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Continuous degeneracy of the fcc kagome lattice with magnetic dipolar interactions
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Results are presented on analytic and computational analyses of the spin states associated with a
three-dimensional (3D) fcc lattice composed of ABC stacked kagome planes of magnetic ions with only
long-range dipole-dipole interactions. Extending previous work on the 2D kagome system, where a discrete
six-fold degeneracy of the ground state was revealed [Holden er al. Phys. Rev. B 91, 224425 (2015)], we
show that the 3D lattice exhibits a continuous degeneracy characterized by just two spherical angles involving
six sublattice spin vectors. Application of a heat bath Monte Carlo algorithm shows that thermal fluctuations
reduce this degeneracy at very low temperature in an order-by-disorder process. A magnetic field applied along
directions of high symmetry also results in lifting the continuous degeneracy to a subset of states from the original
set of ground states. Metropolis Monte Carlo simulation results are also presented on the temperature and system
size dependence of the energy, specific heat, and magnetization, providing evidence for a phase transition at
T ~ 0.38 (in units of the dipole strength). The results can be relevant to a class of magnetic compounds having

the AuCuj; crystal structure.
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I. INTRODUCTION

Geometrically frustrated spin systems are typically as-
sociated with short-range Heisenberg-like antiferromagnetic
exchange interactions [1]. A more subtle geometry-induced
frustration can also occur with only dipole coupling between
spin vectors. Features which lead to this frustration include an
antiferromagentic (AF)-like contribution to the dipole interac-
tion, the first term in Eq. (1) (where D is the dipole strength),
as well as the second term which involves explicit coupling of
spin and lattice vectors. The long-range nature of the dipole
coupling gives additional aspects (equivalent to a decaying
higher-neighbor exchange in the first term) which are usually
revealed only through numerical calculations. We adopt the
dipole interaction of the form

Eip=D3}_ [(Sir.s.sj) BECERIC 'rij)}, (1)
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where the dipole strength is given by D = 5—;@’;#;5) with a
being the near neighbor lattice spacing, 7;; is the dimension-
less vector connecting sites i and j, and S; is a unit spin vector.
For convenience, all calculated quantities involving the energy
and temperature have units relative to the dipole strength. In
the present work, exchange terms are omitted in an effort to
explore fully the implications of the long-range effects of the
three-dimensional (3D) frustrated lattice structure described
below, as well as having a model applicable to artificial nanos-
tructures [2]. Spin structures without and with an applied
magnetic field, as well as at finite temperature, are explored in
the case of a 3D fcc lattice composed of ABC stacked kagome
planes along cubic (111) directions with classical spin vectors
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interacting only through the dipole coupling energy, Eq. (1).
The structure is inspired by magnetic compounds, such as
IrMnj3 [3,4], which adopt a AuCujs crystal structure, as shown
in Fig. 1. Unlike the regular fcc lattice, the impact of the
inherent AF frustration plays a more important role in the
dipolar spin states of the fcc kagome lattice.

In many cases, a consequence of geometrical frustration
is a degeneracy of spin configurations in the ground state,
normally when only nearest-neighbor (NN) antiferromagnetic
exchange interactions are included. This is particularly rele-
vant for the 2D kagome lattice composed of corner-sharing
triangles where the degeneracy is macroscopic, involving all
the structures with the basic 120° spin configuration around
each triangle [6-11]. In the case of only dipole coupling
between spins on the 2D kagome lattice, this degeneracy
is reduced to sixfold due to the direct spin-lattice coupling
[12—-14]. In general, the effect of thermal fluctuations or an
applied magnetic field on frustrated spin systems is to reduce
the degeneracy. For the kagome lattice with NN antiferromag-
netic exchange, thermal fluctuations select coplanar g = 0
spin structures at very low temperatures. With only dipole
coupling, the sixfold (in-plane) spin degeneracy is largely
unaffected by temperature except on cooling below T¢ =~ 0.43,
where the system tends to lock in to one (or more) of the six
spin configurations at 7 =~ 0.2. At all temperatures below T¢
the 2D kagome dipole system displays a net magnetization.

Spatial dimensionality of the lattice also plays an impor-
tant role in both the ground-state degeneracy and impact of
thermal fluctuations. Previous studies of the 3D fcc kagome
lattice with NN antiferromagnetic exchange J (involving
eight neighboring sites), for both XY and Heisenberg mod-
els, showed that it also exhibits 120° spin configurations

©2018 American Physical Society
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FIG. 1. The fcc kagome lattice based on a generic AB; com-
pound having the AuCuj crystal structure with B-site magnetic ions
(open circles) on the cube faces forming stacked 2D kagome layers
along (111) axes. Nonmagnetic A ions (filled circles) are at the
corners of the unit cell. (Adapted from Ref. [5]).

associated with ¢ = 0 order as in the 2D case (but with re-
duced degeneracy), and a phase transition to long-range order
at Ty = 0.760J and Ty = 0.476J, respectively [5,15,16]. In
the case of the triangular lattice with only dipole interactions,
the ground state is ferromagnetic in 2D as well as for the
3D hexagonal structure [17-19]. The impact of higher di-
mensionality on ground-state dipolar spin structures in going
from the 2D square lattice to 3D cubic structures is more
complicated. The dipolar 2D square lattice exhibits AF order
[19,20] whereas the regular fcc lattice shows ferromagnetic
order [19,21]. In contrast, and of particular relevance to the
present work, the simple cubic dipolar lattice is characterized
by a four sublattice spin configuration with continuous degen-
eracy involving two angles [22], also seen in cubic clusters
[23,24]. Monte Carlo simulations on the cubic system suggest
a discontinuous phase transition at T¢ =~ 0.56 [25]. Interest in
the interplay between frustration and dipole interactions has
been enhanced by the discovery of spin ice materials [26].

In this work we examine ground-state spin structures
of the fcc kagome dipolar lattice using an effective field
method [27] (EFM) with lattice sums performed using Ewald
techniques [28]. The results reveal degenerate ground-state
configurations characterized by six sublattice spins, composed
of three spins per adjacent (111) kagome plane, with anti-
ferromagnetic alignment between planes, yielding a zero net
magnetic moment (in contrast with the 2D case). The six spin
vectors are characterized by just two angles. This continuous
degeneracy is shown to be removed by an order-by-disorder
[29] process using a heat bath algorithm. Similar degeneracy
reduction is also shown to be achieved with magnetic field cy-
cling. Finally, Metropolis Monte Carlo (MC) simulations are
used to demonstrate a phase transition to long-range magnetic
order at T =~ 0.38 with a lock-in transition at 7 >~ 0.3.

The remainder of this work is organized as follows. We
describe the model used in Sec. II as well as the charac-
terization of the ground state. The selection of particular

FIG. 2. The 3D fcc lattice with six sublattice spin vectors on
three interpenetrating cubic lattices. In our labeling convention, S,
(two of which are in the z = 0 plane) and §4 = —gl are red, §2
(two of which are in the y = 0 plane) and §§ = —gg are blue, and §3
(two of which are in the x = 0 plane) and S¢ = —S; are green. The
directions of the spins are those for a ground state with 6 = 140° and
¢ = 80°. The view is nearly down the [111] axis, with the triangle
with the darkest outline belonging to the kagome plane closest to the
eye.

ground states by thermal fluctuations at very low temperature
is described in Sec. III. The impact of an applied magnetic
field is described in Sec. IV. MC simulation results for various
thermodynamic quantities are presented in Sec. V, with a
summary and conclusions given in Sec. VI.

II. GROUND STATE CHARACTERIZATION

EFM simulations were performed on a three-dimensional
lattice consisting of L ABC stacked 2D kagome planes (along
cubic (111) axes), with each plane occupied by %(L x L)
unit spin vectors [5,15,16] at lattice sizes L = 6, 12, and 18
using periodic boundary conditions. Several thousand runs
were executed with random initial spin configurations to
determine the lowest energy state, where each run involved
several hundred sweeps through the lattice. Analysis of the
results reveals a many-fold degenerate ground state allowing
configurations with a six sublattice spin structure, having three
sublattice spins per kagome layer, alternating in sign along the
(111) axes (i.e., adjacent layers are AF aligned). The basis
spin vectors themselves can also be viewed as occupying
the sites of three simple cubic lattices embedded in the fcc
kagome structure, as shown in Fig. 2.

By inspection of numerous resulting ground-state spin
vectors, it was determined that every configuration is found
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to be characterized by the following set of equations:

S1y = siné cos ¢,

(28t -1
a:—zlglz , B==%x/1-S —a2 2

These equations act as elementary building blocks for the
components of the six ground-state spin vectors. There are
only two parameters that characterize the resulting ground
states, 94 and ¢, which are the polar and azimuthal angles of
spin 1 (S;), where the polar axis lies along the positive z axis
[001] of a Cartesian reference frame. The values of 6 and ¢ are
restricted to ensure real values of B (note that the Heisenberg
model is also characterized by only two spin vector angles
without any restriction on the values the angles may take.)
Only six spins are required to fully characterize the ground
states. The six ground-state spin vectors themselves may be
constructed as follows:

Siy =sinfsin¢g, §j; =cosd,

Si = (Sie, Siy, S12)s S2 = (@, B, —Si0),
S; = (=B, —Si. —a,—S1,), S4=-8,,
g = —§2, §6 — —§3' (3)

Here, Sl, Sz, and S3 are the three spins on a given triangle
in one (111) kagome plane and S4, Ss, and 86 are spins on a
triangle above or below on an adjgcent (111) kagome planﬁe
In all figures, S; appears in red, S, appears in blue, and S;
appears in green. o

Wg note that the relations between components of S;, S;,
and S; can be obtained by directly calculating the system’s
dipolar energy with a finite radial cutoff as a function of the
components of the three independent spins, and assuming the
six sublattice structure given in Eq. (3). Consider §] in Fig. 2
as a central spin. It resides on a vertex in the red simple
cubic lattice. The dipolar energy is zero for this sublattice
(this is straightforward to show for a given spin and its six
nearest neighbors). The central S; spin also resides in the
middle of a face of the blue simple cubic lattice of alternating
S, and —S, spins, and similarly for the green simple cubic
lattice of alternatmg S’; and S3 spins. On the level of nearest
neighbours, 51 is in the middle of two orthogonal squares,
one blue and one green. Because neighboring spins alternate
signs, the AF-like contribution to the energy is zero [the
first term in the sum in Eq. (1)]. This is in contrast to the
2D kagome dipolar system where the AF-like contribution
from nearest neighbors is not zero, and hence the sublattice
structure of the ground state emerges only after considering
next-nearest neighbors [13]. Thus, only the lattice-coupling
term of Eq. (1) contributes to the ground-state energy in the
3Dﬁkagome system. In terms of independent spin components
of S1, S, and S5 the per particle dipolar energy of the six-spin
system is

Up = 6(Sle21 + SZxSlz + SlyS3z
+ S3ySlz + SZXSSy + S3XS2)')D9 (4’)

where the nearest neighbor distance is unity and § is a factor
that starts at a value of 2 when only considering nearest
neighbors and decreases with increasing the radial cutoff
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FIG. 3. The two-dimensional space describing the continuous
degeneracy of the fcc kagome ground state. Example states are
represented in the insets in the image. Both insets are viewed in the
[111] direction. Within the shaded area enclosed by the curves the
values of 6 and ¢ do not yield valid states.

distance (to 1.703 096 9 when the cutoff is 22). A minimiza-
tion of this energy with respect to the spin components subject
to normalization of the spin vectors (through the method
of Lagrange multlphers for example) yields the expressions
for Sl, Sz, and S3 in Egs. (2) and (3), and a minimum
value of the quantity in brackets of —3/2. This ground-state
energy of —36/2 = —2.554 65 compares well with our Ewald
result of —2.554 58.

Any (0, ¢) pair chosen from the plane in Fig. 3 will give
rise to a valid ground state of the same energy with the
exception of those pairs of (6, ¢) that lie within the shaded
region bounded by the blue curve of the graph. Within this
bound region, B in Eq. (2) has an imaginary part and thus spin
states characterized by those angle pairs (6, ¢) are not allowed
and do not appear in the EFM results. At each node of each
bounded area, « in Eq. (2) becomes undefined, but the limit as
6 approaches /2 for ¢ = w/4,3m /4, ... is well defined.

Note that the pattern in Fig. 3 repeats in ¢ with a period
of 7 due to crystal symmetry considerations. Nodes occur at

¢ = 22’;’1 where 7 is an integer. The plane is simplified further

due to reflections about the axes in the middle of each bounded
region. The three spins at node states lie in a {111} plane. For
example, for 0 = 7 /2 and ¢ = 7 /4,

T = T = 0 )
2
) ﬁ )

(o)

Wi

1

W Wl
[\ ]
I
N
o
- Sl=
)

3

are in the (1, 1, 1) plane.
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FIG. 4. The six sublattice spins corresponding to a nonplanar
state conjoined at their ends for clarity and illustration. The [111]
axis is indicated by the long black vector.

Analysis of the relations Eq. 2 reveals that the region of
allowed (0, ¢) pairs satisfy

2
>0 > e ?=0
s = =
.1 [4—JT6=6l1—cos @P)]
m—sin” (g ), 0<e < T
(6)

Thus, the entirety of the ground state is characterized by
Egs. (2) and (3) and the parameters (6, ¢) such that they
satisfy Eq. (6).

By generating the spin vectors described by Eqs. (2) and
(3), spin configurations from what we will call planar and
nonplanar states can be obtained. An example of a nonplanar
state is shown in Fig. 4. To gain insight into what choices of
(6, ¢) pairs give rise to particular states, consider the contour
plot in Fig. 5. It illustrates the volume of a parallelepiped
formed by the §1 , §2, and §3 spin vectors corresponding to a
particular (6, ¢) chosen from Fig. 3. It is from this illustration
that one can obtain an understanding of what choices of (6, ¢)
result in planar states or nonplanar states. Planar states are

T -
3 0.8
- 0.7
T 0.6
6 = 0.5
0.4
T
= 0.3
“ E 2 0.2
OB b e b b 0.1
o I I 3m . 57 8m 7m L,
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FIG. 5. Volume of the parallelepiped defined by spins 1, 2, and
3. Planar states are those indicated by the minimum volume (darkest)
regions.
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FIG. 6. A segment from Fig. 5 showing planar state regions
(darkest), with the red dot indicating the example shown in Fig. 7.
A light curve traces out Eq. (7).

those having zero volume of the parallelepiped which appear
as the darkest regions in Fig. 5 as nearly circular rings with a
radius of roughly 7 /4. Note that the nodes indicated on Figs. 3
and 5 represent planar states. In terms of the previous polar
coordinates planar states can be shown to satisfy trigonomet-
ric relations, and, e.g., for 0 < ¢ < /4, the locus of planar
states is given by

6 = m — arcsin <—\/§c10s¢>’ @)

outlining a section of the darkest rings in Fig. 5.

III. ORDER-BY-DISORDER PROCESS AT
LOW TEMPERATURE

In this section results are presented on the evolution of
ground states under the influence of thermal fluctuations. A
low temperature Monte Carlo heat bath method [30], that
uses the local field determined through the EFM algorithm,

FIG. 7. Example zero temperature planar state (corresponding to
the red dot (6 = 2.324, ¢ = 0.258) shown in Fig. 6). The [111] axis
is indicated by the long black vector.
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.

FIG. 8. Snapshot of an initial state used in low temperature
heat bath simulations with 6 = 2.736, ¢ = 0.321. The [111] axis is
indicated by the long black vector.

was employed for this purpose. Beginning with the particular
ground state shown in Fig. 8, the temperature was increased
from T = 0to T = 0.008 with increments of AT = 0.00001.
After each increase in temperature, the spin configurations
were run through the 7 = 0 EFM to obtain the nearest corre-
sponding ground state. Each of the states obtained following
each zero temperature EFM run were recorded and are dis-
played in Fig. 9.

The initial state is clearly a nonplanar state. As temperature
increases, the spin configurations gradually transition from the
nonplanar region to the planar region in Fig. 9, illustrated also
by the snapshot of the state at 7 = 0.008 shown in Fig. 10.
This order-by-disorder process appears to select the planar
states [29], near the “node” of the bounded region, as the
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FIG. 9. The ground-state 6-¢ plane that depicts the evolution
states obtained as temperature increased from O (blue points) to 0.008
(red points) in increments of 0.000 01 from heat bath simulations
(followed by 7' = 0 EFM simulations) on a lattice with L = 12.
Black curves mark boundaries for allowed ground states [see Eq. (6)]
and green curves are loci of planar states [see Eq. (7)].

FIG. 10. Snapshot of an final state at 7 = 0.008 used in low
temperature heat bath simulations (Fig. 9) with 6§ = 1.799, ¢ =
2.397. The [111] axis is indicated by the long black vector.

minimum free energy configuration from all possible states
after exposing the spin lattice to thermal fluctuations.

Increasing the temperature results in the spin configuration
moving towards a planar node state regardless of its initial
state. Temperature has the effect of lifting the degeneracy of
the system from one that includes all possible (valid) points
in the ground-state manifold to those that are planar (or near
planar).

IV. APPLIED MAGNETIC FIELD

In this section the effect of an applied magnetic field at
zero temperature on the spin configurations is presented. We
are motivated to do so for two reasons: testing whether the
field lifts the degeneracy of ground state, and determining
structural or phase changes en route to eventual saturation.
Although thermal fluctuations lift the degeneracy, cooling
from higher T can result in quenched-in states comprising
domains of different ground states, as we show in the next
section, and so an external field may provide a way of an-
nealing the system. Our first set of results stem from seven
EFM simulations performed on lattices of size L = 12, all
starting with the same nonplanar ground state characterized
by 6 = 0.2067 and ¢ = 3.116, with the Zeeman term

E;=-H-) § 8)

added to the dipole energy, Eq. (1). The magnetic field was
increased in steps of AH = 0.0001 up to H = 0.0150 and
then larger steps of AH = 0.004 until the field reached H >
0.20, where the spins begin to approach saturation. Subse-
quently, the magnetic field for each lattice was decreased
in steps of H = 0.001 until the magnitude was zero (field
cycling). Following every change in magnetic field, the spins
were subjected to the EFM method using 3000 iterations.
The magnetic field directions used for the simulations were
along directions of high crystal symmetry: [001], [010], [100],
[011], [101], [110], and [111].
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FIG. 11. Response of a nonplanar ground state to external field.
(a) Magnetization for both decreasing and increasing field mag-
nitude, H || [001], [110], and [111]. Hysteresis at higher field is
observed only in the [001] and [111] cases. Inset highlights the
low-field sudden change in the magnetization, where hysteresis is
present for all field directions. (b) The energy as a function of field,
with inset showing hysteresis at small field values. Marked changes
in magnetization are accompanied by changes in the slope of the
energy with H. (c) z components of the unit spin vectors for the
six sublattice spins when H is increased along the [001] direction,
showing the pairing of sublattice spins at transitions. The inset shows
the volume of the parallelepiped formed by 5'1, 3’2, and 5'3, which is
near zero for a canted planar state.

Illustrative results for the initial nonplanar ground state
above with the field along principal cube axes are shown
in Fig. 11, where the magnetization, energy, and spin

components as functions of magnetic field indicate several
distinct phases. Snapshots of the six sublattice spin vector
orientations with increasing field are shown in Fig. 12.

The initial nonplanar ground state has zero magnetization
and the inset of Fig. 11(a) shows that the magnetization lingers
close to zero at low values of the magnetic field along the
three directions. At some critical value (H ~ 0.005) with H I
[001], sudden changes in both the magnetization and energy
occur [insets of Figs. 11(a) and 11(b)] as well as in the six
sublattice magnetizations [Fig. 11(c)], signaling the formation
of a “planar” state that is canted by the field. The sublattice
spin configurations before and after this change are shown
in Fig. 11(c) and Figs. 12(a) and 12(b). Upon increasing
the field further, the plane of spins rotates [Fig. 12(c)] until
there is a sudden switch between two of the sublattices at
H = 0.0073 [Fig. 12(d)], where again the magnetization and
energy change suddenly. This (canted) planar state is charac-
terized by the equality of the z components of pairs of spins
S1 and Sy, S; and S3, and S5 and Sg, as shown in Fig.#ll(g),
and a small volume of the parallelepiped formed by Sy, S,
and S3, as shown in the inset of Fig. 11(c). A similar jump to
a planar state occurs for all the field directions, although for
the field along [111] the transition happens in one step rather
than in two. The formation of a planar state is reminiscent
of the spin-flop transition in antiferromagnetic systems with
anisotropy, for which application of a field results in spins
flopping down into the plane perpendicular to the easy axis
and then canting in the field direction [31].

Beyond H ~ 0.0073, the magnetization increases in an
approximately linear fashion as the canting of the spins in-
creases. At H ~ 0.045, there_} is anogher sudden change in
magnetization as sublattices S; and S4 align with the field,
and the remaining sublattices lock into having the same z
component. The magnetization of this final state, with two
sublattices aligned with the field and four canted, increases
slowly with increasing field strength. (Note there is a slight
positive slope in the plateau regime.) Similar pairing up of
sublattices occurs for H along other directions, although the
details differ. For example, for H along [110], no pair in the
final state aligns directly with field, and for H along [111], in
the final state all sublattices share the same component along
the field.

For the field in the [001] direction, there is a pronounced
hysteresis near the transition to the saturation plateau (H ~
0.045), which is more weakly present for H along [111] and
largely absent for H along [110]. These MH loops can also be
dependent upon which of the crystallographically equivalent
high symmetry directions are chosen. For example, three
different MH curves can occur for a given starting ground
state with H increasing along [100], [010], and [001]. How-
ever, all of the crystallographically equivalent directions show
identical MH curves upon decreasing the field from saturation.
These behaviors indicate that the energetically equivalent
ground states experience a complex energy landscape as a
function of applied field.

These simulations reveal how a sufficiently large external
magnetic field causes a spin configuration to transition from
a nonplanar state to a planar state, characterized by pairs
of sublattices that have the same component along the field
direction, and then to a state that will saturate and that has
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(f) H=0.0602

FIG. 12. Snapshots of the six sublattice spins obtained on increasing the external field from H = 0 to H = 0.0602. The black arrow

indicates the direction of the field along [001].

two or more pairs of sublattices arranged to have the same
component along the field. When decreasing the magnetic
field magnitude, the spin vectors orient themselves away from
the magnetic field direction and form a planar state at zero
magnetic field. The general responses of the spins to the

magnetic field are consistent with the exception of one point:
spin configurations that are already planar at zero field do not
experience an abrupt change into a planar state, but rather a
linear change similar to nonplanar states after transitioning
to a planar state. An examination of the energy hysteresis
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FIG. 13. Black points show the values of the polar angles that
identify the 26 initial degenerate spin configurations used to study the
effect of field, with H along the [111] direction. After field cycling,
24 states had the same planar configuration (6 = 1.949, ¢ = 0.697),
indicated by the red dot. Two other planar states indicated by the blue
dot (0 = 1.582, ¢ = 0.779) also occurred. Black and green curves
are the same as in Fig. 9.

occurring in the lowest H regime, shown in the inset of
Fig. 11(b), clearly shows that at finite field the planar state has
a lower energy than the nonplanar state. This fact indicates
that the nonplanar states are metastable in this region. This
lifting of energy degeneracy allows for the development of
energy barriers (and hence hysteresis) between configurations
that at zero field can move continuously from one to another.
Qualitatively similar results are found for other ground states.
One quantitative difference is the field values at which transi-
tions occur.

Our second set of results show that all possible ground
states can be transformed into planar states through field
cycling. Twenty-six different initial ground states spanning 6
and ¢ were prepared, as indicated in Fig. 13. Each of these
states was field cycled with a field along the [111] direction.

Twenty-four of the initial non-planar states resulted in the
same final state upon field cycling, while only two resulted
in a different final state: a node state, as indicated in Fig. 13.
Both of these are planar states. Thus, it is clear that by cycling
an external magnetic field, the degeneracy of the ground state
is reduced to include only states that are planar.

V. MONTE CARLO SIMULATIONS

A. Energy and specific heat

As in our previous MC simulations on the 2D kagome
lattice [13], three main types of temperature runs were per-
formed: isolated temperature, cooling, and heating. All sim-
ulations were done at zero magnetic field on lattices with
L =6, 12, and 18. Isolated temperature data are collected by
a simulation at every T initialized with a random configura-
tion. These initial configurations have no dependence on the
configurations of the neighboring temperatures. Furthermore,
each temperature may be run simultaneously on separate pro-
cessors, greatly decreasing the real time length of simulations.

1.87 ‘ N
[ @oL=b6
1.6 - mL=12 -
i oL=18 ]
14 ]
C i ]
1.2 - —
1.0 - 20
0.87‘ Ll - Ll - Ll L1
0 0.1 0.2 0.3 0.4 0.5 0.6
T

FIG. 14. Specific heat for different lattice sizes from isolated
temperature MC simulations, averaged over 800 000 MCS at
each T.

Heating and cooling runs, however, are completed at consec-
utive 7 using the final spin configuration of the previous T
as the initial configuration. In the case of isolated temperature
runs, at each temperature, at least 9 x 10° MC steps (MCS)
were used with the initial 1 x 10> MCS discarded for thermal-
ization, giving about Nycs = 8 x 10° MCS for averaging. A
single MCS involves, on average, an attempt to flip each spin
in the system. For cooling and heating runs, these numbers
were reduced by a factor of 10. Preliminary MC results on
the 3D kagome system using a small lattice (L = 8) with a
limited number of MCS were previously reported [13,32] and
indicated anomalous behavior at a temperature near 0.35.
Figure 14 shows results for the specific heat, given by

1 (E; — (E))
C = E 9
Nyvics T ©)

N

for L = 6, 12, and 18, where the sum is over the MC generated
configurations.

In each set there is a peak in the range T € [0.20, 0.40]
which becomes larger, narrower, and appears at higher T,
with increasing system size. The largest and most well de-
fined peak occurs in the L = 18 case near T¢ = 0.38. At
low temperatures, the results suggest C =~ 1, consistent with
earlier simulation results [13]. Note that the classical Heisen-
berg model behaves anomalously at low temperatures. The
model can be solved exactly in one dimension where these
is no phase transition [33] and the specific heat approaches a
constant value as T — 0. The model behaves like a single spin
in an effective magnetic field with two continuous degrees of
freedom. The equipartition theorem yields an energy linear in
T and a constant specific heat.

Figure 15 shows the energy at L = 12 performed at iso-
lated temperatures as well as cooling and heating runs. There
appears to be little difference in the simulation types. This
observation is important to the results shown below for the
sublattice magnetization, which do exhibit a strong depen-
dence on simulation type.
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FIG. 15. Measured energy per site as a function of temperature
for L = 12 cooling, heating, and isolated temperature simulations.
Heating and cooling simulations are averaged over 80 000 MCS at
each 7.

B. Magnetization and susceptibility

The total ferromagnetic magnetization is often used in
classical spin systems as an order parameter, especially for
those associated with dipolar coupling. In the present case, the
ground state exhibits a zero net moment due to the alternating
spin vectors along [111] axes. For the 2D kagome system, M ¢
was shown to increase with decreasing temperature, with a
maximum value of M, = 0.8700 for a pure, single-domain
ground state [13]. Figure 16 shows MC results for M, de-
creasing with decreasing temperature, tending towards zero
at low T. This behavior holds true for all lattice sizes, and
M diminishes rapidly with increasing L at all T'. Figure 17
shows the magnetization as a function of the inverse square
root of number of spins at selected temperatures, showing
a positive, linear scaling that grows with temperature. The
magnetization approaches zero at all temperatures as lattice
size increases while the slope of the fit decreases with tem-
perature, as expected for an antiferromagnetic system. The
ground-state magnetization is expected to have a slope of

0.16 !

0.12

M; 0.08

0.04

0.1 0.2 0.3 0.4 0.5 0.6
T

4
!

o

FIG. 16. Total ferromagnetic magnetization for different lattice
sizes L from isolated temperature MC simulations.

0.20 I

£

0.04 0.06 0.08
1/ L3/2

FIG. 17. Total ferromagnetic magnetization as a function of the
inverse of lattice size to the power of % This value is proportional to
the inverse square root of the number of spins.

zero (i.e., perfect antiferromagnetic order for all lattice sizes),
which corresponds to this behavior.

For the present system, as in the 2D case [13], the sub-
lattice magnetization serves as an order parameter associated
with the phase transition to long-range order. The value of
this quantity in each individual sublattice of size N/3 is
calculated as

3 .
My =~ D USi(=1), (10)

iCy

where y represents the subset of all spins belonging to
any given sublattice, and i is selected such that adjacent
spins, §;, carry an opposing sign [i.e., i =n, +ny + n; for
lattice position n = (ny, ny, n;)]. The spins of each cubic
sublattice are expected to approach perfect ordering (M,, = 1)
at zero temperature. By taking a thermal average of each
sublattice magnetization, the total sublattice magnetization is
calculated as

1

M, =3 ZMV (11)

Y
1.0 oo @ !solated
[ @ Cooling
0.8- @ Heating
0.6 - .
M z
0.4 - .
0.2+ .
0.0: | | | | | | 1
0 0.1 0.2 0.3 0.4 0.5 0.6

T

FIG. 18. Total sublattice magnetization as a function of temper-
ature for the three simulation types with L = 12.
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FIG. 19. Individual sublattice magnetizations for simulations of
L =12 cooling (top) and heating from a ground state (bottom).
Frozen-in states occur in the A and B sublattices of the cooling
simulations.
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Figure 18 shows the results for the three different sim-
ulation types. It can be seen that, in cooling simulations,
some domains of “frozen-in” spins of a different orientation
occur, as in the 2D case [13]. These domains reduce the
total sublattice magnetization. In cases of both cooling and
isolated temperature runs, for 7 < T, for some temperature
T, =~ 0.30 the system becomes non-ergodic and is no longer
able to sample states effectively.

The frozen-in states occur when it is no longer energet-
ically favorable for single spins, even on the border of the
domains, to change orientation. Thermal averaging results for
the three individual sublattice magnetizations are displayed in
Fig. 19 for cooling and heating simulations. Two of the cooled
system sublattices do not uniformly approach unity. A depic-
tion of frozen-in states in the A sublattice is presented in the
cross section of Fig. 20 with a portion of differently oriented
spins highlighted. These frozen-in states occur in domains
which are symmetrically equivalent on the lattice, spanning
the entire lattice in one dimension (i.e., individual plane),
and appear any number of times. That is, these domains are
related to each other by the crystal symmetry. When compared
to a single-domain state, the energy differences at 7 < 0.10
are on the order of AE/spin ~ 1073, Such a small energy
difference leads to domain occurrence being commonplace
in both isolated, cooling, and, on, rare occasions, heating
simulations.

The ferromagnetic susceptibility, x, of the lattice is defined
as the variance in ferromagnetic magnetization and is given by

1 Z (Myy — (My))?
T .

Nwmces <

(12)

Figure 21 shows yx from isolated temperature simulations
with varying lattice sizes. Figure 22 shows x for isolated
temperature and cooling and heating simulations at L = 12
only. The majority of simulations produce a narrow, noisy

107 b4 or
8- \(‘ii(i'{«\
S N L N L N N R N N
Y6 % U X X X U X X X\
4_‘\\\\\\\\;\
V4 ¥ 4 ) A
‘ ¥y A ¥ A/
& \ X \
/ \
2 4 6 : 10
X

FIG. 20. A cross section of sublattice A taken at 7 = 0.02 across the z axis. The 2D (left) representation only displays the angle ¢. The
3D (right) model presents the same cross section with 6 included. Colors are determined by ¢, highlighting frozen-in domains. Insets show S,
S,, and S5 viewed along an indicated direction, and illustrate the geometric equivalence of the two domains.
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FIG. 21. Ferromagnetic susceptibility (x) per spin for different
lattice sizes L for isolated temperature MC simulations.

peak at T ~ 0.30 followed by a weak, broad peak around
T = 0.40. The first, narrow peak occurs at the temperature at
which the lattices become locked into their configurations, as
seen in the total sublattice magnetization, which is related to
the nonergodicity of the system below this temperature. These
per-site values of the susceptibility do not appear to scale with
respect to the system size, which is consistent with a lack of a
ferromagnetic transition in the system.

The obvious exceptions to this generalization are the
L = 6 isolated temperature runs where finite-size effects are
strongest. This may facilitate the sampling of more states
at lower T, i.e., increase ergodicity. The heating simulation
results in Fig. 22 at L = 12 also show significant noise at
lower T, as with the heating results in Fig. 18, where spins
remain locked into a ground state until the transition begins
at T ~ 0.30. This behavior is witnessed in all simulations,
including the cooling simulations in which domains are not
realized. Heating simulation results, in which the spin lattice
quickly develops domains, align closely with the cooling
simulation susceptibility, suggesting the domains serve to lock
spins into an orientation and reduce the susceptibility of the
system.

[ I ]

4.0 @ 'solated |

i @ Cooling

3.0 I ¢ Heating
X20- -
: W
0.0i‘ L1 ., Non-ergodic | = FErgodic |, ‘ \7:

0 0.1 0.2 0.3 0.4 0.5 0.6

T

FIG. 22. Ferromagnetic susceptibility for L = 12 from heating,
cooling, and isolated temperature simulations.

25
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FIG. 23. Antiferromagnetic susceptibility for different lattice
sizes from isolated temperature simulations.

Similarly, the antiferromagnetic susceptibility, x,, can be
defined in terms of the variance in the total sublattice magne-
tization defined in Eq. (11). This is given as

1 Mtr_Mt 2
Xa = Z( . T< 2N (13)

Nwmcs

s

Figure 23 shows results for isolated temperature simula-
tions at L = 6, 12, and 18. A single, sharp peak is apparent
only for L = 18, corresponding to the inflection point in the
value of M, and to a peak in the specific heat, producing
the same estimated critical temperature 7, ~ 0.38. Also note
that, for L = 18, the results show reduced noise relative to the
smaller lattice simulations below a temperature around 0.3,
also consistent with the above discussion of lock-in states.

VI. SUMMARY AND CONCLUSIONS

This work explores an example of the interplay between
the geometrical frustration of a 3D kagome lattice involv-
ing the antiferromagnetic and anisotropic character of the
dipole interaction, as well as the long-range nature of dipole
coupling. The ABC stacking of kagome planes gives rise
to a truly 3D example of a kagome lattice, with eight NN
sites: four in-plane and two connecting each adjacent plane.
In contrast with the 2D case where discrete degeneracy of
the three-sublattice ground-state spin structures reflects the
sixfold hexagonal anisotropy [12—14], and the regular fcc lat-
tice showing ferromagnetic order, the 3D fcc dipolar kagome
lattice is shown here to exhibit a continuous degeneracy
involving two parameters (the polar angles 6 and ¢), similar to
the simple cubic dipolar lattice [22]. Certain regions in the 6-¢
plane are excluded from the domain of allowed ground states
characterized by six sublattice spins, involving three spins
around a triangle in the (111) plane and three spins around
the adjacent plane triangle pointing in opposite directions. The
total magnetization is thus zero, unlike the 2D case.

This continuous degeneracy is removed by thermal fluctua-
tions at low temperatures in an order-by-disorder process, and
through magnetic field cycling, with both processes yielding
planar states for which all six sublattice spins lie in a single
plane. Thermal fluctuations result in the system approaching
any one of a set of discrete “node states” (6 = /2, ¢ = /4,
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and odd multiples thereof). Field cycling appears to pick out
a set of discrete set of states along the locus of planar states,
including node states.

The evolution of a degenerate ground-state spin configura-
tion with an applied magnetic field is dependent on the field
direction, with M vs H curves showing multiple features for
H along the [100] and [110] directions involving spin flop
transitions of the sublattices. In the case of H along [111]
there is a transition at low fields from the nonplanar state to
a planar state and a second transition at higher fields near
saturation. The behavior of the energy under field recycling
indicates that the non-planar states become metastable in the
presence of an applied field. The detailed evolution of a state
with increasing field is dependent on which of the ground
states is used, but always returns to a planar state as the field
decreases to zero.

MC simulations show evidence of long-range order at
T ~ 0.38 and confirm the absence of a finite magnetization.
In addition, the MC results suggest that for T < 0.3 the
system can lock in to a mix of the degenerate ground-state
configurations and exhibit nonergodic thermodynamics.

The realization of such a purely dipolar magnetic sys-
tem appears limited to artificial nanostructures [2], but the

relevance of the present work my be related to a number of
atomic kagome-based structures which also exhibit exchange
interactions [34,35]. Among AB3; compounds where magnetic
ions form the fcc kagome structure, IrMns with strong AF
exchange is the most well known for its technologically im-
portant role in spin valves. As mentioned in Ref. [13], dipole
coupling may be expected to be important at the interface with
an adjacent thin-film ferromagnet when IrMnj3 is used as an
exchange bias material. Our results illustrate the importance
of temperature- and field-dependent dipole energy barriers,
relevant to the field cooling protocol required for setting
the exchange bias field [36]. The present work may also
be relevant to the magnetism in a sister compound, GeMnj3,
which exhibits exchange-driven ferromagnetism where dipole
coupling can also be important [37].
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