
PHYSICAL REVIEW B 98, 214521 (2018)

Kohn-Luttinger superconductivity on two orbital honeycomb lattice
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Motivated by experiments on twisted bilayer graphene, we study the emergence of superconductivity
from weak repulsive interactions in the Hubbard model on a honeycomb lattice, with both spin and orbital
degeneracies, and with the filling treated as a tunable control parameter. The attraction is generated through
the Kohn-Luttinger mechanism. We find, similar to old studies of single layer graphene, that the leading
superconducting instability is in a d-wave pairing channel close to Van Hove filling and is in an f -wave pairing
channel away from Van Hove filling. The d-wave pairing instability further has a twelvefold degeneracy while
the f -wave pairing instability has a tenfold degeneracy. We analyze the symmetry breaking perturbations to
this model. Combining this with a Ginzburg-Landau analysis, we conclude that close to Van Hove filling, a spin
singlet d + id pairing state should form (consistent with several other investigations of twisted bilayer graphene),
whereas away from Van Hove filling we propose an unusual spin and orbital singlet f -wave pairing state.
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I. INTRODUCTION

Recent experiments observe superconductivity [1] proxi-
mate to an insulating state [2] in twisted bilayer graphene
with magic twist angle θ ≈ 1.05 ◦. Remarkably, the super-
conductivity exhibits a relatively high critical temperature Tc

with a small Fermi surface. To be explicit, the temperature
ratio Tc/TF , where TF is the Fermi temperature, is close but
higher than most of the currently known high temperature
superconductors. The carrier density-temperature phase dia-
gram demonstrates two superconducting domes on both sides
of the insulating phase. These features, which resemble those
observed in high Tc materials, have triggered an explosion
of interest in the twisted bilayer graphene systems. Given
the similarity of the observed phase diagram to that of high
Tc materials, it has been widely assumed that the pairing is
mediated by repulsive electron-electron interactions, as in the
high Tc materials. We also make this assumption, although we
cannot exclude the possibility of phonon mediated pairing.

The theoretical analysis of the twisted bilayer graphene
system can be divided into two distinct parts: the development
of a suitable model Hamiltonian capturing the key features
of the problem and the analysis thereof. It is known that the
system exhibits a Moiré pattern [3–7] at small twist angles,
where a superlattice with extremely large unit cells emerges.
The corresponding low energy regime manifests four nearly
flat minibands and a relatively large gap from the other bands.
A number of works have proceeded from here to derive an
effective low energy theory [8–13], for example, by deriving
the symmetry allowed maximally localized Wannier orbitals.
We will make use here of the model Hamiltonian from
Refs. [9,12], which takes the form of a Hubbard model on
the honeycomb superlattice with a twofold orbital degeneracy
in addition to spin degeneracy.

The question then arises as to how this model should be
analyzed. Many investigations in this field have employed a

strong coupling approach, assuming that the interactions are
large compared to the bandwidth [8,10,14,15]. Here we take
the opposite approach and ask: What if the residual bandwidth
is still large enough to exceed the interaction strength, such
that the system is best described by a weak coupling approach?
This approach can be motivated by considering, for example,
twist angles slightly away from the magic angle. Our basic
logic is to thoroughly explore the superconducting physics
in the weak coupling regime, in the hope that this may
provide insight into the experiments. We therefore analyze
the onset of superconductivity in the model from Refs. [9,12],
assuming weak coupling, at a range of doping levels. Since the
experimental phase diagram looks similar to that for high Tc

materials, we assume that the superconductivity arises from a
purely electron mechanism. Due to the large lattice constant
in the Moiré superlattice, we further assume that the electron-
electron repulsion can be well approximated by an onsite
‘Hubbard’ repulsion. Finally, we assume that the pairing
arises from the Kohn-Luttinger mechanism [16–21], which is
the most generic method for obtaining pairing from repulsion
at weak coupling. Of course, weak coupling superconductivity
generically involves transition temperatures much lower than
Fermi temperatures, whereas experimentally Tc/TF is not that
small, so we do not expect this picture to be quantitatively
accurate. Nevertheless, it may provide insight into what is
going on.

We pay particular attention to the SU(4) spin and or-
bital degeneracy, and to its lifting. The assumption of full
SU(4) symmetry greatly simplifies the analysis. We use the
Fierz identity [22–25] to decompose the interactions into
pairing channels characterized by the SU(4) irreducible rep-
resentations. These pairings can be interpreted as combina-
tions of singlets and triplets of orbital and spin pairings.
Adopting a patch description of the Fermi surface, we per-
form the Kohn-Luttinger analysis and determine the potential
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FIG. 1. Phase diagram of superconductivities in the two or-
bital honeycomb lattice model. The black outer hexagons are the
Brillouin zone boundaries of honeycomb lattice, while the inner
green curves represent the Fermi surfaces. Near the Van Hove filling,
a d + id chiral superconductivity is dominant, within the Kohn-
Luttinger approach. The phase of order parameter winds ±4π around
the Fermi surface, where the angle θ = ±2π/3 is defined. In the
other regimes, a f -wave superconductivity is favored. Both of the
dominant superconductivities manifest spin singlet pairing.

superconducting states in a broad range of fillings (Fig. 1).
Near the Van Hove filling, we find dominance of d-wave
superconductivity, whereas away from Van Hove filling,
f -wave superconductivity dominates. These findings are sim-
ilar to earlier investigations of Kohn-Luttinger superconduc-
tivity on the honeycomb lattice [20]. We then turn to the lifting
of the SU(4) degeneracy. We show that an effective anti-
Hund’s coupling emerges from the renormalization of bare
Hund’s coupling. Combining this with a Ginzburg-Landau
analysis, we conclude that close to Van Hove filling, a spin
singlet d + id pairing state should form (consistent with
several other works). Away from Van Hove filling, we predict
an unusual spin singlet and orbital singlet f -wave pairing
state, which would be forbidden in the absence of orbital
degeneracy by Fermi statistics.

We now briefly discuss how our work relates to the prior
literature. Where the larger graphene literature goes, our work
builds directly on old analyses of superconductivity in doped
single layer graphene [18–20]. The key difference from that
older literature is in the incorporation of the orbital degener-
acy (absent in single layer graphene) and the analysis of lifting
the resulting enlarged degeneracy. Where the more recent
twisted bilayer graphene literature is concerned, the closest
parallels are to other works taking a weak coupling approach
[21,26–29]. However, these works focus on the vicinity of Van
Hove filling, whereas we consider a broader doping range.
The methods employed are also different. In Refs. [26,27] the

random phase approximation (RPA) is employed, whereas in
Ref. [29] a parquet renormalization group analysis similar to
Ref. [19] is performed. In the immediate vicinity of Van Hove
filling, the nesting of the Fermi surface gives rise to various
competing instabilities, and this competition is difficult to
resolve within RPA or Kohn-Luttinger type approaches. In
contrast, the parquet renormalization group analysis [29] has
the advantage of treating all instabilities on an equal footing
and predicting a leading instability. On the other hand, the
Kohn-Luttinger analysis that we perform has the advantage
of being extremely transparent, as well as easy to extend
away from Van Hove filling. It is in any case reassuring
that RPA calculations, parquet renormalization group, and
Kohn-Luttinger calculations all predict a spin singlet d + id

chiral superconductor near Van Hove filling (similar also to
the old literature on single layer graphene [19]). The Kohn-
Luttinger analysis of Ref. [21] is an outlier, predicting p-wave
pairing, in contrast to our analysis. We do not understand the
discrepancy but speculate that it comes from a different choice
of model Hamiltonian. None of these works consider the
pairing far from Van Hove filling, where we find an unusual
spin singlet f -wave pairing state.

II. MODEL

We start with the analysis of an SU(4) symmetric two
orbital Hubbard model on the honeycomb lattice [9,12]

H = −t
∑
〈ij〉

(c†i cj + H.c.) + U

2

∑
i

(c†i ci )
2 − μ

∑
i

c
†
i ci . (1)

Each vector ci = (cix↑, cix↓, ciy↑, ciy↓)T describes the four
onsite degrees of freedom composed of two orbitals τ = x, y

and two spins σ = ↑,↓. The corresponding Pauli matrices
�τ = (τ 0, τ ) and �σ = (σ 0, σ ), where τ 0 = σ 0 = 1, serve as
convenient representations in later analysis. We choose the
hopping constant t > 0, the onsite repulsion U > 0, and the
chemical potential μ as real numbers, where the weak cou-
pling condition U 	 t is imposed. The lattice spacing is set
as unity.

A. Noninteracting theory

The noninteracting theory manifests two bands with dis-
persion energies

±εk = ±t

√
1 + 4 cos

3kx

2
cos

√
3ky

2
+ 4 cos2

√
3ky

2
. (2)

Each band manifests fourfold degeneracy, corresponding to
the SU(4) symmetry of the model. We focus on the positive
bands with μ > 0, while the analysis of negative bands is
similar. The noninteracting Hamiltonian can be expressed as

H0 =
∑

k

ξkc
†
kck, (3)

where ck is redefined as the positive energy modes. The
relative energy to the Fermi level is ξk = εk − μ.

The Brillouin zone is a hexagon with six corner Dirac
points (0,±4π/3

√
3) and (±2π/3,±2π/3

√
3). Starting from

the full filling μ = 3t , the decrease of filling manifests a
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deformation of Fermi surface from the center point to a
hexagon at Van Hove filling μ = t . The six corner Van Hove
points (±2π/3, 0) and (±π/3,±π/

√
3) exhibit logarithmi-

cally divergent densities of states, known as the Van Hove
singularity. When the filling further decreases 0 < μ < t , the
Fermi surface splits into six distinct arcs and shrinks into the
Dirac points at the half filling μ = 0.

B. Interaction and pairing channels

Our main purpose is to probe the potential superconductiv-
ity induced by the Kohn-Luttinger renormalization [16]. De-
spite the constant repulsion in the bare theory, the renormal-
ized interaction can acquire momentum dependence from the
high order corrections. We take the interaction with general
momentum dependence

Hint = −1

2

∑
kk′

Vk−k′ (c†kck′ )(c†−kc−k′ ) (4)

as a starting point for the analysis of pairing channels. The
zero momentum pairing and the minus sign are imposed as in
conventional studies of superconductivity.

The Fierz identity is frequently utilized to derive the pair-
ing channels from the four fermion interactions [22–25]. A
first attempt regards the constraint of Fermi statistics. We
separate the four fermion part in Eq. (4) into two pairing
channels

(c†kck′ )(c†−kc−k′ ) = 1

4

[( �P s
k

)† · �P s
k′ + ( �P a

k

)† · �P a
k′
]
. (5)

The pairing operators consist of the (anti)symmetric SU(4)
irreducible representations [8,22]( �P s,a

k

)† = c
†
k

�Ms,a[γ (c†−k )T ], (6)

thereby feature the (anti)symmetric pairing of quantum num-
bers. Analogous to the time reversal operator iσ y for spin-1/2
systems, the unitary operator γ = i(iτ y )(iσ y ) is defined with
γ 2 = −1. The 10(6) component vector �Ms(a) represents the
(anti)symmetric SU(4) irreducible representations normalized
by Tr[Ms,a

ζ (Ms,a
ζ )†] = 4, where ζ denotes the characteristic

quantum number for a pairing channel.
The symmetric and antisymmetric pairing channels can be

interpreted more clearly in the singlet-triplet representation.
Consider the combinations of singlets and triplets between
the orbital and spin pairings. While the symmetric pairings
are composed of either two singlets or two triplets Ms

ζ =
τ 0σ 0, τ iσ j , the antisymmetric pairings feature one singlet and
one triplet Ma

ζ = τ 0σ i, τ iσ 0. With the aid from the orbital
pairings, both spin singlet and triplet pairings can appear in
the two pairing channels. This feature indicates that the model
with two orbitals Eq. (1) can potentially support pairing states
that are unavailable in the usual systems.

The judgment of pairing channels also requires an analysis
of the momentum dependent interaction Vk−k′ . Due to Fermi
statistics, the interactions experienced by symmetric and anti-
symmetric quantum number pairings are

V
s,a

k−k′ = 1

2
(Vk−k′ ∓ Vk+k′ ), V

s,a
k−k′ = ∓V

s,a
k+k′ . (7)
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FIG. 2. (a) Patch model II near the half filling. (b) Patch model
I (left) and patch model II (right) near the Van Hove filling. The
black outer hexagons indicate the Brillouin zone boundaries, while
the green inner curves represent the Fermi surfaces. The patches
are represented by the brown solid circles and are connected by the
linking momenta Q’s.

The absence of V
a(s)

k−k′ for (anti)symmetric quantum number
pairings can be confirmed by examining the cancellation
between ±k′ domains in the interaction Eq. (4).

From the analysis of compatibility with Fermi statistics, the
Hamiltonians in the two pairing channels are determined

Hs,a =
∑

k

ξkc
†
kck − 1

8

∑
kk′

V
s,a

k−k′
( �P s,a

k

)† · �P s,a
k′ . (8)

In general, the interaction V
s,a

k−k′ is not diagonal in momentum
space representation. This necessitates solving the related
eigenvalue problem and evaluating the pairing channels with
different momentum space configurations. We address this
issue in the next subsection.

C. Patch models

In the low filling regime, the Fermi surface is dominated
by some ‘hot spots.’ These hot spots constitute a simplified
patch model [19,20] for the Fermi surface. The choice of
patch models depends strongly on the electron filling (Fig. 2).
Near Van Hove filling μ ≈ t , we conduct the analysis in two
kinds of patch models. Patch model I exhibits the patches
near the six Van Hove points, while in patch model II the
patches sit near the six edge centers of Fermi surface. For
the lower fillings 0 < μ < t , only patch model II is adopted.
The patches are now placed at the centers of the six Fermi
arcs. In these patch models, the fermionic operators exhibit
three components c± = (c±1, c±2, c±3) defined by the patch
momenta K±α’s. In this convention, the momentum space
summation becomes the summation over patch indices.
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The pairing channels are determined by diagonalizing the
interaction matrix V s,a

V s,a =

⎛
⎜⎝

V
s,a

0 V
s,a
Q V

s,a
Q

V
s,a
Q V

s,a
0 V

s,a
Q

V
s,a
Q V

s,a
Q V

s,a
0

⎞
⎟⎠. (9)

The diagonal elements V
s,a

0 = (V0 ∓ V2K )/2 are intrap-
atch interactions, while the off-diagonal ones V

s,a
Q = (VQ ∓

VQ+2K )/2 work between patches with linking momentum Q.
After the diagonalization, the Hamiltonians in the pairing
channels take the form

Hs,a(i) =
∑
κ=±

ξκc
†
κcκ − 1

2
gs,a(i)( �P s,a(i) )† · �P s,a(i). (10)

The interactions gs,a(i)’s are the eigenvalues of the interaction
matrix V s,a

gs,a(0) = V
s,a

0 + 2V
s,a
Q , gs,a(1) = gs,a(2) = V

s,a
0 − V

s,a
Q .

(11)

Correspondingly, the pairing operators

( �P s,a(i) )† = c
†
+d (i) �Ms,a[γ (c†−)T ] (12)

are defined by the diagonal representations of
orthonormal eigenstates d (0) = (1/

√
3)diag(1, 1, 1), d (1) =

(1/
√

6)diag(2,−1,−1), and d (2) = (1/
√

2)diag(0, 1,−1).
Notice an extra factor of 4 in the interaction due to the double
counting of ±α for the pairing operators.

III. SUPERCONDUCTIVITY FROM WEAK
ELECTRONIC REPULSION

Having derived the pairing channels, the next task is to
analyze the potential pairing instabilities that can arise in
these channels. This seems impossible at first glance due to
the bare repulsive interaction. However, as the high order
corrections are taken into account, the repulsive interaction
can be screened or even overscreened. The realization of at-
tractive interaction and superconductivity therefore becomes
possible. This mechanism is known as the Kohn-Luttinger
renormalization [16].

A. Superconducting features of pairing channels

Before embarking on the Kohn-Luttinger analysis, we
inspect the potential superconducting features of the pairing
channels [20,30]. The standard analysis regards the gap func-
tion and the corresponding order parameter

�
s,a(i)
αηη′ = d (i)

αα
�Ms,a

ηη′ · ��s,a(i), ��s,a(i) = gs,a(i)

2
〈 �P s,a(i)〉,

(13)
where α, i, and η label the patches, eigenvectors, and quantum
numbers, respectively. When the quantum number pairing is
symmetric, the gap function is odd under inversion �s(i)

α =
−�

s(i)
−α . One f -wave and two degenerate p-wave pairing

channels are identified. For the antisymmetric quantum num-
ber pairings, the even gap functions �a(i)

α = �
a(i)
−α indicate

one s-wave and two degenerate d-wave pairing channels. We
label these pairing channels by l = s, p1, p2, d1, d2, f in the
following context.
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FIG. 3. (a) Particle-particle channel with bare repulsion. (b) The
second order diagrams in the Kohn-Luttinger renormalization. The
four diagrams are described by the polarization bubbles 4�k−k′ ,
−�k+k′ , −�k−k′ , and −�k−k′ , respectively. A summation over these
diagrams provides the correction to the interaction Eq. (14).

B. Kohn-Luttinger renormalization

In the original model, the only interaction is the constant
onsite repulsion Vk−k′ = −U/2. Only the s-wave pairing
channel experiences a finite repulsion gs = −3U/2. Under
the Kohn-Luttinger renormalization, the interaction is cor-
rected by the second order diagrams (Fig. 3). These dia-
grams are described by the static polarization bubbles �q =
−T

∑
ω

∫
p GpωG(p+q)ω, where Gpω is the free fermionic

propagator. The negative sign is introduced so that the polar-
ization bubbles are positive semidefinite. With a summation
over all diagrams, the correction to the interaction is deter-
mined

δVk−k′ = U 2

4
(2�k−k′ − �k+k′ ). (14)

Notice that the first term is absent when there is only spin-1/2
degeneracy [16,17,20], since the diagrams characterized by
�k−k′ cancel out all together.

Calculating polarization bubbles is significantly simplified
in the patch models. The domain of momentum integral in
�q reduces to the patch pairs with linking momentum q. We
derive the renormalized interactions in the pairing channels

gf = 3U 2

8
(�0 − �2K + 2�Q − 2�Q+2K ),

gp = 3U 2

8
(�0 − �2K − �Q + �Q+2K ),

gs = −3U

2
+ U 2

8
(�0 + �2K + 2�Q + 2�Q+2K ),

gd = U 2

8
(�0 + �2K − �Q − �Q+2K ).

(15)
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In f -wave and p-wave pairing channels, the only difference
from single layer graphene is an extra factor of three in
the corrections [20]. However, opposite signs arise in s-wave
and d-wave pairing channels, necessitating a comprehensive
reexamination.

For the single layer graphene, the dominant pairing chan-
nels at different fillings have been examined [20]. The analysis
reveals d-wave superconductivity in the vicinity of Van Hove
filling, while f -wave superconductivity takes over away from
Van Hove filling. In the two orbital model adopted to describe
twisted bilayer graphene, similar results are obtained. We
briefly summarize our main results in the remaining part
of this section. A comprehensive analysis is presented in
Appendix A.

Away from Van Hove filling, all patch pairs provide similar
contributions. The analysis can be executed by counting the
available patch pairs in the polarization bubbles. We utilize
patch model II near the half filling. The evaluation of inter-
actions Eq. (15) reveals the dominance of f -wave supercon-
ductivity. Notice that the interaction is three times stronger
than that in the single layer graphene. This enhancement is
caused by the enlarged contribution from the internal fermion
loop in the two orbital model. Similar analysis also applies
to the regimes near but finitely distant from Van Hove filling.
With the examination of both patch models, the dominance of
f -wave superconductivity is again confirmed.

The analysis becomes more complex in the vicinity of Van
Hove filling. Due to the Van Hove singularity and the nesting
of Fermi surface, the polarization bubbles acquire logarith-
mically divergent scalings as either ln(�/T ) or ln2(�/T ).
Here � is an ultraviolet cutoff determined by the patch size. In
patch model I, an attractive correction with divergent scaling
ln2(�/T ) arises only in the s-wave pairing channel. However,
the second order correction is not expected to overcome the
bare repulsion in perturbation theory. On the other hand, patch
model II exhibits attractive corrections in both s-wave and
d-wave pairing channels, where the s-wave pairing channel
again remains repulsive. This suggests the dominance of d-
wave superconductivity in the vicinity of Van Hove filling,
much as occurs for single layer graphene. Notice however
that the attractive correction acquires a logarithmic divergence
ln(�/T ), instead of the more divergent scaling ln2(�/T )
arising in single layer graphene [20].

Of course, the logarithmic divergences in polarization bub-
bles suggest the breakdown of perturbation theory. Further-
more, the existence of competing ordering tendencies near
Van Hove filling implies that Kohn-Luttinger analysis alone is
not trustworthy. The parquet renormalization group [19,29,31]
is the standard way to solve these problems. However, par-
quet analysis at Van Hove filling still yields the leading
superconducting instability in the d-wave pairing channel.1

1For the single layer graphene, the dominance of d-wave supercon-
ductivity over all instabilities is unambiguous [19]. For the twisted
bilayer graphene, however, there are also some competitions from
density wave states and p-wave pairing channel [29,31]. Since p-
wave pairing does not dominate within our Kohn-Luttinger approach,
we do not consider it further here

The conclusion of our Kohn-Luttinger analysis is therefore
reinforced.

With the Kohn-Luttinger renormalization, the potential
superconductivities at different fillings have been determined.
We expect d-wave pairing close to Van Hove filling and f -
wave pairing away from Van Hove filling.

IV. BREAKDOWN OF DEGENERACIES

We have discussed the potential pairing instabilities in
the model Eq. (1). Large degeneracies are present due to
various quantum number pairings and momentum space con-
figurations. In practice, such degeneracies are likely lifted
by symmetry breaking perturbations. Here we examine the
splitting of degeneracies exhibited by the d-wave and f -wave
superconductivity.

A. d-wave superconductivity

1. Effective anti-Hund’s coupling

Since the d-wave pairing channels exhibit antisymmetric
quantum number pairings, the breakdown of degeneracy can
benefit from the onsite perturbations. In multiorbital systems,
the spin configurations are usually determined by the Hund’s
coupling [8,9]

HJ = −J
∑

i

∑
ττ ′

Siτ · Siτ ′ . (16)

We consider the effect of perturbative Hund’s coupling
J 	 U on the degenerate d-wave pairing channels. With the
fermionic representation Siτ = ∑

σ σ̃ c
†
iτσ (σ σ σ̃ /2)ciτ σ̃ , a four

fermion interaction is obtained

HJ = −J

4

∑
i

∑
ττ ′

∑
σ σ̃σ ′σ̃ ′

(σ σ σ̃ · σ σ ′σ̃ ′ )c†iτσ c
†
iτ ′σ ′ciτ ′σ̃ ′ciτ σ̃ .

(17)
The identity σ σ σ̃ · σ σ ′σ̃ ′ = 2δσ σ̃ ′δσ ′σ̃ − δσ σ̃ δσ ′σ̃ ′ is exploited
to decompose the Pauli matrices. While the second term en-
hances the onsite repulsion U trivially, the first term provides
a nontrivial perturbation.

We ignore the trivial part and apply the Fierz identity.
While the orbital representation exhibits the normal inner
product �τ (iτ y ) · (iτ y )†�τ †, the spin representation is trans-
posed [�σ (iσ y )]T · (iσ y )† �σ †. An expression in terms of pairing
channels arises

HJ = J

16

∑
kk′

[−( �P τ 0σ
k

)† · �P τ 0σ
k′ + ( �P τσ 0

k

)† · �P τσ 0

k′
]
, (18)

where the antisymmetric pairing is demanded due to Fermi
statistics. Notice a splitting of onsite repulsion δU ∼ ±J

between the spin singlet and triplet pairings. The spin sin-
glet pairing channels gain larger onsite repulsion U , thereby
experiencing a stronger attractive interaction after the Kohn-
Luttinger renormalization. We conclude that the d-wave su-
perconductivity near Van Hove filling manifests the spin
singlet pairing.

The preference of spin singlet pairing due to Hund’s
coupling deserves a special discussion. In the bare theory
with Hund’s coupling, the spin triplet pairings gain lower
energy than the spin singlet pairing. A dominant d-wave
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superconductivity with spin triplet and orbital singlet pair-
ings is therefore identified in an effective model with strong
coupling [8]. However, the experimental results indicate a
spin singlet pairing in the superconductivity of twisted bilayer
graphene [1]. This can be demonstrated in models with either
a violation of Hund’s first rule [14] or an anti-Hund’s coupling
[27]. We argue that the anti-Hund’s coupling can be regarded
as a result of Kohn-Luttinger renormalization. In the pairing
channels with superconductivity, the splitting of degeneracy
between spin singlet and triplet pairings is determined by the
second order corrections Eq. (15). The bare Hund’s coupling
Eq. (16) is converted to an effective anti-Hund’s coupling
J̃ ∼ −UJ under Kohn-Luttinger renormalization. With this
effective anti-Hund’s coupling, the spin singlet pairing is fa-
vored in the superconductivity. Notice that this effect does not
occur in the normal channels, where the interaction remains
repulsive.

The degeneracy can be further reduced by the perturbative
pair hopping interaction [9]

HJ ′ = J ′

2

∑
i,ττ ′σσ ′

c
†
iτσ c

†
iτσ ′ciτ ′σ ′ciτ ′σ (19)

with J ′ 	 U . While the spin representation remains the orig-
inal inner product, the orbital representation exhibits a single
product [(−iτ y )(iτ y )][(iτ y )†(−iτ y )†]. The expression

HJ ′ = J ′

8

∑
kk′

(
P τyσ 0

k

)†
P τyσ 0

k′ (20)

indicates the dominance of a single pairing channel. With
τ y = (i/

√
2)[(−√

2τ+) + √
2τ−], we identify the orbital

pairing as |1 0〉y = (i/
√

2)(|1 1〉 + |1 − 1〉). Such perturba-
tion from the pair hopping interaction can also be identified
as a part of the effective anti-Hund’s coupling.

We have seen a breakdown of degeneracy due to the in-
troduction of bare Hund’s coupling. After the Kohn-Luttinger
renormalization, the bare Hund’s coupling is converted into an
effective anti-Hund’s coupling, thereby favors the spin singlet
pairing. Despite the original sixfold degeneracy in the quan-
tum number pairings, only one pairing channel dominates
under the perturbations, and this channel is spin singlet.

2. Ginzburg-Landau theory

There is still a twofold degeneracy due to different d-wave
configurations. The breakdown of this degeneracy can be
analyzed through the Ginzburg-Landau theory [19]. Writing
the partition function as a coherent path integral and applying
the Hubbard-Stratonovich transformation, we derive the free
energy near the critical temperature Tc (see Appendix B)

F [�̄1,2,�1,2] =r (|�1|2 + |�2|2) + u(|�1|2 + |�2|2)2

− u

3

[
2|�1|2|�2|2 − (

�2
1�̄

2
2 + �̄2

1�
2
2

)]
.

(21)
Each order parameter �i corresponds to a d-wave pair-
ing channel. While the quadratic coefficient r = α(T − Tc )
with α > 0 changes sign across the critical temperature Tc,
the quartic coefficient u is always positive. The minimal
free energy occurs when |�1| = |�2| = � and �2/�1 = ±i.
Correspondingly, the gap function in the patch representation

is

�d
ηη′ = (τ yσ 0)ηη′�

1√
3

(1, e±2πi/3, e∓2πi/3). (22)

The phase of the gap function exhibits a winding e±2iφ along
the Fermi surface, where φ is the polar angle in the momentum
space. A phase ±4π is gained after a full winding. This
state can be identified as a d + id chiral superconductivity
with broken time reversal symmetry and nontrivial topological
features [8,19].

B. f -wave superconductivity

The f -wave pairing is symmetric in quantum numbers
(therefore antisymmetric in its momentum space structure),
and so its degeneracy cannot be lifted by onsite perturba-
tions. To break the degeneracy, we must introduce extended
interactions. Consider the extended Hubbard model with sig-
nificantly decaying repulsions. Previous investigation [20]
indicates a proportionality of leading correction to the second
neighbor repulsion δgf ∼ −U2. Introduce a spin exchange
interaction

HJ2 = J2

∑
〈〈ij〉〉

∑
ττ ′

Siτ · Sjτ ′ (23)

with J2 	 U2. By similar decomposition to the treatment of
Hund’s coupling, we arrive at the expression

HJ2 = J2,k−k′

16

∑
kk′

[−( �P �τσ 0

k

)† · �P �τσ 0

k′ + ( �P �τσ
k

)† · �P �τσ
k′

]
(24)

and an additional trivial correction −J2 to the repulsion U2.
For most materials described by the Hubbard models, the spin
exchange exhibits the antiferromagnetic feature J2 > 0. The
repulsion U2 is suppressed more in the spin singlet pairing
channel. Therefore, the f -wave superconductivity manifests
the spin singlet pairing. When the opposite situation occurs,
the spin triplet pairing is favored by a ferromagnetic spin ex-
change J2 < 0. Notice that the superconductivity is triggered
only when the Kohn-Luttinger renormalization overcomes the
bare extended repulsion.

V. DISCUSSION AND CONCLUSION

We have demonstrated how superconductivity emerges
from weak electronic repulsion in an effective two orbital
honeycomb superlattice model. The pairing channels exhibit
an approximate SU(4) symmetry. Utilizing the patch models,
we conduct the Kohn-Luttinger renormalization to probe the
potential superconductivities in a broad range of fillings. Near
the Van Hove filling, the dominant pairing channel is d wave,
whereas away from Van Hove filling it is f wave. We have in-
vestigated the lifting of degeneracy by perturbations. We have
shown that a bare Hund’s coupling is converted to an effective
anti-Hund’s coupling under Kohn-Luttinger renormalization
and thereby selects a single spin singlet pairing channel for the
d-wave pairing. Performing also a Ginzburg-Landau analysis,
we therefore predict a spin singlet d + id pairing state close to
Van Hove filling. Away from Van Hove filling, f -wave pairing
dominates. The degeneracy now is only lifted when extended
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interactions are taken into account. With an antiferromagnetic
spin exchange, spin singlet pairing is favored.

Our study provides a clean and systematic analysis of su-
perconductivity born of weak repulsion in an effective model
for twisted bilayer graphene. How robust the conclusions
are to the details of the model remains to be established,
but it may be hoped that the conclusions are robust. One
important feature that has not been addressed is the insulating
state observed near the superconducting dome [1,2]. This
insulating state may be related to the density wave states in
the weak coupling regime. Exploring the competition between
superconducting and density wave states is an important open
problem, that we however leave to future work [31].
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APPENDIX A: KOHN-LUTTINGER RENORMALIZATION

In the Kohn-Luttinger renormalization, the static part �q
of the polarization bubble

�qω̃ = −T
∑

ω

∫
p
GpωG(p+q)(ω+ω̃) (A1)

is defined by the limit ω̃ → 0. Here Gpω = 1/(iω − ξp) is
the free fermionic propagator. The Matsubara frequencies
ω and ω̃ correspond to the fermionic and bosonic modes,
respectively. After the Matsubara frequency summation, the
polarization bubble is transformed into

�qω̃ =
∫

p

f (ξp+q) − f (ξp)

iω̃ − (ξp+q − ξp)
, (A2)

where f (z) = 1/(ez/T + 1) is the Fermi function.
We follow the analysis of different pairing channels at

various fillings in Ref. [20]. Away from Van Hove filling, the
Fermi surface is not nested, and the density of states is finite.
Since all patch pairs provide similar contributions, the correc-
tions can be analyzed by counting the numbers Nq of patch
pairs involved in the polarization bubbles. Things become sig-
nificantly different in the vicinity of Van Hove filling. When-
ever a patch pair experiences the divergent density of states, a
logarithmically divergent factor ln(�/T ) arises. Here the ul-
traviolet cutoff � corresponds to the size of patches. The same
factor also shows up when the patch pairs access the nesting
of Fermi surface, where ξp+q = −ξp for momenta p’s in the
patches. Due to these divergent characteristics, the corrections
become remarkably different and requires special studies.

1. Near half filling

When the system is close to the half filling μ � 0, the
patches are approximated by the six Dirac points. In this

approximation, the momenta Q and Q + 2K are equivalent
to 0 and 2K up to some reciprocal lattice vectors. The
corresponding polarization bubbles can also be identified
with each other, where �0 = �Q and �2K = �Q+2K. While
the zero momentum 0 links N0 = 6 patches to themselves,
each momentum 2K connects N2K = 3 pairs of patches.
This counting implies an approximate relation between the
polarization bubbles �2K ≈ �0/2. From Eq. (15), we find
attractive corrections to interaction in both s-wave and
f -wave pairing channels. The s-wave pairing channel remains
repulsive due to the bare repulsion, while the f -wave pairing
channel exhibits a nontrivial attractive interaction

gf ≈ 9U 2

16
�0. (A3)

Therefore, the f -wave superconductivity dominates in this
regime. Notice that the polarization bubble �0 is determined
by the density of states. The proportionality to the chemical
potential �0 ∼ μ indicates the onset of superconductivity
only at finite filling μ > 0.

2. Near Van Hove filling

The features of superconductivity vary significantly when
the system is close to Van Hove filling μ = t . We first examine
the corrections in patch model II. As the system is finitely
distant from Van Hove filling, the counting of patch pairs still
applies. With the numbers of patch pairs for linking momenta
N0 = 6, N2K = 1, and NQ = NQ+2K = 2, the retention of
f -wave superconductivity is confirmed. Notice the potential
degeneracy with p-wave pairing channel in these regimes.
When the extended repulsions are introduced, the dominance
of f -wave pairing channel is retrieved [20]. The corrections
in the vicinity of Van Hove filling require special studies.
Due to the nesting of Fermi surface, the polarization bubble
�2K becomes logarithmically divergent. The interaction in
the f -wave pairing channel becomes negative, and the cor-
responding superconductivity disappears. However, attractive
corrections with logarithmic divergences ln(�/T ) arise in
the s-wave and d-wave pairing channels. While the s-wave
pairing channel remains repulsive due to the bare repulsion,
the d-wave pairing channel acquires an attractive interaction.
Therefore, the d-wave superconductivity can arise in this
regime.

The examination of patch model I is also necessary. When
the filling is away from Van Hove filling, the polarization
bubble �0 is the largest, and the f -wave superconductivity is
dominant [20]. When the Van Hove filling is approached, the
divergent density of states results in logarithmic divergences
ln(�/T ) in the polarization bubbles �0 = �2K. The other
two polarization bubbles �Q = �Q+2K gain the additional
access to the nesting of Fermi surface, thereby manifest the
more divergent scaling ln2(�/T ). The only attractive correc-
tion with divergence ln2(�/T ) arises in the s-wave pairing
channel. However, the second order correction cannot exceed
bare interaction in perturbation theory. Therefore, there is no
superconductivity in patch model I, and the only pairing in-
stability arises in the d-wave channel from the states captured
by patch model II.
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APPENDIX B: GINZBURG-LANDAU THEORY

In this section, we derive the free energy in terms of
order parameters near the critical temperature Tc. The analysis
starts with the coherent path integral formulation of partition
function

Z =
∫

D(ψ†, ψ )e−S[ψ†,ψ], (B1)

where the action is

S[ψ†, ψ] =
∫

τ

{ ∑
κ=±

ψ†
κ (∂τ + ξκ )ψκ

− 1

2
gd [(P d1 )†P d1 + (P d2 )†P d2 ]

}
. (B2)

With the Hubbard-Stratonovich transformation, the quartic
interaction is decoupled by the bosonic order parameters �1

and �2. Define the Nambu spinor

� =
(

ψ+

γ (ψ†
−)T

)
(B3)

and the inverse Gor’kov Green’s function

G−1 =
(

−∂τ − ξ+
∑

i �id
(i)τ yσ 0∑

i �̄id
(i)τ yσ 0 −∂τ + ξ−

)
. (B4)

The partition function is expressed as a path integral of Nambu
spinor and order parameter

Z =
∫

D(�̄1,2,�1,2)D(�†,�)e−S[�̄1,2,�1,2,�
†,�], (B5)

where the action becomes

S[�̄1,2,�1,2,�
†,�] =

∫
τ

(
2

gd

∑
i

|�i |2 − �†G−1�

)
.

(B6)
Impose the static condition �i (τ ) = �i and convert
to the Matsubara frequency representation �(τ ) =√

T
∑

ω �ωe−iωτ . Integrating out the Nambu spinor, we
arrive at the partition function

Z =
∫

D(�̄1,2,�1,2)e−F [�̄1,2,�1,2]/T (B7)

along with the free energy

F [�̄1,2,�1,2] = 2

gd
(|�1|2 + |�2|2) − Tr ln G−1. (B8)

Notice that the identity ln det G−1 = Tr ln G−1 has been uti-
lized. The Gor’kov Green’s function in momentum frequency

space representation is

G−1 =
(

G−1
+

∑
i �id

(i)τ yσ 0∑
i �̄id

(i)τ yσ 0 G−1
−

)
, (B9)

where we define the free electron and hole propagators as
G± = 1/(iω ∓ ξ±).

We expand the free energy in the vicinity of critical temper-
ature Tc. Define G−1

0 = G−1(�1,2 = 0) and �̂ = G−1 − G−1
0 .

Ignoring the constant part, the expansion up to quartic order
takes the form

F [�̄1,2,�1,2] = 2

gd
(|�1|2 + |�2|2)

+ 1

2
Tr(G0�̂)2 + 1

4
Tr(G0�̂)4, (B10)

where

(G0�̂)2 =
∑
ij

d (i)d (j )diag(G+G−�i�̄j, G−G+�̄i�j ) (B11)

serves as the small parameter of the expansion. With
the nonzero quartic traces Tr(d (1) )4 = Tr(d (2) )4 = 1/2 and
Tr[(d (1) )2(d (2) )2] = Tr(d (1)d (2)d (1)d (2) ) = 1/6, we arrive at
the free energy

F [�̄1,2,�1,2] = r (|�1|2 + |�2|2) + u
[
(|�1|4 + |�2|4)

+ 4

3
|�1|2|�2|2 + 1

3

(
�2

1�̄
2
2 + �̄2

1�
2
2

)]
.

(B12)

The quadratic coefficient r = 2/gd + 4Tr(G+G−) exhibits a
linear scaling r = α(T − Tc ) with α > 0, and a change of sign
occurs at the critical temperature Tc. Meanwhile, the quartic
coefficient u = Tr(G+G−G+G−) is always positive so that
the theory is stable.

The symmetry breaking in the ordered phase T < Tc is de-
rived from the minimization of free energy. Denote the relative
phase between the two order parameters as Arg(�2/�1) = θ .
The free energy can be rewritten as

F [�̄1,2,�1,2] = u
(
|�1|2 + |�2|2 + r

2u

)2
− r2

4u

− 4u

3
sin2 θ |�1|2|�2|2, (B13)

and the minimum occurs at |�1| = |�2| with θ = ±π/2.
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