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First-principles calculations of high-temperature spin dynamics in solids in the context of nuclear magnetic
resonance (NMR) are a long-standing problem, whose conclusive solution can significantly advance the
applications of NMR as a diagnostic tool for material properties. In this work, we propose a hybrid quantum-
classical method for computing NMR free induction decay(FID) for spin-1/2 lattices. The method is based on
the simulations of a finite cluster of spins 1/2 coupled to an environment of interacting classical spins via a
correlation-preserving scheme. Such simulations are shown to lead to accurate FID predictions for one-, two-,
and three-dimensional lattices with a broad variety of interactions. The accuracy of these predictions can be
efficiently estimated by varying the size of quantum clusters used in the simulations.
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I. INTRODUCTION

Free induction decay (FID) measured by nuclear magnetic
resonance (NMR) is, normally, proportional to the infinite-
temperature time autocorrelation function of the total nuclear
spin polarization of the system [1,2]. It depends on the in-
ternuclear distances and spin-spin interactions. The Fourier
transform of the FID gives the NMR absorption line shape
[1–3]. First-principles calculation of NMR FID in solids is a
nonperturbative problem—it does not have a small parameter
to build a controllable analytic expansion. The problem is
normally nonintegrable at the quantum level [4] and chaotic
at the classical level [5,6]. It belongs to a broader class
of problems exhibiting non-Markovian dynamics, often ac-
companied by nonuniversal observable behavior. A number
of first-principles methods of FID calculations have been
proposed in the past [1,2,7–19]. Quite a few of them pro-
duced good approximations for FID in one system, namely,
CaF2 [1,20]. Yet none of them is widely used at present
because their predictive performance for a broader class of
systems is either poor or unclear. In the present work, we
propose a hybrid quantum-classical method of simulating
high-temperature spin dynamics that meets the challenge of
predictive performance in two ways: the method is tested
for one-, two-, and three-dimensional spin-1/2 lattices with a
broad variety of interactions, and simultaneously, it is shown
that one can make an efficient uncertainty estimate for the
computed quantity. The defining feature of the method is
the implementation of the dynamical action of the quantum
cluster on the classical environment.

The method of hybrid simulations is likely to be applicable
beyond solid-state NMR to describe, for example, quantum
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decoherence [17,21–25] and inelastic magnetic neutron scat-
tering at high temperatures [26]. The advantage of developing
the method in the context of NMR is the availability of a very
accurate experimental testing ground, which is a consequence
of the fact that nuclear spin dynamics is well isolated from the
electronic and phononic environments.

II. MODEL

We consider a lattice of spins 1/2 with a translationally
invariant Hamiltonian of the general form

H =
∑
α,i<j

J α
i,j S

α
i Sα

j , α ∈ {x, y, z}, (1)

where Sα
i is the operator of spin projection on axis α for the ith

lattice site and J α
i,j are the coupling constants. The quantities

of our interest are time autocorrelation functions of the total
spin polarization Mα = ∑

i S
α
i ,

Cα (t ) = 〈Mα (t )Mα (0)〉/〈M2
α

〉
, (2)

where 〈· · · 〉 denotes the averaging over the infinite-
temperature equilibrium state. In general, Cα (t ) decays on the
fastest microscopic timescale of the system characterized by
the inverse rms value of local fields experienced by each spin:

τc =
⎛
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ij
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j
2〉 + J
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j
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2〈
Sz

j
2〉
⎞
⎠

−1/2

. (3)

Direct numerical calculation of Cα (t ) in the thermodynamic
limit is not feasible due to the exponentially large Hilbert
spaces involved.

III. HYBRID METHOD

We replace the above quantum lattice with a hybrid lattice
that contains a set of lattice sites Q occupied by a cluster of

2469-9950/2018/98(21)/214421(10) 214421-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.214421&domain=pdf&date_stamp=2018-12-12
https://doi.org/10.1103/PhysRevB.98.214421


GRIGORY A. STARKOV AND BORIS V. FINE PHYSICAL REVIEW B 98, 214421 (2018)

|ψ〉

FIG. 1. Sketch of a hybrid lattice: a cluster of spins 1/2 sur-
rounded by an environment of classical spins. The quantum cluster
is described by a wave function |ψ〉. Classical spins are represented
by three-dimensional vectors.

quantum spins 1/2 and a set of sites C occupied by classical
spins (see Fig. 1). The quantum cluster is described by a
wave function |ψ〉, while the classical spins are described
by a set of vectors {sm}. The time evolution of |ψ〉 is
computed quantum mechanically by direct integration of the
Schrödinger equation, and simultaneously, the dynamics of
the classical spin vectors {sm} is obtained by the integration
of the classical equations of motion (see Appendixes A, B,
and C). In the above formalism, the statistical behavior of
the quantum cluster is characterized by averaging over many
pure states. In other contexts, such an approach often exploits
quantum typicality [27–32], which is the property of a single
many-body pure state to accurately represent certain kinds
of statistical averages. In the present context, however, we
do not benefit from quantum typicality—the method requires
actual averaging of quantum-mechanical expectation values
over many pure states.

The challenge in defining the dynamics of a hybrid system
is to reproduce dynamical correlations of the original fully
quantum lattice as closely as possible. An important aspect
of these correlations is the retarded action of each spin on
itself and remote spins via interacting neighbors. In order
to induce such correlations across the quantum-classical bor-
der, we introduce effective local fields exerted by the two
parts on each other. The local fields exerted by the classical
environment on quantum spins can be defined to have the
standard form used in purely classical simulations. In order to
define the reverse action of the quantum spins on the classical
neighbors, one can try to take the expressions for the classical
local fields and, in those expressions, replace classical spin
projections sα

m with the expectation values of quantum spin
operators 〈ψ |Sα

m|ψ〉. However, the problem with such an

approach is that, for a typical pure state describing a cluster
of NQ spins 1/2, the expectation values 〈ψ |Sα

m|ψ〉 are expo-
nentially small [28,32,33]—they are suppressed by the factor
1/

√
N + 1, where N = 2NQ is the cluster’s Hilbert space

dimension (see Appendix D for the derivation). Therefore,
for N � 1, such a naive approach would lead to a negligi-
ble action of quantum spins on the classical ones, thereby
failing to induce qualitatively important correlations across
the quantum-classical border. Instead, we propose to use the
quantum expectation values scaled up by the factor

√
N + 1,

whenever they are coupled to or combined with the classical
variables. This rescaling will be justified after we introduce
the formalism. Everywhere below, we further assume that
N � 1 and hence replace the scaling factor

√
N + 1 by

√
N .

The dynamics of the quantum and classical parts are de-
scribed by the respective Hamiltonians

HQ =
i,j∈Q∑
i<j,α

J α
i,j S

α
i Sα

i −
∑
i∈Q

hCQ
i · Si , (4)

HC =
m,n∈C∑
m<n,α

J α
m,ns

α
msα

n −
∑
m∈C

hQC
m · sm, (5)

where Sα
i are the operators of spins 1/2 as in Eq. (1),

sm ≡ (sx
m, s

y
m, sz

m) are vectors of length
√

S(S + 1) = √
3/2

representing classical spins, and hCQ
i and hQC

i are the local
fields coupling the quantum and the classical parts:
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⎞
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The lattice has periodic boundary conditions.
The initial conditions for the simulations include a fully

random choice of |ψ (0)〉 in the Hilbert space of the quan-
tum cluster and random orientations of classical spins. The
hybrid version of the total spin polarization Mα (t ) is defined
according to the earlier prescription for rescaling quantum
expectation values:

Mα (t ) =
√

N〈ψ (t )|
∑
i∈Q

Sα
i |ψ (t )〉 +

∑
m∈C

sα
m(t ). (8)

The mathematical construction based on Eqs. (4), (5),
(6), (7), and (8) introduces dynamical correlations across the
quantum-classical boundary, which, while being approximate,
exactly capture two important aspects of the fully quantum
dynamics. First, the rms value of the local field for each
spin, quantum or classical, is the same as that for the original
quantum lattice. Second, if the Hamiltonian of the original
quantum lattice conserves the total spin polarization or one
of its projections, this conservation law is also respected by
the hybrid dynamics for Mα defined by Eq. (8).

Yet the quantum-classical border still disturbs the dynam-
ics of spins within the quantum cluster in comparison with the
purely quantum lattice. This distortion is weaker for the spins

214421-2



HYBRID QUANTUM-CLASSICAL METHOD FOR … PHYSICAL REVIEW B 98, 214421 (2018)

FIG. 2. Correlation functions Cα (t ) for one-dimensional periodic chains with nearest-neighbor interactions. The interaction constants are
indicated above each plot. The left column compares the results of hybrid simulations with the reference plots obtained by direct quantum
calculations. The right column does the same for purely classical simulations. For both hybrid and classical simulations, the full lattice size is
92. The sizes of quantum clusters in hybrid simulations and in reference quantum calculations are indicated in the legends.

located farther from the border. Therefore, as explained in Ap-
pendix E, we reduce the influence of the border by introduc-
ing an auxiliary variable M ′

α = √
N〈ψ (t )| ∑m∈Q′ Sα

m|ψ (t )〉,
where the subset Q′ is limited to one or several central spins
within the quantum cluster. We then compute the correlation
function of interest as

Cα (t ) = 〈Mα (t )M ′
α (0)〉/〈M ′

α

2〉 (9)

by performing averaging over the equilibrium noise of Mα (t )
and M ′

α (t ).
An important aspect of the hybrid method is that it is

possible to make an efficient estimate of the accuracy of its
predictions. This estimate is based on the observation that, as
the size of the quantum cluster increases, the hybrid calcu-
lation must converge to the exact quantum result. Therefore,
a discrepancy between the results for quantum clusters of
significantly different sizes gives an estimate of the difference
with the thermodynamic limit. The implementation of the
hybrid method can realistically involve only relatively small
quantum clusters of 10–20 spins 1/2. Yet, precisely for this
reason, the relative differences between these sizes are large.

Therefore, if these differences do not lead to large deviations
of the computed correlation functions, then the result should
be viewed as reliable. For lattices with a not too small number
of interacting neighbors, where purely classical calculations
are expected to work well [19], the deviation between a purely
classical calculation and a hybrid calculation with a small
quantum cluster can already be sufficient for a reasonable
estimate of the predictive accuracy. (See also the remark at
the end of Appendix D.)

IV. TESTS OF THE HYBRID METHOD

A. Comparison with direct numerical simulations

Our tests of the performance of the hybrid method for
one-dimensional chains and two-dimensional square lattices
of spins 1/2 are presented in Figs. 2 and 3, respectively.
The lattices had nearest-neighbor interactions with coupling
constants indicated in the legends. In both figures, the predic-
tions of the hybrid method are compared with the results of
numerically exact direct quantum simulations for sufficiently
large clusters. The cluster was considered “sufficiently large”
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FIG. 3. Correlation functions Cα (t ) for two-dimensional periodic lattices with nearest-neighbor interaction. The notations in (a)–(b′) are
the same as in Fig. 2. For both hybrid and classical simulations, the full lattice size is 9 × 9. The shapes of quantum clusters for hybrid
simulations are shown in (c).

when, in the time range of interest, the change in Cα (t ) with
the increase in the cluster size was negligible. The sizes of
the quantum clusters for hybrid simulations were, typically,
smaller: in comparison with direct simulations, they were
limited by the requirement to generate many more and much
longer quantum evolutions in order to collect enough statistics
(see Appendix C). Figures 2 and 3 also include a side-by-
side comparison of hybrid simulations with purely classical
simulations. More such tests can be found in the Supplemental
Material [34].

For one-dimensional chains, the performance of the hybrid
simulations in Figs. 2(a) and 2(b) is excellent. These plots
correspond to typical situations when correlation functions
Cα (t ) decay not too slowly, i.e., on a timescale of the order
of τc. On the contrary, Fig. 2(c) illustrates an atypical case,
where the coupling constants and the axis α are chosen such
that Cα (t ) decays anomalously slowly. In this case, the hybrid
method’s prediction exhibits a clear discrepancy from the
reference plot. However, it is important to note the fact, illus-
trated in Fig. 2(c), that the internal estimate of the predictive
accuracy based on the use of different quantum clusters within

the hybrid method would anticipate the above discrepancy. We
further note here that the same accuracy estimate in Figs. 2(a)
and 2(b) is consistent with the observed excellent agreement
with the reference plots. We, finally, observe that, in all cases
presented in Fig. 2, the performance of the hybrid simulations
is significantly better than that of the classical ones.

Figure 3 illustrates that, for two-dimensional lattices, hy-
brid simulations generally exhibit a very good performance,
which is also noticeably better than that of the classical
simulations, even though the latter is also reasonable, a con-
sequence of the fact that the number of interacting neighbors
of each spin has increased in comparison with the one-
dimensional case [19].

B. Comparison with experiments

For three-dimensional lattices, direct numerical calcula-
tion of reliable reference plots for sufficiently large quan-
tum clusters is not feasible. Therefore, we test the hybrid
method by comparing its predictions with the NMR FID
experiments [20] for 19F nuclei in the benchmark material
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FIG. 4. FIDs in CaF2 for external magnetic field B0 along the
following crystal directions: (a) [001], (b) [011], and (c) [111].
Hybrid and classical simulations are compared with the experimental
results of Ref. [20]. For both hybrid and classical simulations, the full
lattice size is 9 × 9 × 9. The quantum cluster in hybrid simulations
was a chain extending along the [001] crystal direction in (a), a chain
passing through the entire lattice and oriented along the [100] crystal
direction in (b), and a chain along the [111] crystal direction in (c).
The insets contain semilogarithmic plots of the respective FIDs.

CaF2. These nuclei have spin 1/2, form a cubic lattice,
and interact via truncated magnetic-dipolar interaction (see
Appendix F). In Fig. 4, we present a comparison between
the experiment and the results of the hybrid and classical
simulations for magnetic field B0 oriented along the [001],
[011], and [111] crystal directions.

In this case, classical simulations are known to lead to good
agreement with experiment, a consequence of the relatively
large effective number of interacting neighbors neff [19,35]
defined by Eq. (A3) [19]. According to Ref. [19], the values
of neff for the [001], [011], and [111] crystal directions are,
respectively, 4.9, 9.1, and 22.2. Given large neff, the hybrid
method was also not expected to generate predictions very
different from the classical ones irrespective of the choice
of the quantum cluster within the method. This choice was
made as follows: For each orientation of B0, the quantum
cluster is chosen in the form of a chain extending along the
crystal direction of the strongest nearest-neighbor coupling.
We believe this is a reasonable approach to preserve the
remaining quantum correlations. Specifically, for B0 along the
[001] and [111] crystal directions, the cluster chains extend
along the direction of B0; for B0 along the [011] direction,
the chain extends along the [100] direction. The size of the
simulated hybrid lattice is 9 × 9 × 9 spins, which is assumed
to accurately represent the hybrid lattice with an infinitely
large classical part. This assumption is based on the results
of Ref. [19], where no significant difference between 9 ×
9 × 9 and 11 × 11 × 11 lattices was observed for classical
simulations.

All three examples in Fig. 4 illustrate the predictive un-
certainty criterion formulated earlier, namely, that, for lat-
tices with a large number of interacting neighbors, the de-
viation between the predictions of the two methods quan-
tifies the uncertainty of either of them. Indeed, hybrid and
classical results diverge approximately at the same point
where they start noticeably deviating from the experimental
result.

A more detailed comparison of the tests for the [001],
[011], and [111] directions provides further support for the
role of large neff: Since neff is significantly larger for [011] and
[111] than for [001], the initial agreement between the exper-
iment and both hybrid and classical simulations extends for
[011] and [111] over a longer initial time, reaching the regime
of the exponential-oscillatory asymptotic behavior given by
Eq. (10) (introduced in Sec. V), which, in turn, leads to the
excellent overall agreement even on semilogarithmic plots.
We note, however, that the statistical uncertainty of the clas-
sical and hybrid plots grows towards the end of the plotting
range and, in some cases, becomes larger than the thickness
of the plotted lines (see the Supplemental Material [34]). This
likely explains the discrepancies between the experiment and
the simulations for the [011] and [111] directions. However,
for the [001] direction, the small discrepancy between the
hybrid and classical simulations seen on the semilogarithmic
plot is statistically significant. It leads to small differences
between the parameters characterizing the long-time regime,
namely, the constants of exponential decay and the oscillation
frequencies. The small differences of these parameters then
lead to the growing differences between classical and hybrid
FIDs at longer times in Fig. 4(a). These differences, while
barely visible on the linear plot, become amplified on the
semilogarithmic plot [inset of Fig. 4(a)], where the classical
simulations exhibit somewhat better agreement with exper-
iment than the hybrid ones. We believe, however, that this
better agreement is accidental—classical simulations in this
case do not have the required predictive accuracy. In order
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TABLE I. The values of γ and ω obtained from fitting the func-
tional dependence (10) to the FIDs presented in Fig. 4(a). The fitting
plots themselves can be found in the Supplemental Material [34].

ω (rad/ms) γ (1/ms)

Experiment 151.6 52
Hybrid 142.8 55
Classical 158.5 56

to substantiate this view, we present in Table I the values
of the long-time exponential decay constants and frequencies
for classical hybrid and experimental FIDs. There one can
observe that both classical and hybrid calculations predict
the long-time constants with an accuracy of 5%–7%, and the
experimental values fall just into this range.

Beyond CaF2, the hybrid method is supposed to be of most
value in those cases where the direct quantum simulations
cannot access the thermodynamic limit for the correlation
functions of interest, while at the same time the effective num-
ber of interacting neighbors neff is not large enough to justify
purely classical calculations, for example, three-dimensional
lattices that can be divided into one-dimensional chains with
stronger coupling within each chain and weaker coupling
between the chains, such as fluorapatite [36], or when spins
can be divided into strongly coupled pairs as in 13C diamond
with external magnetic field along the [111] direction [37].
The performance of the hybrid method in the above settings
should be the subject of future tests.

V. DISCUSSION

Overall, Figs. 2, 3, and 4 and the additional tests in the Sup-
plemental Material [34] illustrate that the hybrid method pro-
duces mostly very accurate predictions. As we now explain,
the rare situations where the method’s predictive accuracy is
limited can be understood from the analysis of the asymptotic
long-time behavior of Cα (t ).

There exists substantial experimental [20,38–40] and nu-
merical [19,32,41,42] evidence, also supported by theoretical
arguments [43–45], that, despite widely varying shapes of
correlation functions Cα (t ), their long-time behavior in non-
integrable systems has the universal form

Cα (t ) ∼= e−γ t or Cα (t ) ∼= e−γ t cos (ωt + φ), (10)

where γ and ω are constants of the order of 1/τc. The
asymptotic behavior(10) represents the slowest-decaying re-
laxational mode of the system [44]. Typically, it becomes
dominant after a time of the order of several τc. Therefore,
if one manages to accurately compute Cα (t ) over the above
initial time interval, then good overall accuracy is ensured.
This is what the hybrid method achieves in a typical setting.

On the basis of the above consideration, one can anticipate
that the hybrid method would predict the asymptotic time
constants γ and ω with absolute uncertainty ε/τc, where
ε is a number significantly smaller than 1. Yet such an
uncertainty may lead to noticeable discrepancies in two
problematic cases [44]: In the first, the slowest relaxational
mode is characterized by γ 
 1/τc, and hence, the relative
uncertainty of predicting γ may be large [see Fig. 2(c)].

In the second problematic case, the asymptotic behavior is
characterized by an accidental competition between the two
slowest relaxation modes with exponential decay constants γ1

and γ2 such that |γ2 − γ1| 
 1/τc. As a result, the long-time
behavior can be significantly distorted in an approximate
calculation. The above analysis further implies that the
competition between two relaxational modes in the long-time
regime is accompanied by the increased sensitivity of direct
quantum simulations to the size and shape of the quantum
cluster, which, in turn, prevented us from conclusively testing
the hybrid method in the presence of two-mode competition
(see the Supplemental Material [34]).

We finally remark that there exists a straightforward ex-
tension of the present method, where, instead of dividing the
simulated lattice into a quantum cluster and a classical envi-
ronment, one can divide it into computationally manageable
quantum clusters coupled to each other via local fields of the
form (7) obtained from the quantum-mechanical expectation
values of spin operators within each cluster. Our preliminary
investigations have not revealed any clear computational ad-
vantages of the latter approach in comparison with the hybrid
method.

VI. CONCLUSIONS

In conclusion, we proposed a hybrid quantum-classical
method of simulating high-temperature dynamics of nuclear
spins in solids. The method exhibits excellent overall perfor-
mance for quantum spin lattices with different dimensions and
with different interactions. It comes with a long-sought inter-
nal estimate of the predictive accuracy, which was validated
in each of the large number of tests we have performed. The
method can therefore be used to make reliable predictions
of NMR spin-spin relaxation in various materials with the
goal of extracting unknown microscopic information, such as
the distances between nuclei or the mechanisms of coupling
between them.
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APPENDIX A: CLASSICAL SIMULATIONS

The equations of motion for classical spins are obtained
from Hamiltonian (5) with the help of Poisson brackets [6]
{sα

m, s
β
n }P = δmn eαβγ s

γ
m, which gives

ṡm = {sm,HC}P = sm × (
hCC

m + hQC
m

)
, (A1)

where

hCC
m = −

∑
n∈C

⎛
⎜⎝

J x
m,ns

x
n

J
y
m,ns

y
n

J z
m,ns

z
n

⎞
⎟⎠. (A2)

The infinite-temperature state is characterized by com-
pletely random orientations of classical spins. Therefore,
the initial spin vectors {sm(0)} were generated as radius
vectors of points randomly sampled on a sphere of radius
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√
S(S + 1) = √

3/2 with uniform probability distribution.
The length of classical spin vectors

√
S(S + 1) guarantees

that the characteristic time τc is the same for classical and
quantum lattices. It also guarantees the equality of the second
moments M2 ≡ −C ′′

α (0)/Cα (0) for the two lattices. With
such a choice, correlation functions corresponding to purely
quantum and purely classical lattices are known to become
very close to each other [10,19,46] when the effective number
of interacting neighbors of each spin

neff ≡
[∑

n

(
J x

mn
2 + J

y
mn

2 + J z
mn

2
)]2

∑
n

(
J x

mn
2 + J

y
mn

2 + J z
mn

2)2 (A3)

is greater than 4 [19]. It was also shown analytically in
Ref. [35] that, in the limit of an infinite number of interacting
neighbors, the two kinds of correlation functions are supposed
to become identical.

APPENDIX B: QUANTUM SIMULATIONS

The dynamics of quantum clusters is simulated by the
method of direct time integration of the Schrödinger equation

d

dt
|ψ (t )〉 = −iH|ψ (t )〉 (B1)

without the complete diagonalization of the Hamiltonian [32].
In comparison with the latter, the direct integration allows one
to treat larger quantum clusters numerically exactly because it
does not require one to store in the computer memory either
density matrices or unitary transformations, which are dense
N × N matrices. Instead, only the wave function vector and
the sparse Hamiltonian matrix are stored.

Each simulation starts from a randomly sampled pure
quantum state (a superposition of eigenstates). These initial
states are generated as

|ψ〉 =
N∑

k=1

ck|k〉, (B2)

where |k〉 is a full orthonormal basis and ck ≡ ake
iϕk are com-

plex quantum amplitudes, in which ϕk are phases randomly
sampled from interval [0, 2π ) and ak are real numbers, whose
squares pk ≡ a2

k are sampled according to the probability
distribution [32,47]

P (pk ) = N exp (−Npk ). (B3)

The wave functions |ψ〉 are then normalized. Thus-generated
wave functions |ψ〉 are uniformly distributed over the unit hy-
persphere 〈ψ |ψ〉 = 1 in the Hilbert space of the cluster. Such
a distribution represents the infinite-temperature ensemble.

Once |ψ (t )〉 is obtained, one can compute the quantum
expectation value 〈ψ (t )|∑m Sα

m|ψ (t )〉 and then use it to
obtain the correlation function Cα (t ) (see below).

APPENDIX C: NUMERICAL INTEGRATION OF
QUANTUM AND CLASSICAL EQUATIONS OF MOTION

In hybrid simulations, the dynamical equations (A1)
and (B1) are integrated jointly using an explicit Runge-Kutta
scheme of the fourth order with a fixed time step of 2−7 J−1

or, in some cases, 2−6 J−1 (to speed up the calculations).
The time unit J−1 is defined as follows: for one-dimensional
and two-dimensional lattices, J =

√
J 2

x + J 2
y + J 2

z , where

Jx , Jy , Jz are the nearest-neighbor coupling constants; for
the three-dimensional CaF2 lattice, J = g2h̄2/a3

0 , where g

is the gyromagnetic ratio and a0 is the cubic lattice period,
both appearing in Eq. (F1) below. The choice of the time
step is discussed in Refs. [19,32]. Purely classical or purely
quantum simulations are performed as the appropriate limit
of the hybrid simulations. The numbers of computational
runs (realizations of the time evolution of the system starting
from randomly chosen initial conditions) from which the
plotted correlation functions were extracted are given in the
Supplemental Material.

APPENDIX D: SUPPRESSION OF THE EXPECTATION
VALUES OF QUANTUM OPERATORS BY THE

FACTOR 1/
√

N + 1

Let us consider a cluster of NQ spins 1/2 with the dimen-
sion of the Hilbert space N = 2NQ . Let us further consider
quantum operator A, which has the infinite-temperature av-
erage 〈A〉≡ 1

N
TrA=0 and the variance 〈A2〉≡ 1

N
TrA2≡A2

rms.
This can be the operator of the local field or the projec-
tion of an individual spin or the operator of the total spin
polarization. Here we show that, for a wave function |ψ〉
randomly sampled in the Hilbert space of the cluster according
to prescription (B2),

〈ψ |A|ψ〉 ∼ Arms/
√

N + 1. (D1)

The intuitive explanation of this fact is based on the notion
of quantum parallelism [33]. Namely, the expectation value
〈ψ |A|ψ〉 can be thought of as the average over N independent
superimposed realizations of the state of the system, and as a
result, a factor of the order 1/

√
N suppresses the statistical

fluctuations of 〈ψ |A|ψ〉 with respect to the zero average.
Since the difference between

√
N and

√
N + 1 may be-

come important for small quantum clusters, we now formally
derive the factor 1/

√
N + 1 in Eq. (D1) by demonstrating that√

[〈ψ |A|ψ〉2]ψ = Arms/
√

N + 1, (D2)

where [· · · ]ψ denotes the Hilbert space average over the
infinite-temperature ensemble of the pure quantum states de-
fined by Eq. (B2). In terms of this average,

[〈ψ |A|ψ〉]ψ =
∑
m,n

[c∗
mcn]ψAmn, (D3)

and

[〈ψ |A|ψ〉2]ψ =
∑

k,l,m,n

[c∗
kclc

∗
mcn]ψAklAmn, (D4)

where Amn are the matrix elements of A. We thus need to
calculate tensors

Fk
m ≡ [c∗

kcm]ψ, (D5)

D
k,n
m,l ≡ [c∗

kcmc∗
ncl]ψ. (D6)

Their form can be completely deduced from the symmetry
arguments. The infinite-temperature ensemble, which we av-
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erage over, is invariant with respect to the group of arbitrary
unitary transformations U (N ) of the Hilbert space. As a
consequence, tensors Fk

m and D
k,n
m,l should also be invariant

(transform into themselves) under the action of U (N ). This
group contains, among other members, independent rotations
of complex phases of the basis vectors and the permutations
of the basis vectors.

The invariance of Fk
m with respect to the phase rotations

implies that only diagonal elements Fk
k are nonzero. The in-

variance with respect to the permutations additionally implies
that the diagonal elements should all be equal to each other.
These considerations constrain the form of the tensor to

Fk
m = αδk

m, (D7)

where α is a constant that can be found by computing
the trace of Fk

m in two ways: from the definition (D5),∑
k F k

k = [
∑

k |ck|2]
ψ

= 1, and from Eq. (D7),
∑

k F k
k = Nα.

Thus, α = 1/N . As a result, Eqs. (D5) and (D7) give

[c∗
kcm]ψ = δk

m

N
. (D8)

For the tensor D
k,n
m,l , invariance with respect to the phase

rotations leaves us with nonzero elements only of the form
D

k,n
k,n or D

k,n
n,k . The symmetry of D

k,n
m,l with respect to the

permutations of lower indices (or upper indices) further im-
plies that D

k,n
k,n = D

k,n
n,k . In terms of averaging in Eq. (D6),

one should distinguish the elements D
k,n
k,n = [|ck|2|cn|2]ψ

with k �= n from the elements with k = n, i.e., of the type
D

k,k
k,k = [|ck|4]ψ . Given the symmetry with respect to the per-

mutations of the basis vectors, the first subset is necessarily a
part of the tensor that has the form

D
k,n
m,l = β

(
δk
mδn

l + δk
l δ

n
m

)
, (D9)

where β is a constant. We note here that tensor (D9)
is invariant with respect to all transformations belonging
to the group U (N ) as required. It also yields the value
D

k,k
k,k = 2β = 2[|ck|2|cn|2]ψ for the elements from the second

subset. If, however, [|ck|4]ψ �= 2[|ck|2|cn|2]ψ , this correction
must be accounted for by adding to the right-hand side of
Eq. (D9) a tensor of the form β ′δk

mδn
l δ

kn, where β ′ is another
constant. However, a tensor defined in one basis as δk

mδn
l δ

kn

does not remain invariant under all U (N ) transformations.
Therefore, such a correction is not possible, which means
that expression (D9) represents the only possible form of
tensor D

k,n
m,l . The constant β can now be found by taking

the “double trace”
∑

k

∑
n D

k,n
kn in the definition (D6), which

gives
∑

k

∑
n |ck|2|cn|2 = 1, and in Eq.(D9), where it be-

comes βN (N + 1). Thus, β = 1
N (N+1) , which, together with

Eqs. (D9) and (D6), implies

[c∗
kcmc∗

ncl]ψ = δk
mδn

l + δk
l δ

m
n

N (N + 1)
. (D10)

Finally, substituting Eqs. (D8) and (D10) into Eqs. (D3)
and (D4), we obtain

[〈ψ |A|ψ〉]ψ = Tr [A]

N
= 0 (D11)

and

[〈ψ |A|ψ〉2]ψ = Tr [A2]

N (N + 1)
+ Tr2 [A]

N (N + 1)
= A2

rms

N + 1
, (D12)

which gives Eq.(D2).
Now we apply the above general result to the operator of

the local magnetic field of a quantum spin lattice

hi = −
∑
j �=i

⎛
⎜⎝

J x
ijS

x
j

J
y

ij S
y

j

J z
ij S

z
j

⎞
⎟⎠. (D13)

The rms value of hi is defined as

hrms ≡
√√√√ 1

N

∑
j �=i,α

(
J α

ij
2 Tr

[
Sα

j
2
])

. (D14)

(The characteristic time of lattice dynamics τc given in the
main text is obtained as 1/hrms.)

If we consider the quantum expectation value 〈ψ |hi |ψ〉 for
a random quantum state, then its rms value is

‖〈ψ |hi |ψ〉‖rms =
√

[〈ψ |hi |ψ〉2]ψ

=
√ ∑

j �=i,l �=i,α

J α
ij J

α
il

[
Sα

j Sα
l

]
ψ
. (D15)

Using Eqs. (D11) and the fact that [Sα
j Sα

l ]
ψ

= 0 for j �= l, we
obtain

‖〈ψ |hi |ψ〉‖rms =
√√√√ ∑

j �=i,α

J α
ij

2
Tr

[
Sα

j
2
]

N (N + 1)
= hrms√

N + 1
.

(D16)

We finally remark that the considerations of this appendix
imply that the hybrid dynamics defined in Sec. III with the
quantum cluster consisting of one spin 1/2 surrounded by
classical spins and with the exact prefactor

√
N + 1 in Eq. (7)

instead of the approximate
√

N is exactly equivalent to the
purely classical dynamics of the same lattice.

APPENDIX E: REPRESENTATIONS OF CORRELATION
FUNCTIONS

For purely classical systems, we extracted equilibrium
correlation functions Cα (t ) from the equilibrium noise of the
quantity of interest Mα (t ) = ∑

m sα
m(t ) using the following

definition:

Cα (t ) = N
[

1

Tmax

∫ Tmax

0
dτMα (τ + t )Mα (τ )

]
i.c.

, (E1)

where N is a normalization constant and [· · · ]i.c. denotes
averaging over the infinite-temperature ensemble of initial
conditions. The time Tmax was chosen to be sufficiently large
(Tmax � τc, Tmax � t). In principle, if the system is ergodic
and the limit Tmax → ∞ is taken, then the averaging over the
initial conditions is not necessary. In practice, however, given
the unclear ergodization timescales, we perform the additional
averaging over the initial conditions both as a consistency
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check and as a way to improve the efficiency of the averaging
procedure.

For purely quantum systems, the correlation function
of interest is, at first sight, defined differently, namely,
Cα (t ) � Tr{eiHQtMαe−iHQtMα}, where Mα = ∑

m Sα
m is a

quantum-mechanical operator. It was, however, proven in
Ref. [32] that one can obtain the result of the above quantum
trace calculation with the help of formula (E1), where clas-
sical projections Mα (t ) are replaced by quantum-mechanical
expectation values Mα (t ) = 〈ψ (t )|∑m∈Q Sα

m|ψ (t )〉 associ-
ated with the time evolution of a randomly chosen wave
function (B2). The amplitude of the resulting quantum noise
of Mα (t ) is, however, smaller than that of the classical coun-
terpart by the factor 1/

√
N .

At the level of the basic idea, our method of hybrid
simulations compensates the above amplitude mismatch by
redefining Mα (t ) with the help of Eq. (8) and then obtaining
Cα (t ) using Eq. (E1) with the newly defined Mα (t ). However,
in the final application of the method, we introduce an addi-
tional technical modification aimed at reducing the effect of
the quantum-classical border. Namely, we use the fact that,
due to the translational invariance of the original quantum
problem, the correlation function of interest can be reex-
pressed as Cα (t ) � Tr{eiHQtMαe−iHQt Sα

m}, where Sα
m is the

αth projection operator of any spin on the lattice. Moreover,
Sα

m in this expression can be further replaced by the sum M ′
α =∑

m∈Q′ Sα
m over any subset Q′ of spins on the lattice, which,

therefore, we can choose at our discretion. The presence of
the quantum-classical border in the hybrid simulations breaks
the translational invariance of the system, thereby making
different choices of M ′

α nonequivalent from the viewpoint of
the approximation error. We minimize this error by choosing
subset Q′ to consist of one or several equivalent quantum spins
which are farthest from the quantum-classical border.

Finally, we combine all the above relations to arrive at the
expression for the correlation function actually used in our
hybrid simulations:

Cα (t ) = N
[

1

Tmax

∫ Tmax

0
dτMα (τ + t )M ′

α (τ )

]
i.c.

, (E2)

where Mα (t ) is given by Eq. (8) and
M ′

α = √
N〈ψ (t )| ∑m∈Q′ Sα

m|ψ (t )〉. For each set of initial
conditions, we integrated the dynamical equations (A1)

and (B1) up to time Tmax ∼ 10T0, where T0 is the maximum
time t in Eq. (E2) for which the correlation function Cα (t )
was to be computed. The number of initial conditions was
then chosen to be sufficiently large to make the resulting
statistical uncertainty of Cα (t ) negligible on the scale of the
resulting plots.

We tested hybrid simulations for one- and two-dimensional
lattices by comparing hybrid results with purely quantum
simulations of larger spin-1/2 clusters, for which the direct
integration of the Schrödinger equation could be implemented
numerically (typically, up to 25 spins 1/2). For this, we used
yet another representation of the correlation function [17,32]:

Cα (t ) = N
[
〈ψ (t )|

∑
m

Sm|ψaux (t )〉
]

i.c.

, (E3)

where |ψ (t )〉 is obtained via direct integration starting from a
randomly selected |ψ (0)〉, while |ψaux (t )〉 is obtained via the
direct integration of the unnormalized auxiliary initial wave
function

∑
m Sm|ψ (0)〉. Such a method is more efficient than

the one involving formula (E2) because, for larger clusters, it
requires the direct integration of only two wave functions over
time T0 (much less than Tmax) to obtain Cα (t ) with accuracy
1/

√
N . So far, however, we are not able to incorporate this

method into a hybrid simulation scheme.

APPENDIX F: FREE INDUCTION DECAY IN CaF2

The FID experiments in solids measure the relaxation of
the total nuclear magnetization transverse to a strong magnetic
field B0. The relaxation is caused by the magnetic dipo-
lar interaction between nuclear spins averaged over the fast
Larmor precession induced by B0. The effective interaction
Hamiltonian in the Larmor rotating reference frame has the
form (1) with coupling constants

J z
i,j = −2J x

i,j = −2J
y

i,j = g2h̄2(1 − 3 cos2 θij )

|rij |3 , (F1)

where the z axis is chosen along the direction of B0, rij is the
vector connecting lattice sites i and j , θij is the angle between
rij and B0, and g is the gyromagnetic ratio of the nuclei. The
measured FID signal is proportional to Cx (t ) given by Eq. (2).

In CaF2, the 19F nuclei form a cubic lattice with
period a0 = 2.72 Å. Their gyromagnetic ratio is
g = 2.51662 × 108 rad s−1 T−1.
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