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Frustrated Kondo chains and glassy magnetic phases on the pyrochlore lattice
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We present an extensive numerical study of a type of frustrated itinerant magnetism on the pyrochlore lattice.
In this theory, the pyrochlore magnet can be viewed as a cross-linking network of Kondo or double-exchange
chains. Contrary to models based on Mott insulators, this itinerant magnetism approach provides a natural
explanation for several spin and orbital superstructures observed on the pyrochlore lattice. Through extensive
Monte Carlo simulations, we obtain the phase diagrams at two representative electron filling fractions n = 1

2
and 2

3 . In particular, we show that an intriguing glassy magnetic state characterized by ordering wave vectors
q = ( 1

3 , 1
3 , 1) gives a rather satisfactory description of the low-temperature phase recently observed in spinel

GeFe2O4.
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I. INTRODUCTION

Highly frustrated magnets continue to fascinate physi-
cists with intriguing and sometimes unexpected magnetic
phases. This is particularly true for spin systems exhibiting
strong geometrical frustration such as pyrochlore antiferro-
magnets [1]. Conventionally, frustrated magnets are modeled
by the Heisenberg Hamiltonian H = ∑

ij Jij Si · Sj within the
framework of Mott insulators. For pyrochlore and kagome
lattices, the frustrated nearest-neighbor antiferromagnetic spin
interactions give rise to a macroscopic ground-state degener-
acy [2,3]. This in turn makes the magnets highly susceptible
to small perturbations. Removal of the extensive degeneracy
by perturbations beyond J1 leads to unusual spin ordering
and even unconventional magnetic phases [4,5]. For systems
with degenerate orbitals, a good starting point is the Kugel-
Khomskii Hamiltonian [6], which has been successfully
employed to understand spin-orbital ordering in frustrated
magnets [7–9].

Recently, complex spin and/or orbital superstructures ob-
served in spinels such as CuIr2S4 [10,11], MgTi2O4 [12], and
ZnV2O4 [13] have posed an intriguing theoretical challenge.
Several models have been proposed to explain the experimen-
tal results. However, understanding these unusual orderings
within the framework of Mott insulators often requires fine
tuning or sometimes ad hoc perturbations. On the other hand,
it has been demonstrated in many cases that approaches based
on itinerant magnetism provide a very natural explanation
for the observed superstructures [14–16]. For example, the
octamer order in CuIr2S4 and chiral distortion in MgTi2O4

can be explained as resulting from an orbital-driven Peierls
instability [14,17]. Moreover, several of these compounds
have been shown to be a bad insulator, indicating that
these magnets are in the vicinity of metal-insulator transition
[18–21]. Recent experiments further support the picture of
orbital-Peierls state [22,23].

The itinerant approach also naturally explains the q =
(0, 0, 1) magnetic structure of ZnV2O4, which consists of
↑↑↓↓ . . . spin chains along [110] directions of the pyrochlore

lattice [15,16]. Essentially, taking into account the reduced
dimensionality of electron hopping in such systems, this in-
teresting commensurate one-dimensional (1D) order can be
understood as resulting from the spin-induced nesting insta-
bility of 1D Kondo chains. Another interesting example is
the multiple-q magnetic ordering recently observed in spinel
GeFe2O4 [24]. At low temperatures, neutron-scattering exper-
iments found diffusive peaks centered at q = ( 1

3 , 1
3 , 1) and

other symmetry-related wave vectors, implying a quasi-1D
ordering with a tripled unit cell. Stabilization of this unusual
commensurate magnetic order seems rather difficult using the
localized spin models.

In this paper, we present a detailed numerical study of a
frustrated itinerant spin model for spinel compounds AB2X4.
In these materials, the octahedral crystal field splits the 3d

orbitals of the B-site magnetic ion into a t2g triplet and a
higher-energy eg doublet. Keeping only the dominant ddσ

transfer integral between the low-energy t2g orbitals, electron
hoppings on the pyrochlore lattice can be modeled by a set
of one-dimensional (1D) tight-binding chains in this leading-
order approximation [15]. Inclusion of the onsite Hubbard
and Hund’s interactions within the mean-field approximation
then leads to Kondo or double-exchange type electron-spin
couplings. A minimum model is given by a collection of
cross-linking Kondo chains running along the 〈110〉 directions
of the pyrochlore lattice. Importantly, commensurate 1D spin
order can arise naturally as a result of Fermi-point nesting
instability in Kondo chains with a rational electron filling frac-
tion. A different type of geometrical frustration then results
from the fact that the favored 1D spin order cannot be realized
on all chains simultaneously, leading to three-dimensional
(3D) magnetic order and to glassy behavior in some cases.

II. MODEL AND METHOD

Our itinerant electron approach to magnetic orders in
spinels is based on a mean-field treatment of Hubbard-type
Hamiltonian. First, we consider the tight-binding model of t2g

orbitals in spinels. As discussed above, the magnetic ions in
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FIG. 1. The inequivalent transfer integrals between the three
t2g orbitals on the pyrochlore lattice: t1 = 3

4 Vddσ + 1
4 Vddδ, t2 =

1
2 Vddπ + 1

2 Vddδ, t3 = 1
2 Vddπ − 1

2 Vddδ, t4 = t5 = 0.

spinels form a pyrochlore lattice. Figure 1 shows some repre-
sentative hopping processes of t2g electrons on the pyrochlore
lattice. Here, the various hopping integrals are computed using
the Slater-Koster formula; the results can be expressed in
terms of fundamental bond integrals Vddσ , Vddπ , and Vddδ

[25]. In general, the σ bond integral is much stronger than
the π and δ bonds. To the leading-order approximation, we
thus neglect contributions from Vddπ and Vddδ to the various
bond integrals. As a result, only the t1 hopping remains in
this approximation, which means only those nearest-neighbor
hoppings between the same type of orbitals among appro-
priate chains dominate, namely, dxy along 〈110〉, 〈11̄0〉, dyz

along 〈011〉, 〈011̄〉 and dzx along 〈101〉, 〈1̄01〉 (see Fig. 1).
Next, we consider the onsite interactions which are dictated

by the multiorbital Hubbard-Kanamori interaction HU [26].
Since we are interested in solutions with nonzero local mo-
ment, we use the Hartree-Fock mean-field method to decouple
the interaction terms. The mean-field decoupling gives rise
to a Kondo-type electron-spin coupling HU = Ueff〈ŝi〉 · ŝi ,
where si is the electron spin operator, and Ueff is an effective
Hubbard parameter. For example, for t2g orbitals, Ueff =
4(U/9 + 4JH /9), where U and JH are the onsite Hubbard
repulsion and Hund’s coupling, respectively. In the case of
GeFe2O4, the magnetic Fe2+ ions have a t4

2g e2
g electron con-

figuration. Due to strong intraorbital Hubbard interaction and
Hund’s coupling, the two eg electrons remain in the correlated
S = 1 state. The remaining t4

2g electrons thus form conduction
band with a filling fraction n = 2

3 .
We thus arrive at the following Hamiltonian describing

cross-linking Kondo chains on the pyrochlore lattice in Fig. 2:

H = −t
∑
μ,σ

∑
〈ij〉‖μ

(ĉ†i μσ ĉjμσ + H.c.) − J
∑
i,μ

Si · ŝi,μ, (1)

where ĉ
†
i,μσ is the creation operator for electron with spin

σ =↑,↓ and orbital flavor μ = xy, yz, zx at site i, 〈ij 〉 ‖
μ indicates the nearest-neighbor (NN) pair along the 〈110〉
direction that corresponds to the active t2g orbital μ, the
hopping constant t is set to be 1 in all the simulations below,

dxy

dyz

dzx

FIG. 2. Schematic diagram showing the shortest hexagonal loops
in the pyrochlore lattice. The three different colors indicate distinct
Kondo chains occupied by the three t2g orbitals.

J ≈ Ueff〈ŝ〉 is the effective Hund’s coupling, Si is the O(3)
local magnetic moment, and ŝi,μ = ∑

α,β c
†
iμασ αβciμβ is the

electron spin operator.
The 1D ferromagnetic Kondo chain, which is the backbone

of Hamiltonian (1), has been extensively studied over the
years [27–29]. However, the fact that every local spin Si is
shared by three Kondo chains introduces competition between
different chains. In particular, the cross-linking Kondo chains
exhibit a type of geometrical frustration since the electronic
energy of neighboring chains cannot be simultaneously min-
imized. For example, the shortest hexagonal loops (Fig. 2)
of spins on the pyrochlore lattice contain sites which belong
to six different Kondo chains. Consequently, the nearest-
neighbor spin-spin correlation favored by individual chains
might not be able to extend over the hexagonal loop consis-
tently, leading to frustrated interactions.

Since our main interest is in the potential magnetic order-
ings of this model, we will assume classical local spins here.
However, even with classical local spins, Monte Carlo simu-
lations of Kondo-lattice models are a challenging task mainly
due to the nonlocal electron-mediated effective interactions
between the local moments. Indeed, in the weak-coupling
limit J � t , integrating out the electrons gives rise to a long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) type spin in-
teractions. For large J , one needs to diagonalize the electron
tight-binding Hamiltonian that depends on the spin configura-
tion for each Monte Carlo update. For a pyrochlore lattice of
linear size L, there are N = 16L3 spins and the dimension of
a generic spinful and orbitally degenerate tight-binding (TB)
Hamiltonian is D = 2 × 3 × N = 96L3. This severely limits
the largest accessible lattice sizes, as exact diagonalization
scales as O(D3) and is computationally very costly. However,
thanks to the 1D nature of the TB model in Eq. (1), each local
spin update only requires diagonalizing three chains whose
dimension is D1D = 4L. Specifically, we adopt the standard
local Metropolis Monte Carlo method. For a randomly chosen
spin, say at site i, we consider rotating the spin from Si to S′

i .
The energy cost associated with this update comes from the
electron energy of the three Kondo chains intersecting at this
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site, i.e.,

�E =
∑

μ=xy,yz,zx

⎡
⎣ Nf∑

m=1

(
ε(μ)
m (S′

i ) − ε(μ)
m (Si )

)⎤⎦. (2)

Here, ε
(μ)
m are the eigenenergies of the μ-orbital Kondo chain

and Nf is the number of occupied electrons determined by
the filling fraction. Once �E is obtained by exactly diago-
nalizing the three chains intersecting at Si , the spin update is
accepted according to the standard Metropolis algorithm with
a probability pacc = min[1, exp(−�E/kBT )]. The computa-
tional cost of each update thus scales as O(D3

1D) ∼ O(N ).
Each sweep is completed by updating local spins sequentially.
The Monte Carlo simulation for the coupled chains is still
costly with an overall scaling O(N × D3

1D) ∼ O(N2), but
the efficiency is much improved compared with the full 3D
tight-binding model.

III. PHASE DIAGRAM

In this section we obtain the phase diagram of Hamiltonian
(1) for two representative filling fractions n = 1

2 and 2
3 based

on extensive Monte Carlo simulations; the results are summa-
rized in Fig. 3.

We first discuss the simpler case of half-filling. There
is only one ordered phase characterized by the noncoplanar
all-in–all-out (AIAO) spin order at low temperatures; see
Fig. 3(a). For a half-filled Kondo chain, the nesting of the
Fermi points favors a collinear Néel order with doubled unit
cell, i.e., ↑↓↑↓ . . . . However, it is easy to convince oneself
that such collinear ordering cannot be simultaneously realized
in the three different chains on the pyrochlore lattice; a man-
ifestation of the geometrical frustration is discussed above.
The solution to this conflicted situation is the AIAO order in
which a 1D spin order with a doubled unit cell, albeit with
noncollinear spins, still gaps out the Fermi points and lowers
the overall energy. The AIAO order is characterized by three
nonzero staggered magnetizations: L1 = S0 + S1 − S2 − S3,

J
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FIG. 3. The phase diagrams for (a) half-filling and (b) 2
3 fill-

ing. Solid and dashed lines represent first- and second-order phase
transitions, respectively, in both (a) and (b). For half-filling, two
phases are all-in–all-out phase (AIAO), paramagnetic phase. For 2

3
filling, phases are (I) q = ( 1

3 , 1
3 , 1) order, (II) ( 1

2 , 1
2 , 1

2 ) order, (III) a
unknown magnetic phase characterized by a large spin nematic order
parameter, (IV) ferromagnetic phase, and (V) paramagnetic phase.

and the symmetry related L2 and L3. Here, Sm denotes the
spin of the mth sublattice (there are four sublattices) of the
pyrochlore lattice. A perfect AIAO has |L1| = |L2| = |L3|
while their orientations satisfy L1 ⊥ L2 ⊥ L3. Due to the
noncoplanar nature of this magnetic order, the AIAO phase
further breaks a Z2 chiral symmetry which is measured
by the discrete scalar spin chirality χ = L1 · (L2 × L3). The
phase boundary of the AIAO order, shown in Fig. 3(a), is de-
termined from the Binder crossing of corresponding staggered
order parameters for continuous phase transition at small J .

Interestingly, the transition becomes first order at large
J . As in general Kondo-lattice or double-exchange models,
the effective Hamiltonian in the large-J limit is given by a
Heisenberg model with a dominant NN exchange JAF ∼ t2/J .
This can be understood as follows. In the J → ∞ limit at
half-filling, electrons are localized in individual orbitals of
each site with their spins aligned with the local moments. This
gives rise to a huge degeneracy which is lifted by the electron
hopping. Due to Pauli exclusion principle, electrons can hop
to neighboring sites only when their spins are not aligned, thus
favoring an antiferromagnetic interaction. Specifically, the
effective Hamiltonian corresponds to the energy gain through
the second-order process, which is E

(2)
ij ≈ −[t 〈χi |χj 〉]2

/J ,
where |χi〉 is the local electron spinor wave function. Since
Pauli exclusion requires that the spins at i and j must be
antialigned in order to allow the electrons hop to the NN
sites, the inner product of the spinor eigenstates 〈χi |χj 〉 =
sin(θij /2), where θij is the angle between the two local spins.
Consequently, we obtain an effective spin interaction: E

(2)
ij =

JAF Si · Sj up to a constant, with JAF ∼ t2/J .
It is interesting to note that the frustrated nature of the

coupled Kondo chains in the large-J limit corresponds to
the well-known geometrical frustration of AF Heisenberg
model on the pyrochlore lattice. The huge ground-state de-
generacy of this model leads to a low-temperature spin liquid
phase. Contrary to the high-temperature paramagnetic phase,
disordered spins in this classical spin liquid exhibit strong
short-range correlation [3]. A possible scenario is that the
system first enters a correlated classical spin-liquid regime at
T ∼ JAF, then undergoes a phase transition at a lower Tc into
the AIAO phase. Our detailed analysis shows that the classical
spin-liquid phase is preempted by the first-order transition,
and the system immediately goes to the AIAO phase at a
critical Tc ∼ JAF.

We now turn to the case of 2
3 filling. Before discussing the

phase diagram of coupled Kondo chains on the pyrochlore
lattice, we first consider the ground states of a single Kondo
chain. The Fermi wave vector of a 2

3 -filled 1D band is kF =
2π/3
, where 
 = √

2a/4 is the 1D lattice constant and a is
the size of the cubic unit cell. The system is thus susceptible to
perturbations with a wave vector q = 2kF = 4π/3
 that gaps
out the two Fermi points; see Fig. 4. Indeed, our Monte Carlo
simulations on a single Kondo chain find a magnetic order
with a tripled unit cell at T → 0 and small J . The three spins
within the extended unit cell are coplanar, with a relative angle
very close to 120◦; more details can be found in the Appendix.

Next, we apply the above 1D results to understand the
ground states of coupled Kondo chains in 3D, which is
particularly important in explaining the magnetic order of
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2kF 2kF

gap

(b)

(a)

FIG. 4. (a) The T → 0 ground state of a single Kondo chain. The
long-range spin order is characterized by a tripled unit cell with a
coplanar almost 120◦ structure within a unit cell. (b) Shows the gap
opening of a (n = 2

3 )-filled Kondo chain due to Fermi-point nesting.

spinel GeFe2O4 where the t2g orbitals are 2
3 filled. From

direct inspection of the geometry, one immediately realizes
that the above coplanar 1D ground state cannot be consistently
combined in the 3D pyrochlore lattice. This is another man-
ifestation of the geometrical frustration discussed in Fig. 2.
Contrary to the half-filling case, where the frustrated coupling
leads to the AIAO long-range order, there is no simple mag-
netic structure selected in the 2

3 -filling case. A snapshot of
spin configuration from our Monte Carlo simulations is shown
in Fig. 5(a). Individual Kondo chains are clearly not in their
1D ground state discussed above. In fact, spins on a given
chain are not even coplanar. Although no clear pattern can
be seen from this snapshot, detailed characterization shows
that a long-range spin-spin correlation with a tripled unit
cell nonetheless is developed along each individual chain of
the 3D lattice; see Fig. 6(a). Moreover, the 3D noncoplanar
spin order is characterized by multiple wave vectors that are
related to q = ( 1

3 , 1
3 , 1) by symmetry, as shown in the inset of

Fig. 6(a).

FIG. 5. Snapshots of the local spin configurations for (a) the q =
( 1

3 , 1
3 , 1) order and (b) q = ( 1

2 , 1
2 , 1

2 ) order.
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FIG. 6. The spin-spin correlation function 〈S(r ) · S(r + n)〉 av-
eraged over all Kondo chains of the pyrochlore lattice for (a) the
q = ( 1

3 , 1
3 , 1) and (b) the q = ( 1

2 , 1
2 , 1

2 ) order at n = 2
3 filling with

(a) J = 1 for and (b) J = 1.5. The insets show the corresponding
structure factor on the (a) q = (h, k, 1) and (b) q = (h, h, l) planes.

From the phase diagram of single Kondo chain discussed
in the Appendix, the magnetic order at large J cannot be
understood from the Fermi-point nesting picture. Here, we
performed extensive Monte Carlo simulations to obtain the
(n = 2

3 )-filling phase diagram, shown in Fig. 3(b). At small
Hund’s coupling, the low-T phase is a magnetic order char-
acterized by multiple ordering wave vectors that are related to
q = ( 1

3 , 1
3 , 1), as discussed above. Several unusual magnetic

structures are obtained at larger J . The phase boundaries
are mostly first order, except for the small-J regime (purple
dots) where the phase transition between paramagnetic and
( 1

3 , 1
3 , 1)-ordered phases might be continuous.

The various 3D phases are loosely related to their 1D
counterpart. Upon increasing J , the ordering wave vectors
first change from q = ( 1

3 , 1
3 , 1) to ( 1

2 , 1
2 , 1

2 ) at J ≈ t . The sys-
tem undergoes another first-order transition at J ≈ 1.6t into
an unknown magnetic order (phase III) that is characterized
by rather large nematic order parameter. We have checked
that spins are pretty much frozen in this phase, yet no clear
long-range order can be seen from the static structure factor.
And, finally, the ferromagnetic order takes over as the ground
state when J � 2.5t . An interesting case is the q = ( 1

2 , 1
2 , 1

2 )
phase at intermediate Hund’s coupling 1 � J � 1.6 (phase II
in the phase diagram). A snapshot of local spin configurations
on three different chains intersecting at one spin is shown in
Fig. 5(b). Again, although no clear ordering pattern can be
found in the snapshot, detailed analysis showed that individual
Kondo chains exhibit a clear 1D spin correlation with a
quadrupled unit cell, as shown in Fig. 6(b). This is in stark
contrast to the ground state of a single Kondo chain in the
same J regime, where the T → 0 ground state is a multiple-q
noncoplanar order. In this case, the “frustrated” interchain

214423-4



FRUSTRATED KONDO CHAINS AND GLASSY MAGNETIC … PHYSICAL REVIEW B 98, 214423 (2018)

ME

(a) (b)

T T

(c) (d)

-4.08

-4.07

-4.06

-4.05
L = 6

9
12

0.05

0.10

0.15

0.20

L = 6
9

12

0.00

0.05

0.10

0.15

0.20

0.035 0.040 0.045 0.050

L = 6
9

12

0.035 0.040 0.045 0.050

0.06

0.10

0.14
MxMyMzQ Mi

FIG. 7. The temperature dependence of some quantities for the
2
3 -filled coupled Kondo chains with J = 1. (a) The energy den-
sity and (b) the magnetic order parameter M show the first-order
phase transition. (c) The nematic order parameter Q bifurcates into
multiple branches below the phase transition point. (d) The partial
magnetic order parameters, Mx,My,Mz, which are summation of
�m at wave vectors qm = (1,± 1

3 , ± 1
3 ), (± 1

3 , 1, ± 1
3 ), (± 1

3 , ± 1
3 , 1),

respectively, with L = 6 show no significant difference at low
temperatures.

coupling actually stabilizes the quadrupled chains and the
q = ( 1

2 , 1
2 , 1

2 ) order on the pyrochlore lattice.

IV. QUASIDEGENERACY AND GLASSY BEHAVIORS
OF THE q = ( 1

3 , 1
3 , 1) PHASE

To characterize the complex multiple-q magnetic order in
the q = ( 1

3 , 1
3 , 1) phase, we introduce vector order parame-

ters �m ≡ (1/N )
∑

j Sj exp(iqm · rj ), which are the Fourier
modes of spins at the 12 symmetry-related wave vectors qm =
(± 1

3 ,± 1
3 , 1), (± 1

3 , 1,± 1
3 ), and (1,± 1

3 ,± 1
3 ). Phenomenolog-

ically, the phase transition is described by a Landau free-
energy expansion [30]

F = α(T − Tc )
∑
m

|�m|2 + β
∑
m

|�m|4

+
′∑

m,n,k,l

λmnkl (�m · �n)(�k · �l ) + · · · , (3)

where α, β > 0, and the prime in the summation indicates
the condition of momentum conservation, i.e., qm + qn +
qk + ql = 0 module a reciprocal lattice vector. The overall
q = ( 1

3 , 1
3 , 1) magnetic ordering is measured by the order

parameter

M =
(

12∑
m=1

|�m|2
)1/2

. (4)

The temperature dependence of the M, shown in Fig. 7(b),
clearly indicates that these vector order parameters develop a
nonzero expectation value at T < Tc, where Tc is estimated to
be 0.045t for J = t . Detailed structure of this q = ( 1

3 , 1
3 , 1)
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FIG. 8. Probability distribution function for the magnetic order
parameter M, the nematic order parameter Q, and the energy density
E (insets) at three different temperatures below Tc. These curves
are obtained from extensive Monte Carlo simulations on lattices of
J = 1, L= 9.

magnetic order is determined by the interaction terms λmnkl ,
which are very difficult to compute analytically. Our extensive
Monte Carlo simulations, on the other hand, seem to observe
a multitude of different magnetic structures and a possible
glassy regime below Tc.

To explore this intriguing glassy phase, we compute the
so-called nematic order parameter Q for spin structures ob-
tained from our simulations. Essentially, this order parameter
provides a measure of the collinearity of spins. It is given by
the largest eigenvalue of the traceless matrix Qμν ≡ 〈Sμ Sν −
δμν/3〉 (μ, ν = x, y, z) [31]. Interestingly, the temperature
dependence of the nematic order, shown in Fig. 7(c), exhibits
three branches below the critical temperature Tc, implying
distinct configurations of the q = ( 1

3 , 1
3 , 1) magnetic order.

To demonstrate this quasidegeneracy directly, Fig. 8 shows
the probability distribution of energy density E, magnetic
order parameter M, and spin nematic order parameter Q

at three different temperatures below Tc. Interestingly, while
a single prominent peak is observed in the distribution of
energy and magnetic order, the histogram of the nematic
order parameter Q exhibits several peaks, consistent with the
multiple branches in Fig. 7(c). This finding clearly indicates
a quasidegeneracy of the multiple-q magnetic orders, and
the various quasidegenerate q = ( 1

3 , 1
3 , 1) structures can be

divided into three different groups according to their collinear-
ity. We note that a systematic finite-size study is required in
order to see whether this quasidegeneracy structure persists
in the thermodynamic limit. However, due to the limitation
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FIG. 9. Distribution for X in the complex plane. Red, green,
and blue points represent independent samples whose nematic order
parameter Q is in the left, middle, and right peaks, respectively,
of the histogram h(Q) in Fig. 8(b). Namely, Q1 ∈ [0, 0.17), Q2 ∈
[0.17, 0.23), Q3 ∈ [0.23, 0.3]. The figure is obtained with 1000
samples of the system at T = 0.03, J = 1, L = 6.

of our current Monte Carlo simulations that are based on
the exact diagonalization method, it is already too costly to
compute the histogram for L = 12 lattices. Nonetheless, we
have compared the histograms of L = 6 and 9 systems and
found similar results. In fact, the multiple-peak feature is even
more pronounced in the L = 9 histogram than in the L = 6
one.

Another important question is whether the cubic symmetry
remains in the q = ( 1

3 , 1
3 , 1) magnetically ordered phase. To

answer this question, we first define the partial magnetic order
parameters Mx, My , and Mz, which are sum of |�m|2 at
wave vectors qm = (1,± 1

3 ,± 1
3 ), (± 1

3 , 1,± 1
3 ), (± 1

3 ,± 1
3 , 1),

respectively. The dependence of these partial magnetic orders
is plotted in Fig. 7(d) as function of temperature. It is apparent
that the cubic symmetry in the low-T phase is conserved
in average. However, the issue remains whether individual
multi-q configuration preserves the cubic symmetry. To this
end, we define a complex order parameter

X = Mx + ωMy + ω2Mz (5)

which measures the disparity between the three partial mag-
netic orders; here, ω = ei 2π

3 . A symmetric phase with Mx ≈
My ≈ Mz thus gives rise to a vanishing complex order pa-
rameter X ≈ 0. Figure 9 shows the distribution of X obtained
from 1000 independent Monte Carlo runs. Interestingly, we
find strong correlation between the nematic order Q and the
cubic-symmetry parameter X . Here, magnetic orders belong-
ing to distinct groups in the histogram (Fig. 8) are labeled
by three different colors. For example, the X parameters
corresponding to the middle peak of h(Q) in Fig. 8(b) cluster
around the origin, indicating that these q = ( 1

3 , 1
3 , 1) magnetic

orders approximately preserve the cubic symmetry. The two

T

q(2)
s

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.01  0.02  0.03  0.04  0.05

L = 6
9

FIG. 10. The spin-freezing parameter q (2)
s as a function of tem-

perature with the electron-spin coupling J = 1. The green dashed
line is a guide to the eye. The distribution of q (2)

s is non-Gaussian
and rather asymmetric.

distinct parts with smaller Q illustrate the possible existence
of two phases corresponding to this peak. On the other hand,
magnetic orders with large Q tend to break the cubic sym-
metry. However, it is worth noting that the cubic symmetry
is recovered when averaging over multiple domains, each
characterized by a different X in the system. This picture of
quasidegenerate multi-q manifold is thus consistent with the
experimental observation that GeFe2O4 retains cubic symme-
try in the low-T magnetic glassy phase.

We also compute the spin-freezing parameter defined as
q

(2)
SG = ∑

μν〈q2
μν〉 [32], where qμν = (1/N )

∑
i S

(a)
i,μS

(b)
i,ν de-

notes the overlap of spins obtained from two replicas a and b.
This parameter is nonzero when spins are frozen either in an
ordered or a random configuration. Figure 10 shows the tem-
perature dependence of the q

(2)
SG parameter computed from our

Monte Carlo simulations for J = 1. The freezing parameter
starts to grow at the magnetic transition point. Moreover, the
curves for different lattice sizes show rather weak finite-size
dependence, consistent with a first-order phase transition sce-
nario. Extrapolating to zero temperature, we obtain a nonzero,
yet rather small, q (2)

SG ≈ 0.05. This near vanishing of the freez-
ing parameter can be attributed to the quasidegeneracy of the
multiple-q manifold of the ( 1

3 , 1
3 , 1) phase. Similar multiple-q

glassy states have also been observed in J1-J2 Heisenberg
pyrochlore antiferromagnets [33,34].

V. CONCLUSION AND OUTLOOK

To summarize, we have presented a thorough numerical
study of a different type of itinerant frustrated magnetism on
the pyrochlore lattice. In this model, the pyrochlore magnet
can be viewed as a cross-linking network of Kondo chains.
We have obtained the phase diagrams at two representative
filling fractions n = 1

2 and 2
3 . This model provides a natural

explanation to complex spin and orbital structures observed
in several spinels compound, which are very difficult to
understand within localized spin models. Importantly, this
magnetic phase provides a rather consistent explanation for
the recently observed magnetic order in spinel GeFe2O4 [24].
In this compound, two of the six d electrons of the magnetic
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Fe2+ ion occupy the eg level, forming the local spins {Si} with
length S = 1. The other four d electrons partially fill the t2g

orbitals, forming quasi-1D tight-binding chains with a filling
fraction n = 2

3 . Long-range spin order with a tripled unit cell
thus naturally results from the Fermi-point nesting instability
in the presence of electron-spin coupling. The resultant 3D
magnetic order is then characterized by the commensurate
q = ( 1

3 , 1
3 , 1) wave vectors, which has been verified in our

extensive Monte Carlo simulations.
Experimentally, neutron-scattering measurements found

diffusive peaks centered at q = ( 1
3 , 1

3 , 1) wave vectors, instead
of sharp Bragg peaks. This clearly indicates a short-range spin
ordering in this material. This observation can be consistent
with the glassy ( 1

3 , 1
3 , 1) phase of our model if the correlation

length of the magnetic ordering remains short in the low-
temperature phase. Since the magnetic transition is first order,
the correlation length remains finite throughout the phase
transition. The large quasidegeneracy of spin orders in this
phase also means that most likely the low-temperature phase
of GeFe2O4 consists of finite domains of different magnetic
structures. Since the correlation length is determined by the
sizes of these domains, the diffusive peaks might result from
the small magnetic domains depending on the cooling and
heating procedures in the experiments.

The q = ( 1
3 , 1

3 , 1) glassy phase is reminiscent to other
magnetic glassy states reported in strongly correlated sys-
tems, including frustrated magnets [35,36], high-Tc super-
conducting materials [37,38], and spin-orbital Mott insulator
[39]. All these states are characterized by diffuse scatter-
ing at well-defined wave vectors, indicating the short-range
nature of magnetic orders. A plausible picture for these
glassy magnets is the coexistence of domains with different
spin structures separated by domain walls. Moreover, they
also exhibit dynamical behaviors [40–42] that are different
from conventional spin glass. Our work along with previous
studies [33,34] suggest that multiple-q magnetic ordering
in frustrated magnets provides a new route to realize such
unconventional glassy magnets and GeFe2O4 is a potential
candidate.
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APPENDIX: 1D KONDO CHAINS

In this appendix, we consider the ground state of 1D Kondo
chains, which are the backbone of the itinerant frustrated
model on the pyrochlore lattice discussed in the main text.
The Hamilton of a Kondo chain is

H = −t
∑

i

∑
σ=↑,↓

(c†i,σ ci+1,σ + H.c.) − J
∑

i

Si · si , (A1)

where c
†
i,σ is the creation operator of electrons at site i with

spin σ, t is the nearest-neighbor hopping constant, J is the
Hund’s coupling strength, Si is local magnetic moment, and
si = ∑

α,β c
†
iασ αβciβ is the spin of the conduction electron.

Since we are interested in magnetically ordered or glass states
with frozen nonzero moments, we further assume Si are
classical spins with magnitude |Si | = 1. The zero-temperature
phase diagram of the classical 1D Kondo chain in the μ-J
plane, where μ is the chemical potential of the electrons, has
been mapped out in Ref. [29]. Here, instead, we focus on the
Kondo chain with a fixed filling fraction n = 1

2 and 1
3 , and

obtain the ground states as a function of J . Due to particle-
hole symmetry, the 2

3 -filling case studied in the main text for
the 3D pyrochlore model is equivalent to the 1

3 -filling case.
We perform extensive Monte Carlo simulations with

Metropolis algorithm to obtain the ground states of the 1D
Knodo chain. While most of the results discussed below were
obtained from the chain with N = 72 spins, we have also con-
ducted simulations with different chain lengths and boundary
conditions (periodic vs open boundary conditions) in order to
eliminate the finite-size effects. To avoid freezing problems,
we started our simulations at a relatively high temperature
and perform annealing simulations by slowly reducing the

J/t

q∗/π
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FIG. 11. (a) Wave vectors q∗ where the module of S(q ) reaches local maximum for 1
3 filling. (b1)–(b4) S(q ) as a function of q for

characteristic J = 0.2, 1.6, 4.4, 8.0 in regions I, II, III, IV.
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θ1/π θ1/π

θ2

π

θ2

π

(a) (b)

FIG. 12. Energy contour plot with respect to θ1 and θ2 for (a) J = 0.2 and (b) J = 0.4. The red dots indicate the optimal configuration.
The range for θ1 and θ2 is [0, 2π ]. The 12 dots represent the same or symmetry-related configuration. For J = 0.2, the ground state is the state
such that the angles between each of the three pairs of S0, S1, S2 are 115.8◦, 120.6◦, 123.6◦. For J = 0.4, they are 111◦, 112.4◦, 126.6◦.

temperature. The final spin configuration is determined at
T ≈ 10−8. The structure factor S(q ) and correlation function
are evaluated and averaged at the final temperature.

We first discuss the half-filling case. Our simulations find a
ground state with Néel order, i.e. ↑↓↑↓ . . . , for all values of
electron-spin coupling J , consistent with the results obtained
in Ref. [29]. One can understand the stabilization of the Néel
order from the weak- as well as the strong-coupling limits.
In the small-J limit, the nesting of the Fermi points of a
half-filled chain leads to a weak-coupling instability with
respect to perturbation of Néel wave vector q = 2kF = π .
The energy of the Néel ordered state is lowered by opening a
spectral gap at the Fermi points. Furthermore, our simulation
finds that the energy gain is maximized by collinear Néel
order. In the opposite large-J regime, the half-filled chain is
a special case in the sense that there exists a macroscopic
degeneracy in the J → ∞ limit. In this strong-coupling limit,
each site binds an electron whose spin is aligned with the
local moment Si , whose direction can point in an arbitrary
direction. As discussed in the main text, this huge degeneracy
is lifted by the nearest-neighbor hopping, giving rise to an
effective antiferromagnetic spin-spin interaction JAFSi · Sj ,
where JAF ∼ t2/J > 0. Consequently, the Néel order is also
stabilized in this large-J limit. The cross-linking geometry
in the pyorhclore lattice leads to geometrical frustration of
Néel ordered chains. The system ends up in an all-in–all-out
long-range order in which the Néel order coexists with a
ferromagnetic component in each chain.

The 1
3 -filled Kondo chain displays a richer phase diagram

as shown in Fig. 11(a). Here, we plot the wave vector q∗,
which corresponds to the maxima of S(q ), as a function of J .
At J � 0.5, the ground state shows a spin configuration with
a period of 3, represented by a wave vector at q∗ = 2

3π , as
shown in Fig. 11(b1). Again, this magnetic order arises from
the weak-coupling instability due to the Fermi-point nesting

q∗ = 2kF for a 1
3 -filled chain. The wave vector q∗ = 2π/3

bifurcates at J ≈ 0.5 with one branch gradually going down
and the other one rising up to 1

2π [see Fig. 11(b2)]. The
small plateaus for q∗ may result from the finite-size effects.
In region III, the spin structure tends to be noncoplanar and
rather complicated, represented by a less pronounced peak at
q∗ = π [see Fig. 11(b3)]. Starting from J ≈ 5.5, the ground
state is ferromagnetic [Fig. 11(b4)]. The 3-period phase at
small J agrees with that of 3D pyrochlore lattice, while at
intermediate J , the gradual change of q∗ is broken by the 3D
structure and replaced by a ( 1

2 , 1
2 , 1

2 ) order. In both 1D and 3D
models, a large J gives rise to the ferromagnetic phase. The
evolution of the most pronounced wave vector, which is the
line in the middle in region II of Fig. 11(a), shows the same
trend as that of the quantum Kondo chain [28].

Here, we identify the period-3 ground state for small J =
0.2, 0.4 at 1

3 filling. Since we expect the ground state with a
3-period structure due to the Fermi-point nesting mechanism
as indicated by the Monte Carlo simulations, we can then
Fourier transform the real-space Hamiltonian to a k-space
Hamiltonian H = ∑

k

∑2
i,j=0 c

†
iα (k)Hiα,jβ (k)cjβ (k) in which

H (k) =

⎛
⎜⎝

− 1
2Jσ · S0 −teikσ0 −te−ikσ0

−te−ikσ0 − 1
2Jσ · S1 −teikσ0

−teikσ0 −te−ikσ0 − 1
2Jσ · S2

⎞
⎟⎠, (A2)

where σ0 is the 2 × 2 identity matrix. Working on the k

space, we try to identify the lowest-energy local spin con-
figuration. The whole spin chain is composed of multiple
periodic duplicates of the first three spins S0, S1, S2. It is con-
venient to set S0 = (0, 0, 1), S1 = (sin θ1, 0, cos θ1), S2 =
(sin θ2 cos φ2, sin θ2 sin φ2, cos θ2). Scanning over θ1, θ2, φ2

shows the minimum energy is obtained when S0, S1, and S2

are coplanar, which allows us to set φ2 = 0. We can then
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scan over θ1, θ2 only. The final optimal configurations with
J = 0.2, 0.4 are presented in Fig. 12. Although it is tempted
to consider that the structure with the angle between any pair

of spins being 120◦ is the best configuration, our results show
that the optimal state is close to but not exactly the 120◦
structure and varies with J .
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