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Thermodynamics and spin mapping of quantum excitations in a Heisenberg spin heptamer
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In this study, we examine the thermodynamics and spin dynamics of spin-1/2 and spin-3/2 heptamers.
Through an exact diagonalization of the isotropic Heisenberg Hamiltonian, we find the closed-form, analytical
representations for thermodynamic properties, spin excitations, and neutron-scattering structure factors. Further-
more, we investigate the clusterlike excitations of quantum spin heptamer in the three-dimensional pyrochlore
lattice material MgCr2O4. Using a spin mapping of the spin-1/2 heptamer excitations, the calculated structure
factors of the spin-3/2 heptamer are to be determined, which provides clarification for the spin excitations in
MgCr2O4. Overall, this study demonstrates the ability to use the spin mapping of structure factors for small spin
systems to analyze more complex structures.
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I. INTRODUCTION

After over a decade of study, molecular magnets continue
to intrigue researchers with new and exciting results and
phenomena, which pushes towards the potential for using
them in technological applications [1–6]. Molecular magnets
are molecule-based materials that are synthesized with mag-
netic properties that may provide enhancements in resonant
spin tunneling, quantum coherence, magnetic deflagration,
and various spintronic applications [7,8]. Typically, molecular
magnets consist of clusters of magnetic spins interacting
within a molecular solid that are magnetically separated from
other clusters through nonmagnetic ligands [6,9–18]. This has
led to the discovery of some very well investigated molecular
magnetic materials, i.e., Mn12, Ni12, Fe8, and Mn84 to name a
few. These are very large molecular magnets, which presents
a challenge for an analytical analysis and modeling of the
clusters.

Over the last decade, there has been an enormous
theoretical thrust towards understanding the spin excitations
and dynamics of clusters [19–25]. While a lot of progress
has been made in the numerical understanding of these
systems using density functional theory, ab initio, and
first-principles studies [26–31], the ability to find and
work towards straightforward closed-form solutions to
experimental observables is critical to the understanding of
the underlying physics in these materials.

In working towards a deeper understanding of spin clus-
ters and magnetic systems, it has become clear that the
larger spin clusters can be analyzed through the subgeome-
tries of the cluster [32]. This can allow for simple, closed-
form expressions for thermodynamic and magnetic proper-
ties of clusters [33]. Furthermore, we have shown that the
magnetic “fingerprint” of spin clusters can be determined
through the inelastic neutron-scattering structure, which has
a functional form that is characteristic of the cluster and is
independent of spin [34]. Therefore, understanding the nature
of larger clusters lies in the analysis and characterization

of the subgeometries, where total spin can be easily
handled.

While many molecular magnets are in the isolated clus-
ter limit, some spin clusters have been observed in three-
dimensional periodic lattices. One case is the discovery of
a spin dimer in VODPO4 · 1

2 D2O [35]. However, clusterlike
excitations have been recently observed in the pyrochlore lat-
tice of MgCr2O4 [36–38], where the three-dimensional (3D)
lattice forms a structure of hexagons that have corner-sharing
tetrahedrons [shown in Fig. 1(a)]. This has also been observed
in the spinel compound, ZnCr2O4 [39–41]. In the case of
MgCr2O4 [shown in Fig. 1(a)], inelastic neutron-scattering
studies on this compound have revealed the existence of dis-
crete, dispersionless excitations in the energy spectra, which
indicated that these are excitations of spin clusters of either
six or seven spins [36–38].

In previous studies, the excitations in MgCr2O4 have been
examined classically [36,37]. However, these classical models
are unable to clarify the general structure of the magnetic
cluster, where they were only able to classify the excitations
in terms of a spin hexagon and a spin heptamer [shown in
Fig. 1(b)].

In this study, we examine the spin dynamics of a quantum
spin-1/2 and a spin-3/2 heptamer to help clarify the spin
structure for the MgCr2O4 system. Using an exact diagonal-
ization of the quantum Heisenberg Hamiltonian for a spin hep-
tamer cluster, we show that through an analysis of the energy
eigenstates, thermodynamics, and inelastic neutron-scattering
structure factors one can map spin excitations from a low spin
cluster to a higher spin cluster. Furthermore, we model the
spin excitations of MgCr2O4 and show that the excitations
observed can be described solely by a quantum spin heptamer.
This analysis was first introduced in combination with the
experimental measurements and analysis presented by Gao
et al. [38]. However, here, we show the full calculations
and present the complete, closed-form representations for
the energy eigenstates, thermodynamic properties, and the
inelastic neutron-scattering structure factors.
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MgCr2O4 Heptamer

FIG. 1. Illustration of the MgCr2O4 structure (a) and the corner-
sharing spin heptamer (b).

II. SPIN HEPTAMER MODEL AND THERMODYNAMIC
PROPERTIES

The challenge in investigating large molecular magnets and
spin clusters analytically is due to the size of the Hilbert
space for the magnetic eigenstates, where the ability to extract
information from individual excitations is challenging and
complicated. Therefore, to gain more information on the un-
derlying excitations in large clusters, it is helpful to examine
the trends and physics of smaller clusters to gain insight.

In recent studies, it has been shown that the underlying
excitations in larger spin clusters hold on to the subgeometries
of that cluster [25,32,33]. For example, in Fig. 2, we show
the neutron-scattering structure factor for the spin excitations
for a spin-1/2 dimer and a spin-1/2 isosceles trimer, and
while the trimer has more excitations than the dimer, two of
the excitations of the trimer consist of dimer characteristics
as shown by the functional form of the embedded dimer.
Furthermore, the functional form of the neutron-scattering
structure factor is not dependent on the total spin of the
system, which has been shown in many studies [34], but is
illustrated in Fig. 2 for the spin-3/2 dimer. These fundamental
properties allow for the analytic investigation of larger spin
clusters through an analysis and decomposition of the small
subgeometries.

Therefore, in the case of MgCr2O4, the system will need to
be broken into smaller subgeometries in order to determine
the spin excitations of the S = 3/2 heptamer. We start by
examining the system using an isotropic spin-spin exchange
Hamiltonian,

H =
∑
〈ij〉

Jij
�Si · �Sj , (1)

where the superexchange constants {Jij } are positive for an-
tiferromagnetic interactions and negative for ferromagnetic
ones, and �Si is the quantum spin operator for spin-3/2 ions
at site i [25]. For a spin heptamer shown in Fig. 1(b), the
Hamiltonian can be written as

H = J

{
(�S1 · �S2 + �S1 · �S3 + �S2 · �S3)

+ (�S4 · �S5 + �S4 · �S6 + �S5 · �S6) +
6∑
i

�Si · �S7

}
, (2)
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FIG. 2. Comparison of the spin excitations and structure factors
for a S = 1/2 dimer, trimer, and a S = 3/2 dimer, which shows that
larger cluster excitations have characteristics of the subgeometry that
is excited and that the functional form of the excitation intensity is
not dependent on the spin of the system.

where the first set of terms consists of a 1,2,3-trimer, the
second set is a 4,5,6-trimer, and the final sum of terms pro-
duces a hexamer. The spin-3/2 heptamer cluster consists of
16 384 total states ([2 · 3

2 + 1]7), which makes determining
every eigenstate and function analytically a challenge. While
the exact diagonalization of the spin matrix can be quickly
evaluated numerically, the overall functional forms for the
thermodynamic properties and inelastic neutron-scattering
structure factors can be missed. Therefore, to evaluate the
energies, we gain insight by stepping back and examining the
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spin-1/2 heptamer. If one considers the spin-1/2 heptamer spin states, the decomposition is given by

individual spins 1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2 ⊗ 1
2 ⊗ 1

2 ⊗ 1
2 ,

trimer states 1
2 ⊗ (

3
2 ⊕ 1

2
2) ⊗ (

3
2 ⊕ 1

2
2)

,

hexamer states 1
2 ⊗ (3 ⊕ 25 ⊕ 19 ⊕ 05),

heptamer states 7
2 ⊕ 5

2
6 ⊕ 3

2
14 ⊕ 1

2
14

.

(3)

Here, we find the breakdown of the subgeometries of a spin hexamer produced by coupled trimer states. Here, ⊗ is the tensor
product of the spin vector and ⊕ is the direct sum. The superscript indicates the multiplicity of the states. From these states, we
show that when considering the magnetic degeneracy (2S + 1) the spin-1/2 heptamer consists of 128 states. When the individual
spins are increased to 3/2, the number of states increases to 16 384, but the spin decomposition is

individual spins 3
2 ⊗ 3

2 ⊗ 3
2 ⊗ 3

2 ⊗ 3
2 ⊗ 3

2 ⊗ 3
2 ,

trimer states 3
2 ⊗ (

9
2 ⊕ 7

2
2 ⊕ 5

2
3 ⊕ 3

2
4 ⊕ 1

2
2) ⊗ (

9
2 ⊕ 7

2
2 ⊕ 5

2
3 ⊕ 3

2
4 ⊕ 1

2
2)

,

hexamer states 3
2 ⊗ (

9 ⊕ 85 ⊕ 715 ⊕ 635 ⊕ 554 ⊕ 496 ⊕ 3120 ⊕ 2120 ⊕ 190 ⊕ 039
)
,

heptamer states 21
2 ⊕ 19

2
6 ⊕ 17

2
21 ⊕ 15

2
56 ⊕ 13

2
119 ⊕ 11

2
210 ⊕ 9

2
315 ⊕ 7

2
400 ⊕ 5

2
426 ⊕ 3

2
364 ⊕ 1

2
210

,

(4)

which is similar to the spin-1/2 case. Therefore, while the
structure is reminiscent of two connected tetrahedrons, the
energy eigenstates of this system can be determined exactly
through a reduction of the full heptamer Hamiltonian us-
ing the subgeometries that are apparent in the Hamiltonian
(a hexamer and two trimers basis sets). This decomposition
allows us to write out the energy eigenstates for the general
spin heptamer as

E = J

2

[
Stot(Stot + 1) − Shex(Shex + 1) + S�1 (S�1 + 1)

+ S�2 (S�2 + 1) −
7∑
i

Si (Si + 1)

]
, (5)

where Stot is the total spin state of the system, Shex is the
hexamer spin state, S�i

are the trimer spin states, and Si

are the magnetic spins on the atoms (S = 3/2). Using the
aforementioned basis sets, the eigenstates (|StotShexS�1S�2〉)
for the heptamer can be determined, where the eigenstates are
produced due to the symmetry within the magnetic structure
that produces mixing of the spin states. However, while the
energy above is represented in hexamer and trimer compo-
nents, transitions of any subgeometry (dimer, trimer, tetramer,
pentamer, or hexamer) can be expected.

Figure 3 shows the spin-1/2 and spin-3/2 heptamer energy
eigenstates, where this illustrates the dramatic increase in
states with increasing spin for the heptamer structure and the
need for spin mapping in the analytical limit. Using these
energy states, we determine the thermodynamic properties
and closed-form representations for the partition function,
heat capacity, and magnetic susceptibility. While this is a
straightforward exercise, the thermodynamic properties allow
for a direct check on the energy states.

Here, we can define the partition function as

Z =
∑
Ei

(2Stot,Ei
+ 1)e−βEi , (6)

where β = 1/kBT , Ei are the individual energy eigenstates,
and Stot,Ei

is the total spin for the eigenstate Ei . From the
partition function, we can examine the heat capacity by

C = kBβ2 d2ln(Z)

dβ2
, (7)

which allows us to also calculate the entropy as

S =
∫ ∞

0

C

β
dβ = kB ln

(
N

N0

)
. (8)

Here, N is the total size of the Hilbert space and N0 is the
total number of ground states [25,42]. Since the entropy is
related to the total number of states, the integration of the heat
capacity allows us to easily confirm the number of ground
states and show that the energy eigenstates are correct. For
the spin-1/2 heptamer, S = 4kB ln(2) and produces eight total
ground-state levels, while the spin-3/2 heptamer produces
S = kB [9ln(2) − ln(3)] with 96 ground-state levels, where

FIG. 3. Energy eigenstates for the spin-1/2 (inset) and spin-3/2
heptamers.
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FIG. 4. The calculated magnetic heat capacity and magnetic
susceptibility for the spin-1/2 and spin-3/2 heptamers.

the difference of ln(2) and ln(3) signifies degenerate spin-1/2
and spin-3/2 ground states.

From the energy eigenstates, we can calculate the heat ca-
pacity as a function of temperature and J [shown in Figs. 4(a)
and 4(b)] for both the spin-1/2 and spin-3/2 cases. Here,
the heat capacity shows that the temperature dependence of
the Schottky anomaly (shift in the change of the entropy) is
linear with respect to J in the transition from paramagnet
to antiferromagnet at low temperatures. The widening of the
Schottky anomaly in the S = 3/2 heptamer is associated with
increase in the number of magnetic states. While there is
a change in the slope of the Schottky anomaly going from
S = 1/2 to S = 3/2, the general pattern is still the same.
Additionally, the change in the intensity of the heat capacity
going from J (antiferromagnetic) to −J (ferromagnetic) is
caused by a change in the ground-state energies, which is quite
dramatic in the spin-3/2 case.

Furthermore, the magnetic susceptibility can be deter-
mined from

χ = (gμB )2β

3Z

∑
Ei

(2Stot,Ei
+ 1)(Stot,Ei

+ 1)Stot,Ei
e−βEi ,

(9)

where g is the Landé factor and μB is the Bohr magneton.
In Figs. 4(c) and 4(d), we show the calculated magnetic

susceptibility times temperature for the both spin cases, re-
spectively. Most notable is the shift from the antiferromag-
netic low-spin ground state with a positive J and the high-spin
ferromagnetic with a negative interaction. Since the systems
are similar, then magnetic susceptibilities are also similar. The
general broadening of the susceptibility peak in the S = 3/2
heptamer is due to the increased magnetization of the states
for the ferromagnetic case. The full closed-form, analytic rep-
resentations for the spin-1/2 and spin-3/2 thermodynamics
are presented in the Appendix.

III. INELASTIC NEUTRON SCATTERING

Bulk probes, such as heat capacity and magnetic suscepti-
bility, are useful at determining the overall magnetic character
of these clusters, but struggle to provide microscopic details
of the magnetic structure. However, because of their isolation,
spin clusters produce discrete dispersionless excitations that
only vary in intensity when examined through neutron scatter-
ing. This allows for a “fingerprint” of the magnetic structure
through the calculations of the structure factor.

The differential cross section for the inelastic scattering of
an incident neutron from a magnetic system in an initial state
|�i〉 is proportional to the neutron-scattering structure factor
tensor,

Sba (�q, ω) =
∫ ∞

−∞

dt

2π

∑
�xi ,�xj

ei �q·(�xi−�xj )+iωt 〈�i |S†
b(�xj , t )

× Sa (�xi, 0)|�i〉. (10)

Here, the neutron has momentum transfer h̄�q and energy
transfer h̄ω, and the site sums in Eq. (10) run over all magnetic
ions in one unit cell, and a, b are the spatial indices of the spin
operators [25].

For transitions between discrete energy levels, the time
integral gives a trivial delta function δ(Ef − Ei − h̄ω) in the
energy transfer, so it is useful to specialize to an “exclusive
structure factor” for the excitation of states within a specific
magnetic multiplet [generically |�f (λf )〉] from the given
initial state |�i〉,

S
(f i)
ba (�q ) =

∑
λf

〈�i |V †
b |�f (λf )〉 〈�f (λf )|Va|�i〉, (11)

where the vector Va (�q ) is a sum of spin operators over all
magnetic ions in a unit cell,

Va =
∑

�xi

Sa (�xi ) ei �q·�xi , (12)

and a is the spin polarization operators z, +, or − [43].
However, in this case, since were are only interested in the
functional form of the structure factor and not the normal-
ization coefficient, Va (�q ) can be reduced to Vz(�q ) only [43].
Therefore, the individual structure factors for each transition
can be determined.

IV. DISCUSSION

A. Excitations in MgCr2O4

The pyrochlore antiferromagnet was one of the first three-
dimensional models establishing that the nearest-neighbor
exchange does not result in magnetic ordering and that the
ground state has a finite entropy [44]. MgCr2O4 is a S = 3/2
pyrochlore lattice and has been shown to display discrete
magnetic clusters in a 3D periodic lattice with long-range
magnetic order [37]. A 3D pyrochlore lattice is generally
a network of tetrahedra, whereas a 2D pyrochlore model is
found by the projection of the 3D lattice on a plane. There-
fore, we aim to understand the complex, high-spin magnetic
interactions using spin clusters to produce discrete excitations.
Previous work on this material has shown the discreteness
of the magnetic excitations and have explained them using
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FIG. 5. The Heisenberg energy levels for the spin-3/2 heptamer.
The states are indicated in heptamer, hexamer, and trimer basis
(|StotShexS�1S�2 〉), where each value gives the total spin for that com-
ponent. On the left-hand side, the general excitation scales are given,
which are in agreement with the observed spectra and estimates the
superexchange energy to be about 9.0 meV. The right-hand side
provides a general description of the heptamer structure considered
in these calculations.

a classical spin model on hexagons and heptamer structures
[37,39,40]. However, this system has not been solved under a
single consistent model on the quantum spin level.

The primary challenge in modeling the magnetic excita-
tions is understanding the bulk unit cell in terms of magnetic
clusters. One can think of the pyrochlore lattice as consisting
of a magnetic structure produced through the combination of
24 heptamer structures [shown in Fig. 1(a)]. While there may
be excitations of the full heptamer structure, the observed ex-
citations from inelastic neutron scattering are likely to be ex-
citations of the subgeometries (trimers, pentamers, hexamers,
and heptamers). Therefore, the excitations of the heptamer are
not restricted to that geometry, since the magnetic excitations
of the larger system can take on the characteristics of the
smaller subgeometries [32].

Figure 5 shows the lowest energy levels of the spin-3/2
heptamer, as well as their Stot designations and eigenstates.
From this energy-level diagram, it is clear that the system
consists of a degenerate ground state consisting of S = 1/2
and S = 3/2 levels. The resulting energy-level diagram from
the model is quite encouraging, since it reproduces the even
energy spacing (�E = J/2) between each excitation.

The 4.5-meV excitation (�E = J/2) is a S = 1/2 to S =
1/2 transition 〈 1

2 1 1
2

1
2 | 1

2 2 1
2

3
2 〉, which consists of an excitation

that works through the hexamer and trimer bases. The 9.0-
meV excitation (�E = J ) is a S = 3/2 to S = 5/2 transition
〈 5

2 4 3
2

5
2 | 3

2 3 3
2

3
2 〉, which also consists of an excitation through

the hexamer and trimer bases. Furthermore, as shown in

FIG. 6. The general schematic for the mapping of spin excita-
tions from the spin-1/2 heptamer to the spin-3/2 heptamer.

Fig. 5, the third and fourth excitations (�E = 3J/2 and
�E = 2J , respectively) consist of a combination of multi-
ple excitations that encompass excitations of hexamers and
pentamers. It should be noted that excitations of multiple
geometries are present in these transitions. This is due to the
large amount of spin mixing between the heptamer, hexamer,
and trimer basis sets.

The existence of isolated clusterlike excitations in a 3D
lattice leads to further questions about the nature of interaction
in materials with long-range magnetic ordering. In this case,
we are not saying that a 3D pyrochlore lattice is a collection of
isolated spin clusters. However, this study shows that the dis-
persionless excitations are similar to isolated clusters, which
is in agreement with previous literature. These excitations
present an exciting situation, which needs further study and
comparison to different models [45,46].

B. Inelastic neutron scattering and the mapping
of spin excitations

To compare with the inelastic neutron-scattering data, the
single-crystal structure factors have to be determined for each
transition. The spin decomposition above can help us work
out the individual subgeometry basis allowing for the mapping
of hexamer and trimer spin states, while the functional form
of the neutron-scattering structure factor can be determined
by looking at individual excitations of the magnetic states.
As shown in Fig. 5, the excitation from one state to another
can be determined by the change in the magnetic basis. For
example, the 〈 1

2 2 3
2

3
2 | 1

2 2 1
2

3
2 〉 transition can be determined to

be an excitation of a single trimer due to the trimer basis
being the only magnetic state that changes. Therefore, that
transition can be described by the standard trimer functional
form. However, not all transitions are as straightforward.

Figure 6 shows the general schematic for the mapping of
spin excitations from the spin-1/2 heptamer to the spin-3/2
heptamer. In the case of the 18-meV excitation observed in
MgCr2O4 and shown in Fig. 5, there are two transitions con-
tributing to this excitation (hexamer and pentamer). Looking
more closely at the 〈 1

2 1 1
2

3
2 | 1

2 2 1
2

3
2 〉 transition, it is clear that the
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TABLE I. Structure factor intensities for the spin heptamer.

Excitation Heptamer
〈final|initial〉 subgeometry Structure factor functional form

First excitation ( 1
2 J )

〈 1
2 1 1

2
1
2 | 1

2 2 1
2

3
2 〉 hexamer 3 − cos(�q · �r23) + cos(�q · �r24) − cos(�q · �r25) − cos(�q · �r26) + cos(�q · �r27) − cos(�q · �r34)

+ cos(�q · �r35) + cos(�q · �r36) − cos(�q · �r37) − cos(�q · �r45) − cos(�q · �r46) + cos(�q · �r47)
+ cos(�q · �r56) − cos(�q · �r57) − cos(�q · �r67)

Second excitation (J )
〈 5

2 4 3
2

5
2 | 3

2 3 3
2

3
2 〉 hexamer 6 − cos(�q · �r23) − cos(�q · �r24) + cos(�q · �r25) + 2 cos(�q · �r26) − 2 cos(�q · �r27) + cos(�q · �r34)

− cos(�q · �r35) − 2 cos(�q · �r36) + 2 cos(�q · �r37) − cos(�q · �r45) − 2 cos(�q · �r46) + 2 cos(�q · �r47)
+2 cos(�q · �r56) − 2 cos(�q · �r57) − 4 cos(�q · �r67)

Third excitations ( 3
2 J )

〈 1
2 2 3

2
3
2 | 1

2 2 1
2

3
2 〉 trimer 3 + cos(�q · �r35) − 2 cos(�q · �r37) − 2 cos(�q · �r57)

〈 3
2 2 1

2
3
2 | 1

2 2 1
2

3
2 〉 pentamera 4 − 2 cos(�q · �r23) − 2 cos(�q · �r24) − 2 cos(�q · �r26) + 2 cos(�q · �r27) + cos(�q · �r34) + cos(�q · �r36)

− cos(�q · �r37) + cos(�q · �r46) − cos(�q · �r47) − cos(�q · �r67)
〈 1

2 2 3
2

3
2 | 3

2 3 3
2

3
2 〉 hexamera 3 − cos(�q · �r23) − cos(�q · �r24) + cos(�q · �r25) + cos(�q · �r26) − cos(�q · �r27) + cos(�q · �r34)

− cos(�q · �r35) − cos(�q · �r36) + cos(�q · �r37) − cos(�q · �r45) − cos(�q · �r46) + cos(�q · �r47)
+ cos(�q · �r56) − cos(�q · �r57) − cos(�q · �r67)

〈 3
2 2 1

2
3
2 | 3

2 3 3
2

3
2 〉 hexamer 3 − cos(�q · �r23) − cos(�q · �r24) − cos(�q · �r25) + cos(�q · �r26) + cos(�q · �r27) + cos(�q · �r34)

+ cos(�q · �r35) − cos(�q · �r36) − cos(�q · �r37) + cos(�q · �r45) − cos(�q · �r46) − cos(�q · �r47)
− cos(�q · �r56) − cos(�q · �r57) + cos(�q · �r67)

Fourth excitations (2J )
〈 1

2 1 1
2

3
2 | 1

2 2 1
2

3
2 〉 hexamer 11 + 3 cos(�q · �r23) − cos(�q · �r24) + cos(�q · �r25) − 3 cos(�q · �r26) − cos(�q · �r27) − 3 cos(�q · �r34)

+3 cos(�q · �r35) − 9 cos(�q · �r36) − 3 cos(�q · �r37) − cos(�q · �r45) + 3 cos(�q · �r46) + cos(�q · �r47)
−3 cos(�q · �r56) − cos(�q · �r57) + 3 cos(�q · �r67)

〈 3
2 1 1

2
1
2 | 1

2 2 1
2

3
2 〉 pentamer 8 + cos(�q · �r23) − cos(�q · �r24) − 3 cos(�q · �r25) + 2 cos(�q · �r27) − cos(�q · �r34) − 3 cos(�q · �r35)

+2 cos(�q · �r37) + 3 cos(�q · �r45) − 2 cos(�q · �r47) − 6 cos(�q · �r57)

aContributes majority of intensity.

characteristic transition is that of a spin hexamer. However,
that structure factor is not known and has to be determined.

Since the sheer number of magnetic states for the S = 3/2
heptamer makes this determination very difficult to solve
analytically, we have to look towards another method of
identification. While the excitations can be easily determined
and modeled numerically, numerical models do not provide
deeper insight into the nature of the interactions, whereas
an analytic model can provide further information about the
quantum spin states. Therefore, since the functional form of
the neutron-scattering structure factor is not dependent on S

[34], we look to reduce the spin cluster to a S = 1/2 heptamer,
which consists of only 128 individual magnetic states ((2 ·
1
2 + 1)7), and the analytic form of the structure factors can
be determined “easily” and compared to the data and the basis
of the excitation from the S = 3/2 energy transitions.

By looking at the similar transitions associated with the
spin-1/2 heptamer, we can determine the general func-
tional forms for transitions. Therefore, we compare the
〈 1

2 0 1
2

1
2 | 1

2 1 1
2

1
2 〉 transition of the spin-1/2 heptamer with the

〈 1
2 1 1

2
3
2 | 1

2 2 1
2

3
2 〉 transition of the spin-3/2 heptamer and found

the structure factors given in Table I. However, this was only
one of the transitions available.

Using the same methodology, we looked into the
〈 3

2 1 1
2

1
2 | 1

2 2 1
2

3
2 〉 transition. This is a challenge because the

magnetic bases do not provide any direct analysis. There-
fore, we compared a similar spin-1/2 heptamer transition
(〈 5

2 3 3
2

3
2 | 3

2 2 3
2

1
2 〉) to the spin-3/2 transition and determined that

it has characteristics of a spin pentamer. This means that only

five of the seven spin sites are involved in the excitation. Once
this is complete, the two structure factors are combined to
form the total structure factor, which is consistent with the
data.

Using the S = 1/2 heptamer as a basis and the methodol-
ogy described above, the individual eigenfunctions for multi-
ple transitions can be determined and compared to the tran-
sitions in the S = 3/2 case. Table I presents the determined
functional form for the inelastic structure factor for each
transition that is presented in Fig. 5. To compare to the
experimental system, the individual structure factors need to
be averaged over all structural configurations.

Figure 7 shows the simulated inelastic neutron-scattering
structure factors or intensities for each transition plotted a
function h and k for l = 0, 1, 2. While the comparison is
similar to that of the classical Monte Carlo simulations used
in Refs. [37] and [38], this model explains all transitions,
including the proper energy spacing between excitations as
well as the inelastic neutron-scattering intensity, in a complete
and self-contained model of the spin-3/2 heptamer.

As mentioned above, the individual excitation reflects the
structure factors of the subgeometries of the larger magnetic
structure. Since the 4.5-meV excitation is a transition between
| 1

2 2 1
2

3
2 〉 and | 1

2 1 1
2

1
2 〉 and reduces the hexamer basis from spin

2 to spin 1, the calculated structure factor is expected to be
characteristic of a spin hexamer. As shown in Fig. 7, the
structure factor (given in Table I) does reproduce the appro-
priate inelastic neutron-scattering intensity pattern, which was
originally determined to be a hexagon excitation.
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FIG. 7. Structure factor for the first four excitations of the spin
heptamer system as a function of h and k for l = 0, 1, and 2. These
structures can be compared directly to the excitations observed in
Refs. [37] and [38].

Furthermore, the 9.0-meV transition is characteristic of a
hexamer excitation, which is an excitation from the S = 3/2
ground state to a S = 5/2 excited state. While there is also
an increase of the trimer basis, the trimer and hexamer states
exhibit spin mixing due to the crossover on spin sites. The
13.5- and 18-meV excitations are actually a combination of
multiple transitions that include mainly hexamer and pen-
tamer excitations. While the pentamer is not a given basis,
the combination of spin sites can produce excitations of five
spins.

V. CONCLUSION

Overall, we show that the quantum spin model for clusters
can be broken down to a point where the spin excitations
are being produced with respect to the subgeometries of the
system. Assuming a cluster can be broken into subgeometries
that do not share spins, the isotropic Hamiltonian can be
written analytically. This allows for the general spin energy
eigenstates to be determined analytically. With the eigenstates
and energies known, a mapping of excitations can be done
with similar spin excitations.

The subgeometries cannot share individual spins since
this can lead to spin mixing that will complicate the energy
eigenstates. For example, while the heptamer could be thought
of as the combination of corner-sharing tetrahedrons, the
sharing of only one spin will lead to mixing of the spin states.
Therefore, breaking down the heptamer into a single spin

interacting with a heptamer does not mix spin states. The
heptamer can then be broken into small trimer components,
such that Shex = |S�1 − S�2 |.

It should be noted that the restructuring of the heptamer
does not lose information about the other possible subge-
ometries, since the pentamers and tetramers can be formed
through combinations of the other subgeometries (i.e., pen-
tamer = trimer + dimer). This representation allows us to
write down an analytical solution for the eigenstates. From the
eigenstates, one can then determine the excitation’s structure
factor.

Furthermore, once the energy eigenstates are determined,
the thermodynamics are relatively trivial. However, they are
useful for checking the ground-state energies as well as illus-
trating the similarities and difference of the spin systems, as
discussed above. Therefore, we present those solutions in full.

In conclusion, we break down the quantum spin heptamer
model and clearly show where the excitations are being
produced with respect to the geometries of the system, and
illustrate the ability to determine the inelastic neutron scat-
tering excitations and structure factors from the subgeome-
tries of the spin cluster through the use of symmetry and
geometry. We determine that the excitations of a small spin
cluster can be mapped on to the excitations of a larger spin
cluster. To show this, we examine the thermodynamics and
inelastic neutron-scattering structure factors for a spin-1/2
and spin-3/2 heptamer and provide analytical solutions for all
observables. The modeled spin excitations were further com-
pared to the inelastic neutron-scattering excitations observed
in MgCr2O4 [37–40], where the model excitations are in
good agreement with the observed measurements. Therefore,
these calculations help clarify the spin excitations and solidify
the magnetic structure for these excitations. We believe this
will help in the understanding of the larger single molecular
magnets by providing a methodology for a simple and easy
way to identify quantum spin excitations in magnetic clusters.

ACKNOWLEDGMENTS

A.R. and J.T.H. acknowledge support from the Institute
for Materials Science at Los Alamos National Laboratory,
which provided undergraduate research support. Furthermore,
we thank O. Zaharko for useful discussions on the MgCr2O4

pyrochlore excitations.

APPENDIX

1. Thermodynamics for the spin- 1
2 heptamer

While the S = 1/2 has 128 individual magnetic states,
many of them are degenerate in the heptamer configuration
we are considering. From Eq. (5) and Fig. 3, the energy
eigenstates can be determined exactly. Therefore, the partition
function for the spin-1/2 heptamer is determined in a simple
closed-form representation from Eq. (6) and given as

Z1/2 = 8e−3 βJ + 6e1/2 βJ + 6e−5/2 βJ + 24e−βJ + 4

+ 24e3/2 βJ + 4e−2 βJ + 18e−1/2 βJ + 24eβJ

+ 8e5/2 βJ + 2e−3/2 βJ (A1)
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From Eqs. 7 and 9, we can determine the heat capacity and
magnetic susceptibility for the spin-1/2 heptamer to be

C1/2

kB

= β2J 2e1/2 βJ

2
(96e19/2 βJ + 216e9 βJ + 96e17/2 βJ

+ 172e8 βJ + 720e15/2 βJ + 1302e7 βJ + 1040e13/2 βJ

+ 2613e6 βJ +2022e11/2 βJ +1877e5 βJ +1656e9/2 βJ

+ 2964e4 βJ + 1748e7/2 βJ + 456e3 βJ + 408e5/2 βJ

+ 613e2 βJ + 390e3/2 βJ + 21eβJ + 16e1/2 βJ + 6)

/(12e4 βJ + 3e7/2 βJ + 3e1/2 βJ +12e9/2 βJ +9e5/2 βJ

+ 4e11/2 βJ +e3/2 βJ +2e3 βJ + 12e2 βJ +2eβJ + 4)2

(A2)

and

χ1/2 = β(gμB )2

2Z
(84e−3 βJ + 35e1/2 βJ +35e−5/2 βJ +140e−βJ

+ 10 + 44e3/2 βJ + 10e−2 βJ + 41e−1/2 βJ + 44eβJ

+ 4e5/2 βJ + e−3/2 βJ ) (A3)

respectively. This allows us to present the heat capacity and
the magnetic susceptibility as a function of J and T in Fig. 4.

2. Thermodynamics for the spin- 3
2 heptamer

Similar to the spin-1/2 heptamer, the spin-3/2 heptamer
has many degenerate states. Therefore, even though it has
16 384 individual magnetic states, the thermodynamics can
be determined in closed form. Here, the partition function is
given by

Z3/2 = (20 + 18e3/2 βJ + 94e9/2 βJ + 16e3 βJ + 74e15/2 βJ + 22e1/2 βJ + 84 e6 βJ + 126e19/2 βJ + 140e21/2 βJ + 10e23/2 βJ

+ 84e9 βJ + 16e10 βJ + 90e25/2 βJ + 108e11 βJ + 216e27 βJ/2 + 116e12 βJ + 4e13 βJ + 144e14 βJ + 66e29 βJ/2

+ 244e15 βJ + 306e31 βJ/2 + 48e16 βJ + 236e33 βJ/2 + 252e17 βJ + 30e35 βJ/2 + 348e18 βJ + 246e37 βJ/2 + 144e19 βJ

+ 386e39 βJ/2 + 240e20 βJ + 234e41 βJ/2 + 392e21 βJ + 264e43 βJ/2 + 276e22 βJ + 410e45 βJ/2 + 312e23 βJ + 318e47 βJ/2

+ 536e24 βJ + 480e49 βJ/2 + 176e25 βJ + 226e51 βJ/2 + 552e26 βJ + 334e53 βJ/2 + 304e27 βJ + 678e55 βJ/2 + 292e28 βJ

+ 518e57 βJ/2 + 468e29 βJ + 144e59 βJ/2 + 568e30 βJ + 414e61 βJ/2 + 308e31 βJ + 694e63 βJ/2 + 360e32 βJ + 244e65 βJ/2

+ 560e33 βJ + 288e67 βJ/2 + 244e34 βJ + 344e69 βJ/2 + 312e35 βJ + 222e71 βJ/2 + 256e36 βJ + 216e73 βJ/2 + 120e37 βJ

+ 96e75 βJ/2 + 192e38 βJ + 8e77 βJ/2 + 96e39 βJ )e−51 βJ/2. (A4)

From the partition, we can then calculate the heat capacity from Eq. (7), which will be

C3/2

kB

= β2J 2e1/2 βJ

2
(55 + 127 514 303e53 βJ + 133 332 070e103 βJ/2 + 129 946 362e54 βJ + 198e3/2 βJ + 16 544e9/2 βJ

+ 405eβJ + 1100e3 βJ + 39 886e15/2 βJ + 19 359e4 βJ + 27 951e6 βJ + 128 266e19/2 βJ + 58 626e7 βJ + 1440e5/2 βJ

+ 357 256e21/2 βJ + 337 904e23/2 βJ + 37 854e11/2 βJ + 180 474e9 βJ + 233 630e10 βJ + 164 592e25/2 βJ

+ 154 606e11 βJ + 98 064e17/2 βJ + 985 140e27 βJ/2 + 439 687e12 βJ + 665 576e13 βJ + 111 879 160e109 βJ/2

+ 47 345 748e123 βJ/2 + 48 228 378e61 βJ + 124 424 586e44 βJ + 153 718 608 e101 βJ/2 + 177 621 180e48 βJ

+ 115 286 082e111 βJ/2 + 24 047 532e64 βJ + 24 159 384e129 βJ/2 + 21 500 973e65 βJ + 15 625 842e131 βJ/2

+ 33 179 499e63 βJ + 29 666 310e127 βJ/2 + 126 743 778e
107 βJ

2 + 63 882 174e119 βJ/2 + 17 717 163e66 βJ

+ 12 224 000e133 βJ/2 + 150 237 240e89 βJ/2 + 66 911 956e59 bJ + 80 153 376e117 βJ/2 + 138 793 727e47 βJ

+80 621 274e58 βJ + 40 967 568e62 βJ + 158 872 215e49 βJ + 133 180 682e91 βJ/2 + 80 210 430e115 βJ/2

+ 159 454 635e46 βJ + 52 198 392e121 βJ/2 + 97 932 114e57 βJ + 97 586 160e113 βJ/2 + 10 250 076e67 βJ

+ 142 482 504e105 βJ/2 + 10 675 668e135 βJ/2 + 460 738e14 βJ + 1 315 032e29 βJ/2 + 1 846 244e15 βJ

+ 1 017 598e31 βJ/2 + 1792 833e16 βJ + 2 474 800e33 βJ/2 + 1 037 196e17 βJ + 3 026 202e35 βJ/2 + 3 762 438e18 βJ

+ 1 855 624e37 βJ/2 + 5081 706e19 βJ + 5 765 296e39 βJ/2 + 2 955 929e20 βJ + 7 272 576e41 βJ/2 + 7 574 206e21 βJ

+ 4 289 360e43 βJ/2 + 10 452 450e22 βJ + 10 010 704 e45 βJ/2 + 7 130 288e23 βJ + 15 103 806 e47 βJ/2 + 14 540 404e24 βJ
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+ 167 558 226e99 βJ/2 + 135 444 944e97 βJ/2 + 11 262 224e49 βJ/2 + 16 892 797e25 βJ + 17444 030e51 βJ/2

+ 16 534 990e26 βJ + 219 94 040e53 βJ/2 + 25 258 778e27 βJ + 22 950 800e55 βJ/2 + 30 834 737e28 βJ

+ 36 048 736e57 βJ/2 + 23 635 886 e29 βJ + 34 749 918e59 βJ/2 + 47 193 317e30 βJ + 31 435 088e61 βJ/2

+ 45 967 663e31 βJ + 62 635 262e63 βJ/2 + 39 104 651e32 βJ + 60 461 360e65 βJ/2 + 72 937 255e33 βJ

+ 46 361 532e67 βJ/2 + 73 517 486e34 βJ + 78 659 680e69 βJ/2 + 60 606 664e35 βJ + 91 611 918e71 βJ/2

+ 88 557 950e36 βJ + 75 631 944e73 βJ/2 + 105 700 731e37 βJ + 104 147 808e75 bJ/2 + 86 113 090e38 βJ

+ 110 028 928e77 βJ/2 + 120 588 501e39 βJ + 144 069 768e52 βJ + 94 823 872e56 βJ + 170 737 899e45 βJ

+ 111 072 168e55 βJ + 35 053 272e125 βJ/2 + 62 471 592e60 βJ + 175 504 272e93 βJ/2 + 157 451 766e95 βJ/2

+ 136 513 754e50 βJ + 158 477 088e51 βJ + 94 655 378e79 βJ/2 + 6 735 120e137 βJ/2 + 120 513 408e40 βJ

+ 138 875 400e81 βJ/2 + 108 028 132e41 βJ + 132 388 290e83 βJ/2 + 156 038 637e42 βJ + 114 686 736e85 βJ/2

+ 3 671 646e70 βJ + 142 546 647e43 βJ + 6 184 731e69 βJ + 6 577 786e68 βJ + 160 085 898e87 βJ/2 + 3 599 808e139 βJ/2

+ 2 767 344e141 βJ/2 + 1 477 856e71 βJ + 1 618 728e143 βJ/2 + 972 966e72 βJ + 642 368 e145 βJ/2 + 513 744e73 βJ

+ 356 280e147 βJ/2 + 185 032e74 βJ + 125 568e149 βJ/2 + 68 184e75 βJ + 23 424e151 βJ/2 + 10 560e76 βJ + 9 216e153 βJ/2

+ 96e77 βJ )/(10 + 9e3/2 βJ + 47e9/2 βJ + 8e3 βJ + 37e15/2 βJ + 11e1/2 βJ + 42e6 βJ + 63e19/2 βJ + 70e21/2 βJ + 5e23/2 βJ

+ 42e9 βJ + 8e10 βJ + 45e25/2 βJ + 54e11 βJ + 108e27 βJ/2 + 58e12 βJ + 2e13 βJ + 72 e14 βJ + 33e29 βJ/2 + 122e15 βJ

+ 153e31 βJ/2 + 24e16 βJ + 118e33 βJ/2 + 126e17 βJ + 15e35 βJ/2 + 174e18 βJ + 123e37 βJ/2 + 72e19 βJ + 193e39 βJ/2

+ 120e20 βJ + 117e41 βJ/2 + 196e21 βJ + 132e43 βJ/2 + 138e22 βJ + 205e45 βJ/2 + 156e23 βJ + 159e47 βJ/2 + 268e24 βJ

+ 240e49 βJ/2 + 88e25 βJ + 113e51 βJ/2 + 276e26 βJ + 167e53 βJ/2 + 152e27 βJ + 339e55 βJ/2 + 146e28 βJ + 259e57 βJ/2

+ 234e29 βJ + 72e59 βJ/2 + 284 e30 βJ + 207e61 βJ/2 + 154e31 βJ + 347e63 βJ/2 + 180e32 βJ + 122e65 βJ/2 + 280e33 βJ

+ 144e67 βJ/2 + 122e34 βJ + 172e69 βJ/2 + 156e35 βJ + 111e71 βJ/2 + 128e36 βJ + 108e73 βJ/2 + 60e37 βJ + 48e75 βJ/2

+ 96e38 βJ + 4e77 βJ/2 + 48e39 βJ )2. (A5)

Last, using Eq. (9), the magnetic susceptibility can be written as

χ3/2 = β

2Z
e−51 βJ/2(1330 + 969e3βJ/2 + 5775e9βJ/2 + 680e3 βJ + 2885e15βJ/2 + 1771eβJ/2 + 4162e6 βJ

+ 6783e19/2 βJ + 5685e21βJ/2 + 165e23βJ/2 + 3234 e9 βJ + 680e10 βJ + 2940e25/2 βJ + 4366e11 βJ

+ 7596e27 βJ/2 + 3474e12 βJ + 10e13 βJ + 176e75 βJ/2 + 5160e38 βJ + 4e77 βJ/2 + 176e39 βJ + 5592e14 βJ

+ 2721e29 βJ/2 + 7454e15 βJ + 10 504e31 βJ/2 + 744e16 βJ + 5270e33 βJ/2 + 7090e17 βJ + 495e35 βJ/2 + 8326e18 βJ

+ 7131e37 βJ/2 + 4440e19 βJ + 11 180e39 βJ/2 + 4468e20 βJ + 6351e41 βJ/2 + 9300e21 βJ + 5280e43 βJ/2 + 5794e22 βJ

+ 8525e45 βJ/2 + 9184e23 βJ + 6841e47 βJ/2 + 8888e24 bJ + 9708e49 βJ/2 + 4572e25 βJ + 4305e51 βJ/2 + 11 420e26 βJ

+ 7022 e53 βJ/2 + 4056e27 βJ + 12 509e55 βJ/2 + 5022e28 βJ + 8934e57 βJ/2 + 8634e29 βJ + 3432e59 βJ/2 + 9300e30 βJ

+ 6495e61 βJ/2 + 6474e31 βJ + 11 662e63 βJ/2 + 7680e32 βJ + 4686e65 βJ/2 + 7848e33 βJ + 4608e67 βJ/2 + 5290 e34 βJ

+ 6296e69 βJ/2 + 5484e35 βJ + 4586e71 βJ/2 + 3224e36 βJ + 3612e73 βJ/2 + 812e37 βJ ). (A6)

The advantage of writing out these formulas is to illustrate the increased complexity in going from a spin-1/2 to a spin-3/2
heptamer.
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