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A nodeless d-wave state is likely in superconducting monolayer FeSe on SrTiO3. The lack of nodes is
surprising but has been shown to be a natural consequence of the observed small interband spin-orbit coupling.
Here we examine the evolution from a nodeless state to the nodal state as this spin-orbit coupling is increased
from a topological perspective. We show that this evolution depends strongly on the orbital content of the
superconducting degrees of freedom. In particular, there are two d-wave solutions, which we call orbitally
trivial and orbitally nontrivial. In both cases, the nodes carry a ±2 topological winding number that originates
from a chiral symmetry. However, the momentum space distribution of the positive and negative charges is
different for the two cases, resulting in a different evolution of these nodes as they annihilate to form a nodeless
superconductor. We further show that the orbitally trivial and orbitally nontrivial nodal states exhibit different
Andreev flat band spectra at the edge.
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I. INTRODUCTION

Monolayer FeSe grown on SrTiO3 has generated much
attention due to its high superconducting transition tem-
perature Tc, which is higher than all the other Fe-based
superconductors [1]. Quasiparticle interference [2] experi-
ments and scanning tunneling microscopy [1,3] suggest a
plain s-wave pairing state. Angle-resolved photoemission
spectroscopy (ARPES) [4–7] also supports this point of
view by observing a fully gapped superconducting state, al-
though with a nontrivial anisotropy [7]. The appearance of an
s-wave pairing state in this material seems at odds with the
understanding that superconductivity in Fe-based materials is
due to repulsive electron-electron interactions and presents a
puzzle. Furthermore, monolayer FeSe lacks the hole pockets
about the � point of the Brillouin zone (BZ) which exist in
other iron pnictide compounds. This suggests that the usual
s±-wave pairing [8,9] due to spin fluctuations about a collinear
antiferromagnetic state with a wave vector that originates
from the momentum difference between electron and hole
pockets is less likely as a pairing mechanism. This has led
to a debate about the nature of the pairing state in monolayer
FeSe. Some proposals include (for a review see Ref. [10]) a
conventional s-wave pairing state [2,11], an incipient s-wave
pairing state [12], an extended s-wave pairing state [13], a
fully gapped spin-triplet pairing state [14], and a nodeless
d-wave pairing state [15,16].

Recently, we revisited the nature of the magnetic cor-
relations and the pairing state in monolayer FeSe [16,17].
Inelastic neutron scattering in single-crystal FeSe [18] has
found that, in addition to collinear antiferromagnetic fluctu-
ations, there are also fluctuations associated with translation-
invariant checkerboard antiferromagnetic (CB-AFM) order.
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First-principles spin-spiral calculations [17] also report the
enhanced CB-AFM fluctuations in monolayer FeSe, finding
that this system sits at a quantum spin-fluctuation-mediated
spin paramagnetic ground state. Motivated by the presence
of CB-AFM fluctuations, a symmetry-based k · p theory as-
suming a single M-point electronic representation was used to
describe fermions coupled to these fluctuations [16,19]. This
theory predicts a fully gapped, nodeless d-wave state [16].
Although, typically, symmetry arguments imply that such a
d-wave state should be nodal [20], this theory reveals that
nodal points emerge only if the relevant interband spin-orbit
coupling energy is larger than the superconducting gap. This
theory thereby naturally accounts for the gap minima that are
observed along the expected nodal momentum directions of
the d-wave state [7].

A natural question is, What is the mechanism that leads to a
nodeless, fully gapped d-wave superconducting state? Indeed,
one can ask how such nodeless states are more generally
achieved when symmetry arguments would dictate nodes.
Here we address this question through an examination of
the nodal d-wave state. This question falls naturally into the
growing research on topological systems, which originally
started with gapped systems [21] such as quantum Hall sys-
tems and topological insulators in which surface states are
characterized by “bulk-edge correspondence.” More recently,
this was extended to gapless systems such as Weyl and Dirac
semimetals [22] and unconventional superconductors [23].
In unconventional superconductors that are nodal, that is,
that have momenta with zero gap, it is known that the sign
change of the pairing potential on the Fermi surface leads
to dispersionless Andreev bound states at a surface of the
system. These states are characterized through topological
arguments [24,25]. Therefore, studies of nodes in unconven-
tional superconductors are important not only to reveal the
pairing mechanism but also to clarify the topological surface
states.

2469-9950/2018/98(21)/214503(10) 214503-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.214503&domain=pdf&date_stamp=2018-12-06
https://doi.org/10.1103/PhysRevB.98.214503


NAKAYAMA, SHISHIDOU, AND AGTERBERG PHYSICAL REVIEW B 98, 214503 (2018)

Although d-wave superconducting states typically have
topologically protected nodes in one-band systems, these
nodal points can be annihilated in multiband superconductors
[26,27]. Indeed, it has been pointed out that the merging
nodal points near the � point have winding numbers of
opposite sign in Fe-based superconductors [28]. In addition,
a nodeless d-wave superconductor has also been discussed
in the context of cuprates [29]. These works did not include
spin-orbit coupling, which is essential in our theory. Our work
highlights the annihilation of nodes solely due to spin-orbit
coupling and demonstrates that the nodal charge is protected
by a chiral symmetry that is the product of time-reversal and
particle-hole symmetries. Furthermore, we find that the nodal
annihilation depends upon the orbital structure of the d-wave
gap. In particular, we find two types of d-wave pairing: (a) or-
bitally trivial usual d-wave anisotropy with a kxky momentum
dependence and (b) orbitally nontrivial with no momentum
dependence. For the latter case, nodal annihilation arises in
a natural and straightforward manner, while for the orbitally
trivial case, the annihilation is much less straightforward,
proceeding initially through the creation of additional nodes
which then annihilate with the original nodes as the interband
spin-orbit coupling is decreased.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the symmetry-based effective model that
describes the electronic excitations that stem from a single
M-point representation of the BZ; these representations are
fourfold degenerate and thus lead to two bands. We then
briefly review the emergence of nodal points due to inter-
band spin-orbit coupling. In Sec. III, we give the topological
charges for these nodal points as a 2Z invariant and show that
there are topologically distinguished phases which manifest
themselves through the presence of dispersionless Andreev
surface states. The results are summarized in Sec. IV.

II. MODEL

In this section, we present a brief review of the low-
energy symmetry-based k · p-like theory that describes the
electronic states of monolayer FeSe in the vicinity of the
Fermi level [16]. Density functional theory calculations show
that two states, which are k-dependent linear combinations of
Fe {xz, yz} and x2 − y2 orbitals, which are the two electronic
M-point representations M1 and M3 using the nomenclature
of Ref. [19], are dominant at the Fermi level around the M

point. These states can be described as originating from a
single M-point fourfold electronic representation (with two
orbital and two spin degrees of freedom) through an effective
k · p theory. The simplicity of this model allows insight into
the underlying physics that cannot be found using a theoretical
model simply based on ten orbital and two spin degrees of
freedom. In addition, it captures the relevant physics of the
superconducting state that appears in theories of monolayer
FeSe that include two M-point representations [14].

In this theory, the normal-state Hamiltonian is

H0(k) = ε0τ0σ0 + γxyτzσ0 + τx[γxσy + γyσx], (1)

where k = (kx, ky ) is the momentum measured from the
M point of the BZ and the τi (σi) matrices describe the
two orbital (spin) degrees of freedom. The τx term is
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FIG. 1. Fermi surfaces in normal states (a) without spin-orbit
coupling and (b) with spin-orbit coupling vso = 12 meV Å. The units

of horizontal and vertical axes are Å
−1

. The other parameters are
given in the text.

the interband spin-orbit coupling that plays an essential role
in the d-wave superconducting state. This term has a mag-
nitude that is related to the on-site spin-orbit coupling but
is also determined by other factors and can be small even
if the on-site spin-orbit coupling is substantial. The Fermi
surface, as observed by ARPES, is reasonably described when
we choose ε0 = ε0(k) = (k2

x + k2
y )/2m − μ, γxy = γxy (k) =

akxky , γx = γx (k) = vsokx , γy = γy (k) = vsoky , and parame-

ters μ = 55 meV, 1/(2m) = 1375 meV Å
2
, a = 600 meV Å

2
,

and |vso| � 15 meV Å. The normal-state dispersions are
given by ξ± = ε0 ±

√
γ 2

x + γ 2
y + γ 2

xy , which have positive
helicity and negative helicity, respectively. Figures 1(a) and
1(b) show the Fermi surfaces without spin-orbit coupling and
with spin-orbit coupling vso = 12 meV Å, respectively.

Superconducting pairing is assumed to be induced by the
fluctuations associated with translation-invariant CB-AFM.
This yields a dxy-like pairing state. Importantly, for this paper,
there are two such pairing states that are described in more
detail below. The Hamiltonian is given by the following in the
Bogoliubov–de Gennes form:

H (k) = �z(ε0τ0σ0 + γxyτzσ0 + γxτxσy )

+γy�0τxσx + i�y (�d,0τ0 + �d,zτz)iσy, (2)

where the �i matrices describe the particle-hole degree of
freedom,

�d,0 = �d,0(k) = �2kxky/k2
0,

�d,z = �d,z(k) = �0, (3)

and we take the typical Fermi wave vector k0 = 0.2 Å
−1

.
The two gap functions �d,0 and �d,z are the two dxy pairing
degrees of freedom mentioned above. The pairing term �d,0τ0

represents an orbitally trivial and usual dxy pairing with a
kxky momentum dependence. �d,zτz represents an orbitally
nontrivial pairing state with no momentum dependence; it
also has dxy pairing symmetry due to the τz orbital de-
pendence and the different symmetries of the two orbitals
that give rise to this gap function. In general, since both
�d,0 and �d,z channels have the same symmetry, the gap
function will be a linear combination of both these pairing
channels.
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In order to gain a deeper understanding of these two types of dxy order, it is convenient to change basis from the orbital basis
to the band basis. The Hamiltonian in (2) can be written in block diagonal form with two 4 × 4 matrices. One of these matrices
is ⎡

⎢⎢⎢⎣
ε0 + γxy γy − iγx 0 �d,0 + �d,z

γy + iγx ε0 − γxy −�d,0 + �d,z 0

0 −�d,0 + �d,z −ε0 + γxy γy + iγx

�d,0 + �d,z 0 γy − iγx −ε0 − γxy

⎤
⎥⎥⎥⎦, (4)

while the other matrix is given by transforming �i → −�i and γx → −γx . Performing a unitary transformation that
diagonalizes the normal part of the Hamiltonian we obtain in the band basis, we find⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0 +
√

γ 2
x + γ 2

y + γ 2
xy �d,0 + �d,zγxy√

γ 2
x +γ 2

y +γ 2
xy

0
�d,z(γy−iγx )√

γ 2
x +γ 2

y +γ 2
xy

�d,0 + �d,zγxy√
γ 2

x +γ 2
y +γ 2

xy

−ε0 −
√

γ 2
x + γ 2

y + γ 2
xy

�d,z(γy−iγx )√
γ 2

x +γ 2
y +γ 2

xy

0

0
�d,z(γy+iγx )√

γ 2
x +γ 2

y +γ 2
xy

ε0 −
√

γ 2
x + γ 2

y + γ 2
xy �d,0 − �d,zγxy√

γ 2
x +γ 2

y +γ 2
xy

�d,z(γy+iγx )√
γ 2

x +γ 2
y +γ 2

xy

0 �d,0 − �d,zγxy√
γ 2

x +γ 2
y +γ 2

xy

−ε0 +
√

γ 2
x + γ 2

y + γ 2
xy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

This band basis clarifies that the Hamiltonian has both intraband and interband pairings, as is the case in other proposals for
nodeless d-wave superconductors [27]. The interband pairing arises only from the orbitally nontrivial �d,z (in combination with
the interband spin-orbit coupling). The intraband pairing contains both pairing channels. In this case, the orbitally nontrivial �d,z

channel explicitly gains d-wave momentum anisotropy through the γxy normal-state term. Figure 2 shows the pairing anisotropy
in the case of only orbitally trivial pairing [Fig. 2(a)] and the orbitally nontrivial one in the band basis [Fig. 2(b)]. Note that here
only spin-singlet pairing is considered. In general, there can be mixing of spin-singlet and -triplet pairings due to the interband
spin-orbit coupling.

The interband pairing in the band basis is essential to generate a gapless superconducting dxy state, provided the interband
spin-orbit coupling is sufficiently small. To understand how a large interband spin-orbit coupling gives rise to nodal points, it is
useful to consider the quasiparticle dispersion for Hamiltonian (2). This is given by

E±(k) =
√

ε2
0 + γ 2

xy + γ 2
x + γ 2

y + �2
d,0 + �2

d,z ± 2
√

(ε0γxy + �d,0�d,z)2 + (γ 2
x + γ 2

y )
(
ε2

0 + �2
d,z

)
. (6)

Notice that there are also two negative quasiparticle disper-
sions −E±(k) due to chiral symmetry. Along the nodal direc-
tion ky = 0, so that γxy = γy = �d,0 = 0, yielding E±(k) =∣∣√ε2

0 + �2
d,z ± |γx |

∣∣. Therefore, the following equation must
be satisfied at the nodal points (labeled k∗):

ε2
0 = γ 2

x − �2
d,z. (7)

This means that once the interband spin-orbit coupling sat-
isfies |γx | > �d,z, nodal points exist. As the interband spin-
orbit coupling is reduced, there is consequently a transition
from a nodal dxy state to a fully gapped dxy state, which is
the focus of the remainder of this paper. Note that a generic
consequence of this theory is that gap minima in the fully
gapped state are along the nodal directions; this agrees with
what is observed in ARPES measurements.

III. NODAL TOPOLOGICAL CHARGES
AND ANDREEV FLAT-BAND STATES

A. Nodal topological charges

Now we examine how the fully gapped dxy state appears
as the interband spin-orbit coupling is reduced. In particular,

for sufficiently large interband spin-orbit coupling we have a
nodal dxy state, and we examine the topological charge of the
nodal points. We show that topological charge at the nodal
points can be defined as a 2Z invariant. The key symmetries
in defining this charge are time reversal (with operator T )
and particle-hole conjugation (with operator C). These act on
H (k) as

T H (k)T −1 = H (−k), (8)

CH (k)C−1 = −H (−k), (9)

where T = K�0τ0(iσy ), C = K�xτ0σ0, and K is the com-
plex conjugate operator. Since T 2 = −1 and C2 = 1, this
Hamiltonian belongs to Altland-Zirnbauer class DIII [30].
Furthermore, we define a chiral operator S,

S = −iT C = �xτ0σy. (10)

Since chiral symmetry is preserved and S anticommutes with
H (k), H (k) can be written in block off-diagonal form using
the basis in which S is diagonal:

H (k) → V H (k)V † =
[

0 q(k)
q†(k) 0

]
, (11)
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FIG. 2. Pairing anisotropy and topological charges in (a) or-
bitally trivial pairing and (b) orbitally nontrivial pairing in the band
basis with only intraband pairing. The solid lines represent the Fermi
surface in normal states. The circles represent ±2 topological charge.

where

q(k) = ε0τ0σ0 + γxyτzσ0 + γxτxσy + γyτxσx

+i(�d,0τ0 + �d,zτz)σ0 (12)

and

V = 1√
2

[
I −τ0σy

I τ0σy

]
, (13)

where I = τ0σ0 is a 4×4 unit matrix. Note that det q(k∗) =
0 because of the nodal condition E−(k∗) = 0. In addition,
given that chiral symmetry leads to the topological protection
discussed here, we mention physically relevant perturbations
that preserve and break this symmetry. In particular, the mirror
glide plane symmetry-breaking term MI = λI (k2

x − k2
y )τxσ0

and nematic order ηQτzσ0 preserve chiral symmetry, but a
Zeeman field hτ0 · σ does not.

In class DIII, a topological charge can be defined by the
winding number [31], which is given by

WL = 1

2πi

∮
L

dkl Tr[q−1(k)∂kl
q(k)], (14)

where the contour L is a loop around the nodal point. This
charge is an integer Z invariant. In the problem we are
considering, we also have parity symmetry, which ensures
a twofold degeneracy of the nodal point. Consequently, the
nodes have a 2Z topological charge [32]. We find that the
orbitally trivial and orbitally nontrivial gap functions exhibit
different nodal charge distributions in momentum space and
that a topological transition exists between these two cases.

To understand the different nodal charge distributions be-
tween the orbitally trivial and nontrivial cases (see Fig. 2), it
is useful to consider the limit in which the interband pairing
can be ignored. This can be achieved in the orbitally trivial
case by setting �d,z = 0 and in the orbitally nontrivial case
by setting �d,0 = 0 and also requiring that the interband
spin-orbit coupling satisfy |γi | � |γxy |. When the interband
pairing can be ignored, we can consider the nodal points in
each band independently. In this case, following Refs. [24,25],
Eq. (14) can be simplified to

WL± = −
∑

k0∈SL±

sgn
(
∂kl

ξ±
k

∣∣
k=k0

)
sgn
(
�±

k0

)
, (15)

where ξ± = ε0 ±
√

γ 2
x + γ 2

y + γ 2
xy , �±

k is the superconduct-
ing gap of positive and negative helicity, and the sum is over
the set of points SL± given by the intersection of positive-
and negative-helicity Fermi surfaces with the one-dimensional
contour L±. We consider explicitly the topological charges
of the adjacent pair of nodal points in the kx (>0) direction,
(k∗−

x , 0) and (k∗+
x , 0). In the orbitally trivial case, the super-

conducting gap �±
k of each band is �±

k = −�d,0. Therefore,
two nodal points will have same-sign topological charges,
which we call same -sign pair states. On the other hand, for
the orbitally nontrivial case, �±

k ∼ ∓γxy�d,z, so that the two
nodal points have opposite-sign topological charges, which
we call opposite -sign pair states. In general, the pairing
state will be a linear combination of the orbitally trivial and
orbitally nontrivial gap functions, but it is intuitively clear that
the nodes can still be classified as same-sign pair or opposite-
sign pair states and a transition between these two topological
states can occur. Furthermore, in both cases, as the spin-orbit
coupling is decreased, a gapped dxy superconducting state
must arise (assuming that �d,z 	= 0). The development of this
gapped state for opposite-sign pair states is intuitively clear,
but this is not the case for same-sign pair states.

To gain a deeper understanding of the physics discussed
above, we consider a more general treatment of the topolog-
ical charge. In particular, the topological charge (14) can be
cast in the following form:

WL = 1

π

∮
L

dkl ∂k tan−1

×
[

2(ε0�d,0 − γxy�d,z)

ε2
0 − γ 2

x − γ 2
y − γ 2

xy − �2
d,0 + �2

d,z

]
. (16)

This can be understood as the winding number of the vector
(ε2

0 − γ 2
x − γ 2

y − γ 2
xy − �2

d,0 + �2
d,z, ε0�d,0 − γxy�d,z) ro-

tating around the nodal point. The crucial term which de-
termines whether same- or opposite-sign pairs appear is
the numerator ε0�d,0 − γxy�d,z (the denominator ε2

0 − γ 2
x −

γ 2
y − γ 2

xy − �2
d,0 + �2

d,z behaves similarly for both same- and
opposite-sign pairs). Substituting detailed forms (3), the nu-
merator is given by

ε0�d,0 − γxy�d,z =

⎧⎪⎨
⎪⎩

−akxky�0 �2 = 0,

kxky

k2
0

�2

[
ε0 − ak2

0
�0
�2

]
�2 	= 0.

(17)

If �2 = 0, the sign of the numerator is the same between the
two nodal points k∗− and k∗+, leading to topological charges
of opposite signs at the two nodal points, that is, opposite-
sign pair states. However, if �2 	= 0 and the sign of ε0 −
ak2

0�0/�2 changes between the two nodal point k∗− and k∗+,
the topological charges have the same sign at the two nodal
points, leading to same-sign pair states. In order to develop an
analytic condition to distinguish these two cases, we consider
the ky = 0 direction and set k̃x as ε0(k̃x ) − ak2

0�0/�2 = 0.
In the case of same-sign pair states, k∗−

x < k̃x < k∗+
x , this

is not satisfied for opposite-sign pair states. With the nodal
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setats riap ngis emassetats riap ngis etisoppo nodeless states

FIG. 3. Schematic picture of transition to nodeless states from
opposite- (left) and same -sign pair states (right). The arrows rep-
resent that two nodal points merge with each other. In same-sign
pair states, each inner nodal point splits into three nodal points
(surrounded by a dashed line) in transition to nodeless states.

condition (7), we get the following inequality:

2mv2
so − m

√
2

μ

m
v2

so − �2
0

m2
+ v4

so < a
�0

�2
k2

0

< 2mv2
so + m

√
2

μ

m
v2

so − �2
0

m2
+ v4

so. (18)

As an example, if we take the values �0 = 11 meV and
�2 = −1.5 meV, which were used earlier to generate a gap
anisotropy consistent with experiment, and assume a strong
interband spin-orbit coupling vso = 80 meV Å, then the topo-
logical character of nodal points is classified as opposite-sign
pair states.

Now we turn to the development of the gapless dxy state
due to the merging and annihilation of nodal points. It is worth
emphasizing that this has been studied in Dirac and Weyl
semimetals [22] and also in s- and d-wave superconductors
[28] in a framework different from ours in which spin-orbit
coupling is not an essential interaction. In the case of opposite-
sign pair states, the nodal points can merge and are annihi-
lated as the interband spin-orbit coupling decreases because
they have opposite topological charges. However, in the case
of same-sign pair states, merging and annihilation of nodal
points cannot occur directly. We find that this annihilation
occurs through an involved mechanism. Indeed, as the inter-
band spin-orbit coupling is decreased from the same-sign pair
state (which we take to be positive for both in the description
that follows), a new pair of opposite-charge nodal points is
created near the nodal point at k∗−. As the interband spin-orbit
coupling is further decreased, the negatively charged nodal
point stays near k∗−, while the two positively charged nodal
points move off the kx (or ky) axis. The positively charged
nodal points that move off the kx axis eventually merge with
similarly formed negatively charged nodal points that have
moved off the ky axis. This leaves an opposite-sign pair state,
for which the nodes merge and annihilate as before when the
interband spin-orbit coupling is further decreased (see Fig. 3).

B. Andreev flat-band states

We find that, typically, either same-sign pair states or
opposite-sign pair states occur when the superconducting state
is nodal. In particular, the state we find above with 16 nodal
points exists only in a narrow range of parameters, so we do
not consider it further here. It would be of interest to be able
to experimentally identify whether same-sign or opposite-sign

FIG. 4. Schematic pictures of the relation between WL (left) and
N (ky ) (right) in the case of (a) opposite-sign pair and (b) same-
sign pair states. Red and blue points indicate WL = +2 and −2,
respectively.

pair states exist. As we show below, this can be done through
an examination of edge states. Prior to discussing this, we note
that the values of the spin-orbit coupling used below are larger
than those observed in monolayer FeSe grown on SrTiO3.
Consequently, we do not predict flat-band energy states for
this material (however, there still exist in-gap edge states that
are not topologically protected). In this context we note that
the spin-orbit coupling may be larger when monolayer FeSe
is grown on a different substrate or if it is doped, for example,
with Te, which may allow for the flat-band edge states to be
observed.

The nontrivial topological charges at nodal points imply
the existence of dispersionless Andreev band states or An-
dreev flat-band states as edge states. The number of Andreev
flat-band states is related to a one-dimensional (1D) winding
number N (k‖) [25,33], which is given by

N (k‖) =
∫

dk⊥ Tr[q−1(k)∂k⊥q(k)], (19)

where k‖ (k⊥) is the bulk momentum parallel (perpendic-
ular) to the surface. We consider edges running along the
y direction and take k‖ (k⊥) as ky (kx ). Figure 4 shows
the relation between the 1D winding number N (ky ) and the
topological charge WL. Figure 4(a) shows the 1D winding
number is nonzero between nodal points which have opposite-
sign topological charges but is zero at the origin in the case of
opposite-sign pair states. On the other hand, the 1D winding
number is nonzero for all momenta between the outer nodal
points in the case of same-sign pair states [Fig. 4(b)].

In order to investigate the edge states further, we in-
troduce a lattice model which corresponds to Eq. (2) (see
Appendix A). We suppose that the system has two edges
at ix = 1 and Nx in the x direction and take the boundary
condition in the y direction to be periodic. Then, we ex-
amine the edge states by numerically obtaining the energy
spectrum as a function of the momentum ky . We set Nx =
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FIG. 5. Energy spectra for (a) no nodal points and (b) opposite-
sign pair, (c) opposite-sign pair, and (d) same-sign pair states.
We set the parameters (vso [meV Å], �0 [meV], �2 [meV]) as
(a) (50, 11, −1.5), (b) (60, 11, −1.5), (c) (70, 11, −1.5), and (d)
(80, 4, −10). The vertical axis is scaled by t = (2m)−1.

10 000. Figure 5 shows the energy spectra for no nodal points
[Fig. 5(a)], opposite-sign pair states [Figs. 5(b) and 5(c)],
and same-sign pair states [Fig. 5(d)]. Indeed, with no nodal
points we do not have Andreev flat-band states, and once
the nodal points appear with increasing interband spin-orbit
coupling, flat-band states appear. In the cases of opposite-sign
pair states, the flat-band states exist between two nodal points
that have opposite topological charges, and the number of the
flat-band states is two for each edge. On the other hand, in the
cases of same-sign pair states [Fig. 5(d)], the flat-band states
exist at ky = 0, and the number of the flat-band states across
ky = 0 and between two nodal points in positive ky is four and
two for each edge, respectively. In these cases, the number of
flat-band states has a one-to-one correspondence with |N (ky )|,
which is shown in Fig. 4. Note that in Fig. 5(d) the finite-size
effect creates a gap at ky = 0. We have confirmed that there
is no gap at ky = 0 by using the recursive Green’s function
method (see Appendix B). In addition to the flat-band edge
states that appear when nodes exist in the bulk spectrum, note
that we find edge states within the gap, although not at zero
energy, even in the fully gapped case. These can be attributed
to sign changes in the gap that still appear in a fully gapped
dxy superconductor.

In actual experiments misalignments would appear, and it
is worth mentioning the consequences of this on the distinct
topological phases and the resultant anisotropy of the number
of Andeev flat bound states. The one-to-one correspondence
between the number of flat-band states and |N (k‖)| is also
useful for the edge in other directions. For instance, consider
the edges running along the (1, 1) direction and denote the
wave-vector component k‖ parallel to the edges. Figures 6(a)
and 6(b) show the 1D winding number |N (k‖)| and the
topological charge WL for the cases of opposite-sign pair and
same-sign pair states, respectively. For both cases |N (k‖)| = 0
for any k‖; therefore, there are no Andreev flat-band states.

Finally, we note that the examination of the Andreev bound
state spectra should take into account interaction effects. It has

FIG. 6. Schematic pictures of the relation between WL (left) and
N (k‖) (right) in the case of (a) opposite-sign pair and (b) same-sign
pair states. We consider the edges running along the (1, 1) direction.
Red and blue points indicate WL = +2 and −2, respectively.

been pointed out that due to the large density of states intrinsic
to flat bands, they are susceptible to surface instabilities
[33,34]. The most likely candidate is edge ferromagnetism
that splits the flat bands [34]. Such a surface instability is
seen in tunneling spectroscopy experiments on the cuprate
superconductor YBa2CU3O7 where the zero-bias conduc-
tance peak is seen to split into two below an edge transition
temperature that is approximately 0.1Tc [35]. We leave the
study of possible edge instabilities of Andreev flat-band states
due to interactions in the context of the models examined here
to future work.

IV. CONCLUSION

We have studied nodal topological charges in d-wave su-
perconducting monolayer FeSe to help understand the origin
of a fully gapped d-wave state. The nodal points that arise
when interband spin-orbit coupling is sufficiently strong have
2Z topological charges that give rise to zero-energy disper-
sionless Andreev edge bound states. The momentum space
distribution of the nodal charges depends strongly on the
orbital character of the superconducting state, allowing this to
be probed through the observation of Andreev bound states.
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APPENDIX A: LATTICE MODEL

In order to obtain the lattice model which corresponds
to Eq. (2), we replace ki → sin ki and (k2

x + k2
y )/(2m) →

−2t (cos kx + cos ky ) + 4t , where t−1 = 2m in Eq. (2)

214503-6



NODAL TOPOLOGY IN d-WAVE SUPERCONDUCTING … PHYSICAL REVIEW B 98, 214503 (2018)

(the lattice constant is unity). We use Aiσ and Biσ , which are annihilation operators of two orbital, spin σ =↑ and ↓ electrons
at i , and we divide H into H0, HSOC, and H�. They are given by

H0 = −t
∑

〈i, j〉,σ
[A†

iσA jσ + B
†
iσB jσ ] − (μ − 4t )

∑
i,σ

[A†
iσAiσ + B

†
iσBiσ ]

+ a

4

∑
i,σ

[A†
iσAi+x+ yσ + A

†
i+x+ yσAiσ − (A†

iσAi+x− yσ + A
†
i+x− yσAiσ )]

− a

4

∑
i,σ

[B†
iσBi+x+ yσ + B

†
i+x+ yσBiσ − (B†

iσBi+x− yσ + B
†
i+x− yσBiσ )], (A1)

HSOC = −vso

2

∑
i

[{A†
i↑Bi+x↓ − A

†
i+x↑Bi↓} − {A†

i↓Bi+x↑ − A
†
i+x↓Bi↑}

+ {B†
i↑Ai+x↓ − B

†
i+x↑Ai↓} − {B†

i↓Ai+x↑ − B
†
i+x↓Ai↑}]

+ vso

2i

∑
i

[{A†
i↑Bi+ y↓ − A

†
i+ y↑Bi↓} + {A†

i↓Bi+ y↑ − A
†
i+ y↓Bi↑}

+ {B†
i↑Ai+ y↓ − B

†
i+ y↑Ai↓} + {B†

i↓Ai+ y↑ − B
†
i+ y↓Ai↑}], (A2)

H� = − �2

4k2
0

∑
i

[A†
i↑A

†
i−x− y↓ + A

†
i↑A

†
i+x+ y↓ − (A†

i↑A
†
i−x+ y↓ + A

†
i↑A

†
i+x− y↓)

−{A†
i↓A

†
i−x− y↑ + A

†
i↓A

†
i+x+ y↑ − (A†

i↓A
†
i−x+ y↑ + A

†
i↓A

†
i+x− y↑)}]

− �2

4k2
0

∑
i

[B†
i↑B

†
i−x− y↓ + B

†
i↑B

†
i+x+ y↓ − (B†

i↑B
†
i−x+ y↓ + B

†
i↑B

†
i+x− y↓)

−{B†
i↓B

†
i−x− y↑ + B

†
i↓B

†
i+x+ y↑ − (B†

i↓B
†
i−x+ y↑ + B

†
i↓B

†
i+x− y↑)}]

+�0

∑
i

[A†
i↑A

†
i↓ − A

†
i↓A

†
i↑ − (B†

i↑B
†
i↓ − B

†
i↓B

†
i↑)] + H.c. (A3)

APPENDIX B: ENERGY SPECTRUM USING
THE GREEN’S FUNCTION METHOD

Our Hamiltonian matrix of the edge problem has a simple
band form,

H =

⎛
⎜⎜⎜⎜⎜⎝

A B 0 0 0 0 · ·
B† A B 0 0 0 · ·
0 B† A B 0 0 · ·
0 0 B† A B 0
· · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where A and B are small square matrices of order 8 (or 4 in
the reduced block form). Lópes Sancho et al. [36] developed a
highly convergent iterative scheme to calculate the surface and
bulk Green’s functions (G00 and G∞∞, respectively) for this
form of Hamiltonian. At the ith iteration, the (renormalized)
G00 is given in terms of effective interaction with the 2i th
layer:

(
ωI − εs

i

)
G00 = I + αiG2i ,0, (B2)

and other elements are given by

(ωI − εi )G2in,0 = βiG2i (n−1),0 + αiG2i (n+1),0, (B3)

(ωI − εi )G2i n,2i n = I + βiG2i (n−1),2i n + αiG2i (n+1),2i n, (B4)

where ω is an energy with a small imaginary part iη and (ω-
dependent) energy matrices εs

i , εi , αi , and βi are determined
recursively starting from εs

0 = ε0 = A, α0 = B, and β0 = B†.
As the iteration proceeds, the effective interactions αi and
βi decay quickly. We take η/t = 10−5, and the iteration is
truncated when |αi/t |, |βi/t | < 10−7. The required number of
iterations is at most 20.

Figure 7 shows ky-resolved spectral functions obtained
with this method,

Nn(ky, E) = − 1

π
Im Tr Gnn(ky, E + iη), (B5)

with n = 0 (edge) and n = ∞ (bulk), for the four parameter
sets used in Figs. 5(a)–5(d). A blowup of spectral functions
near ky ∼ 0 is shown in Fig. 8.
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FIG. 7. Momentum-resolved spectral function calculated by the Green’s function method. Left (right) panels provide the local density of
states at the bulk (edge). The dark blue area represents a no-state region. (a) Full gap, (b) and (c) opposite-sign pairs of nodal points, and (d)
same-sign pair of nodal points. The energy is given in units of t .
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FIG. 8. Blowup of the spectral function (edge+bulk) of the parameter set in Fig. 5(d) around gapless regions with fine resolution in energy
and momentum.
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