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Ab initio calculation of the spin lattice relaxation time T1 for nitrogen-vacancy centers in diamond
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We investigate the fundamental mechanism of spin-phonon coupling in the negatively charged nitrogen-
vacancy center (NV−) in diamond in order to calculate the spin lattice relaxation time T1 and its temperature
dependence from first principles. Starting from the dipolar spin-spin interaction between two electrons, we
couple the spins of the electrons to the movements of the ions and end up with an effective spin-phonon
interaction potential Vs-ph. Taking this time-dependent potential as a perturbation of the system, a Fermi’s golden
rule expression for transition rates is obtained which allows us to calculate the spin lattice relaxation time T1.
We find that the temperature dependence of T1 is determined by the the zero-temperature transition rate �0. We
simulate the color center ab initio to extract the figures necessary to quantify �0. We calculate the local phonon
modes of the color center within the harmonic approximation using the small displacement method and extract
the phononic density of states and band structure by diagonalizing the dynamical matrix. We show that our model
allows us to calculate T1 in good agreement with experimental observations.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy center (NV−) is
an important color center in diamond [1] that consists of a
substitutional nitrogen atom adjacent to a vacant lattice site.
Six electrons are located at the center, which exhibits C3v sym-
metry, and they form an electronic ground-state spin triplet
transforming according to the A2 representation. This state is
further split by the dipolar spin-spin interaction into a ms = 0
ground state and two degenerate excited ms = ±1 states with
a zero-field splitting constant D/h = 2.88 GHz [2,3]. The
spin of the system can be prepared and read out optically [4]
which leads to many applications in magnetometry [5–8], bi-
olabelling [9], nanosensing [10,11], and makes it a promising
candidate for a solid-state quantum bit [12–14]. Since the spin
is the quantity to be manipulated in applications, a proper
understanding of spin relaxation is of utmost importance. In
this paper we deal with the longitudinal spin relaxation in
the 3A2 ground-state triplet caused by the interaction of the
electron spins with the phonons of the crystal.

Experimental studies [15,16] have suggested that the tem-
perature dependence of the spin lattice relaxation rate in a
range between 10 and 500 K is well described by a two-
phonon Raman process and an Orbach process [17], how-
ever there are measurements where a different behavior was
observed [18]. Also, the measured relaxation rates differ by
one order of magnitude for different samples. To understand
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and predict spin-lattice relaxation times quantitatively in this
system the fundamental mechanism of spin-phonon coupling
has to be investigated. Insight into this coupling mechanism
is most easily achieved by considering first-order processes,
which are dominant at low temperatures around the spin
transition energy D of the spins (T = 138 mK). At these
temperatures the phonon spectrum is frozen out and thus
higher-order processes are suppressed. In a recent paper [19]
a direct single phonon relaxation process and spin lattice
relaxation times T1 of up to 8 h in this temperature regime
were observed using a cavity QED protocol. Since no higher-
order processes were observed, the measured data are suitable
to obtain a fundamental understanding of the spin-phonon
coupling mechanism in this system.

This paper is organized as follows: In Sec. II we derive an
effective spin-phonon interaction Vs-ph starting from the dipo-
lar spin-spin interaction between two electrons and we give
an expression for the spin-lattice relaxation rate �1. In Sec. III
we explain the computational methods used to calculate �1

ab initio by modeling both the electronic and phononic prop-
erties of the center by means of density functional theory. In
Sec. IV the influence of lattice defects on �1 is investigated
and a comparison of our results with experimental data is
presented followed by the conclusion in Sec. V.

II. THEORY

The idea to couple the spins to the phonons starting from
the dipolar spin-spin interaction goes back to Waller [20]
and was an early impact on spin-lattice relaxation in general.
It was later neglected because most of the systems show a
spin-orbit driven spin relaxation [21–25]. The NV− center
containing only low Z elements has a small spin-orbit cou-
pling and the ground-state triplet fine structure is given by
the spin-spin interaction, which motivates an investigation of
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FIG. 1. (a) In the static case (no phonons in the system) the spins (↑ / ↓) of the NV− center interact via the static spin-spin interaction
(wiggly line), which is responsible for the fine-structure splitting of the 3A2 ground state. (b) In the case the electron positions are coupled to
phonons [right side of (b)], Hss becomes phonon dependent and can induce a spin flip. This allows us to exchange energy between the spin
system and the lattice and therefore allows the spin system to equilibrate with the phonon bath.

the spin-spin interaction as the driving source of spin lattice
relaxation. The relaxation mechanism is depicted in Fig. 1. If
a phonon is excited, the dipolar spin-spin interaction

Hss = −μ0g
2
eμ

2
B

4π︸ ︷︷ ︸
:=α

3(r ij · Si )(r ij · Sj ) − (Si · Sj )r2
ij

|r ij |5 (1)

between the ith and j th electron is altered, because the
electronic distance vector r ij depends on the displacements
of the ions { Qm}. Here μ0 denotes the vacuum permeability,
ge is the g factor [26] of the electron which is close to
that of a free electron in the NV− center with a value of
2.0028, μB is the Bohr magneton, and Si and Sj are the spin
vectors of the ith and j th electron. In his original work Waller
neglected the orbital character of the electrons and treated
them as point sources located at the positions of ions. This
assumption will be dropped in the following derivation. The
change of the position of the electron with the ionic motion

has to be modelled to couple the electronic spin vectors in Hss

to the ionic movements. This is achieved by defining a region
� around each ion, in which the electronic orbital follows
the movement of the ions rigidly, resulting in the electronic
distance vector

r ij ({ Qm}) = r ij ({ Qm = 0})

+
∑
m

Qm [�(r i ∈ �m) − �(rj ∈ �m)]︸ ︷︷ ︸
:=��m

ij

, (2)

where �(r ∈ �) is 1, if the electron is inside � and 0 other-
wise. For our calculations we use the Wigner-Seitz cell for �,
dividing space geometrically. Since the ionic displacements in
the low-temperature regime are very small (mean-square dis-

placements are in the order of 10−4 Å
−2

), a Taylor expansion
to first order in Qm is sufficient to calculate the transition rates
between a ms = ±1 and a ms = 0 state. Thus, the spin-phonon
interaction reads

Vs−ph({ Qm}) =
∑
m

Qm

∂Hss

∂ Rm

= α
∑
m

��m
ij

(
3[( Qm · Si )(r ij · Sj ) + (r ij · Si )( Qm · Sj )]

|r ij |5 − 15(r ij · Si )(r ij · Sj )

|r ij |7 (r ij Qm)

+ 3(Si · Sj )

|r ij |5 (r ij Qm)

)
. (3)

To extract the relevant matrix elements responsible for a transition between the 3A2 levels, the spin operators S are expanded in
raising and lowering operators. The Hamiltonian in (3) contains terms (a · Si )(b · Sj ), where a and b are elements of {r ij , Qm},
and a term Si Sj , which can be rewritten as

(a · Si )(b · Sj ) = (
axSx

i + ayS
y

i + azSz
i

)(
bxSx

j + byS
y

j + bzSz
j

)
= 1

2

(
S+

i (ax − iay )Sz
jb

z + S−
i (ax + iay )Sz

jb
z + Sz

i a
zS+

j (bx − iby ) + Sz
i a

zS−
j (bx + iby )

)
︸ ︷︷ ︸

single spin-flip events

+ 1
4 (S+

i (ax − iay )S+
j (bx − iby ) + S−

i (ax + iay )S−
j (bx + iby )

+ S+
i (ax − iay )S−

j (bx + iby ) + S−
i (ax + iay )S+

j (bx − iby )) + Sz
i a

zSz
j b

z (4)

and

Si S j = 1
2 (S+

i S−
j + S−

i S+
j ) + Sz

i S
z
j . (5)

The only matrix elements, which can cause a transition in the ground-state triplet, are those that contain only a single raising or
lowering operator and are underbraced in Eq. (4); the remaining terms account for double spin-flip or no spin-flip events. Taking
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only the spin-flip matrix elements of Vs−ph in Eq. (3) into account we obtain the spin-flip potential

V
flip

s−ph = α
∑
m

��m
ij

(
3
{(

S±
i Sz

j + Sz
i S

±
j

)[(
rx
ij ∓ ir

y

ij

)
Qz

m + (
Qx

m ∓ iQ
y
m

)
rz
ij

]}
2|r ij |5 − 15

[(
S±

i Sz
j + Sz

i S
±
j

)(
rx
ij ∓ ir

y

ij

)
rz
ij

]
(r ij Qm)

2|r ij |7
)

.

(6)

Likewise the ionic displacements Qm are written in a second quantized form [27]:

Qm = i
∑
q,ρ

√
h̄

2MmNωq,ρ

(
a
†
−q,ρe

iωq,ρ t + aq,ρe
−iωq,ρ t

)
× εm

q,ρe
iq R0

m . (7)

Here Mm denotes the mass of the ion, N is the number unit cells, a†/a is the raising/lowering operator, εm
q,ρ is the polarization

vector of the mth ion in the mode, and R0
m is the equilibrium position of the ion. Substituting Eq. (7) into Eq. (3) and taking Vs-ph

as a time-dependent perturbation of the system leads to a Fermi’s golden rule expression for a transition between the ms = ±1
and ms = 0 states. The overall transition rate �f ←i from an initial to a final electronic state is obtained by a summation of the
matrix elements of all final phonon states obeying energy conservation

�f ←i = 2π

h̄

∑
f

∣∣ 〈Ñf ,mf
s

∣∣V flip
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i
s

〉 ∣∣2
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(
S±
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±
j

)(
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y
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q,ρ |Ni〉
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(
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)
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)
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〉 ∣∣2
δ(Ef − Ei − hν). (8)

The raising and lowering operators acting on the initial phononic state |Ni〉 give
√

Nph + 1 and
√

Nph as eigenvalues of the
particular state, where Nph is the occupation number of the phonons. We assume Nph to be the thermal occupations following
the Bose-Einstein distribution. Putting everything together and considering the fact that only phonons with a single frequency at
the spin-transition energy D can take part in this process, the transition rates for emission and absorption of a phonon �f ←i read

�f ←i = α2

h̄
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m,y
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[(
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](
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m
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)
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δ(ν = 2.88 GHz). (9)

To emphasize the temperature dependence of the relaxation
rate this is rewritten as

�f ←i =
{

(Nph + 1)�0 for emission of a phonon

Nph�0 for absorption of a phonon
(10)

with �0 being the transition rate at zero temperature. To
simulate an ensemble of spins relaxing from a nonequilibrium
spin distribution to equilibrium with the environment, both
deexcitations and excitations of spins have to be considered
[28] and the following rate equations for the occupations Nms

have to be solved for our system with a degenerate excited
state:

Ṅms±1 = −�0(Nph + 1)Nms±1 + 2�0NphNms=0,

Ṅms=0 = −Ṅms±1. (11)

The solution is straightforward by introducing the occupation
difference �N = Nms=±1 − Nms=0, since it obeys a simple
exponential decay law to its thermal equilibrium value �Nth

according to

d

dt
�N = − (3Nph + 1)�0︸ ︷︷ ︸

�1=1/T1

(�N − �Nth ). (12)

The calculation of the zero-temperature transition rate �0

between the 3A2 sublevels is sufficient to extract the transition
rates in the low-temperature regime, where single phonon
processes are dominating over two phonon processes.

III. METHODS

The calculation of �0 requires the spin-polarized electronic
orbitals as well as the phononic band structure, density of
states, and the polarization vectors for all the modes. We
perform ab initio calculations using density functional theory
on supercells containing 64, 128, and 512 lattice sites with
one NV− center employing the Vienna Ab initio Simula-
tion Package (VASP [29]) using projector augmented wave
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FIG. 2. (a)The spin-polarized bandstructure calculated with HSE
in a supercell containing 64 atoms. 4 electrons of the NV− center
are located inside the bandgap and occupy the three orbitals a1, ex

and ey. The blue lines denote spin up bands, the orange ones spin
down bands. The electrons in the ex and ey orbitals are responsible
for spin-polarization. (b) The isosurfaces of the spin-polarized ex

and ey orbitals. The maximally localized orbitals c1, c2, c3 and n

on the 4 adjacent atoms next to the vacancy were added up to fulfill
the C3v symmetry constraints [26,38] resulting in ex ∝ 2c3 − c1 − c2

and ey ∝ c1 − c2. It is evident, that the spin density is mainly located
at the carbon atoms adjacent to the vacancy.

pseudopotentials [30]. We use the local density approximation
and a generalized gradient approximation included in the PBE
[31] exchange correlation potential for structural relaxations
and force calculations. The electron properties in the relaxed
structure are also calculated using the SCAN [32] and HSE
functional [33,34]. Plane waves up to a cutoff of 700 eV
are included and the first Brillouin zone is sampled with a
4 × 4 × 4 Monkhorst Pack grid [35]. A subtle relaxation of
the ions resulting in forces on the atoms of less than 1 meV

Å
shows that the neighboring carbon atoms and the nitrogen
atom move away from the vacancy, where the nitrogen atom
is further displaced in accordance with an earlier study [36].
Since we are interested in the spin-polarized orbitals, we use
the relaxed positions to calculate the electronic band structure.
It is found that the a1, ex, and ey orbitals are located inside the
band gap and that ex and ey are the spin-polarized orbitals
[see Fig. 2(a)]. This familiar result [26,36–38] allows us to
extract these orbitals by applying the WANNIER90 package
[39,40] to obtain the maximally localized orbitals on the
nearest-neighbor atoms of the vacancy. By considering the
symmetry of the defect we add up the maximally localized
orbitals to fulfill the C3v symmetry constraints and end up

with the spin-polarized ex and ey orbitals of the 3A2 ground
state shown in Fig. 2(b). Building Slater determinants with
these orbitals, we calculate the electronic matrix elements

〈
mf

s

∣∣��m
ij

rx
ij ∓ ir

y

ij

|r ij |5
∣∣mi

s

〉
,

〈
mf

s

∣∣��m
ij

rz
ij

|r ij |5
∣∣mi

s

〉
,

〈
mf

s

∣∣��m
ij

(
rx
ij ∓ ir

y

ij

)
rz
ij r

x/y/z

ij

|r ij |7
∣∣mi

s

〉
.

which occur for every phononic polarization in Eq. (9).
The phonons are modelled by using the small displacement

method within the harmonic approximation similar to a previ-
ous study [41]. We use the PHONOPY package [42] to extract
the necessary displacements to build the dynamical matrix
and apply it to the diagonalization thereof. We sample the
Brillouin zone with a very dense mesh to extract 10 000
phonon polarization vectors at the transition frequency per
band and the respective local group velocities for any par-
ticular k point. The phononic density of states is calculated
according to a Debye-model where we take the k dependence
of the group velocity into account. With the polarization
vectors {εm

k,λ} and the density of states in hand, we have
sufficient data to perform the summation over all the final
phonon modes and calculate the numerical value of the spin
lattice relaxation rate �0.

IV. RESULTS

After carrying out the calculations, we end up with a
theoretically predicted temperature-dependent relaxation rate
�, which can be compared to the experiment. As shown
in Fig. 3(a) we find a direct single phonon process [28,43]
at temperatures above the spin transition T 
 D/kB where
thermal phonons excite and deexcite the spins by induced
emission or absorption resulting in a linear dependence of
� on T . This temperature dependence stems from the high-
temperature limit of the Bose-Einstein distribution, where
Nph ∝ T in Eq. (12). At temperatures below the spin transi-
tion the 2.88-GHz phonons start to freeze-out and the only
decay channel left for a spin transition is the temperature
independent spontaneous emission of a phonon occurring
with a rate �0 which results in the observed plateau in
the low-temperature regime. To compare the calculated rates
with experiment, the treatment of the samples has to be
explained: To create NV− centers in diamond, samples with
a high initial nitrogen concentration (type Ib diamond) are
irradiated by electrons, neutrons, or ions in order to obtain
vacancies followed by an annealing procedure [44–46]. The
influence of the radiation damage on the phononic density
of states is essentially unknown, but irradiation will create
point defects, which can shift the phononic density of states
towards lower energy excitations [47]. We simulate this effect
and calculate the density of states for diamond crystals with
defects and compare them with a perfect crystal. Introducing
point defects (substitutional nitrogens and vacancies) in the
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FIG. 3. (a) The measured spin lattice relaxation rates for three
different samples (E1, E2, and E3; data taken from [19]). Dashed
lines are least-square fits for the temperature dependence according
to Eq. (12). The theoretical results (yellow range) depend on the
phononic density of states: The magenta line denotes the calculated
relaxation rate, if a Debye-model with the velocity of sound of a
pure diamond is applied, the cyan line represents the case, where
the k-dependent sound velocity of the simulated cell with 1 NV−

center was used, and the black line is results for the DOS of a
64-lattice site diamond cell containing a vacancy. (b) Difference in
the phononic density of states between a perfect diamond crystal
(red) and diamond crystals with point defects. If a point defect is
present the DOS is shifted towards lower energy excitations.

diamond structure the phononic density of states indeed shifts
towards lower frequencies as illustrated in Fig. 3(b). However,
we can only estimate the phononic density of states in the
irradiated crystals. We model the phonons using the phononic

densities of states for the simulated cells and the calculated
relaxation rates �0,ab initio = 2 × 10−5 s−1 to 3 × 10−5 s−1 are
close to the lowest experimental values [�0,exp = 3.47(16) ×
10−5s−1] [19].

V. CONCLUSION

In this paper we have shown that the very low spin lat-
tice relaxation rates of the NV− center in diamond can be
explained by the change of the dipolar spin-spin interaction
induced by the movement of the ions as proposed by Waller in
1932 [20]. We coupled the electronic distance vector r ij to the
ionic movement by a first-order Taylor expansion in the ionic
displacement vectors { Qm} and ended up with an effective
spin-phonon interaction Vs-ph. We applied this interaction as a
perturbation of the system to calculate the transition rates be-
tween the 3A2 ground-state spin triplet ab initio using density
functional theory by modeling the electronic wave functions
and the phonons in a supercell containing 512 atoms. The cal-
culated relaxation rates are comparable to the ones measured
for samples that show little crystal damage. We propose that
the deviation to samples with a strong irradiation damage is
caused by the difference in the phononic density of states due
to the irradiation treatment. Knowing the fundamental mech-
anism of spin-phonon interaction in this system will allow
us to further investigate on higher order two-phonon Raman
processes and Orbach processes at higher temperatures for the
spins of the NV− center in diamond. In this work we show that
the predictive power of modern ab initio calculations allows
the identification of critical phonon modes, which could lead
to tailoring the relaxation time in future applications.
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