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A quantum Maxwell demon is a device that can lower the entropy of a quantum system by providing it
with purity. The functionality of such a quantum demon is rooted in a quantum-mechanical SWAP operation
exchanging mixed and pure states. We describe the setup and performance of a quantum Maxwell demon that
purifies an energy-isolated system from a distance. Our cQED-based design involves two transmon qubits, where
the mixed-state target qubit is purified by a pure-state demon qubit connected via an off-resonant transmission
line; this configuration naturally generates an iSWAP gate. Although less powerful than a full SWAP gate, we
show that assuming the present-day performance characteristics of a cQED implementation, such an extended
quantum Maxwell demon can purify the target qubit over macroscopic distances on the order of meters and
tolerates elevated temperatures of the order of a few Kelvin in the transmission line.

DOI: 10.1103/PhysRevB.98.214502

I. INTRODUCTION

Maxwell’s demon [1] is a putative device that is capable of
observing and controlling the microscopic degrees of freedom
of a thermodynamic system. The existence of such a demon
permits the cyclic extraction of work in a heat engine with
unit efficiency and thus apparently violates the second law
of thermodynamics. After a century-long debate [2], it has
been realized by Landauer [3] and by Bennett [4] that the
demon’s functionality requires a memory in which to store the
results of its observations. The cyclic operation of the engine
then must include an element that erases the information in
the demon’s memory. According to Landauer, this erasure
involves an entropy increase per bit of �S = kB ln 2. A crucial
element in furthering the argument is to include the demon,
which is situated in the immediate proximity of the system, as
a part of the system. As a natural consequence, the thermody-
namic cost of erasing the demon’s memory then is accounted
for in the engine’s overall entropy budget, thereby restoring
the validity of the second law. Thermodynamic machines
utilizing the functionality of such a locally operating classical
Maxwell demon have been recently demonstrated in several
systems [5–8].

Within a quantum-mechanical framework, new opportuni-
ties arise, e.g., a demon has been conceived [9] that enables
the entropy of an energy-isolated system to be reduced. This
has inspired the proposal for an engine that features separated
cycles [10,11], an energy cycle that transforms heat into work
without thermal waste, and an entropy cycle that restores the
second law. These findings motivate the question about the
distance over which such a quantum Maxwell demon can
perform its beneficial action. In this paper, we analyze the per-
formance of an extended quantum Maxwell demon (QMD);
specifically, we determine the demon’s maximal spatial sep-
aration and its operating conditions that allow for an entropy
reduction of a distant energy-isolated quantum system. This

removes the question about a possible local violation of
the second law to a quantitative level. Furthermore, such a
separation between the system and the demon is of practical
relevance as it naturally protects the system against undesired
heating during the demon’s Landauer purification; within
the context of quantum information processing, an extended
demon can be used to feed pure states to an ongoing quantum
computation. In a wider context, the coherent communica-
tion between quantum systems separated by large distances
[12,13] is of great relevance, e.g., in distant entanglement [14],
in recent Bell tests [15,16], and in quantum state transfer [17].

A first version of a quantum Maxwell demon has been
proposed by Lloyd [18] in the context of nuclear magnetic
resonance experiments (see also Refs. [19–21]), based on the
idea that such a device exchanges the mixed quantum state of
a target system with a purer quantum state of the demon. Such
an exchange is realized in the course of the coherent unitary
evolution of the joint target-demon system. In contrast to the
classical version, the quantum demon utilizes its quantum
purity as a thermodynamic resource and does not measure
the state of the target system, hence its functionality is rooted
in purity rather than information [22]. Several proposals for
QMD-assisted thermodynamic machines have been suggested
[10,23–27], but only a few have been realized experimentally
[28–30]. Here, we describe a practical design of a spatially
distributed QMD setup that is able to purify the state of a
distant quantum system, the target qubit, by deterministically
transforming its unknown mixed state into a given pure quan-
tum state that is provided by the demon.

Below, we focus on a circuit QED implementation with
two distant transmon qubits [31], namely the target and the
demon qubits, that are capacitively coupled via a bosonic
bath in the form of a transmission line [32]; see Fig. 1. This
setup leads to an XY -type interaction between the qubits
that naturally generates an iSWAP gate—the latter’s purifi-
cation power is reduced as compared to a full SWAP gate.
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transmission line

target qubit demon qubit

FIG. 1. Schematic setup for an extended quantum Maxwell de-
mon swapping the mixed state of the target qubit (left) with the
pure state of the demon qubit (right) via an autonomous and energy-
conserving process. The qubits are formed by the two low-energy
states of a transmon device comprised of a SQUID loop with
two Josephson junctions with energies Eα

J1
and Eα

J2
, capacitively

shunted by a large capacitor Cα (α = L,R); for the transmon, Eα
C =

e2/2Cα � Eα
J1,2

. The off-resonant transmission line of length �

connecting the two qubits is filtered to a frequency band �ω around
ω0 and generates an XY -type interaction that remains effective at
macroscopic distances � and elevated temperature Tline � Tqubit .

However, the simpler implementation and enhanced robust-
ness to decoherence of the iSWAP gate motivate us to focus
on this simpler version of a quantum demon in our anal-
ysis below. We then address two main questions: (i) what
spatial separation between target and demon qubits can be
achieved for such an extended quantum demon, given the
finite coherence time of the components, and (ii) what are the
requirements for the thermodynamic state of the bosonic bath,
the transmission line, that mediates the interaction between
the systems. We find that, given typical parameters describing
present-day cQED systems, a distance � of the order of a few
meters can be reached with a transmission line operating in
the Kelvin range, i.e., about two orders of magnitude higher
than the operating temperature of the qubits.

II. cQED SETUP OF AN EXTENDED QUANTUM DEMON

A target-demon setup of the type outlined above is de-
scribed by the Hamiltonian

Ĥ =
∑

α=L,R

∞∑
i=0

εα
i |i〉α α〈i| + Ĥline

+
∑

α=L,R

∞∑
i=0

[
qα

i+1,i V̂
α (xα ) |i+1〉α α〈i| + H.c.

]
, (1)

where εα
i and |i〉α describe the energy levels of the left

and right (α = L, R) transmon qubits positioned at xL =
−�/2 and xR = +�/2, and V̂ (x) is the voltage at position x

along the transmission line. The latter generates an additional
voltage drop βαV̂ α (xα ) across the qubit capacitor, where
the reduction factors βα = Cα

g /(Cα
g + Cα ) account for the

capacitors’ geometries; see Fig. 1. This voltage drop couples
to the Cooper pairs n̂α transferred between the transmon ca-
pacitor with the effective charge qα

i+1,i = 2e βα
α〈i + 1|n̂α|i〉α ,

where we incorporate the geometrical factor βα . Finally, the
Hamiltonian of the transmission line is

Ĥline = 1

2

∫
dx {C[V̂ (x)]2 + L[Î (x)]2}, (2)

where Î (x) and V̂ (x) are electric current- and voltage-fields
along the transmission line, with C and L the capacitance
and inductance per unit length. The fields Î (x) and V̂ (x) are
obtained through a standard canonical quantization procedure
of the transmission line equations [33]; see Appendix A.

To allow for optimizing the performance of the device (see
below), we assume the modes ωk of the transmission line
to be off-resonant with respect to the transition frequencies
ωα

i,j = (εα
i − εα

j )/h̄ of the transmons. The ensuing weak cou-
pling allows for a perturbative treatment of the qubit-mode
interaction. We make use of a unitary transformation of (1),
Ĥ → Ĥ = ÛĤ Û †, in order to eliminate the transmission-line
modes to lowest order. We choose the ansatz Û = exp[Ŝ −
Ŝ†] and Ŝ = ∑

α,i qα
i+1,i |i + 1〉α α〈i| Q̂α

i , where Q̂α
i is a linear

form of the bosonic operators; see Appendix B for details.
A rotating-wave approximation then provides us with an
effective interaction between the qubits mediated via virtual-
photon exchange [34],

Ĥint =
∑
ij

Jij |i + 1〉L L〈i| ⊗ |j 〉R R〈j+1| + H.c. (3)

The effective couplings Jij involve the commutator
[Q̂α

i , [V̂ β]†] between photonic field operators at the opposite
ends of the transmission line that contributes the factor (with
α = R, L and α 	= β; we assume a long transmission line
� � λ, where λ is the wavelength of the transmission line
modes)

[
Q̂α

i , [V̂ β]†
] = 1

2C�

∫
dω

ωα
i+1,i

(ωα
i+1,i − ω)2

, (4)

and its combination with the charge factors qα
i+1,i provides us

with the expression for the effective couplings,

Jij = qL
i+1,iq

R
j,j+1

2C�

∫
dω

[
ωL

i+1,i(
ωL

i+1,i − ω
)2 + ωR

j+1,j(
ωR

j+1,j − ω
)2

]
.

(5)

Its inverse-length dependence Jij ∝ 1/� is derived from the fi-
nite propagation velocity v = 1/

√
LC of the electromagnetic

modes inside the transmission line, implying an exchange
time τ = �/v for the virtual photons that scales linearly
with distance �, thus reducing the coupling strength between
the qubits as they are further separated. In the following,
we assume that the transmission line modes are filtered to
a frequency interval [ω0 − �ω/2, ω0 + �ω/2], with |ω0 −
ωα

i,j | ∼ ω0 and �ω � ω0, simplifying (5) to

Jij = qL
i+1,iq

R
j,j+1

2C�

[
�ω ωL

i+1,i(
ωL

i+1,i − ω0
)2 + �ω ωR

j+1,j(
ωR

j+1,j −ω0
)2

]
. (6)

Furthermore, the transition energies of the target and demon
qubits are chosen equal, ωL

1,0 = ωR
1,0 = ω1,0; otherwise, the

interaction Hamiltonian Hint would not conserve energy, im-
plying that the transition amplitudes |i + 1, j 〉 → |i, j + 1〉
are suppressed due to oscillating phase factors (this feature
can be used to switch the coupling on/off). With all other
transitions chosen off-resonance, we can restrict the Hilbert
space of the two-qubit system to the two lowest pairs of energy

214502-2



EXTENDED QUANTUM MAXWELL DEMON ACTING OVER … PHYSICAL REVIEW B 98, 214502 (2018)

states and arrive at the effective system Hamiltonian

Ĥqb =
∑

α=L,R

h̄ω1,0|1〉α α〈1| + J [|1, 0〉〈0, 1|+|0, 1〉〈1, 0|],

(7)

with a real-valued coupling constant J ≡ J00,

J = κLκR �ω ω1,0

(ω1,0−ω0)2

hv

�
. (8)

The dimensionless qubit–transmission-line couplings
κL and κR read (we use qα

j,j+1 = −2ieβα[(1 +
j )/2]1/2 (Eα

J /8Eα
C )1/4)

κα = βα

(
Eα

J

2Eα
C

)1/4
√

Z0

RQ

, (9)

with Eα
J and Eα

C the Josephson and charge energies of the
transmon qubit α, RQ = h/e2 is the resistance quantum, and
Z0 = 1/vC is the characteristic impedance of the transmission
line. For typical values β ∼ 0.1, Z0 = 50 �, and EJ /EC ∼
100, one arrives at κ ∼ 0.01.

III. DEMON (i)SWAP OPERATION

The XY -type interaction HXY = (J/2)[σ̂x σ̂x + σ̂y σ̂y] in
the two-qubit Hamiltonian (7) naturally leads to an iSWAP
quantum gate [35] when running the evolution (we define
ωJ = J/h̄),

Û (τ ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos(ωJ τ ) −i sin(ωJ τ ) 0

0 −i sin(ωJ τ ) cos(ωJ τ ) 0

0 0 0 1

⎞
⎟⎟⎟⎠ (10)

during the time τiSWAP = π/2ωJ . On the other hand, the
optimal interaction for the SWAP gate SWAP( |ψ〉L |χ〉R ) =
|χ〉L| ψ〉R is the isotropic Heisenberg interaction ĤXYZ =
(J/2)[σ̂x σ̂x + σ̂y σ̂y + σ̂zσ̂z]; acting during the time interval
τ = h/4J , it produces the unitary

ÛSWAP = e
iπ
4 exp[−i(π/4)(σ̂x σ̂x + σ̂y σ̂y + σ̂zσ̂z)]. (11)

Given our setup, we have only the XY interaction at our
disposal, from which one can generate a SWAP gate through
a gate sequence involving square roots of iSWAP operations
and single-qubit rotations, see Fig. 2,

ÛSWAP = e
iπ
4
[
Û †

y ⊗ Û †
y e

−i π
8 [σ̂x σ̂x+σ̂y σ̂y ]Ûy ⊗ Ûy

]
× [Û †

x ⊗ Û †
x e

−i π
8 [σ̂x σ̂x+σ̂y σ̂y ]Ûx ⊗ Ûx

]
e− iπ

8 [σ̂x σ̂x+σ̂y σ̂y ],

(12)

FIG. 2. Construction of the SWAP gate from three
√

iSWAP
gates augmented with single-qubit rotations Ûx (π/2) and Ûy (π/2)
and its conjugates.

FIG. 3. Comparison of ideal entropy gain �S � 0 of a thermal-
state target qubit for the SWAP (thick line) and iSWAP (thin line)
operation with a pure demon qubit as a function of the excited level
occupation p1. As p1 → 0, the target is already pure and the entropy
gain vanishes.

where Ûx = e−iπσ̂x/4 and Ûy = e−iπσ̂y/4 are π/2 rotations
around the x- and y-axis, respectively. Indeed, making use
of the commutativity [σ̂α ⊗ σ̂α, σ̂β ⊗ σ̂β] = 0 for α, β =
{x, y, z} and the unitary transformations of the Pauli matrices,
Û

†
x σ̂yÛx = −σ̂z and Û

†
y σ̂xÛy = σ̂z, one easily verifies the

validity of Eq. (11). This SWAP gate implementation is twice
as fast as the one with three iSWAP gates suggested in Ref.
[35] and takes a time τ = 1.5 τiSWAP (we assume that all
single-qubit rotations can be done infinitely fast); according
to the discussion in Refs. [36,37], it is optimal.

The SWAP gate can fully purify any state ρ̂t of the left
(target) qubit by exchanging its state with a pure state ρ̂d =
|χ〉〈χ | of the right (demon) qubit. Moreover, preparing the de-
mon state with equal energy as the target qubit, Tr{Ĥ Rρ̂d} =
Tr{Ĥ Lρ̂t}, one arrives at a device that nonlocally pushes the
entropy of the target qubit to zero without changing its energy,
thus defining our desired quantum Maxwell demon.

However, in practice the qubits are not ideal and prone to
decoherence, thus restricting the available time required for
the QMD operation. A way to relax this time restriction is
to replace the SWAP gate by the naturally appearing iSWAP
operation: since a full SWAP involves three

√
iSWAP oper-

ations, an iSWAP demon performs its task at least 1.5 times
faster, which is quite beneficial given the time constraints due
to decoherence. Furthermore, as shown below, the iSWAP
demon is less affected by decoherence. On the other hand,
one has to admit that the iSWAP demon comes with a re-
duced purification power [38]; see Fig. 3: starting out with
a thermal state of the target qubit ρ̂th = p0|0〉〈0| + p1|1〉〈1|
and an equal-energy pure state ρ̂p = |χth〉〈χth| with |χth〉 =√

p0|0〉 + √
p1|1〉 for the demon qubit, the iSWAP-QMD

generates a nonentangled but classically correlated state of the
two qubits,

Û (τiSWAP)
(
ρ̂th ⊗ ρ̂p

) τiSWAP→ p0 [|ψ−〉〈ψ−|] ⊗ |0〉〈0|
+ p1 [|ψ+〉〈ψ+| ⊗ |1〉〈1|], (13)

where |ψ±〉 = √
p0|0〉 ± i

√
p1|1〉. The resulting entropy of

the final target state ρ̂(τiSWAP) = p0|ψ−〉〈ψ−| + p1|ψ+〉〈ψ+|
is always bounded by the entropy of its original state; with
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FIG. 4. (a) Final entropy of the target qubit (vertical axis in bits) after the execution of the SWAP-QMD (thick lines) and the iSWAP-
QMD (thin lines) as a function of pure dephasing time Tφ (horizontal axis in units of τiSWAP = h/4J , relaxation effects are neglected). The
color/dashes indicate different temperatures of the qubit environment, and the dotted lines mark the level of the target qubit’s initial entropy.
(b) Final entropy of the target qubit as a function of relaxation time T1 in the absence of dephasing effects.

S[ρ̂] the von Neumann entropy of the state ρ̂, the iSWAP
QMD provides an entropy reduction �S = S[ρ̂(τiSWAP)] −
S[ρ̂th] � 0 with the equal sign realized for the chaotic state
with p0 = p1 = 1/2. Note that, during the operation of the
iSWAP gate, the average energy p1h̄ω1,0 of the target qubit
remains constant.

As announced above, dephasing and relaxation affect the
iSWAP- and SWAP-QMDs quite differently, with the iSWAP-
QMD performing better at short dephasing/relaxation times,
while the SWAP-QMD ultimately outperforms the iSWAP-
QMD at long dephasing/relaxation times due to its higher
purification power. Including dephasing and relaxation in the
demon’s evolution, we have to replace the unitary Û (τ ) in
(10) by a channel �(τ ) that accounts for the environment; see
Appendix C. We assume our qubits interact with their local
environments, each in thermal equilibrium at some temper-
ature �, and we adopt the above initial states ρ̂th and ρ̂p for
the target and demon qubits with p1/p0 = exp(−h̄ω1,0/kB�).
Solving the corresponding Lindblad master equations [39]
numerically, we determine the time evolution of the entropies
for both demons and for the two cases of pure dephasing and
relaxation. In Fig. 4, we show the target qubit’s final entropy
for different ratios Tφ/τiSWAP [pure dephasing, in (a)] and
T1/τiSWAP [relaxation, in (b)] and for different temperatures.

As expected, short dephasing and relaxation times de-
stroy the purification power of both demons. Increasing the
dephasing and relaxation times in Fig. 4, we find that the
iSWAP-QMD performs better at small T1 and Tφ , while good
qubits with large T1 and Tφ profit from the better purification
power of the SWAP operation. An additional surprise is that
the SWAP-QMD fails completely at small T1 and Tφ where
the final entropy turns out to be higher [and even maximal
for Tφ/τiSWAP → 0 in Fig. 4(a)] than the initial one. We
attribute this entropy increase to the action of the intermediate
single-qubit rotations in the SWAP operation and its extreme
sensitivity to decoherence.

Indeed, consider the extreme case of strong dephasing
with Tφ much shorter than the duration of the iSWAP gate,
Tφ � τiSWAP, but longer than or compatible with the duration
of one-qubit operations. Given such a strong dephasing leads
to a rapid collapse of the qubits to a product of thermal states,

ρ̂th ⊗ ρ̂p

√
iSWAP→ ρ̂th ⊗ ρ̂th, implying that the entropy of the

target qubit is not changed; see Fig. 4. Going on with the
SWAP demon, the subsequent π/2 rotations Ûx take the (now
thermal) qubits out of the decoherence-free subspace, ρ̂th →
ρ̂rot = Ûxρ̂thÛ

†
x ≡ (1/2)1 + σ̂y (p0 − p1)/2, and the subse-

quent evolution brings both qubits into the maximally mixed

state, ρ̂rot ⊗ ρ̂rot

√
iSWAP→ (1/2)1 ⊗ (1/2)1.

The same argument is valid for strong relaxation T1 → 0:
the evolution rapidly takes the pair of qubits into a product
of thermal states, while subsequent Ûx rotations take them
out of the equilibrium with their local environment, ρ̂th →
ρ̂rot. During the next

√
iSWAP gate, both qubits relax back

to the thermal equilibrium state, ρ̂rot ⊗ ρ̂rot

√
iSWAP→ ρ̂th ⊗ ρ̂th,

keeping the target qubit in the original entropy state. However,
for a moderately strong relaxation strength, the state ρ̂rot may
not have enough time to relax back into the thermal state
ρ̂th during the square-root iSWAP time τiSWAP/2 and thus ends
up in a higher entropy state. This explains the nonmonotonic
behavior of the entropy of the target qubit at short relaxation
times in Fig. 4(b). The above discussion lets us conclude that
the iSWAP-QMD is less sensitive to dephasing and relaxation
than its SWAP analog; only for long dephasing and relaxation
times Tφ, T1 � τiSWAP does the better purification power of
the SWAP gate beat the performance of the iSWAP-demon.

IV. OPERATIONAL REQUIREMENTS FOR THE DEMON

The functionality of the iSWAP demon depends critically
on its environment, of which the transmission line is an
integral part. A large separation between the target and demon
qubits reduces the coupling J and thus enhances the operation
time τiSWAP, which is in conflict with the finite decoherence
time T2; as a result, we obtain a limit � of the demon’s exten-
sion; see Sec. IV A. Second, the presence of the transmission
line will itself increase both the dephasing and the relaxation
rate of the qubits. While dephasing due to the thermally
excited bosonic modes will limit the operational temperature
of the transmission line (see Sec. IV B 1), we find that the
enhanced qubit relaxation due to a lossy transmission line
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(Purcell effect, see Sec. IV B 2) is not (yet) relevant in our
setup.

A. Demon extension

Given a decoherence time T2 = (1/2T1 + 1/Tφ )−1, we es-
timate the possible extension � of the demon. To successfully
realize an iSWAP operation, the condition τiSWAP ∼ T2 has
to be satisfied. Choosing the specific arrangement ω1,0 = 2ω0

for the resonator and qubit transition frequencies and similar
target and demon qubits with κL = κR = κ , one finds that

T2 ∼ �

v

1

8κ2

ω0

�ω
. (14)

Assuming typical values v ∼ 2c/3, ω0 ∼ 2π × 5 GHz, and
�ω ∼ 2π × 500 MHz, we find that typical coherence times
T2 ∼ 50–250 μs allow for an extension of the demon over
macroscopic lengths � ∼ 1.0–5.0 m.

B. Dephasing and relaxation due to the transmission line

1. Dephasing and transmission line temperature

So far, we have assumed that the transmission line is
kept at low temperature such that electromagnetic modes
within its bandwidth [ω0 − �ω/2, ω0 + �ω/2] are not ther-
mally excited. Given the possibility for a macroscopic sep-
aration �, a question of much technological interest then is
whether the QMD can be operated through a hot and thus
less quantum environment. Indeed, at finite temperatures a
thermal voltage noise appears in the transmission line that
causes dephasing of the qubits. The dephasing due to the
presence of a (hot) transmission line is described via the
dispersive shift of the qubit energy levels induced by the
fluctuating voltages at the ends of the transmission line.
The corresponding qubit-dephasing Hamiltonian is given by
Ĥsh = ∑

α=L,R[|0〉α α〈0| − |1〉α α〈1|] ⊗ B̂α (xα ), where the op-

erators B̂α (xα ) = ∑
n,m bnm(xα )â†

nâm describe the coupling
to the transmission line modes of the electromagnetic envi-
ronment; see Appendix B (here, ân denote bosonic operators
of the transmission line). The presence of thermal modes in
the transmission line then modifies the level separation of the
qubit and induces dephasing at a rate (see Appendix D 1)

γ αα′
φ = 32π (κακα′

)2Nω0 (1+Nω0 ) �ω

×
[

ωα
anω0(

ωα
1,0 − ω0

)(
ωα

2,1 − ω0
)]

×
[

ωα′
anω0(

ωα′
1,0 − ω0

)(
ωα′

2,1 − ω0
)], (15)

where Nω is the Bose-Einstein distribution function and ωα
an =

ωα
1,0 − ωα

2,1 are the anharmonicities of the transmon spectra.
Remarkably, the dephasing rate scales as γφ ∝ κ4, while the
coupling constant J ∝ κ2; see Eq. (8); both of them are linear
in the frequency bandwidth �ω. Therefore, installing a small
coupling κ , one can keep the qubit dephasing rates small while
leaving a sufficiently strong coupling between the qubits. The
iSWAP-QMD device is functional when γφτiSWAP � 1, which

translates into a requirement on the photon occupation number

Nω0 (1 + Nω0 ) �
[

8πκ2 ω0�

v

ω0

ω1,0

(
ωan

ω2,1 − ω0

)2]−1

. (16)

For ω0 ∼ 2π × 5 GHz, v ∼ 2c/3, and ωan ∼ 2π × 300 MHz,
we find that Nω0 (1 + Nω0 ) � 1000 m/�, which translates to
a corresponding temperature range 7.5 � �line � 3.5 K for
1 � � � 5.0 m. Hence, the transmission line can reside at
a temperature that is about two orders of magnitude higher
than the typical operation temperature �qubit ∼ 20 mK of the
superconducting qubits.

2. Relaxation through the Purcell effect

Finally, we study the consequences of losses in the trans-
mission line. Indeed, a finite loss rate γline in the transmission
line induces an enhanced decay of the qubit excited state via
the Purcell effect (see Appendix D 2),

γ α
Pur = 2 γline (κα )2 �ω ω0(

ωα
1,0 − ω0

)2 . (17)

For commercially available coaxial cables with an attenuation
constant ∼0.1 dB/m one has γline ∼ 4.6 MHz, and choosing
parameters as above results in a lifetime γ −1

Pur ∼ 9 ms that
is long compared to the relaxation time T1 assumed above.
Hence, we conclude that the presence of the transmission line
does not significantly reduce the performance of the qubit’s
characteristics that we have assumed above.

V. CONCLUSION

In conclusion, we have proposed a realistic design for
a spatially distributed quantum Maxwell demon based on a
cQED platform. The transmon-type target and demon qubits
are capacitively coupled via the electromagnetic modes of
a transmission line; its nonresonant coupling allows us to
keep the line at high temperatures, of order Kelvin, while
the resonant coupling of other designs [16] requires a cold
line. The device serves to reduce the entropy of the target
qubit via exchange of its state with a higher-purity demon
state. Previous demons, both local [18] and extended [10],
were based on SWAP or partial-SWAP operations involving
multiple CNOT gates; here, we have proposed to reduce the
demon’s complexity via operating on the “machine code”
level by directly exploiting the XY -type coupling between the
qubits. The resulting iSWAP gate then provides limited pu-
rification power to the demon but behaves more benevolently
with respect to decoherence. Our estimates show that the
target qubit can be purified “from a distance,” with the demon
qubit located a macroscopic distance of order meters away.
The proposed setup can be implemented with present-day
technology.
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APPENDIX A: TRANSMISSION LINE

An ideal lossless transmission line can be modeled as a pair
of uniform conductors separated by a dielectric medium; it is
characterized by a series of inductances L (in Henry/m) and
shunt capacitances C (Farad/m) [32]. The voltage V (x, t ) and
current I (x, t ) along the transmission line are described by
the transmission line equations

∂xV = −L ∂t I, ∂xI = −C ∂tV . (A1)

Introducing the potential ϕ(x, t ) and expressing the volt-
age and current via V (x, t ) = √

L ∂tϕ(x, t ) and I (x, t ) =
−∂xϕ(x, t )/

√
L, the transmission line equations reduce to a

standard wave equation (with ϕ̇ = ∂tϕ and ϕ′ = ∂xϕ),

ϕ̈ − c2ϕ′′ = 0, (A2)

where c = 1/
√
LC is the wave velocity.

The quantization of the transmission line fields [33] is done
via standard canonical quantization. The classical equation of
motion (A2) derives from minimizing the classical action S =∫

dt dx L(ϕ̇, ϕ) with the Lagrangian density

L(ϕ̇, ϕ) = 1

2
[(ϕ̇/c)2 − (ϕ′)2]. (A3)

Introducing the conjugated field π (x) = ∂L/∂ϕ̇ = ϕ̇/c2 pro-
vides us with the Hamiltonian H (π, ϕ) = ∫

dx π (x)ϕ̇(x) −
L(π, ϕ),

H (π, ϕ) = 1

2

∫
dx[c2π2(x) + ϕ′2(x)]. (A4)

Going back to the original fields V (x) = c2
√
Lπ (x)

and I (x) = −ϕ′(x)/
√
L, we obtain the transmission line

Hamiltonian

H = 1

2

∫
dx[CV 2(x) + LI 2(x)]. (A5)

The canonical quantization maps the classical fields
to operators ϕ(x) → ϕ̂(x) and π (x) → π̂ (x) with
commutation relations [ϕ̂(x), ϕ̂(y)] = [π̂ (x), π̂ (y)] = 0
and [ϕ̂(x), π̂ (y)] = ih̄δ(x − y). Introducing the transmission
line modes

ϕ̂(x) = c
∑

k

(
h̄

2ωk�

)1/2

(âke
ikx + â

†
ke

−ikx ), (A6)

π̂ (x) = − i

c

∑
k

(
h̄ωk

2�

)1/2

(âke
ikx − â

†
ke

−ikx ), (A7)

we go over to bosonic annihilation and creation operators
âk and â

†
k with commutators [âk, â

†
k′ ] = δkk′ , dispersion ωk =

c|k|, and � → ∞ is the length of the transmission line. The

Hamiltonian (A4) then transforms into the standard form

H (π, ϕ) → Ĥline = 1

2

∑
k

h̄ωk (â†
kâk + âkâ

†
k ). (A8)

The voltage and current operators derive from the mode
operators âk and â

†
k via

V̂ (x) = −i
∑

k

(
h̄ωk

2Cr

)1/2

(âke
ikx − â

†
ke

−ikx )

≡
∑

k

V̂ke
ikx + H.c., (A9)

Î (x) = −i
∑

k

sgn(k)

(
h̄ωk

2Lr

)1/2

(âke
ikx − â

†
ke

−ikx )

≡
∑

k

Îke
ikx + H.c., (A10)

where Cr = C� and Lr = L� are the total capacitance and
inductance of the transmission line. The k-components of the
voltage and current operators are linearly related through a
transmission line impedance Z0 = √

L/C,

V̂k = Z0 sgn(k)Îk. (A11)

For an open transmission line, we have to impose the
boundary conditions Î (x = ±�/2) = 0, resulting in a discrete
level spectrum with wave numbers kn = πn/�, n � 0, de-
scribing even and odd modes

V̂ (x) = −i
∑

n

(
h̄ωn

Cr

)1/2

ϕn(x)ân + H.c., (A12)

where

ϕn(x) =
{

cos(πnx/�), n even,

i sin(πnx/�), n odd.
(A13)

APPENDIX B: INTERACTION HAMILTONIAN
FOR TRANSMON QUBITS

We wish to eliminate the transmission line modes in the
Hamiltonian (1) to lowest order in the bosonic operators an;
this will provide us with the effective qubit-qubit coupling
and higher-order terms including a dispersive shift describ-
ing transmission-line induced dephasing. We use a perturba-
tive scheme that is valid in the off-resonant regime |ωα

1,0 −
ω0| ∼ ω0. We perform a unitary transformation, Ĥ → Ĥ =
ÛĤ Û † with Û = exp [Ŝ − Ŝ†], and we seek an operator Ŝ =∑

α,i qα
i+1,i |i + 1〉α α〈i| Q̂α

i that eliminates the terms linear in
an within the expansion Ĥ ≈ Ĥ + [Ŝ, Ĥ ] + [Ŝ, Ĥ ]† + · · · .
This is achieved by the choice

Q̂α
i = −i

∑
n

(
ωn

h̄Cr

)1/2
ϕn(xα )

ωα
i+1,i − ωn

ân. (B1)

The transformed Hamiltonian then takes the form

Ĥ ≈ Ĥtransmon + Ĥbath + Ĥsh + Ĥ2ph + Ĥint, (B2)

where Ĥbath = ∑
n h̄ωnâ

†
nân is the transmission line

Hamiltonian and Ĥsh describes the dispersive shift of the
transmon’s energy levels due to the off-resonant interaction
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with the transmission line modes,

Ĥsh = ∣∣qα
i+1,i

∣∣2∑
i,α

|i+1〉α α〈i+1|(Q̂α
i [V̂ α]† + V̂ α

[
Q̂α

i

]†)

− ∣∣qα
i+1,i

∣∣2∑
i,α

|i〉α α〈i|
(
[V̂ α]†Q̂α

i + [
Q̂α

i

]†
V̂ α
)
. (B3)

The contribution Ĥ2ph describes the next-order two-photon
interaction process,

Ĥ2ph =
∑
α,i

|i+2〉α α〈i| ⊗ η̂α
i + H.c., (B4)

where η̂α
i = qα

i+i,i qα
i+2,i+1(Q̂α

i+1 − Q̂α
i )V̂ α . Finally, the term

Ĥint describes the directly induced interaction between the
transmon qubits,

Ĥint =
∑
α 	=β

∑
i,j

|i+1〉α α〈i| ⊗ |j 〉β β〈j+1|

× qα
i+1,iq

β

j,j+1

[
Q̂α

i , [V̂ β]†
]+ H.c. (B5)

The effective coupling constant involves the commutator
of the electromagnetic field operators at the opposite ends of
the transmission line. Making use of the explicit form of the
operators V̂ α and Q̂α

i , see Eqs. (A12) and (B1), one finds

[
Q̂α

i , [V̂ β]†
] =

∑
n even

ωn

Cr

cos(πnxα/�) cos(πnxβ/�)

ωα
i+1,i − ωn

+
∑
n odd

ωn

Cr

sin(πnxα/�) sin(πnxβ/�)

ωα
i+1,i − ωn

. (B6)

In particular, for transmon qubits located at the opposite ends
xα = −xβ = �/2 of the transmission line, one has

[
Q̂α

i , [V̂ β]†
] = 1

Cr

∞∑
k=1

(ω2k − ω2k−1) ωα
i+1,i(

ωα
i+1,i − ω2k

)(
ωα

i+1,i − ω2k−1
) .
(B7)

Going to the continuous limit
∑

k → ∫
�dω
2πc

one finds

[
Q̂α

i , [V̂ β]†
] = 1

2Cr

∫
dω

ωα
i+1,i(

ωα
i+1,i − ω

)2 . (B8)

Substituting this expression into Eq. (B5), one finally arrives
at the qubit-qubit coupling constants Jij given in Eq. (5) of the
main text.

APPENDIX C: PHENOMENOLOGICAL LINDBLAD
ANALYSIS

1. Qubit relaxation

We assume that each qubit interacts with its local environ-
ment, and we describe the evolution of the two-qubit density
matrix ρ̂(t ) by the Lindblad equation,

dρ̂(t )

dt
= −i[Ĥ (t ), ρ̂(t )] +

∑
α=L,R

Dα
rel[ρ̂(t )], (C1)

where Ĥ (t ) is the time-dependent Hamiltonian, which de-
scribes the sequence of one- and two-qubit operations applied

during the execution of the SWAP and iSWAP Maxwell
demon, and Dα

rel[ρ̂] is the dissipator that describes the exci-
tation/relaxation processes for the qubits α = L, R,

Dα
rel[ρ̂] =

∑
μ=±

γ α
μ

(
σ̂ α

μ ρ̂
[
σ̂ α

μ

]† − 1

2

{[
σ̂ α

μ

]†
σ̂ α

μ , ρ̂
})

. (C2)

Here, σ̂ α
− = |0〉α α〈1| and σ̂ α

+ = |1〉α α〈0| describe the relax-
ation and excitation processes with rates γ α

± > 0, and {·, ·} is
the anticommutator. If both local environments are in thermal
equilibrium at a temperature �, then γ α

+ = γ α
− exp(−βh̄ω1,0)

with β = 1/kB�.
We assume that the target qubit on the left ini-

tially is in thermal equilibrium with its environment,
ρ̂t (0) = ρ̂th = p0|0〉L L〈0| + p1|1〉L L〈1|, where p0 = [1 +
exp(−βh̄ω1,0)]−1 and p1 = [1 + exp(βh̄ω1,0)]−1 are equilib-
rium occupation probabilities. In contrast, the demon qubit on
the right is prepared in the equal-energy pure state, ρ̂d(0) =
ρ̂p = |χ0〉〈χ0| with |χ0〉 = √

p0 |0〉R + √
p1 |1〉R.

The execution of the iSWAP operation in the presence of
the relaxation processes is described by Eq. (C1) with the
constant Hamiltonian,

Ĥ (t ) = J

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ (C3)

acting during the time interval 0 < t � τiSWAP = h/4J . The
Lindblad equation (C1) with the Hamiltonian (C3) describes
the linear evolution of the 16 components of the density matrix
ρ̂(t ), and its formal result can be written in the form of a
quantum channel,

ρ̂(t = τiSWAP) = �iSWAP[ρ̂t (0) ⊗ ρ̂d(0)]. (C4)

For its numerical solution, we assume that γ±,L = γ±,R = γ±,
such that the result merely depends on the two dimensionless
parameters γ−/J and βh̄ω1,0.

On the other hand, the SWAP demon involves the consec-
utive transformations of the density matrix ρ̂ according to the
quantum circuit shown in Fig. 2 of the main text,

ρ̂(0) → ρ̂ ′
1 = �√

iSWAP|[ρ̂(0)]

→ ρ̂1 = [Ûx ⊗ Ûx] · ρ̂ ′
1 · [Û †

x ⊗ Û †
x ]

→ ρ̂ ′
2 = �√

iSWAP[ρ̂1]

→ ρ̂2 = [ÛyÛ
†
x ⊗ ÛyÛ

†
x ] · ρ̂ ′

2 · [ÛxÛ
†
y ⊗ ÛxÛ

†
y ]

→ ρ̂ ′
3 = �√

iSWAP[ρ̂2]

→ ρ̂3 = [Û †
y ⊗ Û †

y ] · ρ̂ ′
3 · [Ûy ⊗ Ûy], (C5)

where Ûx = exp[−iπ σ̂x/4] is a spin-1/2 rotation by π/2
around the x-axis, and �√

iSWAP is a quantum channel, cor-

responding to
√

iSWAP execution in the presence of decoher-
ence. In the above transformation, we have assumed that the
one-qubit rotations take a negligible time in comparison with
the

√
iSWAP operation, and therefore the relaxation processes

can be neglected during their execution. In Fig. 4(b), we show
the von Neumann entropy S[ρ̂] evaluated for the SWAP and
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iSWAP channels for a qubit evolution including relaxation
processes characterized by γ− = 1/T1.

2. Qubit dephasing

Dephasing is phenomenologically accounted for by the
dissipator

Ddph[ρ̂] =
∑
α,α′

γ αα′
φ

(
σ̂ α

z ρ̂ σ̂ α′
z − {

σ̂ α′
z σ̂ α

z , ρ̂
}/

2
)
, (C6)

where σ̂ α
z = |0〉α α〈0| − |1〉α α〈1| and γ αα′

φ are pure dephasing
rates. In our numerical evaluation of the channel �(t ), we use
the phenomenological parameter γ αα′

φ = 1/Tφ . In Fig. 4(a),
we show the von Neumann entropy S[ρ̂] evaluated for the
SWAP and iSWAP channels for a qubit evolution with pure
dephasing processes.

APPENDIX D: TRANSMISSION-LINE INDUCED
DECOHERENCE

The transmission line induces qubit dephasing due to the
presence of thermal photons, and we present a microscopic
analysis of this effect in Appendix D 1. Furthermore, a lossy
transmission line enhances the qubit’s relaxation rate via the
Purcell effect, which is studied in Appendix D 2.

1. Qubit dephasing

We determine the transmission-line induced dephasing rate
of the qubit. The latter can be derived microscopically by
accounting for the sensitivity of the qubit’s energy levels to
the presence of photons in the transmission line, as described
by the dispersive shift Ĥsh in Eq. (B3). In the qubit subspace,
this Hamiltonian can be written as

Ĥsh =
∑

α

σ̂ α
z ⊗ B̂α (xα ), (D1)

with the bosonic fields B̂α (xα ) given by

B̂α (xα ) = 1

2

∑
n,m

(
ωnωm

C2
r

)1/2
{ ∣∣qα

2,1

∣∣2
ωα

2,1 − ωn

− 2
∣∣qα

1,0

∣∣2
ωα

1,0 − ωn

+
∣∣qα

2,1

∣∣2
ωα

2,1 − ωm

− 2
∣∣qα

1,0

∣∣2
ωα

1,0 − ωm

}
ϕ∗

n (xα )ϕm(xα ) â†
nâm.

(D2)

The second qubit level i = 2 appears through the terms i = 1
in the second line of Eq. (B3). Using the relation |qα

2,1|2 =
2|qα

1,0|2, this expression simplifies to

B̂α (xα ) = (κα )2 hv

�

∑
n,m

{
ωα

an
√

ωnωm(
ωα

1,0− ωn

)(
ωα

2,1− ωn

)

+ ωα
an

√
ωnωm(

ωα
1,0 − ωm

)(
ωα

2,1 − ωm

)
}

ϕ∗
n (xα )ϕm(xα ) â†

nâm,

(D3)

where ωα
an = ωα

1,0 − ωα
2,1 is the anharmonicity of the transmon

spectrum. The dispersive shift Eq. (D1) introduces fluctuating
phases in the qubits, and their thermal averaging provides us

with the dephasing rates; these are given by the irreducible
correlators of the bosonic fields [39],

γ αα′
φ = 1

h̄2

∫
dτ 〈〈B̂α (xα, τ )B̂α′

(xα′
, 0)〉〉. (D4)

Performing the quantum average and going to continuous
frequencies, one obtains

γ αα′
φ = 32π (κακα′

)2
∫

dω Nω(1 + Nω )

×
[

ωα
an ω(

ωα
1,0 − ω

)(
ωα

2,1 − ω
)
][

ωα′
an ω(

ωα′
1,0 − ω

)(
ωα′

2,1 − ω
)
]
,

(D5)

where N (ω) is the bosonic distribution function. Finally, for
similar qubits and a narrow bandwidth �ω of the transmission
line modes, one arrives at the pure dephasing rate

γφ = 32πκ4

[
ωan ω0

(ω1,0 − ω0)(ω2,1 − ω0)

]2

�ω Nω0 (1 + Nω0 ).

(D6)

2. Qubit relaxation

A lossy transmission line enhances the relaxation time of
the qubits through the Purcell effect. The transmission line
losses can be accounted for by the dissipator

Dline[R̂] = γline

[∑
n

ânR̂ â†
n − 1

2
{â†

nân, R̂}
]

(D7)

in the Lindblad equation for the joint evolution of the density
matrix R̂ of the full system, qubits, and transmission line,

dR̂

dt
= −i[Ĥ , R̂] +

∑
α=L,R

Dα
rel[R̂] + Dline[R̂], (D8)

with the original Hamiltonian Ĥ given by Eq. (1), and Dα
rel[R̂]

is a phenomenological dissipator for the qubit α. We perform
the unitary transformation R̂ → R̂ = Û R̂Û †, with Û given in
Appendix B, that integrates out the transmission line modes
in Ĥ to lowest order. Under this action, the bosonic operators
in Dline are shifted according to

ân → Ân = Û ânÛ
† ≈ ân − [Ŝ†, ân]

= ân + i
∑
α,i

qα
i,i+1|i〉α α〈i + 1|

(
ωn

h̄Cr

)1/2

× ϕ∗
n (xα )

ωα
i+1,i − ωn

, (D9)

where ϕn(x) = cos(πnx/�) and ϕn(x) = i sin(πnx/�) for
even and odd integers n, respectively. The shift includes
transitions between qubit levels, and therefore the Lindblad
equation for the reduced density matrix ρ̂(t ) = Trline[R̂(t )] as-
sumes an additional contribution to the qubit’s relaxation due
to the decay into the transmission line. Combining Eqs. (D7)
and (D9), the decay rate of the qubit is enhanced by the term

γ α
Pur = γline

∑
n

ωn

h̄Cr

2
∣∣qα

1,0

∣∣2(
ωα

1,0 − ωn

)2 ≡
∑

n

γ α
n,Pur, (D10)
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where each partial decay rate γ α
n,Pur describes the Purcell decay into a transmission line mode with an index n. Going to the

continuum limit
∑

n → ∫
�dω
2πv

, one arrives at

γ α
Pur = 2γline(κα )2

∫
dω

ω(
ωα

1,0 − ω
)2 . (D11)
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