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When the electron density of highly crystalline thin films is tuned by chemical doping or ionic-liquid gating,
interesting effects appear including unconventional superconductivity, sizable spin-orbit coupling, competition
with charge-density waves, and a debated low-temperature metallic state that seems to avoid the superconducting
or insulating fate of standard two-dimensional electron systems. Some experiments also find a marked tendency
to a negative electronic compressibility. We suggest that this indicates an inclination for electronic phase
separation resulting in a nanoscopic inhomogeneity. Although the mild modulation of the inhomogeneous
landscape is compatible with a high electron mobility in the metallic state, this intrinsically inhomogeneous
character is highlighted by the peculiar behavior of the metal-to-superconductor transition. Modeling the system
with superconducting puddles embedded in a metallic matrix, we fit the peculiar resistance vs temperature curves
of systems like TiSe,, MoS,, and ZrNCl. In this framework also the low-temperature debated metallic state finds
a natural explanation in terms of the pristine metallic background embedding nonpercolating superconducting
clusters. An intrinsically inhomogeneous character naturally raises the question of the formation mechanism(s).
We propose a mechanism based on the interplay between electrons and the charges of the gating ionic liquid.
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I. INTRODUCTION

In the last years, great advances have been achieved in
the fabrication of idealized two-dimensional (2D) electron
systems such as heterogeneous interfaces, molecular-beam-
epitaxy grown atomic layers, exfoliated thin flakes, and field-
effect devices. Moreover, the possibility of combining or
singling out isolated layers of graphene, transition metal
dichalcogenides, high-temperature superconducting cuprates,
transition metal oxide interfaces, and so on, has opened new
perspectives of a “Lego” functionalization of 2D systems
(see, e.g., Ref. [1]). One common relevant feature of these
systems 1is their highly crystalline character, which renders
them an ideal playground for studying several intriguing
physical effects [2], like, e.g., Ising superconductivity or
topological phases, without the complications due to impurity
or defect-induced disorder. Among these properties there is
the appearance of a low-temperature quantum metallic state,
which has been proposed as a new state of matter escap-
ing the standard dichotomy of 2D electron systems, which
at low temperature are usually forced to choose between
an insulating (typically due to Anderson localization) or
a superconducting state. These highly crystalline 2D sys-
tems, like transition metal dichalcogenides or ZrNCl ultrathin
films, instead, display a low-temperature resistance satura-
tion. They start from a metallic high-temperature state, then
display a suppression of resistance due to the occurrence of
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superconductivity, when the temperature 7T is lowered. How-
ever, when superconductivity is (partially) destroyed by a
magnetic field, they display a low-T metallic behavior, often
marked by a rather extended plateau, with the resistance
extrapolating to a finite constant value. There are some fea-
tures of the resistance curves R(7T') that are quite specific of
this anomalous state. First of all, the transition from high-T
metal to superconductor (or to low-7 metal) is very broad,
so broad that by no means its width can be reproduced
by standard superconducting fluctuation mechanisms in the
manner of Aslamazov-Larkin or Halperin-Nelson. Second,
the shape of R(T) is peculiarly “tailish” with a long foot in its
low-T side. Traditionally, this behavior is attributed to vortex
dissipation [3] but, remarkably, the very same features occur
in the absence of magnetic field, when superconductivity is
weakened or partially suppressed by reducing the electron
density. This indicates that the usual mechanism of vortex
dissipation cannot be invoked. The case of ZrNCl reported in
Fig. 1(a), where these features [R(T') saturation and tailish
behavior] are highlighted by a gray shadowing, is particularly
eloquent.

A possible clue to interpret these unusual features comes
from the comparison with the 2D electron gas formed at
the oxide interfaces like, e.g., LaAlO3/StTiO3, where the
temperature dependence of the resistance curves displays a
very similar behavior. Despite their highly crystalline struc-
ture, the above peculiar features have been successfully ex-
plained in these systems in terms of nanoscale electronic in-
homogeneities [4—7]. Further indications that oxide interfaces
and other 2D electron systems are peculiarly inhomogeneous
come from the observation of a quantum Griffiths state when a
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FIG. 1. Fit (symbols) and experimental resistance (solid curves) (a) of ZrNCI (from Ref. [15]) at three different values of the ionic-liquid
gating (V;, = 5.0, 5.5, and 6.5 V). (b)—(e) The average local T, the variance o of their distribution, the total weight w of the superconducting
regions, and the fraction w; of broken bonds in the filamentary superconducting cluster (see Appendix) as resulting from the fits. (f)—(j) Same
as in (a)—(e) for the MoS, experiments of Ref. [14] (V;, = 4.5,5.0,5.5, and 6.0 V). (k)—(0) Same as (a)—(e) and (f)—(j) for the TiSe, experiments
of Ref. [16] (electron density n = 2.0, 2.5, 3.0, and 5.0 x 10" cm~2). The electron densities reported in the legend of (k) are in the same 10"
electrons per cm ™2 units of panels (1)-(0). The shaded regions in (a) highlight the tailish character of the resistance curves and the saturating
plateau at low electron density and temperature, marking the regime without a percolating superconducting subset.

perpendicular magnetic field drives a metal-to-superconductor
transition [8,9]. Of course, inhomogeneity might seem at
odds with the remarkably ordered structure of these systems
and the high mobility of the charge carriers indicates that
the usual low-T scattering mechanisms (crystal defects and
impurities) are not of primary relevance in these systems. This
suggests that inhomogeneities are not induced by extrinsic
sources, but likely occur from intrinsic mechanisms [10,11]
that destabilize the electronic liquid giving rise to (short-scale)
electronic phase separation and density fluctuations on the
nanoscopic scale.

In this work we consider transport experiments and,
from the analysis of resistivity curves near the metal-to-
superconductor transition, we provide a clear evidence of
the inhomogeneous character of some 2D highly crystalline
systems like transition metal dichalcogenides and ZrNCl, and
we deduce the structure of this inhomogeneity. We focus on
the metal-to-superconductor transition driven by changing the
electron density in the absence of magnetic field, so that the
observed transport properties should be interpreted without
invoking the dissipation effects of vortices. The model we
adopt, although based on reasonable assumptions, is phe-
nomenological in nature and does not aim at identifying
the microscopic mechanisms underlying the inhomogeneity
formation, its structural and electronic properties, and so on. It
rather aims at introducing the minimal amount of knobs to be
tuned in order to reproduce the data and to extract information

on the inhomogeneity (the fraction of high- vs low-density
regions, the connectivity of the inhomogeneous clusters, the
way superconductivity disappears when the average density is
reduced, and so on).

In the second part of this paper, we address the origin
of the inhomogeneity and the possibility that it arises from
an electronic phase separation, as indicated by experimental
evidences of negative electronic compressibility [12,13]. In
this framework, we also propose a microscopic mechanism
of electronic instability based on the interplay between the
electron gas and the ionic countercharges due to ionic-liquid
gating.

II. INHOMOGENEOUS TRANSPORT MODEL

A. Physical scenario of inhomogeneous
2D crystalline superconductors

Our work moves from two phenomenological observa-
tions: (a) the metal-to-superconductor transition is generically
so broad in 2D crystalline superconductors that no sensi-
ble fluctuation mechanism can account for it [14—16] [see
Figs. 1(a), 1(f), and 1(k)]; (b) when the filling of the 2D
electron gas is induced by ionic-liquid gating, the width of the
transition is generically broader and it is always accompanied
by a tailish character in the low-7 part of the resistance-
vs-temperature curves R(T) [see, e.g., the shaded regions
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in Fig. 1(a)]. This latter feature is much less pronounced in
chemically doped systems [17].

To account for these observations, we assume that the
electron gas in 2D crystalline superconductors is inhomoge-
neous, with a metallic matrix hosting puddles that become
superconducting below a random local critical temperature 7.
The length scale of the inhomogeneity is immaterial, provided
the puddles are large enough to sustain a superconducting
state below the given local 7, and the metal-superconductor
mixture is fine enough to allow for a good statistical sampling
even on small samples a few micrometers large (in oxide
interfaces like, e.g., LaAlO3/SrTiOj3, such conditions are met
with typical inhomogeneities on the scale of a few hundreds
of nanometers [4-7], slightly larger than the superconducting
coherence length £ ~ 50 nm). Before presenting any specific
model, we now find it useful to give a pictorial view of the
physical situation.

The inhomogeneous metallic state. First of all, we assume
that the system has an inhomogeneous density. This density
inhomogeneity has minor consequences in the metallic phase
because quasiparticles are weakly scattered by extended in-
homogeneities. Although a quantum theory for transport in
inhomogeneous media is still lacking, the effects of scattering
due to extended impurities has already been considered in
the past (see, e.g., Ref. [18]). It is known that when the
extension of the inhomogeneity is large enough, it hardly
affects the mobility of carriers because electrons, when cross-
ing large inhomogeneities at (slightly) different density, are
not backscattered (which would strongly degrade currents),
rather they are weakly refracted, giving rise to a dominantly
forward scattering, which is not detrimental for transport. In
other words, metallic states with weakly modulated densities
can still display high charge mobility and their transport prop-
erties are hardly different from those of clean homogeneous
metals. In a phenomenological classical scheme like, e.g., the
effective medium theory [19,20], a mixture of metals with
slightly different local resistivity cannot be distinguished from
a homogeneous metal with the resulting effective resistivity.
Owing to the extended nature of disorder in these systems,
we also expect that localization effects (usually coming from
interference effects in time-reversed electronic paths scattered
by quenched pointlike impurities) have minor relevance.

The inhomogeneous superconducting state. The above sit-
uation becomes drastically different when some regions start
to become superconducting by lowering 7. The contrast
between higher- and lower-density regions is then strongly
enhanced because some regions abruptly acquire a vanishing
resistance. In this situation, superconducting puddles at higher
electron density are embedded in a metallic matrix with large
effect on the overall resistivity and other transport properties.
In this regard, we notice that several mechanisms can trigger a
local superconductivity with even a small local increase of the
electron density. In LaAlO3/SrTiOs interfaces, for instance,
it is known that a superconducting dome arises in the 2D
electron gas when the filling is increased and the Fermi energy
exceeds a threshold E. allowing the occupation of additional
bands with higher density of states [21,22]. An alternative
mechanism could arise from the interplay with a competing
phase as it often occurs near a quantum phase transition,
where superconductivity, being favored by quantum fluctu-

low T < high T
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FIG. 2. (Top) Schematic representation of an inhomogeneous
2D crystalline superconductor. At high temperature the metal is
weakly inhomogeneous. As the temperature is reduced, from right to
left, more and more superconducting puddles (the light-to-dark blue
circles) are found with a critical temperature 7, > T, as highlighted
by increasingly darker hues of color. Correspondingly, an increasing
fraction of the system becomes superconducting. A zero resistance
state is reached as soon as a percolating path is formed. (Bottom)
The number of superconducting puddles is ruled by the probability
distribution P(T,) of the critical temperatures and w is the overall
fraction of potentially superconducting regions. The distribution and
fraction may depend on control parameters like, e.g., the gate voltage
V, tuning the electron density of the system.

ations and by the weakening of the competing order, forms
a superconducting dome in the phase diagram region around
the quantum critical point. These arguments should justify our
assumption that even a rather weak inhomogeneity in electron
density may result at low temperature into an inhomogeneous
mixture of normal and superconducting regions [23].

The distribution of local critical temperatures. We now
discuss the corresponding distribution of local critical temper-
atures. In the context of LaAlO3;/SrTiO; interface, a simple
calculation within BCS theory [6] shows that a rapid increase
of the local T, takes place when the chemical potential
passes the energy threshold for filling the bands relevant for
superconductivity T, « /u — E.. Therefore, weak density
variations induce sizable variations on 7. In this framework,
one can also generically notice that the global 7, can vary
rapidly with small variations of the average electron density
(see, e.g., Fig. 7 of Ref. [2], where the phase diagrams of
ZrNCl and MoS; are reported). These arguments suggest that
mild spatial variation of the density may induce a rather broad
distribution of local 7,’s.

Although disorder is not a main factor in highly crystalline
films, it can still have some effects on the local T.’s: It is
known that 7, can be substantially reduced by disorder [24]
and it is conceivable that fluctuations in the spatial distribution
of impurities and/or of the local chemical potential (due to the
density inhomogeneity) at the nanoscale induce variations of
T, in the superconducting puddles. This provides an additional
argument to support the idea that the superconducting puddles
may have a rather large distribution P(T,) of local super-
conducting critical temperatures. As schematically depicted
in Fig. 2, the resistance of the system keeps varying (and
possibly vanishes if a percolating cluster of superconducting
puddles is formed) when T is progressively decreased around
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the metal-to-superconductor transition. The width of the 7.
distribution is then directly related to the width o of the
average metal-to-superconductor (or high-7—to—low-T metal)
transition.

In summary, the scenario we consider is characterized
by the following: (a) a weak density inhomogeneity that is
compatible with a high-mobility metallic state; (b) a mixed
metal-superconductor state with a broad transition ruled by
the width of the 7, distribution of the superconducting pud-
dles; (c) the possible occurrence of a low-7" metallic state as a
mixture of normal and superconducting regions in the absence
of a percolating superconducting cluster: as soon as all the
potentially superconducting regions have zero resistance, the
overall resistance no longer varies by further decreasing 7.
Due to the highly crystalline character, other mechanisms,
like, e.g., Anderson localization, are still not effective at the
lowest experimentally accessed temperatures and the resis-
tance appears to saturate to a constant value. In this way, the
mysterious low-7 quantum metal state acquires a quite natural
and simple interpretation: it is just the metallic state of a very
clean system in the presence of embedded, nonpercolating
superconducting puddles. Other specific features, like, e.g.,
the tailish R(T'), can also be reproduced, as they result from
specific structural features of the inhomogeneous clusters. The
study of these features of course requires a specific model, that
we introduce in the next subsection.

B. Random-resistor network model

To describe the above physical scenario, we represent the
system by a random-resistor network (RRN). We have to
capture somewhat opposite characteristics of the data. On the
one hand, the resistance curves tend to vanish (or to saturate
at a finite value, if percolation does not occur) with a rather
long tail, which is the hallmark of a weak long-distance
connectivity of the superconducting cluster [5,6,25]. This
is because in a (nearly) one-dimensional conductor, a zero-
resistance superconducting state is only achieved when all the
bonds have become superconducting. This requires a more
stringent condition that is realized at a lower temperature than
the average T, of the random critical temperature distribution:
until the very last resistive bonds are switched off, R stays
finite giving rise to the low-T tailish shape of R(T).

On the other hand, when lowering the temperature, already
well above the transition, there is a marked decrease of the re-
sistance, which extends over a broad temperature range. This
indicates that a whole substantial part of the system is becom-
ing superconducting. To capture this multifaceted physics, we
should therefore account for three distinct features, namely,
the weak long-distance connectivity of the superconducting
network, its bulky character, and the randomness of the critical
temperature of its constituents. To this purpose, we conceived
the following composite spatially correlated structure (for
details, see Appendix):

(1) First of all, we discretize the 2D inhomogeneous
metallic gas by taking a 2D square lattice where each resistor
is located on the ith bond of the grid [Fig. 3(a)] and can either
stay metallic with a typical resistance Ry down to the lowest
accessible temperature, or become superconducting (i.e., its
resistance vanishes) below a given local critical temperature
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FIG. 3. (a) Schematic view of an N x N resistor network. The
left and right vertical edges are kept at potential V and 0, respectively.
(b) Scheme of the mapping of a system of superconducting islands
embedded in a metallic background onto a random-resistor network.
The right (b) panel is an enlargement of the 2D square lattice
of metallic bonds: the resistors highlighted in red are those that
become superconducting below a random local critical temperature
T.. (c) Example of a filamentary structure produced by letting 50 000
particles diffuse across a 250 x 250 square lattice, according to
the DLA prescription explained in the Appendix. Notice that the
underlying 2D square-lattice grid is not reported for clarity (this is
the overall blank part of the figure) and only its DLA fractal subset is
represented. From this larger fractal, a restricted 100 x 100 square
sublattice is extracted from the original 250 x 250 to serve as a
filamentary skeleton for the superconducting component of our RRN.
(d) Example of a superconducting cluster of our RRN, obtained
superimposing bulkier circular superpuddles (in purple color), of
diameter equal to 10 bonds, to the (green) fractal skeleton generated
by means of the DLA prescription. In this panel, the underlying 2D
square-lattice grid is reproduced in light yellow.

T.(i), randomly extracted from a probability distribution. Fig-
ure 3(b), right panel, displays an enlarged view of the whole
2D square lattice of resistors. The black resistors represent
the metallic matrix and keep their resistance Ry finite down
to the lowest temperature, while the red resistors belong to
the potentially superconducting clusters and become super-
conducting below their local 7¢(i).

It turns out that the specific shape of the R(T') curves can
only be described by a spatially correlated cluster [5,25], and
luckily its features are quite informative about this spatial
structure.

(2) To distribute spatially these potentially superconduct-
ing bonds [the red resistors of Fig. 3(b), right panel], we
generate a fractal-like structure using a diffusion limited
aggregation (DLA) algorithm and we select a region of the
fractal cluster filling our numerical cluster [the green subset
in Fig. 3(c)]. This fractal character by no means implies that
real systems have a self-similar spatial distribution of super-
conducting regions, but it is a mere technical tool to generate
a spatially correlated cluster with a random and filamentary
structure. On top of this faint filamentary skeleton, circular
(i.e., bulkier) large puddles (we nickname them superpuddles)
are randomly added [the purple circular regions in Fig. 3(d)]:
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R(T) Increasing w (with bulky superpuddles)
smoothens the decrease of R at high T

Increasing w, kills
percolation

T

FIG. 4. Schematic view of how the shape of R(T) depends on
the various parameters of the model. Increasing w, while keeping
w fixed, more superconducting filaments are broken and percolation
is lost: the dashed blue line becomes the solid blue line. Increasing
w by increasing the number of superpuddles renders more gradual
the decrease of R(T') (red-to-blue solid lines). T'. is the center of the
transition, while o rules its width.

We randomly select a superconducting bond of the 2D grid,
we attribute it to the superconducting cluster, and we manually
add more superconducting bonds in its vicinity, to form a
circular patch of superconducting bonds. All the bonds (i.e.,
the resistors) in the superpuddle are set to have the same
random local 7,. The addition of superpuddles stops when a
total weight w is reached to attain a given superconducting
fraction in the system (this is one of our fitting parameters).
Figures 3(d) and 5(c) display typical structures of the RRN
inhomogeneous cluster, where the filamentary skeleton coex-
ists with the circular superpuddles.

When the superconducting cluster does not percolate, the
resistance curve R(T) at low T saturates at a finite value.
This occurs because the total superconducting weight in the
system is low and some breaks occur in the fractal filaments
spoiling the connectivity of the superconducting cluster. To
describe this situation, we randomly chose some resistors in
the filamentary fractal subset of the 2D square-lattice grid
and turn them back to metallic [i.e., we manually set their
local T.(i) = 0]. The fraction w, of these broken bonds is also
adjusted by the fit.

(3) Once the above complex structure of the superconduct-
ing cluster is generated, the model is completed by assigning
a probability distribution of the random local critical tem-
peratures. For the sake of definiteness, we adopt a Gaussian
distribution

1 _ (re-Te)? n
e 202,
V2o

In summary, our RRN model is characterized by four
parameters (TC, o, w, wy), each having its specific effect on
the resistance curve and therefore providing information on
the structure of the superconducting clusters. Specifically, as
schematically described in Fig. 4, T, and o rule the position
and the width of the resistance decrease around the metal-
to-superconductor (or high-T—-to—low-T metal) transition. w
is the fraction of superconducting regions and, being mostly
arranged by the number and size of the superpuddles, it

P(Tc) =

determines the smoothness and gradualness of the decrease
of R(T) on the high-T side of the curve [26]. We also notice
that the radius of the superpuddles is not a relevant parameter
as long as it is not too large in comparison with the size of
the RRN [if this is not the case, only a few superpuddles are
contained in the cluster and steps appear in R(7") whenever
a single superpuddle becomes superconducting]. Finally, w,
is the most effective parameter in ruling the long-distance
connectivity of the superconducting clusters.

We emphasize that both the bulky superpuddles and the
filamentary connections are crucial to reproduce the shape of
R(T): the former give a smooth substantial decrease starting
at high temperature, while the latter are responsible for the
tailish shape at low temperatures.

C. Using the RRN to fit the resistance
data of 2D superconductors

Once the random structure of the inhomogeneous RRN is
set, we then devote a systematic numerical effort to solve the
Ohm’s and Kirchhoff’s equations on bonds and nodes of the
clusters (of typical size 200 x 200, see Appendix), thereby
determining the local and global currents and voltages, hence
the global resistance of the system, to fit the experimental
curves. While the results of the fits are given in Figs. 1(a),
1(f), and 1(k) for ZrNCl, MoS,, and TiSe; respectively, the
corresponding values of the parameters characterizing the
cluster geometry (w and w-) and the T,(i) distribution (T,
and o) are reported in the lower panels of Fig. 1.

Clearly, our model captures the tailish character of the
R(T) curves near the zero-resistance limit, as well as the
saturation to finite values when percolation is not achieved.
Both these effects are a consequence of the poor long-distance
connectivity of our superconducting cluster. In the case of sat-
uration to finite values, the system does not become supercon-
ducting even when all resistors inside the subset are switched
off because of the lack of a fully percolative superconducting
cluster. Therefore, within this percolative scheme, the residual
finite resistance remaining at low temperature in some low-
density samples has a very natural interpretation: it is due to
the pristine metallic matrix embedding the (nonpercolating)
superconducting puddles.

The model also allows to distinguish two physically dif-
ferent situations: in one case, superconductivity disappears at
low T because upon reducing the average electron density the
superconducting puddles become less dense and more sparse,
while in the second case the disappearance of superconduc-
tivity is driven predominantly by a reduction of the average
superconducting critical temperature in the puddles, e.g., be-
cause of some competing mechanism. Both these situations
are found to occur and are reported in Fig. 1. In particular,
one can see that in ZrNCl [Fig. 1(a)] the average local critical
temperature only varies from 14 K at high density to 10 K at
the lowest density [Fig. 1(b)]. Notice that in this case the su-
perconducting fraction [Fig. 1(d)] is so low that the puddles do
not percolate and the system stays metallic down to the lowest
temperatures. Therefore, the system fails to reach the zero-
resistance state even though a substantial part of it is locally
superconducting with a rather large 7, ~ 10 K [Fig. 1(b)].
The moderate reduction of the average T, [Fig. 1(b)] can be
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FIG. 5. (a) Schematic representation of a 2D crystalline superconductors (pink rectangle) on a dielectric substrate in the presence of a
metallic back gate (gray region) and a ionic liquid (light-blue droplet). The positive (red) and negative (green) ions are also represented together
with the ionic-liquid gating (light orange rectangle). S and D are the source and drain electrodes. (b) Schematic profile of the inhomogeneously
doped layer of a 2D crystalline superconductor. (c) 100 x 100 cluster of RRN showing the filamentary structure together with the bulkier

superpuddles.

explained because the global average reduction of electron
density reflects in a reduction of the local density even in the
superconducting puddles, thereby inducing a relatively larger
effect of quenched impurities. The RRN model even allows
to distinguish whether the density reduction affects more
the superpuddles [see Figs. 3(d) and 5(c)] or the connecting
superconducting filaments. One can see that the high-T parts
of the resistance curves at the transition are quite similar,
indicating that the bulky part of the superconducting regions
is more or less unaffected, while the density decrease affects
more the connecting filaments, that disappear with a fraction
wy, which increases while reducing the gating [Fig. 1(e)].
Of course, some more rapid downward bending of the black
curve at Vg =5.0 V than in the V;; =5.5, 6.5 V cases
indicates that the density decrease also reduces the weight of
the superpuddles, but this is comparatively less relevant for
transport. In other words, we see that for ZrNCI percolation
is destroyed because the underlying geometrical support is
strongly affected (namely, many connecting bonds no longer
superconduct, see the increase of w, by reducing the overall
density), while the distribution of local 7,’s is modified in a
comparatively less relevant manner.

On the other hand, transition metal dichalcogenides are no-
toriously characterized by a strong tendency to form charge-
density waves (CDWs), which compete with superconductiv-
ity. Although it is overwhelmingly difficult to microscopically
describe this interplay and competition, it is clear that reduc-
ing the average density in these systems strengthens the CDW
order, which has a strong influence also inside the super-
conducting puddles. Therefore, the local T.’s are suppressed
and vanish at low enough electron density. In this case, the
disappearance of the superconducting phase does not occur
because of a lack of percolation, but because the weakest
part of the superconducting subset loses its superconducting
character. This can be easily recognized in the lack of a

saturating low-T resistance in Figs. 1(f) and 1(k) for MoS,
and TiSe,. In this case, therefore, contrary to the ZrNClI case,
the geometrical support of superconductivity is less affected,
while the local T, ’s are generically reduced by the competition
with CDW and their overall distribution is shifted to lower
values.

III. MECHANISMS OF ELECTRONIC
PHASE SEPARATION

Once the inhomogeneous character of the ionic-liquid
gated 2D crystalline superconductors is assessed via the above
phenomenological analysis, the crucial question is left about
the origin of this inhomogeneity. Due to the quite general
occurrence of such inhomogeneity in different systems doped
by ionic-liquid gating, we propose here that the 2D electron
gas in these systems may become thermodynamically un-
stable and undergo an electronic phase separation, thereby
displaying a negative compressibility due to the combined
action of the confining potential well and of the gating ionic
countercharges. Of course, as it will be discussed in the last
part of this paper, several mechanisms intervene to stop the
full development of the electronic phase separation, giving
rise to a final thermodynamically stable (but inhomogeneous)
system. Here, we only focus on the electronic part of the
system and its interplay with the ions of the liquid gate to
explain the source of instability. We describe the 2D electron
gas as a free-electron gas confined in a potential well that
quantizes the electron motion in the direction perpendicular
to the interface. The depth of the well depends on the amount
of countercharges (i.e., the positive ions in the liquid nearby
the 2D crystalline superconductor) per 2D unit cell v, so that
the band dispersion of the 2D electron gas will be henceforth

written as g, = go(v) + % where g¢(v) is the quantized level
in the confining potential well, above which the 2D band
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dispersion arises, m is a suitable effective mass, and k is
the 2D quasimomentum parallel to the interface. For a given
density of countercharges v, the grand-canonical electronic
Hamiltonian reads as

M=) (e — Wiy — A(Z Ao — Nv), 2)
k,o k,o

where  is the electron chemical potential, N is the number
of cells, and the Lagrange multiplier A enforces the constraint
that each electron comes from a dopant countercharge, i.e.,
the average electron density n = v. 7i;, is the operator that
counts the number of electrons of quasimomentum k and
spin o.

We assign a bandwidth W to the 2D electron gas, and
write the DOS as Ny = 1/W. Then, the condition of overall
neutrality at 7 = 0 becomes

2 A

n=—
w

de =v 3)
g(v)
since the Fermi statistics counts the states with negative
eigenvalues of H, gy — u — A < 0, the minimum value of &
being o(v). The factor of 2 accounts for the spin multiplicity.
Then, the T = 0 grand-canonical thermodynamical potential
per unit cell reads as

2 A

w=—
w

(e—u—2A)de + Av + wo(v)

&(v)

= —%[M+/\—80(u)]2+xv+w0(v), )
where wy(v) = 1Av? + { Bv* is the countercharge contribu-
tion, the first term resulting from the countercharge inverse
compressibility, and the second term modeling the cost of in-
creasing the countercharge density and stabilizing the system
against large variations of v, with A and B suitable constants.
It is worth noticing that A arises from the short-range part of
the ion-ion interaction only because the Coulomb long-range
part is exactly compensated by the electrons (n = v). This
short-range character and the absence of kinetic energy for
the ions renders this term practically negligible (at least in
comparison with the much larger inverse electron compress-
ibility ~W). Quite relevant (but hard to estimate from first
principles) is the B term acting when the ion density increases
and stabilizing the ion system against a high-density collapse.
Starting from Eq. (4), the average number of elec-
trons per unit cell can be obtained as n=—0,0 =
2W ' + A — g9(v)], which is the result of the integration
of Eq. (3) and yields u = %Wn — A+ &g9(v). The condition

2
3xw=V—W[M+)~—€0(V)]=O

enforces the constraint n = v. Finally, imposing equilibrium
with respect to v gives

2
dyw = W[M + X —¢eo(v)]9ye0 + A 4+ 3,9 = 0,

hence . = —(nd, g9 + dy,wp).
Within an electrostatic continuous model it can easily be
shown that the depth of the confining potential well increases
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FIG. 6. (a) Schematic representation of the electronic potential
well confining the 2D electron gas (green area) between the di-
electric substrate (gray area) and the ionic liquid (light blue area).
(b) Chemical potential vs electron density in the 2D electron gas in
the film. The parametersare A = 0, " = 1.75eV, B = 210 eV (green
curve), and B = 250 eV (blue curve) and I' = 1.6 eV, B = 160 eV
(red curve). The squares are data from Ref. [13] obtained from
ARPES experiments on surface-doped WSe,.

linearly with v: the more abundant are the positive ions in the
liquid gate side and the lower is the electrostatic confining
energy trapping the electron gas at the surface. On the other
hand, trapped charges may counteract this dependence when v
is small: A small density of liquid ions induces a correspond-
ing small density of electrons, which, in this poorly screened
situation, are trapped as bound states around the positively
charged liquid ions. In this situation, the electronic level g (v)
is locked to the (random) bound-state levels. To describe this
low-density situation and its smooth evolution to the inter-
mediate density situation, in which ¢¢(v) linearly decreases
because of the electrostatic interaction with the charged ions,
we phenomenologically write gy(v) = —I'v?/(v + vp), where
Vg is the threshold value above which a linear dependence is
recovered and I is a constant. The parameter I', embodying
the dependence of the bottom of the 2D electron band on
the ion density, can be expressed in terms of the capacitance
of the interface C, according to the relation I' = |e|/(2Ca?),
where e is the electron charge and a is the lattice spacing of
the 2D unit cell. Typical numbers are C ~ 10 uFcm™2 and
a ~ 3 x 1078 cm [27], yielding I" &~ 10 eV. A more accurate
(self-consistent) treatment of the potential well confining the
electrons at the interface, which is beyond the scope of
this work, could provide a better estimate of the numerical
prefactor relating I' to the typical interfacial potential scale
le|/(Ca?). The typical electron bandwidth can be estimated
as W = 1 eV [28]. Putting together all the pieces, we can now
write the electron chemical potential as

n2(2n + 3vp)

(n+ vp)? ©)

w 2
u:?n—i—n(A—i—Bn)—F

As it is readily seen, when vy = 0, and for % +A-2I' <0,
the inverse compressibility x¥ ' = 9, is negative at small
n, so that the system is unstable against electronic phase
separation, as shown in Fig. 6 for a typical parameter set that
compares rather well with the negative compressibility ob-
served in photoemission experiments in surface-doped WSe;.
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FIG. 7. Schematic representation of the inhomogeneous elec-
tronic distribution (blue and light blue regions) accompanied by
the inhomogeneous ionic distribution (red circles) embedded in the
liquid droplet.

We point out that, if electronic phase separation is allowed
to fully develop, the access to the negative compressibility
region is forbidden, and the customary Maxwell construction
must be used to determine the inhomogeneous composition of
the phase-separated system. The fact that a negative electron
compressibility is experimentally measured in surface-doped
WSe, [13] may indicate that chemical dopants are not as
mobile as ions in the liquid, thereby leaving the possibility
that electronic phase separation is frustrated by residual long-
range Coulomb forces, due to the lack of perfect compen-
sation between electrons and countercharges. In this case,
the short-range electron compressibility could stay negative,
while the electron charge density is spatially distributed to find
a compromise between the local tendency to electronic phase
separation and the Coulombic cost of a charge-unbalanced
density profile [29]. A somewhat similar situation occurs in
the model of Ref. [30], which may be relevant at low electron
density, or in badly metallic systems.

A finite vy would stabilize the compressibility at small n,
while the term proportional to B always stabilizes the system
against large variations of the density, yielding a finite density
window where the system is unstable, and separates into two
metallic phases, with higher and lower electron density. For
vo = 0, the low-density phase is (band) insulating, while a
finite vy may allow for a low-density metallic phase to occur.

IV. DISCUSSION

Aside from its formal implementation, the above model
is a rather general representation of the physical situation
schematically depicted in Fig. 7. The ion-ion repulsion is
strongest at short distances (sd), Vj‘i, preventing excessive
ion accumulation in small volumes, and within our phe-
nomenological coarse-grained model this effect is modeled
by the rapid increase of the quartic term in the free energy
[B term in wo(v)]. At large distances (Id), despite the poor
screening inside the liquid droplet, the underlying electrons
balance the ionic charge and give rise to a small (dipolarlike)
repulsion Vfr"+ (at larger scales, the inhomogeneous regions,
represented by the dashed contours in Fig. 7, are essentially
neutral). The same holds for the electron-electron repulsion,
which is weak at large distances V¢ | due to compensating
ionic countercharges and may be larger at short distances
V4 . For electrons there is the additional effect of mutual
screening and high charge compressibility (large DOS of
the 2D electron gas metallic state). In this scheme, a large

attractive contribution is present between the mobile electrons
and the mobile (nearly frozen) ions at high (low) tempera-
ture. This electrostatic gain is such that the system may find
it convenient to have moderately higher ionic and electron
densities to exploit this attraction. Of course, if the density
fluctuation becomes large, the repulsive cost (i.e., the B term
of the ion-ion free energy) stops the aggregation tendency.
Therefore, aside from the high screening inside the metallic
layer, a negative electronic compressibility is favored by the
reciprocal charge compensation. Formally, this is represented
by the constraint n = v.

On a general basis, we observe that an inhomogeneous
state may result from rather generic attractive interactions
induced by the interplay between the confined 2D electron
gas and the countercharges coming from the gate, from chem-
ical doping, or oxygen vacancies, as recently proposed for
the oxide heterostructures [11,31]. The inversion-asymmetric
electric field confining the 2D electron gas may also induce
a strong Rashba spin-orbit coupling, which depends on the
local electron density and may provide an additional source
of effective electronic attraction [10,32]. These effective at-
tractions can produce an electronic phase separation in the 2D
electron gas as it is also supported by experimental evidences
of a negative electronic compressibility in graphene-MoS,
heterostructures [12], in WS, [13], in SrTiO3 surface [33], and
in LaAlO3/SrTiOj; interfaces [34]. Of course, specific features
are present in each system that render the electronic phase sep-
aration specific. For instance, the size of the inhomogeneous
regions depends on the frustrating effects of electron-electron
and countercharge-countercharge Coulomb repulsions, which
in turn depend on their mobility and on the screening in the
various parts of the system. In the present case, we have
considered a model where the charges of ionic-liquid gating
favor an extended electronic phase separation thanks to their
high mobility (above their freezing temperature) that allows
a large-scale segregation of electrons and ions while keeping
an overall quasineutrality. We notice that our proposed mech-
anism may cooperate with electron inhomogeneity induced
by the frozen ionic liquid locally detaching from the sample
surface [35]. Of course, when electrons are introduced by
chemical doping, the countercharges are much less mobile
and a more even distribution of inhomogeneity (if any) is
expected. This is why in this case the metal-to-superconductor
transition is generically narrower and no tail is present in
the R(T) curves [see, e.g., Figs. 6(c) and 6(e) in Ref. [17]].
Notice, however, that at low doping [Fig. 6(a) in Ref. [17]]
relative fluctuations in the distribution of the dopants become
more important and again a broad transition is found. The situ-
ation may be even more intricate when competing phases like
CDWs are present, as in the case of the domain-wall forma-
tion recently discovered by scanning tunneling experiments
[36] in Cu-intercalated 1T-TiSe,. Still, it is worth noticing
that also in this case our phenomenological RRN model can
capture and describe the rather filamentary structure of the
metallic domain walls responsible for incommensuration in
the CDW and superconductivity in this system. We also notice
that a suitable choice of the temperature dependence of the
resistance in the normal metallic regions also allows a very
good description of the onset of superconductivity in MoS,
on amorphous substrates [37].
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Despite the variety of situations and of microscopic mecha-
nisms giving rise to the inhomogeneity, our phenomenological
RRN model is quite general as long as the superconducting
regions are large enough to sustain a local superconducting
state. The physics of the system, at a mesoscopic level, is
fully encoded by the spatial distribution of the cluster, its
connectivity, and the parameters of the 7, distribution. This
is why upon reducing the average electron density, the model
also allows to distinguish and describe the physically very
different situations reported in Figs. 1(a), 1(f), and 1(k), where
superconductivity disappears because the puddles become
sparse and less dense or because the local T, is degraded by
the competition with CDWs. When the spatial distribution is
filamentary, the low connectivity of the RRN accounts for the
tailish shape of R(T'), with few nonsuperconducting puddles
preventing the zero-resistance state and R(7') staying finite
until the very last puddles become superconducting at low 7'.
On the contrary, when the puddles are more evenly distributed,
the connectivity is large, percolating paths are easier to find,
and R(T) vanishes without the long tail.

Our inhomogeneous scenario can be tested by critical
current experiments: despite the complex structure of the su-
perconducting cluster, in the proximity of the critical current,
transport should be ruled by the weakest links coupling nearby
puddles, so that the critical current and its temperature and
magnetic field dependencies are expected to be well described
by the behavior of a single (or a few) Josephson junction(s).
This behavior has already been found in LaAlO;3/SrTiO3
interfaces [7]. In the same systems, a loosely connected (fila-
mentary) regime has also been identified in radio-frequency
measurements of the dynamical conductivity to obtain the
superfluid density [38]. We suggest that similar experiments
in 2D crystalline superconducting systems would provide
valuable information.
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APPENDIX: CONSTRUCTION OF THE RANDOM
SUPERCONDUCTING CLUSTER

We give here some details on the construction of the RRN
modeling the inhomogeneous 2D crystalline superconducting
systems discussed in Sec. II.

(i) We start from a 2D array of resistors meeting at the
nodes of a2D N x N lattice [see Fig. 3(a)]. The two extremal
columns (1 and N) of this array represent the external leads at
potential V and 0, respectively. Each bond (i, j, X), along x,
or (i, j, ¥), along y, corresponds to a resistor. Each resistor
represents a metallic or superconducting region connected
to six neighboring regions as shown in the right-hand side
of Fig. 3(b). A bond (i, j, &) is completely characterized by
the current (7, j, é) flowing through it and by its resistance
R(i, j, &). The relation between the local resistance R(i, j, €),
the local critical temperature 7T,(Z, j, €), and the temperature

T follows from the nature of the system intended to study.
Here, the form of the relation R(i, j,é) = R[T;T.(i, j, é)]
depends on whether the effects of disorder should be in-
troduced through a distribution of the critical temperatures
and/or through a specific dependence of the local resistance
on the (critical) temperature. Given that we will be mainly
interested in the effects of the distribution of critical tem-
peratures and of spatial correlations between the islands, we
discard the latter possibility in order to avoid blurring these
effects through complicated 7" and 7, dependencies. We thus
consider the simplest case of a binary resistor:

R(ivjvé):RO:T> TC(ivjvé)a (Al)

0: T <T.(i,j,e). (A2)
This assumption is reasonable whenever the temperature
range in which the resistance of a single resistor goes from
its normal-state value Ry, to O is much smaller than the
width of the T, distribution [25]. In addition, the normal-state
resistivity of each superconducting bond is independent of its
critical temperature.

(i) The second step consists in forming the regions of the
2D crystalline superconductor, which at low enough temper-
ature become spatially correlated superconducting regions. It
turns out that to fit the peculiar shape of the resistance curves
of Fig. 1, two geometric ingredients are needed. On the one
hand, bulky regions must become superconducting to account
for the smooth marked decrease of the resistance from the
high-temperature side of the metal-to-superconductor transi-
tion. On the other hand, the tailish shape of R(T) on the
low-T side of the transition can only be reproduced by weakly
connected regions. To this purpose, we proceed as follows (see
also Sec. II and particularly Fig. 3): (1) we generate a filamen-
tary weakly connected fractal-like structure and then (2) we
decorate this random nearly one-dimensional tree with larger
2D circular puddles. To generate the fractal-like structure we
adopt a a simple growth process known as diffusion-limited
aggregation (DLA). Its construction is as follows: a particle
is released at the left edge of a 2D lattice and let diffuse
to the right. More precisely, the particle moves one bond to
the right and then with equal probability one bond up or
down. This sequence is iterated until the particle stops, as
soon as it reaches the top, bottom, or right edge, where it
sticks. Then, other particles are launched one after another
and halted either when reaching one of the three edges or
a bond already occupied by one of the previously diffused
particles. The cluster obtained in a 250 x 250 square lattice
after diffusing 50 000 particles is defined by the bonds where
the particles stick. Due to a saturation at the left edge, the
total number of superconducting bonds only amounts to about
25000. Once this large cluster is obtained [see Fig. 3(c)] we
select a 100 x 100 sublattice as shown in the green part of
Fig. 3(c). The restriction is made to yield a more physical case
where the low-dimensional cluster covers the whole sample.
So, henceforth we consider restricted lattices ranging from
100 x 100 to 200 x 200 sites, where only bonds belonging
to the cluster are assigned a finite critical temperature 7,. The
other bonds belonging to the rest of the 2D square-lattice grid
are not reported in Fig. 3(c) for clarity and appear as the white

214507-9



G. DEZI, N. SCOPIGNO, S. CAPRARA, AND M. GRILLI

PHYSICAL REVIEW B 98, 214507 (2018)

background regions. In Fig. 3(d) they are instead reported
in light yellow and they form a resistive background with
the typical resistivity R at all temperatures. The filamentary
skeleton of the system is then extended by bulkier 2D patches
of circular shape with a diameter ranging from 5 to 30 bonds,
leading to structures as shown in Fig. 3(d)

(iii) Once the spatially correlated structure of the super-
conducting subset of the 2D crystalline superconductor is
formed, the random character of superconductivity in this
subsystem remains to be implemented. The physical rationale
is that, once intrinsic mechanisms induce density inhomo-
geneities, substantial fluctuations of the local superconducting
properties can arise from a density-dependent local 7, or from
fluctuations of the quenched disorder. The critical 7, is the
simplest physical property (and phenomenological parameter)
that can reflect the randomly distributed superconducting
properties. Thus, we considered for the sake of definiteness
the Gaussian distribution of 7,’s reported in Eq. (1). When
the temperature is progressively decreased, the regions with
T. > T become superconducting, enlarging the superconduct-
ing regions (see Fig. 2) inside the chosen spatially correlated
subset, according to the schematic view of Fig. 3(d).

Notice that the additional gate-potential axis is present in
Fig. 2: the increased average number of electrons is reflected
in the increase of the total fraction w of the superconducting
regions [ P(T,) being normalized to one].

(iv) With the above steps the resistances are set, forming
the desired geometrical structure of a mixture of filamentary
and large puddles (superpuddles), equipped with a randomly
chosen local critical temperature. A fixed voltage difference
V is applied between the two vertical edges of the lattice,
while the horizontal edges have open boundary conditions
[see Fig. 3(a)]. The physics of the RRN is governed by the
usual equations of electrostatics

Jr)=—o(@®)VV(r); V-Jr) =0,

where J(r) is the current density and o (r) is the conductivity
at position r. In the discrete case of a square lattice, these
equations simplify to Ohm’s and Kirchoff’s laws

R@, j, )G, j, %)=V, j)—=V(i j+1),
R, j.9)IG, j,3) =V j)—-Vi+1)),
> I1G.j.8)=0,
(@)

where V (i, j) is the electrostatic potential of site (i, j) and
the symbol () restricts the sum over all bonds surrounding a
given node (7, j). Implementing the above equations for each
of the N? nodes and for each of the 2N2 — 2N bonds, one
obtains a set of 3N? — 2N linear equations, which determines
the N2 voltages of the nodes and the 2N? — 2N currents of the
bonds. In other words, one needs to solve a system of linear
equations Ab = y where the elements of the matrix A consist
of either =1, £Ry, or 0, the vector b contains the unknown
potentials and currents, and the vector y contains the known
terms which are either V or 0. Once the system is solved,
the total current / flowing from one edge to the other can be
calculated by summing the N currents crossing any of the N
vertical cross sections of the array

N
I=>"10G.j.%).
i=1

Due to charge conservation, this sum is independent of j. The
ratio V /I then determines the global resistance of the cluster
at a given temperature. As the temperature is decreased, more
and more bonds become superconducting and the global re-
sistance decreases. If at a certain temperature 7, a connected
superconducting path joins the leftmost and the rightmost
edges, the resistance of the network drops to zero, i.e., a
percolative metal-to-superconductor phase transition occurs.
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