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We develop a framework to analyze the topological properties of one-dimensional systems with charge
conservation and tendency towards topological superconducting order. In particular, we consider models with N

flavors of fermions and (Z2)N symmetry, associated with the conservation of the fermionic parity of each flavor.
For N = 1, and with no other symmetry other than charge conservation, we recover the result that there is no
distinct topological phase with exponentially localized zero modes. For N > 1, however, we show that the ends
of the system can host low-energy, exponentially-localized modes. To illustrate these ideas, we focus on lattice
models with SO(N ) symmetric interactions and study the phase transition between the trivial and the topological
gapless phases using bosonization and a weak-coupling renormalization group analysis. As a concrete example,
we study in detail the case of N = 3. In this case, the topologically nontrivial superconducting phase corresponds
to a gapless analog of the Haldane phase in spin-1 chains. In this phase, although the bulk hosts gapless modes,
corresponding to composite fermionic excitations with an enlarged Fermi surface, the ends host spin-1/2 degrees
of freedom which are exponentially localized and protected by the spin gap in the bulk. We obtain the full phase
diagram of the model using density matrix renormalization group calculations. Within this model, we identify the
self-dual line studied by Andrei and Destri [Nucl. Phys. B 231, 445 (1984)] as a first-order transition line between
the gapless Haldane phase and a trivial gapless phase. This allows us to identify the propagating spin-1/2 kinks
in the Andrei-Destri model as the topological end modes at the domain walls between the two phases.
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I. INTRODUCTION

One-dimensional topological superconductors have been
in the focus of both experimental and theoretical study in
condensed matter physics in the past decade, due to the unique
excitations, Majorana bound states, they host at their ends
[1–3]. The topological protection of these modes relies on
the bulk of the system being gapped. This is the case if the
one-dimensional system is proximity coupled to a bulk su-
perconductor. However, in a purely one-dimensional system,
in which superconductivity arises from intrinsic attractive
pairing interactions, the bulk of the system remains gapless
due to large quantum phase fluctuations.

In spin-polarized systems with intrinsic pairing interac-
tions, Majorana end modes are, generically, no longer pro-
tected [4,5] since the bulk is gapless to single particle exci-
tations [6,7]. In this work, we discuss situations where well-
defined, exponentially localized end modes can survive in a
purely one-dimensional system in the presence of additional
symmetries. Several examples of such phases are known
[8–17]. However, a general framework that relates these
phases to their noncharge conserving (mean field) counter-
parts has not been given.

Here, we develop a general approach to treat one-
dimensional systems with multiple fermion flavors and intrin-
sic, charge-conserving, attractive interactions. As a test case,
we study a family of models with (Z2)N symmetry, associated
with the conservation of the fermionic parity of each flavor.

We show how the result for the spinless case (N = 1) can be
recovered using this approach. We then address the case of
N > 1 flavors and show that in this case, the system can host
low-energy exponentially localized end modes, reminiscent of
the Majorana zero modes, despite the gaplessness of the bulk.

We discuss the low-energy structure of the gapless topo-
logical phases for arbitrary N and emphasize the connection
between the nature of the low-energy modes in the bulk and
the protection of the end modes. We show that for odd N ,
the bulk hosts low-energy composite fermionic excitations,
with momentum NkF . For even N the bulk hosts only bosonic
excitations.

Further, we present a more detailed analysis of lattice
models with SO(N ) symmetric interactions. In this case, the
protection of the end modes can be understood as arising
from the presence of a spin gap in the bulk. For N = 2,
we recover the phase studied previously in Refs. [12,18,19],
where it was shown that the protection is in fact robust
to breaking of SO(2) symmetry, as long as time-reversal
symmetry is present. For N = 3, we show that the topological
superconducting phase is closely related to the Haldane phase
in spin-1 chains. In this phase, although the bulk is gapless to
single particle excitations, the ends host spin-1/2 degrees of
freedom which are exponentially localized and protected by a
spin gap in the bulk [20].

This paper is organized as follows. We start by present-
ing the model under consideration in Sec. II, discussing the
connection to fully-gapped topological superconductors and
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addressing the stability of the topological phase to quan-
tum phase fluctuations based on general heuristic arguments.
We explain the connection between the nature of the bulk
low-energy modes and the topological protection of the end
modes. In Sec. III, we analyze the low-energy physics of
the gapless topological phase in greater detail, distinguishing
between the cases of even and odd N . In Sec. IV, we focus on
SO(N ) symmetric models. We present a field theory analysis
backing up the heuristic arguments presented previously. To
this end, we discuss a slightly generalized model with on-site
interactions, which hosts both a trivial and a topological gap-
less phase. We discuss a duality transformation relating these
phases and the phase diagram expected from weak coupling
RG. In Sec. V we study in detail the lattice model for N = 3,
with both on-site and nearest-neighbors SO(3) symmetric
pairing interactions, and map out its phase diagram using the
density matrix renormalization group (DMRG) [21,22]. The
topological superconducting phase in this model is identified
as a gapless analog of the symmetry-protected Haldane phase
of S = 1 spin chains. The conclusions are summarized in
Sec. VI.

II. STABILITY OF TOPOLOGICAL SUPERCONDUCTORS
IN 1D CHARGE CONSERVING SYSTEMS

We start by describing a general heuristic argument to
analyze the stability of topological phases in one-dimensional
charge-conserving superconductors and their protected edge
modes.

A. Spinless wire

Consider a one-dimensional system of spinless fermions
with a general short-range Hamiltonian that conserves the
total charge. If the density of particles is incommensurate
with the lattice (i.e., the number of particles per unit cell
is irrational), the system is generally gapless [23]. Our goal
is to map the possible distinct phases of the system and to
understand their low-energy properties; in particular, we ask
about the nature of low-energy gapless modes in the bulk and
whether there are any well-defined zero modes bound to the
edges.

The problem of a single “flavor” of fermions with no sym-
metries other than charge conservation has been analyzed by
various authors [4,5,10,24]; in this case, two distinct gapless
phases are possible, one with a gap to single fermions in the
bulk (but no gap to pairs of fermions) and the other with
no gap to single fermions. Neither of these phases supports
exponentially localized edge modes. Below, we derive this
result using a general, heuristic argument; the argument is then
easy to generalize to systems with additional symmetries.

For concreteness, it is useful to consider the following sim-
ple Hamiltonian of spinless fermions on a one-dimensional
lattice:

H =
∑

i

(−tc
†
i ci+1 + H.c. − μc

†
i ci ) +

∑
i,j

Vij�
†
i �j , (1)

where ci (c†i ) is the annihilation (creation) operator of a
fermion on site i, t is the nearest neighbor hopping amplitude,
μ is the chemical potential, �

†
i = c

†
i c

†
i+1, and Vij < 0 denotes

the strength of attractive interactions. We will assume that
the interactions are short-ranged, i.e., decay sufficiently fast
(faster than any power law) at large distances but not neces-
sarily nearest neighbor. Our considerations will be much more
general and apply to any one-dimensional Hamiltonian of
spinless fermions (including further neighbor hopping, other
forms of interactions, etc.).

We formulate the problem as a path integral and decouple
the interaction term via a Hubbard-Stratonovich transforma-
tion

Z =
∫ ∏

i

DciDc̄iD�ie
− ∫

dτL, (2)

where ci, c̄i are Grassmann variables and the Lagrangian is
given by

L = −
∑

i

c̄i (∂τ − μ)ci +
∑

i

(−t c̄ici+1 + �i c̄i c̄i+1 + H.c.)

+
∑
i,j

(V −1)ij�i�
∗
j . (3)

We assume fluctuations in the amplitude of �i are small and
denote �i = |�|e2iθi . The last term in (3) gives rise to a finite
phase stiffness of θ , allowing us to assume that it changes
slowly between neighboring sites. Hereafter, we assume the
phase varies slowly but omit this term for simplicity.

If the attractive interactions are sufficiently strong and
long-ranged, i.e., if the interactions extend over a finite but
large distance, then the phase θi (τ ) fluctuates slowly in
space and time. Approaching the problem from this qua-
siordered limit, we introduce neutral fermions fi = cie

−iθi .
(Note that under a U (1) gauge transformation ci → cie

iα ,
θi → θi + α leaving the fi fermions unchanged.) Since
the phase varies little on the scale of a lattice spac-
ing, the pairing and hopping terms can be approximated
as �i c̄i c̄i+1 = �f̄i f̄i+1e

i(θi−θi+1 ) ≈ �f̄i f̄i+1 and t c̄ici+1 =
tei(θi+1−θi )f̄ifi+1 ≈ t f̄ifi+1.

Special care needs to be taken when considering the bound-
ary conditions of the fi fermions on a closed ring. Phase con-
figurations where the phase θi winds by nθπ , where nθ ∈ Z
(i.e., θNx

≈ θ1 + nθπ , where Nx is the number of sites) should
be accounted for. To avoid a discontinuity in the parameters
of the Hamiltonian across the bond from site Nx to 1, we can
encode the winding number in the boundary conditions of the
fermions: fNx+1 = (−1)nθ f1.

After the transformation to the fi fermions, and assuming
a nearly-static phase configuration, the Lagrangian is written
as:

L =
∑

i

[f̄i (∂τ − μ)fi + ini∂τ θi]

+
∑

i

(−t f̄ifi+1 + �f̄i f̄i+1 + H.c.), (4)

where ni = f
†
i fi = c

†
i ci is the occupation of site i, and the

boundary conditions of the fermions are periodic (antiperi-
odic) if the winding number of the phase is even (odd),
respectively. Hence, the problem of finding the phase structure
of the Hamiltonian (1) has been mapped to the problem
of classifying the possible phases of the f fermions that
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obey a mean-field-like static Hamiltonian with a dynamically
determined boundary condition.

For −2t < μ < 2t , the f fermions realize a nontrivial,
class-D [25] topological superconductor, i.e., a Kitaev chain.
However, we argue below that the topological properties of the
phase (and in particular, its protected zero modes) are lost due
to the coupling between the f fermions and the phase winding
of the superconducting order parameter, nθ . This coupling
allows for low-energy single particle excitations in the bulk of
the system, unlike the mean-field case, where single fermions
are gapped in the bulk. Such excitations can couple between
the Majorana modes at the ends of the chain, removing the
exponential ground state degeneracy.

To see that the bulk is gapless to single particle excitations
consider a system with periodic boundary conditions and N
fermions. Recall that a Kitaev chain on a closed ring has a
unique ground state with a well defined fermion parity [26].
Adding a single fermion excites the system to energy �, the
magnitude of the superconducting gap. However, in our case,
this gap can be avoided by introducing a π phase winding
in θ , changing the boundary conditions of the f fermions
from periodic to antiperiodic or vice versa. The Kitaev chain’s
ground state has an opposite fermion parity with periodic and
antiperiodic boundary conditions [26]. Therefore, the energy
cost of adding a single fermion is only due to the extra phase
winding (which costs an energy proportional to the inverse of
the system size; this is nothing but the charging energy). Due
to the presence of low energy single fermion excitations in
the bulk, the end modes are no longer exponentially localized;
they can leak into the bulk and the localization becomes power
law, with a power dictated by the Luttinger parameter in the
wire [4,5].

If the f fermions in (4) realize a trivial superconducting
phase, the superconducting gap � cannot be avoided when
an extra fermion is added to the system, since changing the
boundary conditions no longer changes the fermion parity of
the ground state. Hence, the bulk is gapped to single particle
excitations. However, in this case there are no low-energy
end modes. This establishes that the single-flavor chain (N =
1) supports two distinct phases, as has been discussed in
Refs. [7,24], neither of which supports exponentially localized
end modes.

The same conclusion can be reached from a bosonization
analysis. The system in this case maps to a single-flavor
Luttinger liquid which has no gap to single fermions. How-
ever, the argument above is more general: It implies that,
as a matter of principle,1 a topological phase with a single
Majorana end mode cannot be stable if charge is conserved,
since the bulk must be gapless to single fermion excitations.

B. Wire with N flavors

Let us now study a less trivial situation where several
flavors of fermions are present. We shall consider a model
with N flavors, ca=1,...,N , each with a Hamiltonian of the form
of Eq. (1), and such that the different flavors are coupled only

1This conclusion does not rely on any particular field theoretic
formulation; it follows directly from the action (4).

by a pair hopping term. The total Hamiltonian is given by

H =
N∑

a=1

Ha + Hint, (5)

where

Ha =
∑

i

(−tc
†
i,aci+1,a + H.c. − μc

†
i,aci,a )

+
∑
i,j

V a
ij �

†
i,a�j,a,

Hint =
∑

i,j,a,b

V ab
ij �

†
i,a�j,b, (6)

where �
†
i,a = c

†
i,ac

†
i+1,a is a p-wave pair creation operator

for a single flavor and V a
ij < 0 denotes the attractive interac-

tion within each flavor channel. The pair hopping couplings,
V ab

ij = V ba
ij , are assumed to be short ranged. We shall also

restrict ourselves to attractive interactions V ab
ij < 0.

The Hamiltonian (6) has a global U (1) symmetry associ-
ated with total charge conservation and a (Z2)N symmetry
associated with the conservation of the fermionic parity of
each flavor. Introducing the fermionic parity operator associ-
ated with a flavor a,

Pa = (−1)na , na =
∑

i

c
†
i,aci,a, (7)

we see indeed that [Pa,H ] = 0, a = (1, . . . , N ). The above
symmetry is of utmost importance in regards to the topolog-
ical properties of (6). Indeed, as shown in Ref. [5], if not for
the above (Z2)N symmetry, the topological character of the
N Kitaev chains would not survive when charge conservation
is imposed. As we shall argue below, the (Z2)N symmetry
(7) protects the end modes associated with each chain from
leaking into the bulk and allows, even in a charge conserving
system, for symmetry protected topological (SPT) phases for
all N > 1. In Sec. V we will consider a concrete model in
which this symmetry arises naturally as a subgroup of the
SO(3). Below, we will only assume that the (Z2)N symmetry
(7) is present and keep the discussion as general as possible,
allowing V a

ij < 0 and V ab
ij < 0 to be arbitrary.

1. Bulk spectrum

Following the same procedure as in Sec. II A, we introduce
Hubbard-Stratonovich fields �i,a = |�i,a|e2iθi,a and neutral
fermions fi,a = ci,ae

−iθi,a . We neglect the amplitude fluctu-
ations of the superconducting order parameters, replacing
|�i,a| by �a > 0. The Lagrangian takes the form

L =
N∑

a=1

La + Lint, (8)

where La is the Lagrangian associated with a single Kitaev
chain of flavor a

La =
∑

i

[f̄i,a (∂τ − μ)fi,a + ini,a∂τ θi,a]

+
∑

i

(−t f̄i,afi+1,a + �a f̄i,af̄i+1,a + H.c.), (9)
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and

Lint =
∑
i,j

∑
a �=b

J ab
ij cos 2(θi,a − θj,b ), (10)

where J ab
ij = 2�a�b(V ab

ij + V a
ij δab )

−1
are Josephson cou-

plings which tend to lock the phases θi,a together. As in the
single-flavor case, on a ring with Nx sites, the fermions satisfy
the boundary conditions: fNx+1,a = (−1)nθ,a f1,a , where nθ,a is
the winding number of the superconducting phase of flavor a:
θNx,a ≈ θ1,a + nθ,aπ [see discussion above Eq. (4)].

Assuming that the phases θi,a are slowly varying, one may
integrate out the f fermions. In the low-energy limit the
Lagrangian (8) reduces to [5]

L =
∫

dx

N∑
a=1

Ka

2π

(
1

va

(∂τ θa )2 + va (∂xθa )2

)

+
∫

dx

N∑
a �=b=1

Gab cos 2(θa (x) − θb(x)), (11)

where θa is the phase field of flavor a, Ka is the Luttinger
parameter associated with the flavor, va is the respective
velocity, and Gab < 0 are effective Josephson couplings that
lock the phases to each other such that θa (x) − θb(x) = (pa −
pb )π, pa ∈ Z.

Consider now adding a single fermion of a given flavor to
a system on a ring. As in the spinless case analyzed above,
the energy cost of adding a single fermion of flavor a can
be avoided by introducing a phase winding in the field θa .
However, as the phases θ1,..,N are now locked to each other
by the Josephson couplings (10), such a phase winding costs
a finite energy �σ . We conclude, therefore, that for N > 1
there is a gap to adding a fermion of a single flavor. The same
reasoning can be applied to excitations involving adding or
removing M fermions of different flavors and leads to the
conclusion that they are all gapped unless M = N .

An excitation involving adding (or removing) a single
fermion of each flavor, however, is gapless (i.e., costs energy
proportional to the inverse of the system size). To see this,
consider introducing a phase winding simultaneously in all the
fields θa , thus avoiding the spin gap �σ . Doing so switches
the boundary conditions of fermions of all the flavors fa ,
while at the same time the fermionic parities of all N flavors
are changed, Pa → −Pa (a = 1, . . . , N), thus avoiding the
superconducting gap �a in each chain. The only energy cost
then is due to the phase twist which scales as 1/L.

We therefore conclude that there are two types of gapless
excitations in the system. Gapless excitations of the first type
involve adding (or removing) pairs of fermions of the same
flavor, without changing the fermionic parity of any flavor
(e.g., by acting with the p-wave creation operator �

†
i,a). Ex-

citations of the second type are composite operators involving
N fermions of different flavors that change the parity of all
flavors. In this respect the composite operators

c̃
†
i,Q ∼ c

†
i,a1

...c
†
i,aM

ci,b1
...ci,bN−M

, (12)

which have charge Q = 2M − N , have a finite overlap with
the gapless modes of the system. These composite excitations
are fermionic for N odd and bosonic for N even. As a

consequence, when N is even the low-energy excitations are
always bosonic whereas, when N is odd, there exist both
fermionic and bosonic excitations: While the fermions change
the fermionic parity of all flavors, the bosons do not.

2. End modes

Let us now investigate the fate of the end modes in a
system with N flavors, in light of the preceding discussion.
If we neglect the fluctuations of the phase in the action of
the fa fermions [Eq. (10)] then for −2t < μ < 2t , each flavor
hosts a pair of zero-energy Majorana modes, γL,a and γR,a ,
localized at the two ends of an open chain. We shall argue
that the low-energy excitations in the bulk cannot couple the
zero modes of the two edges; therefore, a system with open
boundary conditions has exponentially localized edge modes,
even when the phase fluctuations are taken into account.

To see this, recall that the operators that create gapless bulk
excitations either preserve the fermionic parity of each flavor
separately, or change the fermionic parity of all flavors. In
the first case, their action on the low-energy Hilbert space
associated with each edge has to be proportional to the identity
operator, since any nontrivial product of γL(R),a’s that act on
the left (right) edge changes the parity of at least one flavor.
Operators of the form (12), that change the fermionic parity of
all the flavors, must act on the low-energy Hilbert space of the
left (right) edge as �N

a=1γL(R),a . Hence, the coupling between
the two ends is necessarily proportional to total fermionic
parity:

P = �N
a=1Pa = �N

a=1(−iγL,aγR,a ). (13)

Consequently, this coupling does not lift the topological de-
generacy within a given parity sector.

Finally, we discuss the topological degeneracy associated
with the edge modes. As usual, we label the states associated
with the edges by the occupation number of the complex
(Dirac) fermions da = (γL,a + iγR,a )/2. These states can be
separated into two sets of 2N−1 states of even and odd total
fermionic parity. In a system with overall conservation of
the number of fermions, states with opposite fermionic parity
must also have different charges; therefore, we conclude that
the only effect of charge conservation on the low-energy part
of the spectrum is to lift the degeneracy between the even and
odd parity states by an amount proportional to the charging
energy of the system, which scales like 1/L. The low-energy
manifold in each charge sector contains 2N−1 states whose
energy separation is exponentially small in the size of the
system.

The Majorana zero modes at each edge satisfy the Clifford
algebra, {γL,a, γL,b} = 2δa,b and {γR,a, γR,b} = 2δa,b. There-
fore, the low-energy Hilbert space of each edge can be de-
scribed as a SO(N ) spinor, |αL〉 and |αR〉. When N is odd,
there is a single irreducible spinor representation αL(R) of
dimension 2(N−1)/2 of the SO(N ) group generated by

SL(R),ab = 1

4i
[γL(R),a, γL(R),b], (14)

and, in a given parity sector, the 2N−1 topological degener-
acy is exhausted by the tensor product states |αL〉 ⊗ |αR〉.
When N is even the situation is more subtle. Now, there
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are two irreducible spinor representations of (14) of dimen-
sion 2N/2−1. The spinors that belong to the two representa-
tions, |αL(R),±〉, are eigenvectors of the edge fermionic par-
ity operators PL(R) = (−i)N/2�N

a=1γL(R),a: PL(R)|αL(R),±〉 =
±|αL(R),±〉. For N even, the fermionic parity operator (13) can
be written as P = (−1)N/2PLPR with [PL, PR] = 0. There-
fore, the low energy subspace in a given parity sector is
spanned by the tensor products |αL,±〉 ⊗ |αR,±〉 for N/2 even
and |αL,±〉 ⊗ |αR,∓〉 for N/2 odd.

Topological phases of charge-conserving 1D supercon-
ductors in other symmetry classes can be understood in a
similar way to the arguments laid out above. For example, in
class DIII (time reversal with T 2 = −1) [25], the f fermions
carry spin 1/2. The f fermions then form one of the two
distinct phases of mean-field Hamiltonians in class DIII. In
either phase, twisting the boundary conditions does change
the fermion parity of the ground state; therefore, there is a gap
to single fermions in the bulk. However, in the topological
phase each edge supports a topologically protected Kramers’
pair, where the two states have an opposite local fermion
parity [12].

III. LOW-ENERGY DESCRIPTION OF THE
TOPOLOGICAL PHASE

As seen in the above discussion, the stability of the topo-
logical phase is ensured by both the (Z2)N symmetry and the
particular nature of the gapless modes of the system: The fact
that the operators that create these modes are either even under
the fermionic parities of all the flavors or odd under all of
them is essential in protecting the zero modes at the ends.
We now turn to the more familiar description in terms of the
effective low-energy bosonized theory, making contact with
the considerations above.

As before, we assume that in the low-energy limit the
phases associated with different flavors are locked together.
Denoting the collective phase by �(x, τ ) the effective low-
energy Lagrangian of the system is that of a generalized
Luttinger liquid [27]

LLutt = K

2π

∫
dx

(
1

v
(∂τ�)2 + v(∂x�)2

)
, (15)

where K is the Luttinger parameter and v is the charge
velocity. As the � field in (15) is conjugate to the total density
of particles, ρ(x) = ∑N

a=1 ρa (x),

[ρ(x),�(y)] = iδ(x − y), (16)

we define the dual field �(x), as ρ(x) ≡ ∂x�(x), with
[�(x),�(y)] = iY (y − x), Y (u) being the Heaviside step
function. The �(x) and �(x) fields are related to the flavor
bosonic fields, φa (x) and θa (x), associated with the Luttinger
liquids describing each flavor (12) by the canonical transfor-
mation

� = 1

N

N∑
a=1

θa, � =
N∑

a=1

φa. (17)

These fields are related to the total charge Q and current J ,

J = N

π

∫ L

0
dx ∂x�, Q =

∫ L

0
dx ∂x�. (18)

We therefore find that the total current of the system is quan-
tized in units of N . As we show below, this is a consequence
of both the presence of a flavor gap and of the topological
nature of the phase.

The gapless excitations of the generalized Luttinger liquid
(15) can be expressed in terms of the vertex operators

Vn,m(x) ∝ ei[n�(x)+mπ�(x)], (19)

which have the scaling dimension �nm = (n2/K + m2K )/4.
They carry charge and current

Q = n, J = mN, (n,m) ∈ Z, (20)

which owing to the relation between current and momentum
have momentum P = JkF = mNkF , where kF is the Fermi
momentum of the noninteracting fermions ca . In a Luttinger
liquid, the integers (n,m) are not arbitrary and depend on the
boundary conditions. For instance, in a system with periodic
boundary conditions, the total charge Q and current J carried
by an excitation are such that Q ± J is even,2 which translates
in the present case to

n ± mN even, (n,m) ∈ Z. (21)

We now observe that, due to (16), the vertex operator
eiπ�(x) introduces a π kink in the phase � and hence from
(17) it creates π kinks in the phases of all the flavors, θa . We
therefore conclude that switching the parity of all N chains
simultaneously results in inserting a current N . We may now
read off from (21) the nature of the massless excitations in the
system. When N is even there are only bosonic excitations
with even charges n = 2p. These excitations may or may not
change the fermionic parity of all the flavors depending on the
parity of m. When N is odd, fermionic excitations with odd
charges, e.g., n = 2p + 1, necessarily change the fermionic
parity of all the flavors since from (21) m is odd. In contrast,
bosonic excitations with even charges, e.g., n = 2p, must be
accompanied by an even number m of π kinks which do not
change the fermionic parity of the flavors. We thus recover the
results discussed in Sec. II B.

A. N odd and composite fermionic excitations

When N is odd the excitations are either fermionic, for n

odd, or bosonic, for n even. The fundamental excitation in this
case is the charge Q = 1 fermion created by [see Eq. (12)]

�
†
F (x) ∝ c

†
j,a1

...c
†
j,a(N+1)/2

cj,b1
...cj,b(N−1)/2

, (22)

where x = ja0, a0 being the lattice spacing, and j is an
integer denoting the lattice site. This operator has a finite
overlap with the vertex operators (19). For instance, to leading
order we have

�
†
F (x) ∼ �

†
L eiNkF x + �

†
R e−iNkF x, (23)

where �
†
L/R ∝ ei[�(x)±π�(x)] creates a charge one fermion

with left and right moving excitations at momenta ±NkF .

2This is due to the fact that only operators for which m + n is even
are expressible as a combination of electron and hole operators and
are hence local in space.
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The charge-1 fermion (22) can hence be interpreted as a
spinless fermion with an enlarged Fermi surface at ±NkF .
Furthermore, as discussed in Ref. [27], the system may be
viewed as a fermionic Luttinger liquid made of interacting
composite fermionic particles with Luttinger parameter K . In
this respect notice that when N = 1, the composite fermionic
particle is identical to the bare fermion, and one recovers the
usual Luttinger liquid description.

At this point it is worth stressing that although, when N

is odd, the low-energy physics is described by interacting
spinless charge-1 fermions, the generalized Luttinger liquid
state for N > 1 is different from that of a single flavor
system. In particular, when expressed in terms of the lattice
fermions, the quantum numbers of the low-energy excitations
are different, as can be seen from (21), as well as their
momentum scale which is NkF . They do, however, share an
essential feature in that there is no gap to Q = 1 fermionic
excitations. Hence, the superconducting character of the phase
for N odd is to be understood as a phase where the p-wave pair
correlation function decays slower at large distances than any
other correlation function, despite having no gap to adding
single fermions.

Consider for instance the pair creation operator

�†
a (x) = c

†
j,ac

†
j+1,a ∝ e2i�(x). (24)

As we have 〈�†
F (x)�F (0)〉 ∼ x−(K+K−1 )/2 and

〈�†
a (x)�a (0)〉 ∼ x−2/K , the pair correlations dominate

for K > 1/
√

3.
Both the composite fermionic operator and the pair cre-

ation operators have subdominant components at the higher
momenta P = (2p + 1)NkF and P = 2pNkF . These are
generated by the charge neutral operator e2iπ�(x) which in-
troduces a 2π kink in the � field and hence does not change
the boundary conditions of the f fermions. The latter operator
corresponds to the N th moment of the density operator [23]

ρN (x) ∼ c
†
j,1...c

†
j,Ncj,1...cj,N

∝ e2iπ�(x)+2iNkF x + H.c. (25)

For instance, the density operator ρ(x), as any other bosonic
operator, has only momentum components at 2mNkF and is
given to leading order by

ρ(x) ∼ ρ̄ + ∂x�(x) + ANe2iπ�(x)+2iNkF x + H.c., (26)

where AN is a nonuniversal constant.

B. N even and composite bosonic excitations

Given the constraint (21), when N is even, n has to be even
as well, independently of m. Hence, there can only be bosonic
excitations and there are no fermionic excitations in the low
energy spectrum, contrary to the odd N case. To leading order,
the elementary excitation in this case is given by the bosonic
vertex operator

�
†
B (x) ∝ e2i�(x), (27)

which has zero momentum. In terms of the lattice fermions,
both the charge Q = 2 pair creation operator (23) and the
charge Q = 2 composite operator (12), with M = N/2 + 1,

have a finite overlap with (27). This stems from the fact
that since N is even, the composite operators (12) always
introduce an even number of ±π kinks in the phases θa

which may average to zero for the mean � phase (17). Higher
momentum corrections at P = pNkF to (27) are of course
also generated. The charge neutral operator that generates
them is eiπ�(x) which creates a π kink in the phase �. In terms
of the fermions it is given by the composite density

ρN
2

(x) ∼ c
†
j,a1

...c
†
j,aN/2

cj,b1
...cj,bN/2

∝ eiπ�(x)+iNkF x + H.c. (28)

We find, in particular, that the total density in this case has
momenta components at ±NkF

ρ(x) ∼ ρ̄ + ∂x�(x) + BNeiπ�(x)+iNkF x + H.c. (29)

IV. SO(N) SYMMETRIC COUPLED CHAINS

We now turn to illustrate the principles we discussed above
in a simple lattice model. We shall consider the situation
where an SO(N ) symmetry is present and set V ab

ij = Vij =
V δi,j in Eq. (6). An on-site repulsive interaction will also be
included. The Hamiltonian is given by

H = −t

N∑
i,a=1

(c†i,aci+1,a + H.c.) + V
∑

i

�
†
i �i

+ U

2

∑
i

(
N∑

a=1

ni,a

)2

, (30)

where the operator

�
†
i =

N∑
a=1

c
†
i,ac

†
i+1,a (31)

creates a pair in a SO(N ) singlet state and ni,a = c
†
i,aci,a is the

density of the fermion of flavor a at site i. In the following we
shall assume V < 0 and fix the filling to n̄ = 1/N for each fla-
vor (one fermion per site). As we show below, the model (30)
displays a rich phase diagram, including both insulating and
gapless phases, either with or without topologically protected
edge modes.

In the following, we shall investigate in more details the
physics associated with (30) in the weak-coupling limit, i.e.,
|U |/t � 1 and |V |/t � 1. In Sec. V we will study numer-
ically the case of N = 3 in both the strong and the weak
coupling limits.

A. Field theory analysis

In the weak-coupling limit, the low-energy physics asso-
ciated with (30) is obtained in the standard way by lineariz-
ing the spectrum around the two Fermi points ±kF (kF =
πρ̄) associated with the noninteracting fermions. The lattice
fermions cj,a are expressed in terms of left and right moving
fermionic modes as

cj,a ∼ �L,ae
−ikF x + �R,ae

ikF x, (32)

where, similarly to the definitions in the previous section, x =
ja0, a0 being the lattice spacing, and j is an integer. The next
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step is to bosonize the fermions, writing �L(R),a as

�L(R),a (x) = κa√
2πa0

e−i[θa (x)±πφa (x)], (33)

where κa are Klein factors satisfying {κa, κb} = 2δa,b to en-
sure fermionic anticommutation relations. The bosonic fields
φa (x) and θb(x) satisfy the equal-time commutation relations
[φa (x), θb(y)] = iδa,bY (y − x) and are related to the current
density, ja (x) = ∂xθa (x)/π , and to the density of each flavor

ρa (x) � ρ̄ + ∂xφa (x) + i

2πa0
e2iπφa (x)+2ikF x + H.c., (34)

where ρ̄ = n̄/a0. At this point it is convenient to perform
a change of basis to the bosonic fields (�, ��) and (�, ��)
corresponding to a collective (or charge) mode and to N − 1
spin modes as follows

� =
N∑

a=1

φa, �� =
N∑

a=1

�ωaφa,

� = 1

N

N∑
a=1

θa, �� =
N∑

a=1

�ωaθa, (35)

where �ωa=1,...,N are N − 1 components vectors satisfying
�ωa · �ωb = δa,b − 1/N and

∑N
a=1 �ωa = 0. The latter condi-

tions ensure that the transformation (35) is canonical. For
completeness we write also the inverse transformation

φa = �/N + �ωa · ��,

θa = � + �ωa · ��. (36)

Using these definitions, we find that the low-energy physics
of our model is described by the following bosonized Hamil-
tonian with decoupled spin and charge sectors, H = Hc + Hs ,
where

Hc = vc

2π

∫
dx

[
K(∂x�)2 + π2

K
(∂x�)2

]
, (37)

and

Hs =
∫

dx

{
vF

2π
[(∂x

��)2 + π2(∂x
��)2] + g⊥

2
(∂x

��)2

− 1

2π2a2
0

∑
a<b

[λ cos(2π �αab · ��) + λ̃ cos(2�αab · ��)]

}
.

(38)

In Eq. (37), vF = 2ta0 sin(πρ̄a0) is the Fermi velocity of

the noninteracting fermions, K = N/

√
1 + (N−1)U+V̄

πvF /a0
, where

V̄ = 2V (1 − cos (2kF a0)), is the charge Luttinger parameter,
and vc = vF /K is the charge velocity. In the spin sector (38),
�αab = �ωa − �ωb and the couplings, λ = (g‖ + g⊥)/2 and its
dual λ̃ = (g‖ − g⊥)/2, are related to U and V̄ by g‖,⊥/a0 =
−U ∓ V̄ .

1. Spin sector

Let us first discuss the spin sector. The Hamiltonian (38)
describes the competition between two mutually incompatible
ordering tendencies favored by the two cosine terms in (38).
We thus expect that either the �� field or its dual �� gets locked

when these terms are relevant. The phase diagram in the
spin sector results from a delicate balance between the three
interaction terms entering (38). The RG equation associated
with the couplings in (38) are given to the one-loop order by
[28]

dg̃‖
dt

= (N − 2)g̃2
‖ + (N + 2)g̃2

⊥, (39)

dg̃⊥
dt

= 2Ng̃‖g̃⊥, (40)

where we have rescaled the couplings as g̃‖,⊥ = g‖,⊥/4πvF .
Let us first consider the more interesting situation of an

attractive pairing interaction, i.e., when V̄ < 0. In this case the
RG flow always drives the system towards strong coupling and
a spin gap opens. The nature of the resulting phase depends
on the relative strength of the on-site interaction U and the
pairing term. We distinguish between two phases.

SU (N ) phase. When U < V̄ < 0, i.e., when the on-site
attraction dominates the pairing term, the RG flow drives the
system toward the attractive ray: g‖ = g⊥ = λ > 0. On this
line the interacting part of (38) takes the form

Hint = λ

2

∫
dx

[
(∂x

��)2 − 1

π2a2
0

∑
a<b

cos(2π �αab · ��)

]
.

(41)
When λ = g⊥ > 0, the interaction is relevant and a spin gap,
�σ ∝ e−1/2Nλ, opens. The spin field �� gets locked in such
a way that the cosine terms in (41) are maximal. Using (36)
we find that �αab · �� = φa − φb, which implies for the flavor
fields: φa − φb = p, p ∈ Z. As a consequence the fluctua-
tions of the different flavor densities, na (x) in (34), are in
phase with each other. In this phase N fermions of differ-
ent flavors bind together into charge Q = N spin-singlets,
forming a compressible fluid. In particular, for N = 3, this
is the trionic phase discussed in Ref. [29] in which triplets of
fermions bind together. This phase is “topologically trivial”
(i.e., it has no protected edge states) since it is adiabatically
connected to a phase, obtained when U = −∞, where the
N -fermion bound states can be described essentially as free
spinless fermions.

Although it is not obvious when written in terms of the
spin field ��, the Hamiltonian (41) possesses an emergent
SU (N ) symmetry. To see this, observe that this fixed point
corresponds to the pairing V flowing to zero at which the
lattice Hamiltonian (30) is clearly SU (N ) invariant. Therefore
in the whole domain U < V̄ < 0 an SU (N ) symmetry is
dynamically enlarged in the low-energy limit.

Dual ̂SU (N ) phase. When the pairing term dominates
the physics, e.g., when |V̄ | > |U |, the RG drives the system
toward the attractive ray: g‖ = −g⊥ = λ > 0, at which the
interacting part of (38) takes the form

Hint = λ̃

2π2

∫
dx

[
(∂x

��)2 − 1

a2
0

∑
a<b

cos(2�αab · ��)

]
. (42)

As in the previous phase a spin gap, �σ ∝ e−1/(2Nλ̃), opens but
this time it is the �� field that gets locked instead of ��. From
(36), we find that this implies: θa − θb = pπ, p ∈ Z, exactly
as in the gapless topological phase discussed in Sec. II B. We
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therefore expect that in the dual ̂SU (N ) phase the system
host protected zero-energy edge states. These edge states
transform as a spinor representation of SO(N ), as discussed
in Sec. II B 2.

The fixed points Hamiltonians (41) and (42) are related by
the duality transformation

� : �� � π ��, �2 = 1. (43)

We therefore find that the massless topological phase is dual in
the sense of (43) to the topologically trivial SU (N ) phase. As
discussed in Ref. [30] the SU (N ) symmetry of (41) translates
by the duality (43) into a dual ̂SU (N ) symmetry for (42).3

Self-Dual phase transition line. When V̄ = U there is a
quantum phase transition between the two phases. At this
point, g⊥ = 0, g‖ = λ > 0, and the interacting part of Hamil-
tonian (38) takes the form

Hint = −λ

2π2a2
0

∫
dx

[∑
a<b

cos(2π �αab · ��) + cos(2�αab · ��)

]
,

(44)

which is invariant under the duality transformation (43). This
is the self-dual line, separating the two dual SU (N ) and
̂SU (N ) symmetric phases discussed above. As shown by

Andrei and Destri [31], the model (44) is integrable and a
spin gap �σ ∝ e−1/(N−2)λ̃ is still present [notice that the spin
gap on the self-dual line is parametrically smaller than in both
SU (N ) and ̂SU (N ) phases]. This suggests that the phase tran-
sition between the trivial SU (N ) phase and the dual ̂SU (N )
topological phase is of first order. The model (44) undergoes
dynamical symmetry breaking of the dual symmetry (43) with
kinks that carry zero modes transforming according to the
spinor representation of SO(N ). In the particular case of N =
3 the model hosts propagating spin-1/2 kinks. This allows us
to interpret these spinor kinks as the end modes hosted by the
dynamical domain walls between the trivial and topological
phases. We will address this result further in Sec. V.

Before ending the description of the phase diagram of
(30) let us briefly discuss the simpler situation of a repulsive
pairing interaction V̄ > 0. In this case, if U > 0 then the in-
teraction is always irrelevant, and the system remains gapless.
When U < 0 the interaction is relevant and the system flows
toward the strong coupling fixed point associated with the
topologically trivial SU (N ) phase discussed above.

2. Charge sector

In all phases discussed above the low-energy sector is
described by the generalized Luttinger liquid Hamiltonian
(37). As far as charge excitations are concerned, the low-
energy physics depends only on the nonuniversal Luttinger
parameters K (U,V ) and vc(U,V ). However, the low-energy
excitations in the SU (N ) and ̂SU (N ) symmetric phases have

3In the terminology used in Ref. [30] the dual fixed point Hamilto-
nian (41) belongs to the class AI and is is associated with the SO(N )
symmetry of the problem.

a different character. Their nature is encoded in the total
charge Q and total current J (or zero-mode) spectrum of (37).

In the gapless topological phase, as discussed in Sec. III,
we found that, due to the topological nature of a single
Kitaev chain and the locking of the spin field ��, the low-
energy excitations either change the parity of all the flavors
simultaneously or do not change them at all. We then deduced
that the total charge and current in the system were given by
(20)

Q = n, J = mN, Q ± J even, (45)

where (n,m) ∈ Z. The fundamental excitation is either a
charge Q = 2 boson for N even or a composite fermion
of charge Q = 1 for odd N [27]. In both cases the Fermi
momentum PF is enlarged to PF = NkF /2 and PF = NkF ,
respectively.

As seen above, the SU (N ) symmetric topologically trivial
phase was obtained from the topological ̂SU (N ) symmetric
one by the duality transformation (43) on the spin bosonic
fields �� and ��. In the charge sector the latter duality translates
onto the charge fields

N� � π�. (46)

We may then deduce the zero mode spectrum of the Luttinger
liquid Hamiltonian (37) in this phase

Q = nN, J = m, Q ± J even. (47)

We immediately see that it is the total charge of the system,
instead of the current, that is quantized in units of N . The
fundamental excitations are SU (N ) singlet bound states made
of N fermions. They are bosons for N even and fermions for
N odd. In both cases the Fermi momentum is that of the lattice
fermions, e.g., PF = kF .4

V. THE GAPLESS HALDANE PHASE IN SO(3)
SYMMETRIC FERMION CHAINS

In order to illustrate the ideas we laid out above, we now
study the model (30) in more detail, focusing on the case
of N = 3. We consider the system to be at 1/3 filling (one
fermion per site) and start by discussing the different limits of
the model and the phases that are expected to arise in those
limits. A quantitative phase diagram, obtained using DMRG,
is presented in Fig. 1 and will be described in greater detail in
Sec. V A.

We first consider the case of repulsive on-site interactions,
U > 0, and vanishing pairing interactions, V = 0. In this
case, the Hamiltonian has an SU (3) symmetry. In the strong
coupling limit, U � t , we expect the system to be in a Mott
phase with a gapped charge sector [32]. The low-energy
effective Hamiltonian, obtained by second-order perturbation
theory in t/U , is then given by the bilinear-biquadratic spin-1
model

H =
∑

i

(J1 �Si · �Si+1 + J2(�Si · �Si+1)2), (48)

4In the classification of Luttinger liquid proposed in Ref. [27] these
two phases belong to the classes AI and A0.
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FIG. 1. Phase diagram of the model (30) with N = 3 at 1/3
filling, as a function of the on-site interaction U and nearest neighbor
pairing interaction V < 0. For repulsive on-site interactions, U > 0,
a charge gap opens as U is increased and the system goes from the
gapless to the gapped Haldane phase. For large enough |V | a transi-
tion to the fully gapped dimerized phase is observed. For attractive
on-site interactions, U < 0, the system undergoes a transition into
the trionic phase, in which triplets of fermions bind together into
spin singlets. For large attractive U and V the system tends to phase
separate. For details on how the phase boundaries are determined,
see main text and Appendices A 2, A 3.

where Sa
i = iεabcc

†
i,bci,c are S = 1 operators, and J1,2 = J =

2t2/U . The Hamiltonian (48) was studied extensively (see,
e.g., Refs. [33,34] and the references therein) and exhibits a
rich phase diagram as a function of J2/J1. In particular, for
J1 = J2, the model is critical and described by a level-one
SU (3) Wess-Zumino-Witten model [28].

When a nonzero V is introduced, the symmetry of the
model is reduced to SO(3). In the limit U � t and for V ∼
t2/U , the low-energy effective Hamiltonian is given by (48)
with J1 = J and J2 = J + V . While for V > 0 the system is
critical [28], for V < 0 it is fully gapped. For −2J < V < 0
the system belongs to the Haldane phase with decoupled
spin-1/2 degrees of freedom localized at its ends, similarly
to the AKLT model [35]. For V < −2J a dimerized phase,
which breaks translational invariance, is expected.

Going back to the weak coupling limit, i.e., |U |, |V | � t ,
we recall the analysis presented in Sec. IV A, which suggested
that for U > 0 and V < 0 the system is in the gapless topo-
logical phase. To understand the nature of the topological
phase and the end modes in this case, recall that the mean-
field description of this phase hosts three Majorana zero
modes at each end of the chain, γL(R),a . These modes can
be combined to form a spin-1/2 degree of freedom Sa

L(R) =
− i

4εabcγL(R),bγL(R),c, similarly to the spin-1/2 degrees of
freedom in the Haldane phase. In the gapless topological
phase, these end modes remain localized at the two ends of
the system and cannot couple to one another due to the spin
gap in the bulk. Due to the close relation with the Haldane
phase, we refer to this phase as the gapless Haldane phase.

Finally, for attractive on-site interactions, U < 0, we ex-
pect to find a phase transition into the trivial, trionic phase,
in which triplets of fermions of different flavors bind together
forming an SU (3) singlet.

A. Phase diagram

We describe below the phase diagram of the model, as a
function of the on-site interaction strength U , and the nearest
neighbor pairing V < 0, obtained using DMRG [36] and
presented in Fig. 1. In the DMRG calculation, we represent
each fermionic flavor as a single chain, and work in the basis
c±1 = (c1 ± ic2)/

√
2, c0 = c3, such that S3 = n+1 − n−1 is

conserved (hereafter, we will denote S3 by Sz). In agreement
with the weak coupling analysis presented in Sec. IV A, we
find that as |V | is increased, a finite spin gap opens in the
system (see Appendix A 1 a for more details). Hence, all the
phases discussed below have a fully gapped spin sector.

1. Mott transition

As discussed above, for large enough U > 0 we expect the
system to undergo a Mott transition as a charge gap opens.
For small V < 0 the charge gap opening line separates the
gapped and gapless Haldane phases. Note that both phases are
expected to host spin-1/2 at their edges [see discussion below
Eq. (48)]. We shall demonstrate this explicitly for the gapless
phase in Sec. V B.

To detect the Mott transition, we calculate the gap to adding
a single particle. For a fixed system size Nx we calculate

ESP
3n=Nx

= E3n+1 + E3n−1 − 2E3n, (49)

where by En we denote the ground state energy of a system
with n particles. We then extrapolate ESP

3n=Nx
to the infinite

system size limit. Indeed, we find a finite region in the
parameters space, in which for U < Uc(V ) the charge sector
is gapless. For more details on how Uc(V ) is determined see
Appendix A 2.

2. Dimerization transition

The strong coupling arguments presented above also sug-
gest that large attractive pairing interactions drive a transi-
tion into a dimerized phase. The open boundary conditions
used in the simulations always induce some dimerization in
the middle region of the system. To identify the transition
into the dimerized phase, we calculate the local dimerization
Di = |�Si · �Si+1 − �Si−1 · �Si |. At the dimerization transition, the
dimerization in the middle of the chain is expected to decay
as a power law DNx/2 ∼ N−d

x with an exponent d = 3/8 [37].
Performing finite size scaling, we fit DNx/2 to the form

given above, extracting the exponent d as a function of V , and
identify the phase transition point as the value of V for which
the exponent equals 3/8. For further details and numerical
results see Appendix A 3.

3. Trionic phase transition

For large U < 0, we expect to find a trionic phase, in
which triplets of fermions of different flavors bind together.
Although the charge sector in this phase is gapless, similarly
to the gapless Haldane phase, the two phases have a qualita-
tively different spectrum: The trionic phase has a finite gap
to one and two fermion excitations, whereas in the Haldane
phase both excitations are gapless. In addition, as we explain
below, the two phases are topologically distinct. To obtain the
phase transition line between these two phases we once again
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calculate the single particle gap defined in (49), extrapolating
it to the infinite system size limit.

From the field theoretical arguments (see Sec. IV and
Ref. [31]), the phase transition between these two phases is
expected to be first order. However, while the distinct behav-
iors in the two phases are readily verified, we find it difficult
to verify the nature of the phase transition numerically, due to
the small size of the spin gap at the transition point. (Note that
the smallness of the gap at the transition point is consistent
with the weak coupling analysis above. See Appendix A 4 for
results and further discussion).

4. Phase separation

For large U,V < 0 the system tends to phase separate,
forming clusters of trions. Interestingly, close to the line of the
phase transition between the gapless Haldane and the trionic
phase the system phase separates into regions in the gapless
Haldane phase and a clustered trions region, with localized
spin-1/2 modes at the boundaries, in support of the phase
transition between the gapless Haldane and the trionic phases
being first order (see Appendix A 4 and Fig. 7 therein).

B. Gapless Haldane phase

We now further analyze the region in the phase diagram
that we identified as the gapless Haldane phase and discuss
its properties. The edges of this phase are expected to support
spin-1/2 end modes that can pair into a spin singlet with Sz =
0 or a spin triplet with Sz = 0,±1. To show the exponential
protection of the end modes, we calculate the ground state
energy in the total Sz = 0 and Sz = 1 sectors. As can be
seen in Fig. 2(a), this energy splitting decays exponentially in
system size. Furthermore, we calculate the local expectation
value of Sz in the ground state of the system in the total Sz = 1
sector [see Fig. 2(b)]. One can clearly see the localized spins
at the two ends of the system (we have checked that Sz near
each edge indeed sums to 1/2).

From the discussion in Sec. II, we expect the bare fermions
of each flavor to be gapped in the bulk, even though the charge
sector is gapless. To see this explicitly for our model, we
calculate the two-point correlation function of the fermions
(e.g., the c0 fermions) in the bulk, 〈c†0(0)c0(x)〉, and find
that it decays exponentially with x [see Fig. 2(c)]. Similarly,
we consider the correlations of the the charge-1, spinless
fermionic operator c̃ = c

†
0c1c−1, 〈c̃†(0)c̃(x)〉. This operator

changes the fermion parity of all three fermion flavors; there-
fore, by the arguments of Sec. II, we expect it to have power
law correlations in the gapless Haldane phase. These are also
plotted in Fig. 2(c). It can be seen that these correlations decay
as a power law, with an exponent close to unity. For the ease
of presentation, we plot the absolute value of the correlations
in Fig. 2(c). We note, however, that the correlations of the c̃

fermions exhibit 3kF = π oscillations as expected from the
low energy analysis presented in Sec. III.

At this point a natural question to ask is whether the gapless
Haldane phase is stable to breaking of the SO(3) symmetry.
Given our general heuristic argument we expect the phase
to be stable to any perturbation which preserves the (Z2)3

symmetry, associated with the conservation of the fermionic

(a) (b)

(c)

FIG. 2. (a) Energy splitting between the ground states with total
Sz = 1 and total Sz = 0 as a function of the length of the system
for U = 0, V = −0.5 shown on a semilog scale. (b) The expectation
value of Sz as a function of position along the chain in the ground
states of the system of length Nx = 30 sites, model parameters
U = 0, V = −0.8, and total Sz = 1. Exponentially localized spin- 1

2
degrees of freedom can be observed at the ends of the system. (c)
Two-point correlations of the bare fermions 〈c†0(i0)c0(i0 + i )〉, and of
the charge-1 spinless fermions 〈c̃†(i0)c̃(i0 + i )〉, where c̃† = c0c

†
1c

†
−1,

plotted in blue (circles) and red (squares), respectively, calculated in
the bulk of the system i0 = Nx/2 for a system of size Nx = 66 sites
and model parameters U = 0, V = −0.8. The main plot shows the
correlations on a semilog scale, while the inset shows the correlations
for the charge-1 spinless fermions on a log-log scale. It can be clearly
seen that while the former are exponential, the latter are power law
as expected.

parities of the three species. For instance, we expect that
if a small single-ion anisotropy term, e.g., Dz

∑
i (Sz

i )2 =
Dz

∑
i (ni,+1 − ni,−1)2, is added to the Hamiltonian (30), the

induced coupling between the end modes will be exponential
in system size. In Appendix A 5 we present DMRG results,
which are consistent with the latter expectation.

VI. CONCLUSIONS

A. Summary of the main results

In this work, we have studied charge-conserving one-
dimensional superconductors with generic intrinsic attractive
pairing interactions. We presented a general heuristic argu-
ment that implies that a system of spinless electrons with no
additional symmetries does not support a topological phase
with exponentially localized edge states. In contrast, in the
presence of additional symmetries, there are distinct topo-
logical superconducting phases with exponentially localized
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end modes. The properties of the end modes are directly
related to those of a corresponding model with explicit mean-
field superconducting terms, where the total charge is not
conserved.

We examined in detail a situation with N > 1 flavors of
fermions, in which the fermionic parity of each flavor is
separately conserved, resulting in a (Z2)N symmetry. In this
case, the system hosts exponentially localized low-energy
end modes, which are reminiscent of the Majorana zero-
energy bound states found in proximity coupled systems.
The stability of these edge states is ensured by the presence
of a “flavor gap” due to the attractive pairing interactions
and by the very special nature of the gapless modes of the
system. Indeed, due to the (Z2)N symmetry we showed that
the gapless modes either do not change the fermionic parity
of any of the flavors or change them all simultaneously.
As a consequence, the coupling between the edges through
the gapless bulk modes only lifts the degeneracy between
even and odd total fermionic parity sectors. The resulting
topological degeneracy of the system is 2N − 1. We thus
found a connection between the nature of the bulk low-energy
excitations and the existence of a topological phase in a charge
conserving system. In particular, these excitations are created
by composite bosonic operators with an even charge for N

even, and composite fermionic operators with an odd charge
and an enlarged Fermi surface at ±NkF , for N odd. The
analysis is readily generalized to other symmetry classes;
we discussed the case of a single flavor with time reversal
symmetry as an example.

In order to be more explicit, we introduced and studied a
simple paradigmatic model which, we believe, captures the
essential features of charge conserving topological supercon-
ductors. It includes both on-site Hubbard interactions and
nearest-neighbor attraction and has a larger SO(N ) symmetry.
Using field theoretical techniques, we showed that a phase
which hosts massless composite bosons and fermions with a
large Fermi surface is stabilized. Using the general arguments,
we showed that this phase supports zero-energy bound states
at its edges, which transform as SO(N ) spinors. This gapless
topological phase is separated from the trivial phase obtained
for a large attractive Hubbard coupling by a quantum phase
transition.

Interestingly, the topological phase in the N = 3 case is
nothing but a gapless analog of the Haldane phase of S = 1
spin chains, where the three Majorana zero modes of the topo-
logical superconductor can be identified with the localized
spin-1/2 edge states of the Haldane phase. This phase has
gapless charge excitations in the bulk (including fermionic
excitations with a unit charge). The edge states are protected
either by the SO(3) symmetry, or more generally by the
separate conservation of the parity of each of the three fermion
flavors. Upon opening a charge gap, this phase becomes the
conventional (insulating) S = 1 spin chain.

Finally, we identify the transition between the gapless
Haldane phase and the trivial trionic phase with the self-
dual transition found in an integrable model by Andrei and
Destri [31]. This naturally explains the degeneracy associated
with the kinks between the two phases, that was noted in
Ref. [31], as domain walls between two topologically distinct
phases that carry spin-1/2 zero modes.

B. Future directions

We end with some remarks about open questions and
comment on possible experimental realizations of the phases
discussed in this work. An important question that we have not
addressed here is the effect of impurities on the topologically
nontrivial gapless phases. For N = 2, it is known that the
topological phase is robust for sufficiently weak disorder that
preserves the symmetry [12,18]. If the disorder is too strong,
however, the system becomes localized, and its topological
properties are lost. It is interesting to ask whether the same
occurs for the N > 2 phases.

A related question pertains to the properties of the Mott in-
sulating phase proximate to the topological gapless phase. For
N = 2, this phase is a trivial insulator; in contrast, for N = 3,
it is the symmetry-protected Haldane phase. We speculate that
the Mott insulating phases for N > 3 are symmetry-protected
gapped phases which can be viewed as generalized Haldane
phases; this remains to be investigated in detail.

We comment briefly on possible experimental realizations
of the N > 1 phases. The N = 2 phase can arise in super-
conducting quantum wires with spin-orbit coupling [9,12,18].
Similarly, phases with N > 2 modes can arise in quantum
wires with multiple subbands, similar to the system described
in Ref. [5]. As long as the wires are sufficiently clean, and the
potential landscape along the wire is slowly varying on the
scale of the Fermi momentum, the different Fermi momenta
of the different subbands guarantee that single electrons can-
not scatter from one subband to the other at low energies.
In contrast, pairs of electrons with opposite momenta can
scatter between subbands. This gives an approximate (Z2)N

symmetry that corresponds to the separate conservation of
the fermion parity of every subband. In principle, the edge
of the system breaks this (Z2)N symmetry, since it breaks
translational symmetry, and thus it allows single electron scat-
tering between subbands. However, if the confining potential
at the end of the wire is sufficiently smooth, such scattering is
exponentially suppressed in the gradient of the potential; see,
e.g., Refs. [6,38]. Thus, near-zero energy states appear at the
ends of the system. The quasizero modes manifest themselves
in an enhanced low-energy single-electron tunneling density
of states at the ends. For N even, the bulk is gapped for
single electrons, whereas for N odd there is no bulk gap
for single electron excitations.5 Nevertheless, we expect the
bulk tunneling density of states to be suppressed at low bias
voltage due to interaction effects. Such systems deserve a
more detailed investigation that we leave to future studies.
Finally, a different possible realization of the N > 2 phases
is in systems of cold alkaline rare earth Fermi gases that
have a high hyperfine degeneracy and an approximate SU(N )
symmetry; see, e.g., Ref. [39] and the references therein.
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APPENDIX: ADDITIONAL NUMERICAL RESULTS

1. Further analysis of the gapless Haldane phase

In this appendix, we consider the spin and the charge
sectors in the gapless Haldane phase, showing that a finite gap
opens in the former while the latter remains gapless.

a. Spin gap

Below, we calculate the spin gap in the bulk as |V | is
increased. To this end, we calculate the energy gap to Sz = +2
excitations, as we expect the gap to Sz = +1 excitations to
vanish for a system with open boundary conditions due to the
spin-1/2 end modes. More specifically, we calculate

�σ = lim
Nx→∞

[E(n+1,n,n−1) − E(n,n,n)]n= Nx
3
, (A1)

where we denote by E(n+1,n0,n−1 ) the ground state energy of
a system with n+1,0,−1 particles of flavor +1, 0, and −1,
respectively. The spin gap, �σ , for U = 0 as a function of
V is shown in Fig. 3(a). It can be seen that, indeed, a finite
spin gap opens as |V | is increased.

b. Charge Luttinger parameter

To verify that the charge sector is indeed gapless in the
region we identify as the gapless Haldane phase, we calculate
the charge Luttinger parameter numerically. To this end, we
first calculate the energy of the first excited state in the Sz = 1
sector as a function of system size. Assuming the spin sector is
gapped, the energy of the first excited state is given by πvc/L,
allowing us to extract the value of the charge velocity vc. (In
practice, since the spin gap for small values of V is small,
for small systems sizes the spin sector will appear gapless
with the corresponding velocity vσ , and the first excited state
will be given by min(πvc/L, πvσ /L), allowing us to obtain
only a lower bound for vc ). Next, we calculate the energy gap
to adding a single particle of each species, as a function of
system size, i.e.,

E3n+3 + E3n−3 − 2E3n

= 1

L

πvc

2K
[(3n + 3)2 + (3n − 3)2 − 2(3n)2]

= 1

L

9πvc

NK
. (A2)

Here E3n = E(n,n,n), with the total number of particles 3n

equal to the number of lattice sites Nx , and N = 3 is the
number of flavors. (We add a single particle of each species
to avoid excitations of the spin sector at small values of V ,
when the spin gap is small.) The extracted charge Luttinger
parameter is plotted in Fig. 3(b).

(a)

(b)

FIG. 3. (a) The spin gap, �σ [defined in Eq. (A1)] and (b) the
charge Luttinger parameter, K , for U = 0 as a function of V . (a) For
V � −0.3 a finite spin gap is observed. (b) The Luttinger parameter
in the charge sector obtained numerically (blue solid line), compared
to the analytical value obtained using weak coupling analysis (red
dashed line).

The analytical value of K obtained from weak coupling
analysis (see Sec. IV A in the main text), given by K =
(1 + V̄ /πvF )−1/2 for U = 0, is shown on the same plot for
comparison. The critical value of the charge Luttinger param-
eter K , at which a charge gap is expected to open, is equal to
2/3. Although we observe the general trend of the decrease in
K with increasing |V | numerically (for V � −0.5), we could
not obtain the value of K close to the charge gap opening point
with good enough precision to validate this.

2. Determining the phase boundary of the
gapless Haldane phase

To obtain the phase boundary between the gapless and the
fully gapped Haldane phases (i.e., the Mott transition point),
we calculate the gap to adding a single particle as a function
of U for each value of V and obtain the critical value of U ,
Uc(V ), for which this gap becomes finite. More specifically,
we calculate ESP

3n [see Eq. (49) in the main text] for different
system sizes up to Nx = 48 sites (where we take the total
number of particles 3n to be equal the number of lattices
sites Nx) and extrapolate it to the infinite system size limit,
denoting ESP = limNx→∞ ESP

3n . (The single particle gap is
calculated in the Sz = 0 sector, i.e., we calculate E(n,n+1,n) +
E(n,n−1,n) − 2E(n,n,n).)

Numerically, it is difficult to obtain the charge gap opening
point directly from the function ESP(U ). Instead, we consider
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(a) (b)

FIG. 4. The (a) single particle gap, ESP(U ), and (b) the trans-
formed function ẼSP(U ) [see Eq. (A3)] for V = −0.2. The trans-
formed function exhibits a minimum at the point where the single
particle gap becomes finite. The error in Uc is estimated from the
error in ESP(Uc ) as depicted in the figure.

the function

ẼSP(U ) = ESP(U ) − ESP(U = 0)

− ESP(U = U0) − ESP(U = 0)

U0
U, (A3)

where U0 > Uc. (The value of U0 is somewhat arbitrary and
we choose it such that ESP(U = U0) > 0.2.) This function
has an extremum point at Uc, making it easier to identify
numerically (see Fig. 4).

3. Dimerization transition

As was mentioned in the main text, we find that large
attractive pairing interactions drive a transition into a dimer-
ized phase. To obtain the point of the phase transition into
the dimerized phase, we calculate the local dimerization
Di = |�Si · �Si+1 − �Si−1 · �Si |. At the dimerization transition, the
dimerization in the middle of the chain is expected to decay
as a power law DNx/2 ∼ N−d

x with an exponent d = 3/8.
Performing finite size scaling, we fit DNx/2 to a power law
[see Fig. 5(a)], extracting the exponent d as function of V . We
then identify the phase transition point as the value of V for
which the exponent equals 3/8 [see Fig. 5(b)].

4. Phase transition between the trionic and gapless
Haldane phase and phase separation

As was discussed in Sec. IV A, the phase transition be-
tween the trionic phase and the gapless Haldane phase is ex-
pected to be first order, with a finite spin gap at the transition.
In Fig. 6, we plot the spin gap as function of U for V = −0.6
and observe it approaching zero at the phase transition point.
We attribute this to the fact that, in the weak coupling limit,
the spin gap along the phase transition line is expected to be
parametrically smaller than deep in either phase, as was also
mentioned in Sec. IV A. To estimate the magnitude of the spin
gap expected at the phase transition, one may use the one-loop
RG equations and the results for the phase transition point
obtained from DMRG. For instance, for V = −0.6, the phase
transition is observed at Uc ∼ −1, giving a spin gap �σ ∼
0.5 × 10−3. Going to larger system sizes, and larger bond
dimension used in the DMRG calculation, would perhaps
allow one to resolve the finite size of the gap at the transition.

As was mentioned in the main text, for large U,V < 0
the system tends to phase separate. Close to the line of the
phase transition between the gapless Haldane and the trionic

(a)

(b)

FIG. 5. (a) The local dimerization at the central bond, as a
function of system size, for U = 2 and varying V . For each value
of V , a fit to a power law is plotted with a red dashed line. (b) The
exponent, extracted from the fit of the dimerization at the central
bond as a function of system size to a power law, as a function of V .
The red dashed line corresponds to d = 3/8—the exponent expected
at the dimerization transition.

phase the system phase separates into regions in the gapless
Haldane phase and a clustered trions region, with localized
spin-1/2 modes at the boundaries as can be seen in Fig. 7.
This supports the statement that the phase transition between
the gapless Haldane and the trionic phases is indeed first order.

5. Stability to SO(3) symmetry breaking

As discussed in the main text, we expect the topological
phase to be stable to breaking of SO(3) symmetry, as long as
the (Z2)3 symmetry, associated with the conservation of the
fermionic parities of the three species, is preserved. To test
this, we add a single ion anisotropy term

∑
i Dz(Sz

i )2 to the

FIG. 6. The spin gap, defined in Eq. (A1), for V = −0.6, as a
function of U . The vanishingly small gap observed at the phase
transition point numerically is consistent with the weak coupling
analysis.
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FIG. 7. Expectation value of the average density
n̄ = (n+1 + n0 + n−1)/(3Nx ) (blue squares) and the spin
density (red arrows) in the phase separated regime, for
V = −1.5, U = −1.6. A coexistence between the topological
gapless Haldane phase, featuring localized spin-1/2 modes at its
boundaries, and the trivial trionic phase (with the trions bunching
together due to the large attractive pairing interactions), can be
observed.

model (30) and study the coupling between the end modes. To
this end, we calculate the energy splitting between the states
|Sz

L = 1
2 , Sz

R = 1
2 〉 and |Sz

L = 1
2 , Sz

R = − 1
2 〉 as a function of

FIG. 8. The energy splitting between the states
|Sz

L = 1
2 , Sz

R = 1
2 〉 and |Sz

L = 1
2 , Sz

R = − 1
2 〉, in the presence of

a single ion anisotropy term
∑

i Dz(Sz
i )2, for Dz = 0.4, as a function

of system size.

system size. (To induce the desired polarization at each end,
we apply a small Zeeman field at both ends of the chain.)
As can be seen in Fig. 8, we find the energy splitting, and
hence the coupling between the end modes, to be exponential
in system size.
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