10.1063/1.5018624
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevB.98.060302
https://doi.org/10.1103/PhysRevB.98.060302
https://doi.org/10.1103/PhysRevB.98.060302
https://doi.org/10.1103/PhysRevB.98.060302
http://arxiv.org/abs/arXiv:1807.05000
http://arxiv.org/abs/arXiv:1808.07385
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.1103/PhysRevLett.78.2220
https://doi.org/10.1103/PhysRevLett.78.2220
https://doi.org/10.1103/PhysRevLett.78.2220
https://doi.org/10.1103/PhysRevLett.78.2220
https://doi.org/10.1103/PhysRevLett.78.943
https://doi.org/10.1103/PhysRevLett.78.943
https://doi.org/10.1103/PhysRevLett.78.943
https://doi.org/10.1103/PhysRevLett.78.943
https://doi.org/10.1007/BF02097234
https://doi.org/10.1007/BF02097234
https://doi.org/10.1007/BF02097234
https://doi.org/10.1007/BF02097234
https://doi.org/10.1088/1751-8113/49/18/185003
https://doi.org/10.1088/1751-8113/49/18/185003
https://doi.org/10.1088/1751-8113/49/18/185003
https://doi.org/10.1088/1751-8113/49/18/185003
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevB.54.10845
https://doi.org/10.1103/PhysRevB.54.10845
https://doi.org/10.1103/PhysRevB.54.10845
https://doi.org/10.1103/PhysRevB.54.10845
http://link.aps.org/supplemental/10.1103/PhysRevB.98.220303
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1088/1742-5468/2016/06/063101


GOPALAKRISHNAN, HUSE, KHEMANI, AND VASSEUR PHYSICAL REVIEW B 98, 220303(R) (2018)

[60] E. Ilievski, E. Quinn, and J.-S. Caux, Phys. Rev. B 95, 115128
(2017).

[61] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008).

[62] L. Vidmar and M. Rigol, J. Stat. Mech.: Theory Exp. (2016)
064007.

[63] M. Takahashi, Thermodynamics of One-Dimensional Solvable
Models (Cambridge University Press, Cambridge, U.K., 1999).

[64] V. B. Bulchandani, J. Phys. A 50, 435203 (2017).
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