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Building symmetry-enriched topological phases from a bipartite
lattice construction and anyon condensation
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We introduce a construction of symmetry-enriched topological orders on bipartite lattices in which two Z2 spin
liquids defined on each sublattice are combined, and then anyons are condensed to reduce the topological order.
By choosing different anyon condensate structures, one can vary the fractionalization pattern of the resulting
spin liquid, some of which cannot be readily constructed from parton-based approaches. We demonstrate the
construction for (i) a spin-1/2 honeycomb lattice where we construct a featureless state as well as intermediate
states with topological order, (ii) a nonsymmorphic lattice, and (iii) lattices with magnetic translation symmetry.
Finally, we discuss constraints on nonchiral topological orders in a bosonic system under magnetic field.
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I. INTRODUCTION

Symmetry properties of the atoms making up a crystal can
affect the statistical properties of the low-energy excitations
in a gapped system, according to the theorem by Hastings and
Oshikawa [1,2], which generalizes the work by Lieb, Schultz,
and Mattis in one dimension [3,4]. This HOLSM theorem
states that if the atoms in the unit cell of a crystal have a net
spin which is a half integer, then the ground state cannot be
gapped and symmetric without having excitations that behave
as anyons. Thus, aside from a gapless ground state, there
are three alternatives: breaking translational symmetry (e.g.,
singlet bond pairing), breaking the spin-rotation symmetry, or
producing a state which seems not to have any order, but ac-
tually has a hidden topological order consisting of fluctuating
gauge field lines which can support anyon excitations.

Can this theorem be extended to lattices with an even
number of spin-1/2s per unit cell when extra symmetries are
added? With a lattice that has two atoms per unit cell, each
of spin-1/2, one can form a state with spin-rotation and trans-
lational symmetries by creating a valence bond between the
atoms in one unit cell. However, rotation, reflection, and more
complicated lattice symmetries can forbid this construction
[5,6]. In a honeycomb lattice, one can choose to form valence
bonds between pairs of atoms connected by hexagonal edges
pointing in any fixed direction without breaking translational
symmetry, but this will break rotational symmetry. There may
be another state with a more complicated pattern of resonating
bonds that has no broken symmetry or anyons, a so-called
featureless state suggested in Ref. [7]. In fact, such a state has
been constructed numerically with the full crystal and spin
symmetry group [8,9]. Our goal in this paper is to understand
analytic routes for states such as these.

Essentially, the difficulty of constructing a featureless state
for lattice models with specific values of U (1) charge per
unit cell (e.g., spin-1/2 honeycomb lattice) arises from the
fact that there is no known method to distribute U (1) charge
symmetrically without creating massive entanglement which

tends to result in a topological order in many cases [10]. On
the other hand, it is well known how to construct a topological
order in such models. Thus, it would be useful if we could
access a featureless state from a state with topological order.
Therefore, we attempt to access different phases such as a
featureless state or a new type of topologically ordered phase
starting from well-known states with topological orders.

We will describe a way of forming a state which does
not break symmetries that may have topological order, and
then collapse its topological order into a featureless state
if possible. The idea is to decompose the lattice into sub-
lattices and form spin-liquid states on the sublattices which
people understand better. [Here, spin liquid (SL) refers to a
paramagnetic phase of a spin system with topological order.]
For example, the honeycomb lattice can be formed from two
triangular lattices that have Z2 SLs on each of them. Then, we
try to form condensates of some of the anyons to eliminate the
topological order. Similar constructions have been introduced
for systems with on-site symmetries [11,12], but our construc-
tion incorporates spatial symmetries that can permute anyons,
enriching the resulting topologically ordered phase.

To see whether it is possible to condense the anyons, one
must confirm that the anyons transform in a simple way
(which means they can form a condensate without breaking
any symmetry) or in a fractionalized projective way under
crystal symmetries and the other symmetries. We outline
a method for calculating the way anyons transform under
the full symmetry group starting from the smaller group of
symmetries of the sublattices.

We will apply these ideas to several examples. The main
one is a construction of a state on the honeycomb lattice that
has no topological order or broken symmetry. We will also
consider cases where the symmetries do forbid a featureless
state (as has been shown previously) and give simple
constructions of states with a minimal topological order.
The examples include a system with a glide-reflection or
magnetic translation symmetry. We verify that the constructed
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topologically ordered phases have nontrivial anyon symmetry
fractionalizations, which is closely related to the absence of a
featureless state.

Let us make the statement of the HOLSM theorem more
precise. We will first define what we mean by a feature-
less state. A two-dimensional gapped and symmetric system
with local interactions can have an intrinsic topological order
defined by the existence of anyons, which are gapped low-
energy excitations with nontrivial braiding statistics [13,14].
Further equipped with symmetries, an intrinsic topological
order becomes a symmetry-enriched topological (SET) order.
A SET order is characterized by symmetry fractionalization,
meaning that anyons carry fractional quantum numbers of the
symmetry group. A famous example is the ν = 1/3 fractional
quantum Hall phase with U (1) charge conservation symmetry,
where quasiparticles carry 1/3 of the electron charge [15].
Since fractional quantum numbers carried by anyons cannot
change without a quantum phase transition, they have been
used to distinguish between quantum phases with the same
intrinsic topological order [16–21].

When the state is gapped and fully symmetric without
any topological order, we call it a featureless state. A subset
of featureless states are called symmetry protected topolog-
ical (SPT) phases, which lack any notable physical property
in the bulk but exhibit interesting physics at the boundary
[22–31]; however, their topological properties at the boundary
disappear under the absence of symmetries.

The idea of the HOLSM theorem is that microscopic data
can constrain the type of gapped phases that can be realized
in a particular lattice model. For example, one can eliminate
featureless states (i.e., SPT phases) for a certain class of lattice
models. The HOLSM theorem states that for a translationally
invariant system with a noninteger electron filling or half odd
integer spin per unit cell, every gapped ground state must
have either an intrinsic topological order or discrete symmetry
breaking. Therefore, the theorem can be rephrased as a no-go
theorem for the system to sustain a featureless ground state.
This theorem can be made even more precise: one can show
that in the cases where the state does not break symmetry,
and has topological order, the SET properties of it are also
constrained. For a given 2D SET order, its symmetry-enriched
properties, i.e., symmetry fractionalization of anyons, must
be consistent with the microscopic data such as a total spin
per unit cell or on-site/lattice symmetries [17,32–35]. It has
been recently realized that the no-go theorem for a featureless
state can be incorporated into this framework by viewing a
featureless state as a totally trivial SET phase [36].

However, the absence of a no-go theorem (so far) does not
guarantee the existence of a featureless state, and one has to
construct such a state explicitly. This has been done recently
for the honeycomb lattice via a numerical method, the so-
called tensor network construction [9]. Our method will help
to understand such states analytically, and can be generalized
to other cases. (In addition to the tensor network construction,
there are also theoretical studies on the (2 + 1)D system in
the spin-1/2 honeycomb lattice showing that its field theory
description does not contain any anomaly, suggesting the
possibility of the featureless state [37,38].)

The paper is organized as follows: We begin by outlining
the approach of dividing a system up into sublattices in order

to construct states with unbroken symmetry, but maybe with
topological order. In Sec. II, we provide a pedagogical review
on symmetry fractionalization and how to fully characterize
the symmetry fractionalization class of the topological order.
In Sec. III, we describe the procedure for calculating the
symmetry fractionalization class of a bipartite lattice, illus-
trating this for a lattice with nonsymmorphic group pg. In
Sec. IV, we use our method to construct a featureless state
in the spin-1/2 honeycomb lattice. First, we discuss possible
symmetry fractionalization classes of Z2 SLs in a triangular
lattice with spin-1/2. By combining two triangular sublattices,
we form a honeycomb lattice. In Sec. V, we discuss how to
condense anyon bound states W1 = eAeB and W2 = mAmB in
the previously constructed Z2 × Z2 SLs on the honeycomb
lattice to obtain a featureless ground state. In Sec. VI we
study the intermediate phases that are obtained by condensing
just one of the bound states. In particular, we note that the
symmetry of the condensate determines some aspects of the
SET order of the intermediate phases. Finally, in Sec. VII,
we illustrate applications of our construction for a lattice
with magnetic translation symmetry. Detailed calculations of
symmetry fractionalization classes will be discussed in the
appendices.

II. REVIEW: OBSTRUCTIONS TO FEATURELESS STATES
AND SYMMETRY FRACTIONALIZATION

A. Attempts to form featureless states and their downfall

Is there a generic strategy to build a featureless state
for a given physical model? Explicit constructions such as
Affleck-Kennedy-Lieb-Tasaki (AKLT) type wave functions
[39,40] are only possible in limited cases, and tensor network
generalized versions of AKLT-type wave functions in a virtual
Hilbert space [8,9,41,42] have the disadvantage that one has to
do numerical calculations to check whether they are actually
featureless, because a tensor network state that is formally
symmetric may actually have a spontaneously broken sym-
metry [9]. The most naive attempt would be to construct a
symmetric superposition of all possible valence bond con-
figurations. A famous example is a resonating valence bond
(RVB) state in a spin-1/2 triangular lattice [43], but the RVB
state hosts a Z2 (intrinsic) topological order. Indeed, this must
be the case, thanks to the HOLSM theorem that a featureless
state is prohibited.

However, a valence bond state is a good starting point in
spite of the topological order, because the state at least pre-
serves all the symmetries, and there is a method, “condensa-
tion of anyons,” that can sometimes eliminate the topological
order, which we will summarize briefly. Consider a Z2 spin
liquid. There are two types of anyons, an e spinon and an
m vison, which are mutual semions. One can condense e

spinons, causing e’s to no longer be well-defined excitations
and causing m’s to be confined because they have a nontrivial
statistics with excitations in the condensate [42,44]. Thus, one
can collapse the topological order by anyon condensation.

In this way, one can try to construct a featureless state. One
can start from a spin-liquid state. Then, one tries to choose a
type of anyon or bound states of anyons to condense in such
a way that the topological order is eliminated. If the anyons
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that are chosen do not have fractional quantum numbers, then
it is possible to make a symmetric condensate, so that the
symmetries remain unbroken at the same time that topological
order is eliminated.

However, if anyons to be condensed carry fractional quan-
tum numbers, one cannot get a featureless state in this way.
For example, in a spin-1/2 triangular lattice (or any lattice
with a half-integer spin per unit cell), the condensation of the
anyons cannot work to produce a featureless state, because
the HOLSM theorem forbids it. Indeed, the spinon and vison
both carry fractional quantum numbers (we will explain what
is meant by fractional quantum numbers below). This implies
that condensing one of them would break either the SO(3)
spin-rotation or lattice symmetry. Thus, the HOLSM theorem
not only provides a no-go for a featureless state, but also
constrains the symmetry fractionalization for anyons to be
nontrivial, as pointed out in Ref. [36].

In order to construct featureless states by this method, we
will therefore need to understand what it means for anyons to
transform in a fractional way.

B. Fractionalized symmetries

A two-dimensional intrinsic topological phase is classified
by its anyons, their fusion rules, and their braiding statis-
tics. With a global symmetry G, the system can be further
classified into a symmetry enriched topological (SET) phase,
characterized by a symmetry fractionalization pattern. First,
let us define a symmetry fractionalization. In a generic SET
phase, we assume that the action of a symmetry operator can
be decomposed into the product of operators, each of which is
supported in a finite region around an anyon excitation. For
example, consider a state with N anyon excitations where
each anyon ai is well separated from the others. For a sym-
metry element g ∈ G, let Rg be the action of g on the full
Hilbert space. Then, Rg can be decomposed as

Rg|�〉 =
N∏

i=1

�g (ai )|�〉, (1)

where �g (ai ) is a fractionalized local operator acting on the
neighborhood of ai . This is called the symmetry localization
hypothesis [16,17,45], a central assumption for the classifi-
cation of SET phases. With this assumption, an individual
anyon can realize a projective representation of G instead
of a linear representation. (We will not usually use distinct
symbols like Rg and �g to distinguish between the full sym-
metry and the localized action on an anyon.) However, two
different projective representations may differ only by a gauge
choice so that they are physically equivalent. Thus projective
representations are organized into equivalence classes, and
there may exist many different equivalence classes for a given
G and anyon contents. In physics, an equivalence class for
an individual anyon is called the fractionalization class. We
define a symmetry fractionalization pattern to be the set of
fractionalization classes for all distinct anyons.

We will illustrate symmetry fractionalization in a physical
setting by going through an example of a toric code model
with 2D translational symmetry, following the approach in
Ref. [16]. The 2D translation symmetries form a group

G = {T n1
1 T

n2
2 |n1, n2 ∈ Z} � Z × Z. G is completely charac-

terized by two generators T1 and T2, translations in x and y

directions, respectively, and a relation T1T2T
−1

1 T −1
2 , which

is identified as an identity element. For later usage, here
we remark that any group can be fully specified by a set
of generators S and a set of relations R, where R contains
products of generators, each of which is identified as the
identity element. This way of representing a given group is
called the presentation, and we write G = 〈S | R〉; in this case,
G = 〈T1, T2|T1T2T

−1
1 T −1

2 〉.
The toric code model realizes a Z2 topological order [46],

the simplest nontrivial topological order. This topological
phase has two distinct anyon excitations labeled by e and m.
Because of a given fusion rule e × e = 1 and m × m = 1, they
can be created only in pairs. Consider the action of T1 on a
state with a pair of e excitations at the points r and r ′. By
the symmetry localization hypothesis, the action of T1 can be
decomposed into

T1|ψ〉 = T e
1,rT

e
1,r ′ |ψ〉, (2)

where T e
1,r and T e

1,r ′ are fractionalized operators for T1, acting
nontrivially only near the neighborhood of r and r ′. Since
the degrees of freedom that constitute the model transform
linearly under the symmetry operators, any identity relation,
such as T1T2T

−1
1 T −1

2 , must act trivially on the state. In terms
of fractionalized operators, this can be expressed as

∏
i∈{r,r ′}

[
T e

1,iT
e

2,i

(
T e

1,i

)−1(
T e

2,i

)−1] = 1. (3)

Thus, for an individual fractionalized operator, T e
1,iT

e
2,i

(T e
1,i )

−1(T e
2,i )

−1 does not have to be the identity, and it may
equal a nontrivial phase factor ηe. Since this nontrivial phase
factor should be the same for all e excitations, Eq. (3) implies
(ηe )2 = 1. Thus ηe ∈ {1,−1} � Z2, and T e

1,i and T e
2,i do not

have to be commutative. Physically, this corresponds to the
situation where e excitation experiences an emergent mag-
netic π flux per unit cell.

The constraint on ηe is called a compatibility condition and
is determined by the fusion rules of underlying anyons. For
example, if a fusion rule is given by e × e × e = 1 instead of
e × e = 1, we would have (ηe )3 = 1 because Eq. (3) would
become a product of three equivalent anyons. Then we get
ηe = ei2πm/3 ∈ Z3 for m = 0, 1, 2. This phase factor ηe forms
an Abelian group, called a coefficient group A. The same
procedure can be repeated for the m excitations, giving an
additional phase factor ηm. Since Eq. (3) is the only nontrivial
relation among generators for the group G, we conclude that
a Z2 topological order enriched by the translational symme-
try group G has four distinct SET phases, characterized by
(ηe, ηm) ∈ Z2 × Z2.

In general, symmetry fractionalization manifests itself by
how products between group elements that are equal to the
identity for the microscopic degrees of freedom (i.e., the
relations) become nontrivial phase factors when applied to
anyons. In some cases, there is an additional subtlety: the
phase factors may become dependent upon some arbitrary
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choices (we call this a gauge choice). The factorization of the
symmetry into parts is ambiguous; a symmetry O acting on
an anyon can be redefined as follows:

O|ψa〉 �→ eiφO (a)O|ψa〉 (4)

for any state ψa with anyon charge equal to a. Here the phase
φO(a) can depend on the type of anyon. Such transformations
can change the phase factors appearing in the relations be-
tween fractionalized operators, and in that case, one would
regard the new set of phase factors as being equivalent to the
old. Hence SET phases are defined by equivalence classes of
projective representations of a global symmetry group G with
phase factors from a coefficient group A, where A is the set
of phase factors consistent with the fusion rules.

How can we find all the equivalence classes for possible
projective representations? A mathematical tool called group
cohomology allows us to do such a task. The second coho-
mology group H 2(G,A) is an Abelian group whose elements
have a one-to-one correspondence with equivalence classes of
projective representations. We pause to consolidate the physi-
cal intuition we developed via the example of the toric code:

Intuition. Consider a group G characterized by a set of
free generators S and a set of relations R. For a given
Abelian group A, determined by fusion rules of underlying
intrinsic topological order, SET phases with a symmetry G

are classified by the distinct ways to assign elements of A to
every relation of R consistently.

The following mathematical lemma (3.16) of Ref. [47]
gives a more precise description of the set of equivalence
classes of projective representations.

Lemma. Consider a discrete group G with presenta-
tion G = 〈S|R〉, where S is a set of free generators and
R is a set of relations of generators in S identified as
the identity. For an Abelian group A, there is one-to-one
correspondence between H 2(G,A) and a quotient group
HomZG(R/R′,A)/Der(S,A), where R/R′ is the Abelianiza-
tion of R and Der(S,A) is the derivation function [47].

A group of homomorphisms HomZG(R/R′,A) represents
all consistent assignments of elements of A into elements of
Abelian group of relations R/R′ [48], formalizing the idea of
“different ways” to assign elements of A to distinct relations
of R. H 2(G,A) is the second group cohomology of a group G

with an Abelian coefficient group A, whose elements directly
correspond to distinct SET phases. Der(S,A) represents a
set of redundancies arising from the gauge choices made for
projective representations; thus it makes sense to quotient out
HomZG(R/R′,A) by Der(S,A) to obtain equivalence classes
for projective representations.

By using the lemma, it is possible to understand possible
SET phases without sophisticated mathematics in terms of
physically relevant expressions, the way each symmetry re-
lation is assigned a nontrivial phase factor. For example, let us
classify SET phases for Z2 topological order with a wallpaper
group p4m, which is the symmetry group for a square lattice.
The fusion rules e × e = m × m = 1 again imply that the
coefficient group is A = Z2. Gp4m is fully characterized by
generators S = {T1, T2, C4, σ } with (minimal) seven relations
R = {r1, r2, . . . , r7}. T1/2 are translations, C4 is a fourfold
rotation, and σ is a reflection with respect to the y axis. The

seven relations are

r1 = T1T2T
−1

1 T −1
2 , r2 = σ 2, r3 = (C4)4,

r4 = T1σT −1
1 σ, r5 = T2σT2σ, r6 = C4σC4σ,

r7 = T1C4T2C
−1
4 . (5)

Based on the toric code example, in this case, one might
expect 27 different fractionalization classes for each e and
m, respectively. However, this is wrong. While the first six
relations are invariant under redefining each operator by a
multiplicative factor Õi = ηiOi where ηi ∈ A and Oi ∈ S,
r7 changes its sign. If we redefine T̃1 = −T1, then r̃7 = −r7.
Thus, the phase factor assignment on r7 is gauge-dependent,
and does not have any physical meaning. Mathematically, r7

is what we quotient out with Der(S,A), which encodes gauge
redundancy. Thus, there are 26 fractionalization classes for
each e and m, and we get a total of 212 different SET phases
in this case, if we have no additional symmetry.

So far, we have discussed only cases where G does not
permute anyons. For example, in Wen’s plaquette model [49]
which realizes Z2 topological order, translation symmetry
permutes e and m. In such a case, we need to discuss SET
classification in a broader mathematical context, and the
above approach lacks some of the sophistication necessary
to enumerate all possible SET phases. In Appendix B, we
discuss the classification of SET phases with anyon-permuting
symmetry in detail.

Caveat. In this discussion, we simplified the classifica-
tion by considering only bosonic anyons (zero topological
spin). However, for an anyon with nonzero topological spin,
self-statistics can modify the phase factors with respect to
the rotation/reflection symmetries [16,50,51]. Since we are
interested in bosonic anyons that can be condensed, we will
not have to consider this complication.

III. FRACTIONALIZATION OF SYMMETRIES
IN COMBINATIONS OF LATTICES

If one would like to make a featureless state on a certain
crystal, or at least a state with the minimum amount of topo-
logical order, one can build the crystal out of sublattices whose
symmetry is simpler. For example, to make a featureless state
on the honeycomb lattice, one can divide the honeycomb
lattice into two triangular sublattices (called the A and B

atoms). We start with simple resonating valence bond states
on each sublattice (e.g., we start with a symmetric state of
free fermions and then project the wave function so that each
site has exactly one fermion on it). This state forms a Z2 × Z2

spin liquid, because the spinon and vison excitations on each
sublattice are distinct. The visons transform projectively
under translations while spinons transform projectively under
spin rotations, so neither of them can be condensed without
breaking a symmetry. However, we can form bound states
of the spinon excitations in the two sublattices and of the
vison excitations in the two sublattices. If we can show that
these transform nonprojectively, then they can be condensed
without breaking symmetries, and this would cause all the
individual spinons and visons to become confined, removing
the topological order. Such phase transitions triggered by
condensation (or proliferation) of spinons have been well
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FIG. 1. Simplest lattice structure for nonsymmorphic group pg.
The black and white dots form the A/B sublattices, respectively. The
black lines are drawn to represent each unit cell. The dashed lines
are separated by a half-lattice vector translation in the x direction.
The reflection symmetry Px we use in the text is defined with
respect to the blue line. The sites are numbered to help picture the
identifying map, S , which is defined as the glide-reflection symmetry
g|A restricted to the A sublattice. This maps the black dots labeled by
n to the white dots labeled by n′. Under g|B , n′ �→ n + 1, meaning
that g|B = TxS−1.

known for Z2 and Z2 × Z2 topological orders without lattice
symmetries [52–55]. It is clear that the bound states transform
trivially under spin rotations and translations, because the
projective minus signs for these symmetries are squared when
two excitations are present. However, the behavior of the
excitations under other symmetries may be more complicated
because the symmetries can act differently on the two
sublattices.

Once one knows the fractionalization of the anyons in
one of the sublattices, it is possible to deduce how they
transform under the full symmetries of the combined lattice,
including symmetries that exchange the sublattices. In fact,
one can prove that the symmetry fractionalization pattern of
the combined lattice is uniquely defined for a given symmetry
fractionalization pattern of anyons in sublattices.

We will describe a general procedure for doing this here.
First choose one of the sublattices, L1. For each of the other
sublattices, Li , choose a symmetry that maps L1 to Li ; we
will call this an identifying mapSi : L1 → Li . Each symmetry
U can be expressed in terms of symmetries of L1 because
sublattices are enforced to be equivalent by the symmetry
of the combined lattice. Suppose U maps the lattices to one
another according to U : Li → Lj . Then we will express U ,
when it acts on the ith sublattice, as

U |i = SjXS−1
i , (6)

where X is one of the symmetries restricted to L1, which
will usually depend on i. We emphasize that Si is just a
unidirectional map from a specific sublattice (L1) to one of
the other sublattices.

Before returning to the honeycomb lattice, let us apply this
technique to a lattice with the symmetry group Gpg; see Fig. 1.
This lattice has two translations Tx and Ty , and glide-reflection
symmetry g = τxPx , where τx is half of the Tx translation and
Px is a reflection with respect to the x axis.

Then, consider a spin-model with this symmetry, with a
spin-1/2 per site. Like in the honeycomb lattice, there are two
spins per site, so this system is not forced to break symmetry
or have topological order by translational symmetry alone.
We will try to use our method to construct a featureless
state: this system has a bipartite lattice structure, drawn as
black and white dots in the figure, so we can construct a
Z2 × Z2 spin liquid. We will find that one set of anyons can
be condensed, reducing this to a Z2 spin liquid, but no more.
This is consistent with the result of Ref. [5], which shows that
there are no featureless states with a half-integer spin in the
reduced unit cell of a crystal with pg symmetry.

When each sublattice is assumed to be in a Z2 spin-liquid
phase, the system realizes Z2 × Z2 topological order with
four different anyons eA/mA and eB/mB , where the A and
B lattices are the black and white dots respectively. How can
we classify these anyons? The symmetry group Gpg is charac-
terized by two generators x = g and y = g−1Ty together with
the single relation x2y2 = 1. In group presentation language,
Gpg = 〈x, y|x2y2〉.

There is a complication in determining how anyons trans-
form when lattices are permuted. In the previous section,
we explained that a symmetry fractionalization class can be
represented by a set of phase factors representing the actions
of symmetry relations. However, symmetries such as the glide
reflection g exchange the A and B sublattices, and by exten-
sion exchange anyon types. In the presence of a symmetry that
exchanges anyon types, some of the phases that are ordinarily
gauge-invariant become gauge-dependent and cannot be used
to distinguish SET phases [17,56] (see Appendix B for a
general framework).

We can see this for the defining relation of this lattice,
x2y2 = gTyg

−1Ty , which is the identity up to a sign when it
acts on an anyon; e.g., gTyg

−1Ty |mA〉 = sA|mA〉. This phase
is not gauge-invariant. Note that g takes an mA-type anyon
to an mB-type anyon and vice versa. Hence if we apply the
relation to mA, the first Ty (reading from the right) acts on an
anyon of type A and the second acts on one of type B. We can
now pick different gauge choices for the two Ty’s according
to Eq. (4), meaning that we multiply by −1 to the action of
Ty when it acts on mA but not mB . This changes the sign
of sA. However, there is a gauge-invariant phase, because if
we consider also an mB anyon and define gTyg

−1Ty |mB〉 =
SB |mB〉, then sAsB is gauge-invariant, because changing the
sign of T A

y affects both signs in the same way. This is the
only gauge-invariant quantity associated with the space group
symmetry for the m’s; there is a similar invariant for the
e’s (as well as parameters associated with time-reversal and
spin-rotation symmetry).

Now each sublattice has symmetry Gp1, which is gener-
ated by just the translations Tx , Ty . (The lattice itself has
rectangular symmetry, but the Hamiltonian is required only
to have symmetries that are part of the symmetry group of
the full lattice.) The property of mA on the A sublattice is
defined by whether Tx and Ty commute or anticommute. Let
us take the A sublattice as the reference lattice, and define
S = g|A (see Fig. 1), which maps it onto the B sublattice.
(The identifying map for the A sublattice with itself can be
taken as the identity.) Then, following Eq. (6), we express g
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and Ty as

g(|ψ1〉 ⊗ |ψ2〉) = TxS−1|ψ2〉 ⊗ S|ψ1〉,
(7)

Ty (|ψ1〉 ⊗ |ψ2〉) = Ty |ψ1〉 ⊗ ST −1
y S−1|ψ2〉,

since the full system is a tensor product of states ψ1 and
ψ2 on the sublattices. (For example, the first equation means
that g|B = TxS−1 and gA = S which follow from the facts
that S = gA and Tx = g2.) We can now apply the relation
gTyg

−1Ty to the anyons to determine their fractionalization
properties with respect to Gpg . The action of Ty on the B

sublattice could be represented simply by Ty rather than by
STyS−1, but we write it the latter way, as required by Eq. (6),
because then all the S’s will cancel out when we calculate the
relations between the group elements. We find

gTyg
−1Ty |ψ1〉 ⊗ |ψ2〉 = (

TxT
−1
y T −1

x Ty |ψ1〉
) ⊗ |ψ2〉. (8)

So if TxT
−1
y T −1

x Ty = ηm for an mA anyon, then gTyg
−1Ty

applies the sign sA = ηm to an mA excitation, and leaves an
mB invariant, i.e., sB = 1. Thus the gauge-invariant parameter
sAsB = ηm. The two anyon types seem to behave differently
because the way we chose to reduce the symmetries to the
A sublattice is effectively equivalent to making a choice of
gauge for g and Ty . In general, whenever one builds a state
out of disconnected states on sublattices that are symmetric
with one another, the fractionalization of the anyons in the
full system (under all the symmetries) can be reduced to the
fractionalization of one of the sublattices, just like this.

What are the implications for featureless states on the pg

lattice? If one makes a resonating valence bond state (spin liq-
uid) on each of the A and B sublattices, the fact that there is a
spin-1/2 per unit cell (in the sublattice) partly determines how
the spinon and vison transform. Tx and Ty must anticommute
for the vison, m, while the spinon must have a half-integer
spin [57]. Furthermore, we can choose a spin liquid such that
Tx and Ty commute for the spinon [58,59]. Thus the product
of gTyg

−1Ty for eA and eB is equal to 1. This implies that a
bound state formed by combining these two particles together
transforms trivially under gTyg

−1Ty . (Note that, unlike for a
single anyon, this relation is gauge-invariant for the bound
state because it does not change the topological type.) Such a
bound state also has an integer spin. Hence the bound state
has nonfractional transformation under the symmetries and
can be condensed. (We will explain below why when a certain
anyon has nonfractional transformation properties then there
is a condensate of this anyon that is invariant so that it can be
condensed.) This leaves only the excitations e′ = eA (which is
equivalent to eB because of the condensate) and m′ = mAmB

(because mA, mB are now confined).
The remaining excitations have nontrivial quantum num-

bers; eA transforms projectively under SO(3) while mAmB

acquires a minus sign under gTyg
−1Ty (since Tx and Ty anti-

commute for mA). Thus, condensing e′ will break the SO(3)
symmetry and condensing m′ will break the glide-reflection
symmetry. This result is consistent with the extended version
of the HOLSM theorem for nonsymmorphic space groups [5].
In fact, the existence of the two symmetries (i) U (1) ⊂ SO(3)
symmetry and (ii) glide-reflection symmetry is essential in
the proof of the extended version of the HOLSM theorem,

and the fractionalization of these two symmetries is not just
coincidence, as supported by Ref. [36].

A system with the same property, having an integer filling
ν = 1 per unit cell and anyons with nontrivial fractionaliza-
tion, was constructed previously for the lattice group p4g

in Ref. [60]. They first constructed Z4 topological order via
a parton approach and condensed a pair of visons in the
effective theory description to obtain Z2 topological order
without breaking any symmetry.

IV. BIPARTITE LATTICE CONSTRUCTION OF A
FEATURELESS STATE ON THE HONEYCOMB LATTICE

A. Bipartite lattice construction

Consider a honeycomb lattice L and its triangular sublat-
tices LA and LB . Assume the two sublattices are decoupled
from each other, and each sublattice realizes a ground state
symmetric with respect to the underlying triangular lattice
symmetry, spin-rotation, and time-reversal symmetry. The
system is defined by the following Hamiltonian:

H = HA ⊗ IB + IA ⊗ HB, (9)

where HA,B = ∑
i,j∈LA,B

Jij
�Si · �Sj describes a symmetric

Hamiltonian for each sublattice and IA and IB are identity
operators acting on sublattice LA and LB . For Hamiltoni-
ans with the right type of frustration, each sublattice has a
symmetric and gapped ground state. (It may be helpful to
include “ring exchange” interactions involving several sites
simultaneously.) By the HOLSM theorem, such a ground state
of a triangular lattice with a spin-1/2 per site is topologically
nontrivial. Thus, it should be a Z2 spin liquid (or something
more complicated). Z2 SL states with different symmetry
fractionalization classes can be accessed by the projective
symmetry group (PSG) approach [61,62]. Later on, we turn
on the interaction between two sublattices so that excitations
residing in different sublattices can interact with each other.

In the honeycomb lattice formed by combining the two
sublattices, the anyons on each triangular sublattice belong to
distinct classes; the order is described by Z2 × Z2. We have
two distinct spinons eA and eB , and two distinct visons mA

and mB .
Our goal is to show that there are spin-liquid states for

the two sublattices such that the bound states W1 = eAeB

and W2 = mAmB have trivial phase factors. Then condensing
them will not break any symmetry and will lead to a state
without topological order.

B. Parton construction and fractionalization
on the triangular sublattice

Although we can classify entire SET phases via an abstract
mathematical machinery, group cohomology, the machinery
does not tell us when a given SET phase can be realized using
certain particles, e.g., spin-1/2 particles on every site. To do
this, we must construct examples of the various phases. The
most common approach for constructing states with topolog-
ical order is the mean-field parton construction [58,59,61–
64]. In a mean-field parton construction, we explicitly break
a fundamental degree of freedom, such as an electron or
spin, into fractional entities called partons. Assuming certain
mean-field configurations, we can write down a quadratic
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Hamiltonian for partons, in which the partons can move
independently from one another. Then, this parton ansatz is
projected onto the part of the Hilbert space corresponding
to physical states. For a given Hamiltonian, one can obtain
many different ansatzes starting from different mean-field
configurations; thus, we should evaluate the energy of the
projected state for the given Hamiltonian to determine the true
ground state.

To be somewhat more precise, let us take an example. We
first represent the spin operator, using Schwinger’s mapping
of spins to bosons, as �Si = 1

2b
†
i,α �σα,α′bi,α , where α =↑,↓;

physical states must satisfy the constraint
∑

α b†αbα = 2S,
given spin S per site. Although this constraint seems very
strong, a highly frustrated Hamiltonian can have a ground
state that is approximately described by starting with a
quadratic Hamiltonian in the bosons, and then implementing
the constraint by just projecting onto the physical states.
For certain mean-field configurations, this state will have
physical excitations corresponding to the partons in spite of
the constraint. These excitations have half-integer spin and
are the spinons. This state has topological order due to the
fractional nature of these excitations, and must also have vison
excitations (excitations that pick up a phase of −1 when they
encircle a spinon).

To further understand a mean-field ansatz for a topological
order, we need to determine the projective transformations of
the spinons and visons. The projective representation of the
spinons, as described above, is identical to the “projective
symmetry group” of the state constructed this way [61]. The
projective transformation for the visons can be determined
by several approaches: (i) adding Z2 gauge fields to the
mean-field Hamiltonian and computing Berry phases [65];
(ii) requiring that the spin liquid does not support gapless edge
states and deducing the consequence on visons [50,62,66];
(iii) using flux-anomaly arguments to constrain possible frac-
tionalization pattern for visons [33,34].

When we construct a Z2 spin liquid in this way on each
sublattice of the honeycomb lattice, what are the possible
choices for its fractionalization pattern? The Hamiltonian has
SO(3) spin-rotation, ZT

2 time-reversal, and triangular lattice
symmetry Gs . The lattice space group Gs is generated by two
translations T1,2, mirror reflection σ , and site-centered π/3
rotation C6. We label each lattice site on a triangular lattice
by its positional vector r = ma1 + na2, where a1 = (1, 0) and
a2 = (1/2,

√
3/2) are Bravais lattice vectors corresponding

to translation T1 and T2, respectively. The reflection gener-
ator σ is defined in such a way that it exchanges T1 ↔ T2.
The fractionalization class of the topological excitations in
the parton ansatz hosting Z2 topological order is classified
by projective representations of Gs × SO(3) × ZT

2 with Z2

coefficients. Supposing that we choose to use a state that was
constructed by the mean-field parton construction in Ref. [61],
the possible fractionalization patterns are given in Table I.

The mean-field parton states come in eight different
classes, labeled by pi = 0, 1 with i = 1, 2, 3. Each row rep-
resents a phase factor acquired by spinons and visons under
a symmetry relation. There are seven relations defining the
triangular lattice symmetry group, but only four of them are
gauge-independent. In Table I, rows 5–7 give phase factors

TABLE I. Summary of possible symmetry fractionalization pat-
terns in the triangular lattice. T is the time-reversal operator and
R(θ ) is the spin-rotation operator by angle θ . O in the last row rep-
resents any operator in G × SO(3) × Z2. Phase factors are slightly
modified compared to Ref. [62] since we use a different coordinate
system.

Algebraic identities Bosonic spinon Vison

T1T2T
−1

1 T −1
2 = 1 η1 = (−1)p1 −1

σ 2 = 1 η2 = (−1)p2+p3 1

(C6)6 = 1 η3 = (−1)p3 −1

R2 = (σC6)2 = 1 η4 = (−1)p2 1

σT1σT −1
2 = 1 αe

1 αm
1

C−1
6 T −1

2 C6T1 = 1 αe
2 αm

2

C−1
6 T −1

2 T1C6T2 = 1 αe
3 αm

3

T1T T −1
1 T −1 = 1 1 1

T2T T −1
2 T −1 = 1 1 1

σT σT −1 = 1 η2 1

RT R−1T = 1 η4 1

R(2π ) = 1 −1 1

R(θ )OR−1(θ )O−1 = 1 1 1

labeled by αi . These are not meaningful because αi are gauge-
dependent factors and do not contribute to the classification of
the fractionalization class. In the language introduced earlier,
these are exactly the relations quotiented out by the derivation
group Der(S,A). However, we include them because they will
be helpful for understanding the honeycomb lattice. Although
not meaningful individually, products of them on the two
sublattices can form an invariant factor.

Note that a similar table in Ref. [62] listed all gauge-
dependent factors to be 1. Such gauge choice is possible,
but we have different choices for translations and reflection
operators; in our choice, we have a constraint η1η2α1α2 = 1.
There is no such constraint on α3, so we can always take
a gauge choice to set α3 = 1. Using the PSG solution of
Ref. [61], we can actually derive that for a certain gauge
choice, α1 = (−1)p2+p3 , α2 = (−1)p1 , and α3 = 1.

The SO(3) symmetry is continuous, unlike the other sym-
metries considered so far. There are two possible projective
representations of SO(3): the integer spin representations, and
the familiar half-integer representations where the 2π rotation
results in a factor of −1. There are no additional complications
arising from relationships with the discrete symmetries [16],
on account of this result: Whenever a continuous symmetry
commutes with all the discrete symmetries, it also commutes
in the projective representation. This is proved by defining a
phase factor η(θ ) = R(θ )O[R(θ )]−1O−1, which must be a
continuous function of θ . Since R(0) is the identity operator,
η(0) = 1, and Z2 symmetry fractionalization tells us that η(θ )
can take only one of two values, ±1. As η(θ ) is a continuous
function, we can conclude that η(θ ) = 1 for all θ [16].

C. Honeycomb lattice

We are now prepared to determine the fractionalization
pattern of excitations in the honeycomb lattice, and show that
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FIG. 2. Black dots represent the A sublattice. White dots rep-
resents the B sublattice. OA and OB represent origins (reference
points) for each sublattice. Dotted line represents the axis of the
reflection symmetry in the honeycomb lattice.

the pair excitations of the underlying triangular lattices W1 =
eAeB and W2 = mAmB are never fractionalized. Therefore,
they can be condensed to get out of the topological order
without breaking the symmetry. We will do this in two ways.
The first way uses the method of Sec. III, identifying the two
sublattices with one another, so that any transformation of the
honeycomb lattice on the A or B excitations can be reduced
to transformations of the triangular sublattice.

In the limit where two sublattices are decoupled, a wave
function of the honeycomb lattice can be expressed as a tensor
product of wave functions on each triangular sublattice. The
total wave function is written as |�〉 = ∑

i |ψi
1〉A ⊗ |ψi

2〉B ,
where A and B denote each triangular sublattice. A hon-
eycomb lattice has the same symmetry group as a triangu-
lar lattice. We will distinguish honeycomb lattice symmetry
operators using bold letters. The symmetry group of the
honeycomb lattice is again described by two translations T 1,2,
mirror reflection σ , and sixfold rotation C6, but now, the
rotation axis is at the center of hexagon not at the site. (It is
not actually necessary to impose the order-six symmetry of a

sublattice about one of its sites since this symmetry is broken
when the two lattices are combined together. However, since
we already understand the relations and generators for the full
symmetry group, we will assume the additional symmetry to
be present.) Here, we define translations of the honeycomb
lattice to coincide with those of triangular sublattice LA. The
two translations of LB are then defined in such a way that
C6T

A
1 C−1

6 = T B
1 and C6T

A
2 C−1

6 = T B
2 , as in Fig. 2.

Any symmetry operation of the honeycomb lattice can be
decomposed into a tensor product of symmetry operators of
individual sublattices and an identifying map S that maps the
A sublattice to the B sublattice. The identifying map S =
C6|A is defined to take T A

1 → T B
1 , T A

2 → T B
2 (see Fig. 2).

This operation is equivalent to a π/3 counterclockwise rota-
tion with respect to the center of the hexagon for sublattice
A. (Caution: S is a one-directional map from sublattice A to
B. C6|B would be represented as T1C

2
6S−1 if one analyzes

carefully.)
We can then express all symmetry operators of the honey-

comb lattice as follows:

T 1 : (|ψ1〉A ⊗ |ψ2〉B ) �→ (T1|ψ1〉)A ⊗ (
ST −1

2 T1S−1|ψ2〉
)
B
,

T 2 : (|ψ1〉A ⊗ |ψ2〉B ) �→ (T2|ψ1〉)A ⊗ (ST1S−1|ψ2〉)B,

σ : (|ψ1〉A⊗|ψ2〉B ) �→ (σ |ψ1〉)A⊗(
SC−2

6 T −1
1 σS−1|ψ2〉

)
B
,

C6 : (|ψ1〉A ⊗ |ψ2〉B ) �→ (
T1C

2
6S−1|ψ2〉

)
A

⊗ (S|ψ1〉)B.

(10)

The other operators, spin rotation Rh(θ ) and time reversal
T , are simply represented by tensor products. Note, we have
chosen an order of multiplication; for example, T 1 on sublat-
tice B is given as (T B

2 )−1T B
1 rather than T B

1 (T B
2 )−1. At the

level of linear representation, they are equivalent. However,
for projective representations, the order matters since com-
mutativity is not guaranteed. Fortunately, these two definitions
differ only by phases, just another gauge choice [as in Eq. (4)],
and the physical gauge-invariant phase factors are unaffected.

We now determine the symmetry fractionalization classes
for bound states W1 and W2. For example,

T 1T 2T−1
1 T−1

2

∣∣
eAeB

≡ (
T1T2T

−1
1 T −1

2

∣∣
eA

) · (
T −1

2 T1T2T
−1

1

∣∣
eB

) = (η1)2, (11)

where η1 is from Table I. Since (η1)2 = 1, T 1T 2T−1
1 T−1

2
acts linearly on the bound state (trivial fractionalization). We
similarly compute all other symmetry relations characterizing
the fractionalization class in Appendix A, and find that bound
states W1 and W2 always have trivial symmetry fractionaliza-
tion classes. See Table II, where the gauge-invariant phase
factors characterizing a fractionalization class are listed for
eA, eB , and eAeB . We can follow the same procedure for the
m particles.

Although the method of using identifying maps to reduce
the problem to a single sublattice is systematic, one does
not have to hew rigidly to this method. For the honeycomb
lattice, a more creative approach explains why the bound
states always transform trivially. We use symmetry to relate

excitations on the two sublattices. We show by symmetry that
the eA and eB always change by the same phase ±1, so their
bound state W1 changes by (±1)2 = 1.

The basic idea is to begin with a relation R(g1, . . . , gk ) =
1 among the symmetries. Suppose eA transforms projectively,
so R|eA〉 = ηA|eA〉 for any state containing an eA excita-
tion. Then take a symmetry h that exchanges the A and
B sublattices, and apply the relation R to h−1|eB〉, giving
Rh−1|eB〉 = ηAh−1|eB〉 (since h−1|eB〉 is an excitation on the
A sublattice R picks up the factor of eA). By multiplying by
h, hRh−1|eB〉 = R(gh

1 , . . . , gh
k )|eB〉 = ηA|eB〉, where gh

i is
short for hgih

−1. This shows that the B excitations transform
the same way as the A’s under the corresponding symmetries;
this determines completely the transformation of all excita-
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TABLE II. Summary of symmetry fractionalization patterns for
a Z2 × Z2 SL constructed from a Z2 SL in each triangular sublattice
whose symmetry fractionalization is specified in Table I. As the
symmetry group for a honeycomb lattice has exactly the same
structure of a triangular lattice, the complete pattern would look
like Table I. However, unlike Table I where the first four rows
give gauge-invariant phase factors, here only the first two rows
give gauge-invariant phase factors. The other two rows give gauge-
dependent phase factors (see Appendix B). We use bold symbols to
distinguish honeycomb lattice symmetries from triangular sublattice
symmetries.

Algebraic identities eA (or eB ) eAeB

T 1T 2T−1
1 T−1

2 = 1 η̄1 = (−1)p1 1
σ 2 = 1 η̄2 = (−1)p2+p3 1
(C6)6 = 1 gauge-dependent 1
R2 = (σ C6)2 = 1 gauge-dependent 1
R(2π ) = 1 −1 1

Algebraic identities mA (or mB ) mAmB

T 1T 2T−1
1 T−1

2 = 1 −1 1

σ 2 = 1 1 1
(C6)6 = 1 gauge-dependent 1
R2 = (σ C6)2 = 1 gauge-dependent 1
R(2π ) = 1 1 1

tions on the B sublattice once one knows the excitations on
the A sublattice, since we know how they transform under a
complete set of relations. However this does not immediately
imply that the bound state W1 transforms trivially because
a given transformation acts the same way on both of the
excitations in the bound state, but we have determined only
how the eB transforms under conjugated symmetries.

For the honeycomb lattice, let us begin with the translation
commutator, which illustrates the problem of getting conju-
gate relations:

T 1T 2T−1
1 T−1

2 |eA〉 = η̄1A|eA〉, (12)

where the subscript A implies that η̄1A is the phase for an
anyon on sublattice A. Since I = (C6)3 exchanges the two
sublattices, we will use it to determine how eB transforms.
From the above equation (which is true for any state of an eA

excitation),

T 1T 2T−1
1 T−1

2 I−1|eB〉 = η̄1AI−1|eB〉. (13)

Multiplying both sides by I gives

T I
1T I

2

(
T−1

1

)I (
T−1

2

)I |eB〉 = η̄1A|eB〉, (14)

where we define gh ≡ hgh−1 for g, h ∈ G. Notice that sym-
metry relations for the honeycomb lattice give the following
expressions at the projective representation level:

I T 1I
−1 = β1T−1

1 , I T 2I
−1 = β2T−1

2 , (15)

where the β’s are phase factors that can depend on anyons
acted on. Therefore, we can replace Eq. (14) by

T−1
1 T−1

2 T 1T 2|eB〉 = η̄1A|eB〉 (16)

for any state on the B sublattice, where the extra phase factors
β1 and β2 are canceled.

Now, this shows that the B excitations transform the same
way as the A excitations under the corresponding symmetries;
that is Eq. (16) translates the B excitations in the opposite
direction relative to Eq. (12). To find how some relation
transforms the bound state eAeB we have to know how the
same relation acts on both excitations. We can just replace
|eB〉 in Eq. (16) by T−1

2 T−1
1 |eB〉, which is also an eB-type

excitation. Then, after simplifying it,

T 1T 2T−1
1 T−1

2 |eB〉 = η̄1B |eB〉 = η̄1A|eB〉. (17)

Hence η̄1B = η̄1A, and W1 changes by η̄2
1A = 1.

For the remaining products of symmetries, there is always
an operator that exchanges the sublattices without changing
the operators. Two of the relations (C6

6, R2) are of the form
M2n where M is a transformation that exchanges A and B

excitations, and one can use M itself to relate the phases
of eA and eB . Suppose for example C6

6|eA〉 = γA|eA〉, where
γA is not gauge-invariant. Redefining |eB〉 = C6|eA〉, we get
C5

6|eB〉 = γ C−1
6 |eB〉, which implies C6

6|eB〉 = γA|eB〉. Like-
wise eA and eB transform with the same phase under R2, so
W1 is invariant. The time reversal and 360◦ rotations on the
two sublattices are internal symmetries, so they are exchanged
by any of the symmetries that switch A ↔ B. Finally, one can
deduce that σ 2 gives the same phase when applied to both eA

and eB by using the relation Iσ I−1 ∝ σ , since I exchanges A

and B.
These two approaches both show that W1 transforms triv-

ially under all the relations, and the same arguments apply
to W2. This implies that both bound states can be condensed
without breaking any symmetry, so that the topological order
disappears. A more precise argument is that, for any excitation
that transforms linearly, there is some state that has trivial
quantum numbers, so it can be condensed. The next section
proves this explicitly.

We further confirmed our result by calculating twisted
second group cohomology for these lattices. In Appendix B,
the allowed fractionalization classes of Z2 × Z2 order where
C6 exchanges anyons are enumerated using an algorithm
associated with group cohomology. We find that we have
indeed obtained all the possibilities, assuming the Z2 × Z2

order that is permuted by the symmetries in the way we have
assumed.

V. ANYON CONDENSATION

In the previous section, we confirmed that the symmetry
fractionalizations of the anyons W1 = eAeB and W2 = mAmB

are totally trivial in the absence of intersublattice interactions.
Since the fractionalization class is a topological invariant, if
we adiabatically turn on some interactions between sublat-
tices, the symmetry fractionalization class of the bound states
should remain the same, and we will assume this from now
on. These bound states are bosonic excitations, since they are
made of bosonic excitations with no mutual statistics, and
there is no mutual statistics between W1 and W2. Thus, in
principle, we can condense these excitations by tuning some
interactions. Condensation of the two bound states will con-
fine all other topological excitations and give a topologically
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FIG. 3. Forms of the wave function of an eAeB pair. Left: A
simple idea for how to create the eAeB bound state—the oval rep-
resents a singlet of excitations on the two lattice sites. However,
the wave function is odd under reflection in the bond, so there is
no way to create a completely symmetric state starting from this
one. Right: Instead, if one creates four excitations in a configuration
without any symmetry, the configuration can be superimposed with
all the symmetric transformations of itself without any cancellation
occurring. Note that there are three anyons on B sites and one on an
A site, so the net charge is correct. Alternatively, one could add some
nontopological excitation to the singlet in the left figure, at a position
that breaks the reflection symmetries.

trivial state. Such phase transitions triggered by condensation
(or proliferation) of spinons have been well known for Z2

and Z2 × Z2 topological orders without lattice symmetries
[52–55].

There are several interesting aspects to the condensation of
anyons, so we will describe it more explicitly. Let us focus
on condensing the eAeB anyons. The goal is to start with the
SL wave functions, and introduce anyons into it so that the
parity of the number of anyons in any given region fluctuates
strongly. The anyons cannot be correlated in bound pairs, or
else they will not cause the confinement of the anyons that
have nontrivial braidings with them. We will also want to
create a condensate of a low density so that the state is not
completely distorted. We will discuss qualitatively (i) how to
choose a Hamiltonian that favors a condensate and (ii) why
knowing that the anyons transform nonprojectively implies
that there is a symmetric condensate (i.e., a state that does
not transform at all).

First, choose a local configuration with the charge eAeB

(see Fig. 3), and let W † be an operator that creates this
configuration at a certain position of the lattice. Then the
condensed wave function can be represented schematically as

|�C〉 ≈ eκ
∑

S SWS† |spin liquid〉, (18)

where κ is small to keep the density of anyons low. The
sum

∑
S is over all the symmetries of the lattice, to create

a symmetric wave function. In general,

S1

∑
S∈G

[SW †S†]S†
1 =

∑
S

eiφ(S,S1 )(S1S)W †(S1S)†, (19)

where φ is a phase factor associated with a projective sym-
metry representation for the anyons, and G is the total sym-
metry group. There is no symmetry fractionalization in this
case, which means that one can change the “gauge” of the
symmetries so that all the φ’s are zero. Then the expression
is the same as

∑
S SW †S†; i.e., the condensate is symmetric,

hence condensing it does not break the symmetry. (In the next

section, we will see that condensates that change sign under
some of the symmetries actually are allowed as well.) The
exponential is not to be interpreted completely literally: one
should expand it in a Taylor series, ignore each odd-order
term (because it is not possible to create an odd number
of anyons), and then create the even numbers of anyons in
the even-order terms by connecting strings between arbitrary
pairs. The wave function is independent of how the anyons
are paired because they do not have any mutual statistics. In
addition, one can omit terms where two anyons overlap since
we have not defined how to create two anyons at the same
point.

There are several issues which we can elaborate on. First of
all, a wave function like this, although it is globally symmet-
ric, may actually represent a cat state formed by superimpos-
ing a set of states each separately breaking the symmetry (e.g.,
dimer orderings rotated in all directions) [7–9]. This is caused
by overlaps between anyons which can lead to correlations, so
it can be avoided by making κ small enough that the anyons
are far from one another.

Second, what Hamiltonian can stabilize this state? To
ensure the state is symmetric as just discussed, we need
κ to be small. It is difficult to construct a Hamiltonian
that produces a Bose condensate with a small density when
the excitations being condensed have Z2 quantum numbers,
unlike in ordinary Bose condensation. Suppose one takes
a Hamiltonian H = −∑

〈ij〉 λ(W †
i W

†
j + H.c.) + ∑

i εni . The
first term both moves single anyons and creates pairs of
anyons and the second term suppresses anyons energetically.
As ε is lowered, anyons will first appear only in virtual pairs,
which is not a true condensate. The λ term must be strong
enough to move anyons apart from one another, but then
it will also be strong enough to create a high density of
anyons. However, we can take a Hamiltonian that includes
a long-range repulsion between anyons to keep the den-
sity low,

∑
i εni − ∑

ij λij (W †
i W

†
j + H.c.) − ∑

ij tijW
†
i Wj +

U
∑

ij ninj . The term Uij is a repulsive interaction between
anyons that is large below some distance L. This allows one
to diagonalize the Hamiltonian in a subspace consisting of
anyons spaced by at least this distance. The term λij creates
anyons in pairs and allows them to move apart. This should
be nonzero for pairs of sites separated by slightly more than
L, because otherwise, it will have no effect on account of
the repulsion. The other terms tij and ε describe the motion
and the energy cost of an anyon. When ε, tij , λij � Uij , this
system should undergo an ordinary Ising transition where the
anyons condense as ε decreases, except with the anyons kept
at a low density.

Finally, there is an issue related to symmetry. If W † is not
chosen right, and it turns out to be odd under a reflection
or a 180◦ rotation, the wave function SWS† would cancel.
Consider trying to make a symmetric state out of a pair of
eA and eB anyons. Under both spin and orbital symmetries,
the state must be symmetric. As in atomic physics there is a
connection between these symmetries: because the spin part
of the wave-function is antisymmetric, the orbital part must
also be antisymmetric (since the eA and eB act as bosons rela-
tive to one another). However this allows only lattice versions
of orbitals of the form px that break rotational symmetry or
px + ipy that break time-reversal symmetry.
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Explicitly, let W † = c
†
1↓c

†
2↑ − c

†
1↑c

†
2↓ (see Fig. 3) where 1

and 2 represent two adjacent sites. If we symmetrize over
the symmetries of this hexagon,

∑2
i=1

∑6
j=1 σ i Cj

6W
†C−j

6 σ i ,
we get zero; the reflection across the bond changes the sign
of the wave function. However, this is not due to a topo-
logical property of the state. The argument that the angular
momentum must be odd does not apply when there are more
than two anyons. To see this in a general way, let W † create
any group of anyons that does not have any symmetry (see
Fig. 3). Then the different terms of the symmetrized operator∑

SW †S† are all distinct so they do not cancel. Thus, the
proposed wave function indeed gives rise to a symmetric
state where anyon bound states are condensed. The resulting
wave function where both eAeB and mAmB bound states are
condensed will be totally symmetric and topologically trivial,
thus featureless.

Actually, rather than changing W † to an asymmetric W †

to ensure that the wave function does not cancel, we could
use the original W † to construct a state that is symmetric
under all transformations up to minus signs. We will see
in the next section that condensing such a state does not
break any crystal symmetry either. The argument we have just
given is still useful though because it can be used to show
that both symmetric and antisymmetric condensates exist,
and being able to create symmetric as well as antisymmetric
condensates leads to a greater variety in the wave functions
we can construct. We will see that there are four types of wave
functions (depending on which crystal symmetries reverse the
sign), and that the intermediate states (with only a W1 or only
a W2 condensate) have different symmetry fractionalization
patterns for each case.

VI. INTERMEDIATE PHASES: ANYON CONDENSATE
AND GAUGE FIXING

In the previous section, we showed that one can construct
a symmetric wave function by condensing bound states of
W1 = eAeB or W2 = mAmB (or both). Initially, the state was
described by Z2 × Z2 topological order with the generating
set of anyons 〈eA,mA〉 × 〈eB,mB〉. The generating set can be
expressed in more relevant form, 〈W1,mA〉 × 〈eB,W2〉. Con-
densation of bosonic anyons confines all other anyons with
nontrivial mutual statistics with the condensed ones. Thus, if
W1 is condensed, the system will be in Z2 topological order
generated by 〈eB,W2〉, and if W2 is condensed, the system will
be in Z2 topological order generated by 〈W1,mA〉. Now, we
can ask what SET phases are realized by these intermediate
Z2 topological orders. To answer this, we should investigate
the symmetry fractionalization classes of the anyons after
condensation.

A. Condensation and gauge fixing

First, let us generalize our discussion from Sec. IV on sym-
metry fractionalization to the setting where symmetry actions
permute anyons. When this happens, we may guess intuitively
that there will be fewer classes of symmetry fractionalization
types. The symmetry fractionalization breaks down when
anyons are permuted; in general, the symmetry cannot be
performed on a single anyon in a local way as it involves the

annihilation of a single anyon and creation of another anyon
with a different type. Nevertheless, in place of a local operator,
we can take an operator that has two parts: (1) a nonlocal
anyon permutation (for example, an operator that moves the
original anyon off to “infinity” and brings the appropriate
new anyon from “infinity”); (2) a local unitary transformation
that performs the proper symmetry and it seems reasonable to
use the same formal approach of factoring a symmetry into
symmetries acting on individual anyons.

One intuitively expects that some of the symmetry fraction-
alization classes will collapse in this case since the symmetries
map between two different sets; this is somewhat like the
question of classifying states by whether they are even or
odd under a certain operator: the operator has to map the
state back into the same space for this to be defined. For
example, consider the orbital state of an electron whose
spin state is up. One can define the parity of the orbital
state under reflection but not under reflection combined with
flipping the spin, since one cannot define the relative phase
of spin-up and spin-down states. In the context of symmetry
fractionalization, Z2 symmetries behave in a similar way. If
the symmetry does not permute anyons, then in Z2 topological
order we have four symmetry fractionalization classes (based
on how each of e and m transform). However, when the Z2

symmetry does permute e ↔ m, these four distinct symmetry
fractionalization classes coalesce into one [17]. Conceptually,
we can ascribe such behavior to the fact that the symme-
try localization hypothesis, which is the key assumption for
symmetry fractionalization, breaks down when anyons are
permuted.

In our case, the phase factor associated with C6 rotation
symmetry (i.e., the value of C6

6 = λ = ±1) is not gauge-
invariant for a single anyon in the original Z2 × Z2 topolog-
ical phase. This is because C6 exchanges eA ↔ eB . We have
a gauge-freedom to multiply C6 by an additional phase factor
that depends on the type of anyon the symmetry is applied
to. If C6 → C6e

iφ(a) where a is the anyon type before the
symmetry is applied, then (C6)6 → e3i(φ(eA )+φ(eB )) which can
cancel C6

6 (by taking eiφ(eA ) = 1, eiφ(eB ) = λ). [This does not
contradict our claim above that the bound states eAeB and
mAmB have well-defined phase factors C6

6 (that are equal to
1), since C6 maps the anyon bound states onto themselves.]

Now, we can ask the following question: If the anyon
bound state eAeB is condensed, what would we get for sym-
metry fractionalization classes of eA? In the eAeB condensed
phase, eA would be identified with eB . Thus, we can just call
both eA and eB the same name, the e particle, and the action
of C6 would map the e particle onto itself, and therefore C6

6
is well defined in this phase. A similar question can be asked
for the symmetry R = σ C6: Is R2 equal to ±1 for eA in the
intermediate phase? We will focus on C6 for now.

In a more precise statement, when eAeB is condensed, the
action of C6 rotation symmetry can be realized locally. Con-
sider an original ground state wave function with single eA

excitation. (There must be another eA excitation as it cannot
be created alone.) When we apply C6 rotation symmetry, eA

at position r would be mapped into eB at position C6(r ). This
cannot be achieved by a local operator since the local operator
cannot destroy a single anyon and create another anyon with
a different type. However, in a condensate wave function,
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the wave function consists of all possible superposition of
eAeB excitations, including vacuum. Locally, it has the form
|�cond

r 〉 ∼ |0〉 + α|eAeB〉. When we excite eA, then it would
be |eA〉 + α|eB〉, which is the superposition of eA and eB

excitations. Similarly, when we excite eB , it will still be the
superposition of eA and eB . Thus, macroscopically eA and eB

excitations are indistinguishable, although they are located in
different sublattices. Then, the action of C6 can be realized
locally since we do not need to destroy eA and create eB ;
we can realize the action of C6 by just moving eA and eB by
local operators as in Ref. [16]. To summarize, the symmetry
localization hypothesis is restored for e particles under the
condition that eAeB is condensed.

A relevant example has been studied in Ref. [56]. In
this work, a double-semion (or twisted Z2 topological order)
model is considered, which contains four different anyons
{1, s, s ′, b = ss ′}. Here, the symmetry fractionalization of
time-reversal symmetry is ill defined because time reversal
permutes s and s ′. However, when a bosonic excitation b =
ss ′ is condensed at the boundary, s and s ′ become indis-
tinguishable, and we can define the action of time-reversal
symmetry on the semion and antisemion properly. Therefore,
the symmetry fractionalization of time-reversal symmetry
becomes well defined at the boundary, either T 2 = 1 or
T 2 = −1 depending on the amplitude of the bosonic conden-
sate.

B. Honeycomb lattice

Looking back to our case of the Z2 × Z2 SL in the
honeycomb lattice, the action of the π/3 rotation C6 is not
well defined on a single eA or eB before the condensation
of the bosonic particle W1 = eAeB . However, once W1 is
condensed, we can define the action of C6 on the e particle
properly, as eA is identified with eB . The subtlety is, while
the amplitude of bosonic anyons are spatially uniform in the
double-semion model, here the amplitudes of bosonic anyons
can have some spatial structure, which is symmetric up to a
gauge transformation.

To facilitate the discussion, we define inversion symmetry
I = C3

6, which is a 180◦ rotation. Therefore, we want to figure
out the action of I 2 on each anyon after the condensation of
W1. The condensate wave function can have either even or
odd parity under an I . In fact, Eq. (18) describes only the first
possibility; to encompass the second possibility, the equation
should be modified into

ψ†
c =

∑
S∈G1

SW †S† + ε
∑
S∈G2

SW †S†, (20)

where G1 ⊂ G is the subset which does not exchange sublat-
tices, and G2 ⊂ G is the subset which exchanges sublattices
(G1 ∪ G2 = G). This wave function has a parity ε = ±1
with respect to I , because the composition with the inversion
symmetry I exchanges G1 and G2.

Such a state may seem to break rotational symmetry;
however, the state is defined as eκψ

†
c |G〉, where the exponential

is projected onto the even-order terms, which all have an even
parity.

Actually, this wave function is not well defined yet, unless
we give a precise definition to the operators S. They are

actually fractionalized symmetries with a gauge ambiguity,
because they act on W † which creates anyons. In particular,
although we know that the square of I is fixed (and equal 1)
for bound states, the sign of I itself is ambiguous. However,
there is a convention that allows one to fix the sign: we first
consider the actions of IA and IB on single anyons eA, eB ,
respectively. We choose the relative sign between IA and IB

so that I 2 = IBIA = 1; this leaves only an ambiguity where
the signs of both IA and IB are changed. Now when one
transforms a bound state, one has to use both IA and IB , so
the transformation is well defined (it does not change if one
flips the signs of both symmetries). We will call this standard
convention for I , I0, and we will assume that I0 is used in the
previous equation.

Although we have a convenient convention for fixing the
phase of I , this does not mean that I is an actual symmetry
of the system, at least after there is a condensate. We will
show that the physical I , which is the symmetry of the con-
densate wave function, would have the action on eA such that
I 2|eA

= ε. To prove this, we have to consider how the ψc

transforms under I for each choice of I ’s gauge. Before
condensation, one can choose the relative phase between eA

and eB freely; we have two different gauge choices: I
(α)
B I

(α)
A =

α ∈ {1,−1}. The choice we made to define ψ
†
c is I0 = I+1.

We have I (α) = (α)NAI0, where NA is the number of eA

excitations. (When α = −1, this factor switches the sign of
IA without switching the sign of IB ; one could switch the sign
of IB instead since only the relative sign of IA and IB matters.)

As we defined, ψ
†
c has a parity ε under I0:

ψ†
c =

∑
S∈G1

I
†
0 (I0S)W †(I0S)†I0

+ε
∑
S∈G2

I
†
0 (I0S)(W †)(I0S)†I0

=
∑
S̃∈G2

I
†
0 S̃W †S̃†I0 + ε

∑
S̃∈G1

I
†
0 S̃W †S̃†I0

= ε−1I
†
0 ψ†

c I0. (21)

The second identity is from the fact that I0 : G1 ↔ G2 and
I 2

0 = 1 for eA and eB in this gauge choice. Since IαI
†
0 =

(α)NA , IαI
†
0 W †(IαI

†
0 )† = αW †. Thus,

Iαψ†
c I

†
α = ε−1IαI

†
0 ψ†

c I0I
†
α = ε−1α · ψ†

c . (22)

Therefore, the ψ
†
c is symmetric under Iα only if α = ε. To

have a symmetric condensate wave function which does not
break the inversion symmetry even locally, we require ψ

†
c

to transform trivially under I . Since the condensate wave
function is symmetric only under Iε instead of another I with
a different gauge choice, Iε is the symmetry for the system,
and the gauge freedom is frozen. Now the action of I 2 on
eA is well defined; it is fixed to be I 2

ε , acquiring a phase
factor ε under I 2. (This argument could be made more precise
by constructing a local operator that rotates a specific eA

excitation 180◦, by using the condensate to convert the eA into
an eB . Given a local realization of I for a specific initial state,
one can calculate I 2 in general, as in Ref. [16].)

214416-12



BUILDING SYMMETRY-ENRICHED TOPOLOGICAL PHASES … PHYSICAL REVIEW B 98, 214416 (2018)

(a)

eA

eB

(b)

eA

eB

FIG. 4. The figure represents the mean-field configurations Qij

that have the two different symmetries: (a) C6
6|e = 1, (b) C6

6|e = −1
on e particles. The sixfold rotation exchanges two anyons eA and
eB ; thus its action is related to the mean-field amplitudes for anyon
bound states eAeB . Blue lines represent positive Qij , while red lines
represent negative Qij . The right figure is symmetric under C6 only
after associated gauge transformation.

In fact, we have been suppressing an additional parity in
the definition of the condensate ψ

†
c . There are two indepen-

dent symmetry operators which exchange two sublattices, the
inversion symmetry I and the reflection symmetry R = σ C6.
The condensate wave function can have either parity under
each of R0 and I0 (the standardized forms of R, I that satisfy
R2

0 = 1, I 2
0 = 1). To display these parities explicitly, note

that while I is orientation preserving, R is not. Therefore,
we can subdivide the group G into orientation-preserving
symmetries Go and orientation reversing Gr , and divide each
of them further depending on whether a symmetry exchanges
sublattices or not (index 1, 2). Thus, at full generality, Eq. (20)
becomes

ψ
†
condensate =

∑
S∈Go,1

SWS† + ε1

∑
S∈Go,2

SWS†

+ ε2

⎡
⎣ε1

∑
S∈Gr,1

SWS† +
∑

S∈Gr,2

SWS†

⎤
⎦ (23)

characterized by ε1, ε2 ∈ {1,−1}. Following the same reason-
ing, we can conclude that the condensate wave function is
symmetric under Iε1 and Rε2 , meaning that eA ≡ eB acquires
phase factors ε1 and ε2 respectively under I 2 and R2 after the
condensation.

This result can also be understood more explicitly by using
a PSG representation of the wave function, as illustrated in
Fig. 4. The original decoupled states on the two triangular
sublattices are described by a quadratic Hamiltonian with only
next-nearest-neighbor interactions. A condensate of bound
states can be induced by adding nearest-neighbor couplings
as well, leading to the full Hamiltonian:

HMF = −J
∑
ij

Qij εαβbiαbjβ + H.c. + · · · . (24)

There are two possibilities, depending on whether the Q’s
associated with the sides of a hexagon all have the same
signs or alternating signs. C6 symmetry allows only these
possibilities. In the latter case, the Hamiltonian is not
immediately symmetric under C6 symmetry, but one can
define C6biαC−1

6 = ±bC6(i)α where the sign is (+) if i is in

the A sublattice and (−) if it is in the B sublattice, and this
is a symmetry. The b operators create the emergent spinons;
applying C6 six times gives a minus sign because the spinon
passes through the B sublattice an odd number of times. The
idea also works for visons in the exact same manner except
they reside on the dual lattice.

C. Intermediate phases

In the following, we describe the two different intermediate
Z2 topological phases accessed by the condensation of either
W1 or W2 from the Z2 × Z2 topological order.

Scenario 1. Consider a phase with condensation of the
bound state W1. In this phase, the system has Z2 topological
order with anyonic excitations eA and W2 which have a mutual
phase of −1. There is only one type of e excitation because
we can identify eA ≡ eB since they can be transformed into
one another using local operators in a phase where eAeB

is condensed. On the other hand, unpaired mA and mB are
confined, and only the bound state W2 has a finite energy.
We will call eA ≡ eB a spinon as it carries spin-1/2 and
mAmB a vison as it has mutual π statistics with a spinon. The
topological properties of the system are fully characterized by
symmetry fractionalization classes of spinons and visons.

Using the flux-anomaly argument[33,34], we can prove
that vison excitations must have a totally trivial fraction-
alization class if spinons carry spin-1/2. This agrees with
what we have found about the vison, mAmB . What about the
symmetry fractionalization class of spinons? They are listed
in Table II, except that the phases that are marked “gauge-
dependent” now become gauge-invariant and can be made
to have either sign by choosing a condensate wave function
with the appropriate symmetry, as described in the previous
section.

Although we have found four possibilities for (C6)6 and
R2, some of these seem likely to be harder to achieve using
local interactions. Condensation of W1 can be achieved in a
parton approach by having some nonzero symmetric mean
fields between sublattices A and B, and the fields can presum-
ably be adjusted to give all four possibilities. However, assum-
ing nonzero mean fields for nearest neighbors constrains the
symmetric mean-field patterns and thus the fractionalization
of (C6)6, as we can see from the results of Ref. [64].

In the triangular lattice with nonzero nearest-neighbor am-
plitudes, there are two Z2 SL solutions |�T

p 〉 characterized
by p = p1 = p2 = 1 − p3 (mod 2) in Table I. Starting from
|�T

p 〉 ⊗ |�T
p 〉 living in the honeycomb lattice, we give nonzero

mean fields between sublattices to obtain Z2 spin liquids in the
honeycomb lattice, while the mean fields within sublattices
are kept the same. Our discussion above gives these possibili-
ties for the symmetry fractionalization class of the spinon (see
Table II):

(η̄1, η̄2, η̄3, η̄4) = ((−1)p,−1, ε1, ε2). (25)

However, the more conventional mean-field parton approach
in Ref. [64] found that there are only two symmetric mean-
field configurations |�H

q 〉 (q = 1, 2) with nonzero nearest-
neighbor and next-nearest-neighbor mean fields. These two
solutions are characterized by

(η̄1, η̄2, η̄3, η̄4) = ((−1)q,−1, (−1)q+1,−1). (26)
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These are the special cases of Eq. (25) found by letting p = q

and fixing ε1 = (−1)p+1, ε2 = −1.
Scenario 2. Consider a phase where the bound state W2

is condensed. Although a spinon condensation has been
discussed extensively in mean-field parton approaches,
a vison condensation in a Z2 topological order has only
been discussed in an effective theory of Ising gauge theory
[10,67–70]. Similarly, we map our problem into two copies
of Ising gauge theory where spinons are gapped, and
then assume the existence of an interaction which prefers
condensation of W2, implying that the expectation value of
the W2 field is nonzero. In this phase, eA and eB are confined,
and the system has a Z2 topological order with anyonic
excitations generated by W1 = eAeB and mA ≡ mB . mA and
mB are identified because W2 is condensed. Here, we call W1

the spinon and mA ≡ mB the vison.
A Z2 SL in this scenario is exotic. In this phase, the

“spinon” excitation, which is eAeB , carries an integer spin
instead of a half-integer one because the eAeB bound state has
a totally trivial fractionalization class. In the study of Z2 SLs,
the most extensively used approach is the mean-field parton
approach, and in the case of spin-1/2 per site that has been
studied via the parton approach, the spinon always carries a
half odd integer spin. Although it is possible to modify the
parton approach to one based on spinons with integer spin for
a system with spin-1 per site, for the system with spin-1/2 per
site, such cases have been thought to be difficult [71]. Since
the “vison” excitation also carries an integer (zero) spin, this
new phase of Z2 SL does not have topological excitations
with a nontrivial projective representation under SO(3) ro-
tation. Moreover, its vison excitations can have a nontrivial
fractionalization class inherited from the symmetry of the W2

condensate wave function, as can be shown following the
same arguments we applied to spinons, which is not allowed
if the spinon excitations carry spin-1/2 [34]. (The procedure
for forming a vison condensate is exactly the same as the
one for forming a spinon condensate; there is no difference
between excitations that are centered on sites or plaquettes
since we can symmetrize both kinds of states under the whole
symmetry group.)

VII. THE HOLSM-TYPE CONSTRAINTS AND MINIMAL
TOPOLOGICAL ORDERS

Here, we demonstrate applications of our bipartite lattice
construction to other systems where featureless states are
guaranteed not to exist by HOLSM-type theorems. There are
extensions of the HOLSM theorem which provide no-go theo-
rems on featureless states for systems with “nonsymmorphic”
symmetries [5] (such as glide reflections) or even modified
symmetries (magnetic translations [72]). As discussed earlier
in the introduction, no-go theorems for featureless states
imply gapped symmetric states must be topological and their
symmetry fractionalization classes are constrained in a certain
way.

In Sec. III, we discussed a system with the nonsymmorphic
lattice group pg. The system had two sites with spin-1/2 per
unit cell, a net spin-1 per unit cell. However, the topological
order we constructed could not be further reduced unless it
breaks spin-rotation or glide-reflection symmetry. In fact, no

other construction can succeed on account of an extension
of the HOLSM theorem [5], which states that if the U (1)
charge density per unit cell ν �≡ 0 mod S where S is a certain
number measuring how nonsymmorphic the group is, there
does not exist a featureless state. One can deduce a no-go
theorem for a spin-system from this by regarding Sz as the
charge density. We then find that the sum of the magnitudes
of the spins in a unit cell must satisfy

∑
Si ≡ 0 mod S in

order for a featureless state to exist. We observed that this is
indeed the case; the Z2 topological order we constructed has
both anyons with nontrivial fractionalization of spin-rotation
symmetry and anyons with nontrivial fractionalization of
glide-refection symmetry.

We expect topological orders are constrained in a similar
way for any system that has a no-go theorem ruling out
featureless states. We will provide another example of this,
a bosonic system with magnetic translation symmetries, using
HOLSM-type arguments to constrain the possible fractional-
ization patterns, and then constructing states that have these
fractionalization patterns using the method of sublattices.

A. HOLSM-type constraints for lattices in magnetic fields

We will now consider bosons in a lattice with a magnetic
field. We will focus on the case of a system with half-integer
filling and half-a-unit of flux, since these favor the type of Z2

order we have been considering as opposed to chiral states like
the Laughlin state.

When a magnetic field is present, new types of fractional-
ization are possible. When anyons go around unit cells they
can acquire phases in two ways, either from their fraction-
alized symmetries or from their fractional charge encircling
the magnetic flux, and these two effects can metamorphose
into one another in an interesting way. Let us first describe
the system using spin variables. Consider a two-dimensional
lattice with spin-1/2 per unit cell, together with a magnetic
translation symmetry characterized by

T 1T 2T−1
1 T−1

2 =
∏

i

eiπSz
i , (27)

where the bold symbol implies the operators are magnetic
translations with π flux. We will impose spin-rotation sym-
metry U (1)z about the z axis, spin-flip symmetry about the
y axis, and time-reversal symmetry. If we use the Holstein-
Primakoff transformation to map this to a model of itinerant
bosons, this is equivalent to a (hard-core) bosonic system at
half filling under magnetic π flux. Under this mapping, the
symmetries are charge-conservation symmetry, time-reversal
symmetry, and particle-hole symmetry, in addition to the mag-
netic translations. For example, the Hofstadter model applied
to hard-core bosons (at half filling and with π flux) has all
these symmetries. The boson density nb is related to the spin-z
components by the following relation: Sz = nb − 1

2 showing
that the spin-flip symmetry implies 〈Sz〉 = 0 or equivalently
nb = 1/2 (see Appendix C).

A spin system has a physical time-reversal symmetry
given by the product T = eiπSyK, where K is an antiunitary
operator. Since a flux of π stays the same under T ∈ ZT

2
and maps onto −π ≡ π under spin-flip symmetry eiπSy ∈
Z

y

2 , the Hamiltonian has both symmetries ZT
2 and Z

y

2 . A
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TABLE III. Summary of nonchiral topological phases for the bosonic systems with different microscopic data and on-site symmetry group
where a featureless state is prohibited by the LSM-type theorem. States with a check mark are not ruled out by our arguments, although we have
not constructed all of them explicitly. When G = U (1), there does not exist much constraint as long as there exists an anyon with fractional
charge to satisfy Eq. (30).

Microscopic Symmetry group Z2 toric code Z2 double semion Z2 × Z2 toric code

ρ = 1/2, φ = 1/2 U (1)
√ √ √

U (1) � Z
y

2 ✗ ✗
√

U (1) � Z
T1
2 ✗

√ √

U (1) × Z
T2
2

√
✗

√
[U (1) � Z

y

2 ] × Z
T2
2 ✗ ✗

√
ρ = 1/2, φ = 1/n U (1)

√ √ √
U (1) × Z

T2
2

√
✗

√

Microscopic Symmetry group Zn topo. order U (1)n × U (1)−n (Zn twisted) Zn × Zn topo. order

ρ = 1/n, φ = 1/2 U (1)
√ √ √

U (1) � Z
T1
2 ✗ (even n),

√
(odd n)

√
(even n), ✗ (odd n)

√

simple example of a Hamiltonian that realizes these symmetry
properties (although more frustration may be necessary to
produce a gapped spin liquid) is an anisotropic Heisenberg
model where the couplings Kij depend on the links:

H =
∑

JSz
i S

z
j + Kij

(
Sx

i Sx
j + S

y

i S
y

j

)
; (28)

here Kij = −K for vertical links on the even x coordinates
while Kij = K for the rest. We have magnetic translation
symmetry corresponding to the π flux since

∏
unit cell Kij =

−|K|4 for any plaquette. The SO(3) spin-rotation symmetry
is broken down to U (1) � Z

y

2 symmetry.
First, let us consider just the U (1) symmetry and transla-

tional symmetry, ignoring the others. For a bosonic model at
half filling under π flux, a featureless state is prohibited by
theorems proven recently [72]. Consider U (1) on-site sym-
metry along with magnetic translation symmetry. According
to Ref. [72], if there exists an SPT phase, the system has a
Hall conductance that satisfies the relation

ρ ≡ σxy · φ mod 1, (29)

where σxy is the Hall conductivity divided by e2/h, φ is the
number of flux quanta per unit cell (which is 1/2 for π flux),
and ρ is the particle number per unit cell. Regarded as a
bosonic system, our system has ρb = 1/2. Equation (29) im-
plies that the Hall conductivity must be odd-integer multiples
of e2/h. However, a bosonic quantum Hall system can have
only a Hall conductivity that is an even-integer multiple of
e2/h (see Ref. [73]), implying that a featureless state cannot
exist. Equation (29) can be applied more generally as well;
for example, for half filling, what values of the magnetic
field can lead to a featureless state? Equation (29) shows that
the flux must be φ = 1/(4n) per unit cell, and in this case
the Hall conductivity would be σxy ≡ 2n mod 4n. These are
like integer quantum Hall states of fermions, because the
number of particles per unit flux is an integer, 2n, but they
can be stabilized only with the help of interactions. (Without
interactions, a bosonic system cannot have a gap.) A bosonic
integer quantum Hall (BIQH) phase with σxy = 2 at n = 1 has
been reported in the numerical study of lattice models [74,75].

Thus, for a gapped and U (1) symmetric ground state under
π flux, an intrinsic topological order is inevitable. What kinds
of SET orders would be allowed in this situation? There are
many well-known chiral topological orders with nonzero Hall
conductivity for various filling and flux density (similar to
states in the fractional quantum Hall effect), which we will
list briefly at the end of Sec. VII D. However, we would like
to focus on cases where there is an additional time-reversal
symmetry besides the U (1) symmetry. For either ρ = 1/2 or
φ = 1/2, we would have a time-reversal symmetry, which
suppress a finite Hall conductivity. Thus, we will consider
nonchiral topological orders, i.e., ones with zero Hall conduc-
tivity. For just the U (1) symmetry group, but at half filling
and π flux, we may expect toric-code type Z2 topological
order. This is indeed possible, as we will show later on by
the anyon condensation from a Z2 × Z2 SL in bipartite lattice
construction.

B. Topological orders consistent with spin-flip
and time-reversal symmetry

We have seen that the existence of U (1) symmetry together
with π flux and half filling prohibits a featureless state, so a
gapped and symmetric ground state should have a topological
order, which can be a toric-code type. We did not yet consider
additional symmetries such as time reversal T or spin flip
eiπSy

. In fact, these additional symmetries impose further
constraints on the topological orders that can be realized (see
Table III).

We will consider four different cases: G1 = U (1) � Z
y

2 ,
G2 = U (1) � Z

T1
2 , G3 = U (1) × Z

T2
2 , and G4 = [U (1) �

Z
y

2 ] × Z
T2
2 . We will represent the generator of Z

y

2 , the spin-
flip transformation, by P from now on. Z

T1
2 and Z

T2
2 are

two different realizations of time-reversal symmetry. There
are two possibilities because time-reversal symmetry can be
implemented differently depending on the microscopic data.
The first case is T1 = K, an antiunitary operator which just
involves complex conjugation. Here, the total symmetry group
G = U (1) � ZT

2 ; while T commutes with the charge oper-
ator T QT −1 = Q, it does not commute with an element
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eiQθ ∈ U (1) since T eiQθT −1 = e−iQθ . The second case is
T2 = eiπSyK where eiπSy

flips the sign of U (1) charge. In
this case, the total symmetry group G = U (1) × Z

T2
2 since T2

commutes with symmetry elements of U (1).
To proceed, we need to illustrate the most important con-

straint: for a system with π flux at half filling, U (1) symmetry
enforces the following: (i) there must be an anyon carrying a
half odd integer charge (or spin) and (ii) this anyon should be a
background anyon. The idea of a background anyon originates
from the fact that the fractionalized translation symmetry can
be understood as if a background anyon is placed on each unit
cell. These constraints can be seen using the second theorem
in Ref. [72]. The filling-enforced constraint for a generic
phase has the following form:

ρ ≡ σxyφ + θF,a

2π
mod 1, (30)

where θF,a is the mutual statistics between a fluxon F and
the background anyon a. Also, the Hall conductivity satis-
fies the condition σxy = θF,F /2π mod 1. For a time-reversal
symmetric system, σxy = 0. Then, since the fluxon is equiv-
alent to the U (1) 2π -symmetry defect, Eq. (30) implies the
existence of a background anyon carrying a half odd integer
U (1) charge. Now, we are ready to analyze constraints on
nonchiral topological orders. We will assume that symmetries
do not permute anyons, except time reversal. One can also
understand the following examples in a slightly different
perspective (see Appendix D).

Case 1. G = U (1) � Z
y

2 . Assume there exists a toric-
code type Z2 topological order, which is consistent with all
symmetries. Since spinons carry Sz = ±1/2, they would see
a magnetic flux of ±π/2 due to the magnetic translation
symmetry. Due to the Z2 fractionalization, there may or may
not exist an overall additional factor η = ±1. Consider the
following symmetry fractionalization for an e particle with Sz:

T 1T 2T−1
1 T−1

2

∣∣
e,Sz

= ηeiπSz . (31)

Under the conjugation of P ∈ Z
y

2 , the left-hand side is trans-
formed to act on the e particle with an opposite spin −Sz

[76], while the right-hand side does not change since it is
just a number (Sz should be evaluated). This implies that it
is impossible to write down a (mean-field) effective spinon
Hamiltonian symmetric under Z

y

2 . Therefore, Z
y

2 symmetry
is inconsistent with magnetic translation symmetry and Z2

topological order cannot be realized [77]. Similarly, it can be
shown that Z2 double-semion order does not have a consistent
fractionalization pattern.

Case 2. G = U (1) � Z
T1
2 . We can follow reasoning similar

to the above. Then, we can show that the Z2 toric-code
order is inconsistent. However, Z2 double-semion order is
not prohibited. Double-semion order has anyons {1, s, s̄, b},
where time-reversal symmetry exchanges T : s ↔ s̄ (because
their topological spins are exchanged by complex conjuga-
tion). Here, s and s̄ carry Sz = ±1/2. Let us assume the fol-
lowing fractionalization pattern for the magnetic translation
symmetry:

T 1T 2T−1
1 T−1

2

∣∣
s,Sz

= ηeiπSz

,
(32)

T 1T 2T−1
1 T−1

2

∣∣
s̄,Sz

= −ηeiπSz

,

where η = ±1 is a phase factor from Z2 fractionalization.
This fractionalization pattern is consistent under the time
reversal T1 since T1 : i �→ −i as well as s ↔ s̄. Furthermore,
it is consistent with the Eq. (30) since this fractionalization
pattern corresponds to the background anyon being either an
s or s̄, which carry a half odd integer U (1) charge. [A trivial
anyon or a bosonic anyon b would not carry a half odd integer
U (1) charge.]

This is interesting, because it was shown that double-
semion topological order is not allowed with U (1) and time-
reversal symmetry in the absence of magnetic flux in the unit
cell [32]. Let us interpret Ref. [32] in our framework; when
there is no magnetic flux, if s and s̄ have different phase
factors under translational symmetry like Eq. (32), this is
inconsistent under time reversal; thus, they should have the
same phase factor under T1T2T

−1
1 T −1

2 . Intuitively speaking,
this implies that either the trivial anyon or the bosonic anyon
b = ss̄ is sitting on each unit cell, neither of which can screen
the spin-1/2 projective representation per unit cell. Therefore,
it is impossible to host double-semion order without symme-
try breaking here. However, magnetic translation symmetry
invalidates such a picture, opening up a possibility for the
double-semion model to be realized.

Case 3. G = U (1) × Z
T2
2 . Unlike the previous cases, the

toric code order can have a consistent fractionalization pat-
tern. Since Z

T2
2 symmetry flips spins as well as conjugate

complex numbers, inconsistency does not arise. For the
double-semion order, both semions must have the fractional-
ization pattern

T 1T 2T−1
1 T−1

2

∣∣
s(s̄ ),Sz

= ηeiπSz

, (33)

because T2 : s ↔ s̄, Sz �→ −Sz. However, this implies that the
background anyon is either a trivial anyon or a bosonic anyon
b = ss̄. Since s and s̄ carry U (1) charge opposite to each
other, b = ss̄ must carry an integer charge. This is not allowed
due to the Eq. (30), which tells that the background anyon
should carry a spin-1/2 [a half U (1) charge]. Therefore, this
further consideration shows that the double-semion Z2 order
is inconsistent.

Case 4. G = [U (1) � Z
y

2 ] × Z
T2
2 . In this case, both the

toric code and double-semion orders are ruled out. While the
Z

y

2 symmetry is inconsistent with the toric code order, the Z
T2
2

symmetry is inconsistent with the double-semion order unless
there is a spontaneous symmetry breaking. Consequently, we
can ask what is the minimal topological order with [U (1) �

Z2] × ZT
2 on a lattice with π flux. The answer lies in our

bipartite lattice construction.

C. Bipartite lattice construction of a Z2 × Z2

spin liquid under π flux

Here, we show that there exists a Z2 × Z2 topological
order consistent with the symmetry group [U (1) � Z

y

2 ] × Z
T2
2

under π flux. Combine two rectangular sublattices to form a
lattice with a smaller unit cell (Fig. 5). Although we consider
rectangular lattices for graphical convenience, we do not
consider crystal symmetries other than translations. As we can
see in Fig. 5, there is one essential subtlety: Hamiltonians for
the sublattices are equivalent only up to the following unitary
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T 1

T 2 (a) sublattice A

(b) sublattice B

FIG. 5. Black dots represent sublattice A. White dots represent
sublattice B. In this figure, black lines represent hopping terms with
the positive sign, and red lines represent hopping terms with the
negative sign. Due to the alternating signs, if we translate the system
in the x direction, we should perform gauge transformation at sites
on dashed lines (even rows) to go back to the original Hamiltonian.
Panels (a) and (b) show unit cells for sublattices A and B, which are
different by gauge transformation.

transformation:

G =
∏

all sites

eiπyiS
z
i . (34)

This choice is required to construct a system with π flux
per unit cell. If we use this symmetry combined with pure
translation in the x direction as an “identifying map” between
the two sublattices, we find that U (1) � Z

y

2 symmetry acts
differently on two sublattices: for R ∈ U (1) � Z

y

2 , if U [R] is
the symmetry action on the sublattice A, then G · U [R] · G−1

is the symmetry action on the sublattice B. The U (1) part of
the symmetry stays the same under the conjugation by G, but
P = ∏

eiπS
y

i changes to

P̃ =
∏

i

eiπyiS
z
i eiπS

y

i e−iπyiS
z
i =

∏
i

(−1)2S·yi eiπS
y

i , (35)

where S is the spin of the state acted upon. For an operator
carrying an integer spin, P̃ = P , but for an operator carrying
a half-integer spin, P̃ �= P . This can also be understood as
follows: Let a ground state of sublattice A be |ψ0〉. Then,
a ground state of sublattice B would be G|ψ0〉. Thus, if the
ground state of sublattice A is symmetric under the operator
O, then the ground state of sublattice B is symmetric under
the operator GOG−1. Similarly, given a spinon-excited state
b†|ψ0〉 of sublattice A, a spinon-excited state of sublattice B

is G · b†|ψ0〉. A ground state of the combined system is given
by

|ψ〉tot = |ψ0〉 ⊗ (G|ψ0〉). (36)

In Fig. 5, if Hint ∼ Sz
ASz

B + (Sx
ASx

B + S
y

AS
y

B ) for black links,
then Hint ∼ Sz

ASz
B − (Sx

ASx
B + S

y

AS
y

B ) for red links. Thus, two
sublattices differ by the gauge transformation G.

Once two sublattices are combined, we need to introduce
an interaction between sublattices. Spin interaction (hopping
for bosons) between sublattices should be uniform so that
they are consistent with π flux per unit cell. Let them all
be positive, as in Fig. 5. The system is not symmetric under
naive translation T1. Rather, the system is symmetric under the

following magnetic translations:

T 1 =
[ ∏

all sites

eiπyiS
z
i

]
· T1, T 2 = T2, (37)

where we use bold symbols to distinguish magnetic transla-
tions with pure translations. Now, T 1, T 2 are proper symme-
tries of the system. They satisfy the relation

T 1T 2T−1
1 T−1

2 =
∏

all sites

eiπSz
i , (38)

which defines a system with π flux per unit cell.
Now, we connect magnetic translation symmetries to sub-

lattice translation symmetries. Let T̃1 and T̃2 be two translation
operators for both sublattices, and G be the aforementioned
gauge transformation. Although G itself is not the symmetry
of the system, it will act as an identifying map in Sec. IV. For
a certain gauge choice, we can represent the action of T 1 and
T 2 in the combined lattice as the following:

T 1 : |ψ1〉A ⊗ |ψ2〉B �→ (T̃1G−1|ψ2〉)A ⊗ (G|ψ1〉)B,

T 2 : |ψ1〉A ⊗ |ψ2〉B �→ (T̃2|ψ1〉)A ⊗ (T̃2|ψ2〉)B. (39)

For the first line, we should act G−1 on |ψ2〉 while G on |ψ1〉 to
have T 2

1 = T̃1 ⊗ T̃1. This is consistent with Eq. (37) because
T 2

1 = G2T 2
1 = T 2

1 = T̃1 ⊗ T̃1. As G2 is just an identity, and
G is not a symmetry of the system, we should not consider
fractionalization associated with G2. Based on Eq. (39), we
can derive the following:

T1T2T
−1

1 T −1
2

∣∣
eA

= T 2
1T 2T−2

1 T−1
2

∣∣
eA

= ηe
S,

(40)
T 1T 2T−1

1 T−1
2

∣∣
eAeB

= ηSe
iπ (Sz

eB
−Sz

eA
) = −ηSe

iπSz
eAeB ,

because e
2πiSz

eA = −1. ηS is the phase factor associated with
the translation symmetry fractionalization of an eA particle in
the sublattice A, which is the same for B.

Let us compare Eq. (40) with results from generic con-
sideration. In general, the commutator of the two magnetic
translations with respect to an eA or eB spinon excitation with
Sz is defined as

T 1T 2T−1
1 T−1

2

∣∣
eA/eB

= ηA/B · eiπSz

, (41)

which includes signs ηA/B from fractionalization as well as
the phase factor due to the magnetic flux. Using Eq. (41), one
obtains

T 2
1T 2T−2

1 T−1
2

∣∣
eA

= T 1 · T 1T 2T−1
1 T−1

2

∣∣
eB

· T 2T−1
1 T−1

2

∣∣
eA

= ηAηB · e2πiSz

. (42)

Since 2πiSz = −1 for any spinon, we obtain that

ηAηB = −ηe
S. (43)

Now to see whether we can form a condensate of eAeB bound
states, we combine the fractionalization of the two types of
spinons:

T 1T 2T−1
1 T−1

2

∣∣
eAeB

= ηAηB · e
iπSz

eAeB , (44)

which again agrees with Eq. (40) since ηAηB = −ηS . To pre-
serve U (1) symmetry, the bound state must have Sz

eAeB
= 0,

and thus for translational symmetry to be preserved, ηe
S must
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be −1. This makes sense since after a condensate is created,
the eA = eB excitation has a spin of 1/2 so it must pick up a
minus sign when it goes around two unit cells (i.e., the unit
cell of the sublattice). Now in the uncoupled sublattices, no
effects of the magnetic field are felt by the unfractionalized
degrees of freedom (because the unit cell encloses a whole
flux quantum). Hence, the spin-liquid state on the sublattice
must be chosen so that the “emergent” magnetic field felt by
the spinon agrees with the actual field. Such a spin liquid
with the emergent π flux exists as a physical mean-field
solution [58,63], which validates our construction. The spin
singlet state is also trivially fractionalized under time-reversal
symmetry, T 2 = 1; hence this symmetry does not have to be
broken either.

However, we have to examine other symmetries as well,
since our on-site symmetry is no longer continuous unlike the
previous example of the spin-1/2 honeycomb lattice. Indeed,
SO(3) spin-rotation symmetry is broken down into U (1)z �

Z
y

2 and we must examine other symmetry relations, P2 =
1, T 1P = PT 1, and T 2P = PT 2. Examining the relation
T 2P = PT 2, we can notice that this symmetry is fractional-
ized for the bound state eAeB . For eA excitation, T 2P = PT 2

holds everywhere, but for eB excitation, the action of P on
sublattice B depends on the location of eB (even row or odd
row). As T 2 translates the location by one lattice site in the
y direction, Eq. (35) implies that T 2P = −PT 2 for an eB

excitation. (This seems to break the translation symmetry, but
one can check that it is actually enforced by the magnetic
translation symmetry, on account of the Berry phases from the
magnetic field.) Thus, for the bound state eAeB , this symmetry
fractionalizes, and the condensation of eAeB must break either
Z

y

2 symmetry or enlarge the unit cell in the T2 direction. This
is consistent with the previous analysis (see Table III), where
the Z

y

2 symmetry is not consistent with both of the toric-code
and double-semion orders. By breaking the Z

y

2 symmetry, we
can access the Z2 topological order without enlarging the unit
cell.

As for visons, we know that ηm
S = −1 because they see

spin-1/2 per unit cell as π flux. By following the procedure
as above, we can show that vison bound state mAmB carries
nontrivial translation symmetry fractionalization, ηm

Aηm
B =

+ηm
S = −1. This is because visons do not carry a U (1) quan-

tum number affected by magnetic translation symmetry. Thus,
condensation of mAmB bound states would break translation
symmetry and enlarge the unit cell. We can conclude that the
Z2 × Z2 topological phase cannot be reduced further into a
simpler topological phase without symmetry breaking.

Remark. One may wonder—since our construction started
from two decoupled Z2 SLs and π flux is manifested only
by hoppings between sublattices, does π flux play any role
in the system? It does as long as hopping terms between
sublattices are nonzero. Consider the anyon bound state eAeB ,
whose Sz quantum number can be 0 or ±1. Then, under
the magnetic translation around the unit cell, a Sz = ±1
bound state acquires a phase factor of −1 relative to a spin-
0 bound state due to the π flux. Thus, we would observe
nontrivial band dispersion for anyon bound states, which is
doubly repeated due to π flux. This relative phase is in-
variant under a different choice of Z2 SL in the sublattice.
Moreover, unlike a single anyon excitation whose translation

symmetry fractionalization is gauge-dependent due to the fact
that the anyon type changes under the symmetry, this phase
factor is gauge-invariant, and is a measurable quantity of the
system.

D. Smaller fractions for the flux or filling

In this subsection, we analyze a constraint on the nonchiral
topological order that can be realized in a bosonic system
with magnetic translation symmetry in detail, at generic filling
and flux condition. Consider a bosonic system with U (1)
symmetry and magnetic flux �0 per unit cell such that we can
define conserved charge Q and associated magnetic transla-
tion symmetry,

T 1T 2T−1
1 T−1

2 = exp(iQ�0) ∈ U (1), (45)

where Q measures total U (1) symmetry charge of the re-
gion on which magnetic translation symmetry acts. Q can
be either electric charge or spin Sz components depending
on the system of interest. Assume we have a time-reversal
symmetry T . As discussed earlier, there are two ways to
realize time-reversal symmetry, T1 = K and T2 = PK, where
P is a unitary operator reversing the sign of U (1) charge (for
a spin model, P = eiπSy

).
For the first case with G = U (1) � Z

T1
2 , 〈Q〉 can take an

arbitrary value. However, the U (1) flux is reversed under T1:
T1 · exp(iQ�0) · T −1

1 = exp(−iQ�0). Thus, Eq. (45), the re-
lation defining the magnetic translation symmetry, is invariant
under T1 only if Q · � ≡ 0 mod π . For a generic system
made of particles with integer charge, this holds only if � =
0, π . For the second case with G = U (1) × Z

T2
2 , the U (1)

charge density 〈Q〉 = N0/2 ∈ Z/2 since T2 : Q �→ N0 − Q

for some integer N0 ∈ Z. Thus, it can have either an integer
or half odd integer filling. [We will focus on a half-filling
case as an integer filling does not have a no-go theorem
for a featureless state by Eq. (29).] Since any element of
U (1) and T2 commute, exp(iQ�0) is invariant under T2. As
a consequence, there is no restriction on the magnetic flux
�0. We will explain possible constraints for each case in the
following. For a summary, see Table III.

Case I. ρ = 1/2 and φ = 1/n. At half filling with a generic
flux �0 = 2π/n (flux density φ = 1/n), we can have a time
reversal T2 on top of U (1) symmetry, thus G = U (1) or
U (1) × Z

T2
2 . In this case, the Eq. (29) implies that a featureless

state does not exist unless n = 0 mod 4. Even if n ≡ 0
mod 4, a state without topological order must have a nonzero
Hall coefficient, and thus must break time-reversal symmetry.

Using the same argument we discussed above, Z2 toric-
code order has a consistent symmetry fractionalization pattern
with the given microscopic data, but Z2 double-semion order
does not. However, an actual parton construction for the
toric code is not apparent, and seemingly a daunting task.
To make a start on this issue, we can extend the approach
used in Sec. VII A to construct a Z⊗n

2 topological order (n
copies of toric code), and then condense anyons to access
Z2 topological order. For a given rectangular lattice, we take
a sublattice consisting of every nth site in the x direction
(similar to Fig. 5). We can prepare a Z2 SL state |ψ0〉 on the
first sublattice with the Hamiltonian H0, and then copy it to the
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other sublattices by using powers of the gauge transformation

G =
∏

r

eiyr�0S
z
r . (46)

Thus, the nth sublattice has the Hamiltonian Gn−1H0G−(n−1).
Then, we obtain a lattice with magnetic translation symmetry,
T 1 and T 2, where T 1 is a pure x translation (which permutes
sublattices) combined with an associated gauge transforma-
tion G, and T 2 is a pure y translation. Note that Tn

1 becomes
equivalent to the translation operator of each sublattice in the
x direction and T 2 is equivalent to the original translation
operator of each sublattice in the y direction. Therefore, the
Hamiltonian for the system is given as

H = H0 ⊗ GH0G−1 ⊗ · · · ⊗ Gn−1H0G−(n−1). (47)

Then, the ground state of H is given by

|ψ〉 = |ψ0〉 ⊗ G|ψ0〉 ⊗ · · · ⊗ Gn−1|ψ0〉, (48)

which is a Z⊗n
2 topological phase. We can add hopping terms

between the sublattices to couple them. Now, condensing
pairs of anyons in this case is more complicated than in the
cases we have considered so far. If one tries to condense
bound states formed from a pair of e’s on two sublattices, for
example, one breaks the translational symmetry because these
e’s are transformed into a different topological type by the
translation of the lattice along x. However, it seems likely to
be possible to simultaneously introduce several condensates,
e.g., a condensate of the e1e2 bound state, the e2e3 bound
state, ..., and the ene1 bound state (where ei represents an
ei excitation on the ith sublattice) which would reduce the
topological order to the Z2 toric-code order.

Case II. ρ = 1/n and φ = 1/2. At a generic filling ρ =
1/n with π flux (φ = 1/2), we can have a time-reversal T1 on
top of U (1), thus G = U (1) or U (1) � Z

T1
2 . In this case, fea-

tureless states are impossible since σxy ∈ 2N can never satisfy
the Eq. (29). Equation (30) requires the existence of an anyon
carrying 1/n charge, which has the braiding statistics 2π/n

mod 1 with the 2π U (1) symmetry defect. To accommodate
such excitations, we need at least Zn fractionalization.

For a nonchiral topological order, the simplest exam-
ple is the topological order described by Zn gauge the-
ory, whose anyon contents are {el1ml2 |0 � l1, l2 < n}, where
θe,e = θm,m = 0 and θe,m = 2π/n. Also, without loss of gen-
erality, we can set the e particle to carry a U (1) charge 1

n
and

the m particle to be 2π flux F in order to satisfy Eq. (30).
There is no obstruction for this Zn topological order for
G = U (1), but for U (1) � Z

T1
2 , we can show that there is

no consistent symmetry fractionalization pattern that can be
assigned to e particles. First, T1 : e �→ e because el1 and el2

carry different U (1) charges even up to a physical unit charge
unless l1 = l2. Then, since θT1e,T1m = −θe,m, we can deduce
T1 : m �→ mn−1. If n is odd, for n = 2l + 1, a consistent
symmetry fractionalization pattern can be written as follows:

T 1T 2T−1
1 T−1

2

∣∣
e

= ηl · eiπSz = −1,
(49)

T 1T 2T−1
1 T−1

2

∣∣
m

= η · eiπSz = e2πi/n,

where η = e2πi/n is the nth root unity—a phase factor coming
from Zn fractionalization. As T : m �→ mn−1, both equations

are symmetric under T1. This pattern is equivalent to saying
there is a background anyon e · ml . As this background anyon
carries charge 1

n
, it is consistent. On the other hand, if n is

even, there is no pattern of fractionalization of the translation
symmetries that is consistent with time reversal. Combining
n e particles together gives a single fundamental particle, so
it must pick up a minus sign under transport around the unit
cell. Thus one e must acquire a phase that is an nth root of −1,
which is complex so it breaks time-reversal symmetry.

For even n, as we did in the previous section, we can show
the existence of Zn × Zn topological order explicitly through
our bipartite lattice construction. Since the flux density φ =
1/2, we can combine two sublattices, each of which does not
see any external flux and realizes the Zn topological order.
Thus, Zn × Zn topological order can be constructed easily.

Another possible nonchiral topological order is a Zn

twisted topological order, a Zn analog of Z2 double-semion
order. There is more than one way to “twist” for n > 2, but
the most representative one is the U (1)n × U (1)−n nonchi-
ral fractional quantum Hall state described by a K matrix
(n 0
0 −n). Since we are considering bosonic topological orders,

such a state can only exist for even n. The state contains
a set of anyons {sl1 s̄ l2 | 0 � l1, l2 < n}, where θs,s = −θs̄,s̄ =
2π/n and θs,s̄ = 0. A similar analysis shows that there exists
a consistent symmetry fractionalization pattern, where s (s̄)
carries U (1) charge 1

n
(− 1

n
) and 2π flux F = ss̄. Here, T1 :

s �→ s̄n−1 + c, where c is a local physical excitation carrying
charge 1 (should be there to conserve charge). Then,

T 1T 2T−1
1 T−1

2

∣∣
s
= eiπSz → eiπ/n,

T 1T 2T−1
1 T−1

2

∣∣
s̄
= η · eiπSz → eiπ/n (50)

gives a consistent pattern, which can be understood as a
background anyon s. However, the explicit construction of
such a phase is unclear unlike the Zn gauge theory from a
parton construction.

Remark. When the system does not have a time-reversal
symmetry (or breaks it spontaneously), a chiral topological
order with a finite Hall conductivity can be realized. Consider
a symmetry group U (1) with the particle density ρ and flux
density φ. At the half filling under π flux (ρ = 1/2, φ = 1/2),
we have the ratio between particle density and flux density
ν = 1. In this case, a ν = 1 Moore-Read state [78] is known to
exist. In general, there are many explicit parton constructions
available [79] in the lattice model for a generic ρ and φ, and
some are shown even numerically [80,81]. For example, when
ρ = 1/3 and φ = 1/2, there is an explicit parton construction
of the chiral topological order with non-Abelian statistics
[79]. When ρ = 1/(4m) and φ = 1/2 with m ∈ N, the ratio
between the boson and flux density ν = 1/2m, and we expect
a Laughlin wave function for the fractional quantum Hall
state. For n = 4, it has been shown numerically that the physi-
cal system realizes a ν = 1/2 bosonic fractional quantum Hall
state [82], i.e., chiral spin liquid with nonzero magnetization
in the spin-model language [83].

VIII. CONCLUSION AND DISCUSSION

In this paper, we proposed a framework to construct a
symmetry-enriched topological order in a bipartite lattice.

214416-19



JONG YEON LEE, ARI M. TURNER, AND ASHVIN VISHWANATH PHYSICAL REVIEW B 98, 214416 (2018)

First, we constructed the featureless ground state in the spin-
1/2 honeycomb lattice. We took Z2 SL wave functions of
each sublattice, combined them, and condensed some of the
anyons to obtain the featureless state. As an intermediate
phase, we obtained an exotic type of Z2 SLs, where topo-
logical excitations do not carry any half odd integer spin.
We want to emphasize that in the Z2 × Z2 topological phase,
single anyons eA or eB do not have well-defined symmetry
fractionalization with respect to the lattice symmetry that
permutes anyons. However, the structure of the condensate of
the anyon bound state eAeB fixes the gauge choice for a single
eA, determining the symmetry fractionalization of eA = eB in
the resulting Z2 topological order.

Next, we applied the proposed framework to understand
the connection between extensions of the HOLSM theorem
and the allowed gapped and symmetric phases for a given
symmetry. While the HOLSM theorem places constraints on
systems with a half odd integer spin per unit cell, its exten-
sions can put further constraints based on other microscopic
data, such as nonsymmorphicity of lattice or the U (1) flux
per unit cell, i.e., replacement of translation symmetry by
magnetic translation symmetry. We explored cases where the
extension of the HOLSM theorem prevents the existence of
a featureless state, and listed SET phases consistent with
given symmetry information. In particular, we constructed
SET phases with certain symmetry fractionalization patterns
that are closely related to the HOLSM-type constraints.

One interesting question that can be addressed in the future
is the explicit construction of Z2 double-semion topological
order for the system at a half filling with π flux with U (1) �

Z
T1
2 symmetry. Although it is proven to be impossible under

the absence of π flux, we showed that the constraint is cir-
cumvented when there is π flux. Naively, we can combine two
sublattices; one sublattice realizes a Z2 double-semion order
with broken time-reversal symmetry, and the other realizes a
gauge-transformed version of it like in Sec. VII due to the π

flux. This might be able to recover time-reversal symmetry
after condensing appropriate anyon bound states.

Our approach may be further generalized to give a concep-
tual route for establishing the existence of other featureless
ground states, such as the one for a square lattice with spin-1
per site. In this case, the existence of a featureless state is
not prohibited by the HOLSM theorem, and the featureless
state was shown numerically using the tensor network state
approach. In Ref. [8], a generalized AKLT-type construction
was used with four virtual spin-1/2’s per site, from which a
virtual symmetric Hilbert space was constructed. Then, the
virtual state was projected to the physical Hilbert space with
spin-1 per site, and the resulting state was verified to be
topologically trivial and gapped. Similarly, in our construc-
tion, we can think of spin-1 per site as two spin-1/2 per
site in a virtual space, later projected into a spin-1 subspace.
In a virtual space, we can form two copies of Z2 SLs in
a square lattice with spin-1/2 per site, and consider bound
states eAeB and mAmB . Since phase factors for the symmetry

fractionalization class of bound states are just products of
phase factors for equivalent anyons, we obtain totally trivial
symmetry fractionalization classes for bound states. Then,
we can condense eAeB and mAmB to obtain a featureless
state in the virtual space; followed by the projection, we
would obtain a featureless state in the physical system. Of
course, we first have to verify whether the state survive as a
featureless state after projection and not as a “cat” state. Then,
it would be interesting to compare a featureless state obtained
by our construction to the featureless states in Refs. [8,9], and
investigate which class of SPT phases they belong to [42].

Finally, we remark that this bipartite construction pro-
vides an interesting toy model for a system where spatial
symmetries can exchange anyons. A few models have been
suggested, such as Wen’s plaquette model [49,84] or the
bilayer toric code [17], but their precise symmetry fraction-
alization properties remain to be studied. Here we provide an
explicit model where spatial symmetry exchanges anyons and
detailed calculations of the twisted second group cohomol-
ogy. One interesting question would be to address the issue
regarding the condensate of multiple anyons superposed in
a symmetric way. This has a potential application to other
multipartite lattices, such as a kagome lattice which is made of
three triangular sublattices. Since we can construct new SET
orders with additional tunable features from known ones, a
generalization of this approach would be a fruitful direction.
A three-dimensional generalization of this construction also
seems to be feasible, where looplike excitations carry fraction-
alized quantum numbers. Recently, an anyon condensation
approach was used to derive fracton topological orders in
three dimensions [85], and it would be interesting to extend
this analysis to include symmetries as discussed here. These
questions are left for a future work.
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APPENDIX A: SYMMETRY FRACTIONALIZATION OF
BOUND STATES IN THE HONEYCOMB LATTICE

Based on Eq. (10), symmetry fractionalization phase fac-
tors of bound states (and individual anyons) in the honeycomb
lattice can be calculated as follows: For T 1T 2T−1

1 T−1
2 ,

T 1T 2T−1
1 T−1

2 = (
T1T2T

−1
1 T −1

2

) ⊗ (
T −1

2 T1T1T
−1

1 T2T
−1

1

) = (
T1T2T

−1
1 T −1

2

) ⊗ (
T −1

2 T1T2T
−1

1

) = (η1)2 = 1. (A1)

214416-20



BUILDING SYMMETRY-ENRICHED TOPOLOGICAL PHASES … PHYSICAL REVIEW B 98, 214416 (2018)

Similarly, as σ 2 = σ 2 ⊗ (C−2
6 T −1

1 σC−2
6 T −1

1 σ ) for σ 2,

C−2
6 T −1

1 σC−2
6 T −1

1 σ = C−2
6

[
α1σ

−1T −1
2

]
C−2

6 T −1
1 σ = α1 · C−2

6 σ−1
[
α3C

−1
6 T −1

2 T1
]
C−1

6 T −1
1 σ

= (α1α3) · C−2
6 σ−1C−1

6 T −1
2

[
α2C

−1
6 T2

]
T −1

1 σ = (α1α2α3) · C−2
6 σ−1C−1

6

[
α3C

−1
6 T −1

2 T1
]
T2T

−1
1 σ

= (α1α2) · C−2
6 σ−1C−2

6

[
T −1

2 T1T2T
−1

1

]
σ = (α1α2η1) · C−2

6 σ−1C−2
6 σ = (α1α2η1), (A2)

where we used the fact that

C−2
6 σ−1C−2

6 σ = C−1
6

(
C−1

6 σ−1C−1
6 σ−1

)
σC−1

6 σ

= η4 · C−1
6 σC−1

6 σ

= η4 · C−1
6 σ−1C−1

6 σ−1 = 1, (A3)

since σ−1 = η2σ and (ηi )2 = 1. Thus,

σ 2 = σ 2 ⊗ (
C−2

6 T −1
1 σC−2

6 T −1
1 σ

) = η2 · (α1α2η1) = 1.

The last equality seems suspicious, but we can prove that
η1η2α1α2 = 1 indeed. Proof is given as the following:

T2 = η4 · T2 · η4 = (σC6σC6) · T2 · (σC6σC6)−1. (A4)

From definitions, C6T1C
−1
6 = α2T2 and σT2σ

−1 = α1η2T1,
which gives (σC6)T1(σC6)−1 = α1α2η2 · T1. Furthermore,
we have σC6T2C

−1
6 σ−1 = α3T

−1
2 T1. Then,

T2 = η4 · T2 · η4 = (σC6σC6) · T2 · (σC6σC6)−1

= (σC6)α3T
−1

2 T1(σC6) = (η1α3) · (σC6)T1T
−1

2 (σC6)−1

= (η1α3)(α1α2η2 · T1)
(
α3T

−1
2 T1

)−1 = (α1α2η1η2) · T2.

(A5)

Thus we conclude that α1α2η1η2 = 1, implying this combi-
nation of phase factors becomes gauge-invariant. For (C6)6,
we have (C6)6 = ([T1C

2
6 ]3) ⊗ ([T1C

2
6 ]3). Therefore, let us

examine its action on sublattice A first. Since C2
6T1 = C6 ·

[α2T2C6] = α2α3 · T −1
1 T2C

2
6 , and similarly, C2

6T −1
1 = α2α3 ·

T −1
2 T1C

2
6 , we have(

T1C
2
6

)3 = (α2α3) · T2C
4
6T1C

2
6 = T2C

2
6T −1

1 T2C
4
6

= (α2α3) · T1C
2
6T2C

4
6 = α3α3 · T1T

−1
2 T −1

1 T2C
6
6

= η1η3α3, (A6)

where we used a relation C2
6T2 = C6[α3T

−1
1 T2C6] =

α2α3T
−1

2 C6T2C6 = α2T
−1

2 T −1
1 T2C

2
6 from the second line to

the third line. Unlike other cases, we can see that when (C6)6

acts on a single spinon, we would get a gauge-dependent
factor η1η3α3. For a bound state, we get

(C6)6 = (
T1C

2
6

)3 ⊗ (
T1C

2
6

)3 = (
η1η3α

A
3

) ⊗ (
η1η3α

B
3

)
= αA

3 αB
3 = 1. (A7)

The last equality comes from the fact that the existence of
S2 = 1 fixes gauge choice such that αA

3 = αB
3 = 1. Finally,

for σ C6σ C6, it is very straightforward to show that it is
equivalent to σ 2 ⊗ σ 2 = (η2)2 = 1. Thus, we showed that all
symmetry fractionalization classes characterizing the bound
state should be trivial for this gauge choice, and thus belong
to the trivial class.

APPENDIX B: GROUP COHOMOLOGY CALCULATION
OF SYMMETRY FRACTIONALIZATION PATTERN

In this Appendix, we elaborate on the second group cohomol-
ogy of a symmetry group and how to generalize it to calculate
fractionalization classes when symmetry operators can per-
mute anyons with trivial mutual statistics between them. (For
example, eA and eB have a trivial mutual statistics and they are
permuted to each other under translation in the bipartite lattice
construction.) In Sec. II, we gave the intuitive explanation and
the lemma on how to characterize a fractionalization class by
phase factors associated with symmetry relations of group G.
The lemma works similarly regardless of whether a symmetry
permutes anyons or not, but we need extra care to define a
coefficient group A, i.e., a set of allowed phase factors.

First, let us summarize how the second cohomology group
is defined in a physical context when group elements do not
permute anyons. � is called a linear representation if ∀g1, g2 ∈
G, it satisfies

�(g1)�(g2) = �(g1g2). (B1)

On the other hand, �̄ is called a projective representation
extended by a coefficient group A if A is an Abelian group
[a set of U (1) phase factors] and there exists a map ω :
G × G �→ A, called a factor set, such that

�̄(g1)�̄(g2) = ω(g1, g2)�̄(g1g2), (B2)

where ω(g1, g2) is the additional phase factor we discussed in
Sec. II. The factor set should satisfy a consistency equation
for a projective representation to be associative:

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3) g1ω(g2, g3), (B3)

where g1ω(g2, g3) is the image of ω(g2, g3) under a certain
transformation depending on g1 (the “action” of g1). The
action of g1 is often trivial. However for a time-reversal
symmetry, which acts antiunitarily on complex numbers,
Tω(g2, g3) = ω(g2, g3)−1. The Eq. (B3) is called a 2-cocycle
condition, by analogy with a similar formula in topology.
Thus, a projective representation is characterized by its factor
set ω. Projective representations can be redefined by a gauge
transformation �′(g) = λ(g)�(g) where λ : G �→ A is a map
(which does not have to be a homomorphism) from G to A. If
two projective representations can be related by a gauge trans-
formation, they are called equivalent, and the phase factors are
related by

ω′(g1, g2) = λ(g1) g1λ(g2)

λ(g1g2)
ω(g1, g2), (B4)

which we denote as ω ∼ ω′. For a given G and A, projective
representations (ω) form an Abelian group of equivalence
classes, called the second cohomology group of G, H 2(G,A).
Although we did not write down �̄ when we related symmetry
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relations and phase factors in the main text, if g2
1 = 1 is a

symmetry relation and the action of g2
1 on an anyon gives

some phase factor, we should write it as [�̄(g1)]2 = eiθ .
However, for a notational convenience, we often omit writing
down �̄.

So far, we have avoided a rigorous discussion on the
definition of A. Let I be an algebra of Abelian anyons
for a given topological order. For example, in a familiar
Z2 topological order, I = {1, e,m, em | . . . }, where . . . are
fusion rules. Then, we define a coefficient group A is defined
as Hom(I, U (1)). Physically, the definition is motivated by
the observation that there arises a gauge redundancy associ-
ated with fusion rules for a given topological order, �̄|a →
f (a)�̄|a , which can depend on the anyon type a. For example,
when a topological excitation a = b × c, it means that an
anyon a can fractionalize into b and c. While doing so,
operators for a, b, and c can be redefined by phase factors
consistent with this fusion rule. For any given fusion rule
a × b = c, f must satisfy

f (a) · f (b) = f (c). (B5)

Thus, A is not a set of phase factors (when the anyons are
all considered simultaneously), but rather a set of homomor-
phisms from anyons to phase factors. By taking into account
this fact, we can represent a factor set as a function ω : G ×
G × I → U (1) and a phase factor as λ : G × I → U (1).

Now if the symmetries include crystal symmetries,
ω(g1, g2, a) is not precisely a homomorphism. The symmetry
fractionalization patterns can be intertwined with the statistics
because when two anyons are fused and then transformed,
they may become braided with one another. In this situa-
tion, the assumption on the coefficient group that ω(g, h) ∈
Hom(I, U (1)) is wrong. Instead, a factor set ω(g, h; a)
would satisfy the following equation for a given fusion rule
a × b = c:

ω(g, h; a) · ω(g, h; b) = �c
a,b(g, h) · ω(g, h; c), (B6)

where the phase factor �c
a,b is called the “twist factor”

[16,50,51], which can be determined from the mutual statis-
tics of the anyons [50]. For many cases, such as Z2 order, we
do not need to consider this complication since we can find a
minimal set of anyons each of which has zero topological spin.
As long as these anyons are not permuted, each anyon in the
minimal set of anyons generating the topological order carries
an independent fractionalization class, and classification of
a given topological phase would be given as a product of
fractionalization classes of all independent anyons. When
anyons are permuted, we factor the group of anyons I into
groups of anyons that are exchanged with one another and
that have trivial mutual statistics, and if this is possible, we
do not need to consider topological data. (For example, we
can consider the eA/eB excitations and the mA/mB excitations
separately in the toric code model.) Finally, in the case of the
double-semion states, the translation and time reversal do not
seem to have any interplay with braiding, which still allows us
to use Eq. (B5).

Returning to our general discussion, we remark that a
coefficient group A is called a G module, which means that a
group element g ∈ G acts as a function g : A �→ A, either by

a left action or by a right action. Previously discussed cases
are when g acts as an identity mapping in A, since they do
not act on a phase factor (when it is a time reversal). However,
when it comes to the case of anyon permuting symmetries,
group elements can act on A by changing anyon arguments
of f ∈ Hom(I, U (1)). In this case, 2-cocycle condition for
factor sets should be modified as

ω(g1, g2; g3.a) · ω(g1g2, g3; a)

= ω(g1, g2g3; a) · g1ω(g2, g3; a) (B7)

for g1, g2, g3 ∈ G where g3.a is an anyon transformed from
a by a symmetry k. Such a complication arises since the
symmetry operator can act on A = Hom(I, U (1)) in two
different ways: the anyon part I and the phase factor part
U (1). Formally, allowing these two possibilities is equivalent
to allow group elements to have both left and right action
on elements of A. Similarly, the 2-coboundary condition is
modified as follows:

ω′(g1, g2; a) = λ(g1; g2.a) g1λ(g2; a)

λ(g1g2; a)
ω(g1, g2; a). (B8)

An Abelian group formed by equivalence classes of this ω

in this case is called a twisted second group cohomology
H 2

t (G,A), where twisted means that elements of G can
act nontrivially on A. Thus, when G includes time-reversal
operator T , it should be called a twisted group cohomology in
a rigorous sense. However, in the case of Z2 topological order,
phase factors are ±1, and T acts trivially on a coefficient
group.

Equation (B7) defines allowed fractionalization classes,
and Eq. (B8) defines equivalence relations between fractional-
ization classes. Thus, if we give a rule for how G acts on A, in
principle, the above two equations define the problem of our
interest. Although twisted group cohomology is very involved
to analytically calculate, the calculation can be done computa-
tionally using the Homological Algebra Programming (HAP)
package of the software called Group Algebra Programming
(GAP) [86] for various groups including space groups.

There is one subtlety. Since the coefficient group A is a
group of homomorphisms from I = 〈eA, eB〉 to U (1) (which
should be {1,−1} due to the fusion rules), we need a way
to represent coefficients and associated group actions in a
simple way. This can be done by representing element of A
as a function giving a braiding statistics of an input particle
with specific anyons. For example, let I = 〈1, e,m, ε = em〉.
If γ ∈ A gives γ (1) = 1, γ (e) = 1, γ (m) = −1, γ (ε) = −1,
then we can represent

γ (a) = Ma,e, (B9)

where Ma,e represents a braiding statistics between an in-
put anyon a and e. Since braiding statistics satisfies group
properties under multiplication, this indeed represents A =
Hom(I, U (1)) properly [17].

Now, let us consider the system of honeycomb lattice
with Z2 × Z2 topological order. Hom(I, U (1)) can be rep-
resented by generators, 〈Ma,eA,Ma,eB ,Ma,mA,Ma,mB 〉. As C6

rotational symmetry exchanges two sublattices, C6 acts on the
coefficient group as

C6 : Ma,mA ↔ Ma,mB , Ma,mA ↔ Ma,mB , (B10)

214416-22



BUILDING SYMMETRY-ENRICHED TOPOLOGICAL PHASES … PHYSICAL REVIEW B 98, 214416 (2018)

TABLE IV. Representations of four distinct equivalence classes
in twisted second group cohomology calculation H 2

t (Gp6m,Z2 ×
Z2). Here we only consider e particles, and full classification should
be a direct product of this and group cohomology for m particles,
which has the same structure. In fact, the third and fourth rows,
phase factors for (C6)6 and R2, do not contribute to the classification
because they are gauge-dependent. Here, α and β are generators of
Z2 × Z2 = {1, Ma,m A} × {1, Ma,mB }. As discussed, these generators
are functions from anyon category I to U (1) phase factors. Ma,m A

spits out −1 for input of eA, and Ma,mB spits out −1 for eB . Thus,
Ma,m A · Ma,mB = Ma,m AmB spits out +1 for eAeB , implying that the
bound state eAeB has a totally trivial fractionalization class for all
cases.

Group relations No. 1 No. 2 No. 3 No. 4

T1T2T
−1

1 T −1
2 Ma,1 Ma,1 Ma,m AmB Ma,m AmB

σ 2 Ma,1 Ma,m AmB Ma,1 Ma,m AmB

(C6)6 Ma,1 Ma,1 Ma,1 Ma,1

R2 = (σC6)2 Ma,1 Ma,m AmB Ma,1 Ma,m AmB

while the other symmetry operators T1, T2, and σ act triv-
ially on coefficients. Consider only e particles for now as
e and m anyons can be treated independently. Then, Ae =
Z2 × Z2 = {1,Ma,mA} × {1,Ma,mB }. With all this informa-
tion, we can finally calculate H 2

t (Gp6m,Ae ) using GAP. The
resulting twisted second group cohomology is isomorphic to
Z2 × Z2 (Table IV). We remark that (C6)6 and R2 in the
table do not contribute to the classification since they are
gauge-dependent. Under the gauge transformation �′(C6) =
Ma,eA�(C6), the actions of (C6)6 and R2 are multiplied by
Ma,mAmB . For example,

[�′(C6)]6 = [Ma,mA�(C6)]6 = (Ma,mAMa,mB )3

× [�(C6)]6 = Ma,mAmB [�(C6)]6 (B11)

since �(C6)Ma,mA = Ma,mB�(C6) and also

[�′(C6)�′(σ )]2 = [Ma,mA�(C6)�(σ )]2

= Ma,mAMa,mB [�(C6)�(σ )]2

= Ma,mAmB [�(C6)�(σ )]2. (B12)

Therefore, if the anyon of our interest is a = eA, the phase
factor is not well defined since it can be 1 or −1 depending on
a gauge choice for these two relations. However, for the bound
state eAeB , since MeAeB,mAmB = 1, phase factors for eAeB are
invariant.

In all four possible symmetry fractionalization classes for
eA, eB anyons, the bound state eAeB has trivial phase factors
under symmetry relations, implying that eAeB can be a singlet
of all possible symmetries. For an anyon eA (or eB), a phase
factor for T 1T 2T−1

1 T−1
2 can be ±1. A phase factor for σ 2 can

be ±1. Such results agree with what we obtained in a more
direct approach in the main part of the paper. A phase factor
for (C6)6 has a gauge choice where it is trivial, which means
that the phase factor can be always gauge transformed to be
one.

The resulting four symmetry fractionalization classes ex-
actly agree with symmetry fractionalizations we can construct
out of triangular sublattices in Eq. (25), which is labeled by

(η1, η2, η1η3α3, η2), a set of phase factors for a single eA or eB

anyon. Here η1 and η2 are determined by which SET phase is
realized on triangular sublattices, and the one involving α3 is
gauge-dependent and does not contribute to the classification.
The result further confirms the validity of our construction and
tells us that symmetry fractionalization classes we obtained
from bipartite construction are robust.

Although here we only discussed the symmetry fractional-
ization class of e particles, since coefficient group A factorizes
into e-particle and m-particle components, full classification
can be obtained by direct product of individual cohomology
groups

H 2
t (Gp6m,A) = H 2

t (Gp6m,Ae ) × H 2
t (Gp6m,Am), (B13)

where in fact two cohomology groups H 2
t (Gp6m,Ae ) and

H 2
t (Gp6m,Am) are isomorphic because a mathematical struc-

ture does not change under e ↔ m. Since the Z2 SL we used
in the construction can realize only one fractionalization class
for visons as in Table I, we do not have the freedom to realize
all four possible classes for mA, mB anyons in this case. Thus,
the vison part would only realize the fractionalization class
No. 3 in Table IV.

It seems interesting that in this calculation we took into
account only how the anyons are acted on by the symmetries;
we did not assume the state is made out of disconnected
lattices. Still, possible SET phases we obtained through this
general method are the same as what we obtained through the
bipartite lattice construction. In principle, one may also expect
different SET phases where the anyons permute the same
way, but it never happens actually, even for more complicated
lattices.

Consider a lattice made from k sublattices, L1, . . . , Lk , that
are mapped to one another by symmetry. Suppose that the
symmetries on the sublattice L1 form a group H , and let them
be fractionalized: �(h1)|a�(h2)|a = ω1(h1, h2; a)�(h1h2)|a
for any h1, h2 ∈ H for a given anyon a. Assume that any
element h ∈ H does not not permute anyons. Can we extend
this symmetry fractionalization pattern of the sublattice to the
full system? Suppose that for each anyon a, there are n distinct
copies of them denoted by Ci (a) such that Ci (a) and Cj (a)
have no mutual phases if i �= j , and that they are permuted
the same way as the sublattices, i.e., g(Ci (a)) = Cj (a) if
g : Li → Lj . Then, we can find all the SETs for this system
using cohomology to solve Eq. (B7); it turns out there is
only one that extends ω1 of the sublattice. We can see this
by classifying the projective representation of the full lattice
group G.

Let Si be a symmetry of the full system that maps L1 →
Li , and choose some projective representations of H , re-
stricted to the anyons in sublattice L1. Now this projective
representation can be extended to a general symmetry and
anyons in other sublattices. For any g ∈ G that maps Li to
Lj , we must define �(g)’s phase for each sublattice Li . Then,
the relation g = Sj (S−1

j gSi )S−1
i is convenient because the

symmetry in the parentheses is an element of H (it maps L1

to itself). Hence �(g) restricted to anyons in L1 is already
defined for this symmetry.

One can notice that �(g) restricted to Ci (a) can
be expressed as �(Sj )|C1(a)�(S−1

j gSi )|C1(a)�(Si )−1|Ci (a) up
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TABLE V. Any symmetry operation can be expressed in the
above form. For instance, the glide-reflection symmetry in the
main text would be expressed as �(gglide ) for A anyons and
�(Tx )�(gglide )−1 for B anyons, where Tx is translation in the x

direction.

Type of symmetry A anyons B anyons

Lattice fixing �(h) �(gglide )�(h)�(gglide )−1

Lattice exchanging �(gglide )�(h) �(h)�(gglide)−1

to a phase factor ω(Sj , S
−1
j gSi ; C1(a)) · ω(gSi, S

−1
i ; Ci (a)),

which can be set to be 1 by a proper gauge choice for �(g).
Thus, one can express

�(g)|Ci (a) = �(Sj )
∣∣
C1(a)�

(
S−1

j gSi

)∣∣
C1(a)�(Si )

−1
∣∣
Ci (a). (B14)

Then one can work out the product of �(g1) and �(g2) for the
anyon Ci (a) to find ω(g1, g2; Li (a)) because the factors of
�(S )’s cancel for all identity relations relevant to symmetry
fractionalizations. Therefore, the answer is determined just by
the symmetries within L1.

For example, for the pg group we discussed in the main
text, we have two sublattices A and B. There are two types
of symmetries: translational and orientation-reversing sym-
metries. The first type preserves the sublattice and the second
type exchanges them. Suppose we fix the phases of �(h) for
a translation h and for any anyon in the A sublattice. Then
we can define the phases of all the other symmetries in the
way we described; Table V summarizes how the action of any
symmetry operator can be expressed in the form of Eq. (B14)
given the choice of S1 = I , S2 = gglide. (Here, h is some
properly chosen translation operator.) For example, if g is a
symmetry that exchanges A and B, one can either express it
as gglideh1 or as h2g

−1
glide. To use the Eq. (B14), one should

use the first expression if the symmetry is to be applied to
an A anyon and the second if it is to be applied to a B anyon,
and then replace each element by the projective representation
� corresponding to it. This choice affects only the phase
of the symmetry because � preserves relationships (such as
g = gglideh1) up to a phase. It is allowed to choose the phase
differently for an A and a B anyon. One can easily check that
when symmetries are expressed in this form and multiplied
together, the form is preserved, and one can extend symmetry
fractionalization of the sublattice into the full system.

APPENDIX C: BOSONIC SYSTEM WITH MAGNETIC
TRANSLATION SYMMETRY

When we map a spin model into a bosonic model with
a constraint (nb � 2S) by Holstein-Primakoff transforma-
tion, magnetic translation symmetry can be rewritten as the
following:

T1T2T
−1

1 T −1
2 =

∏
r

eiSz
r �0 =

∏
r

ei(nr−S)�0 . (C1)

However, when we think about a bosonic tight-binding model
with magnetic flux, it is more reasonable to write it as the

following:

T1T2T
−1

1 T −1
2 =

∏
r

einr�0 . (C2)

There comes the difference by the constant phase factor∏
r eiS�0 = eiNS�0 . Since this is the operator equation, the

phase factor cannot be removed. One may wonder whether the
mapping can be even well defined when we have a magnetic
field. In fact, if we require the condition NS�0 ≡ 0 mod 2π ,
then it is possible to properly define the corresponding bosonic
model under the Holstein-Primakoff transformation. Now one
can ask, what does spin-flip symmetry correspond to in the
bosonic model? Under P : Sz �→ −Sz, we see that P : nb �→
2S − nb. Thus, we see that

P
∏

r

einr�0P−1 =
∏

r

ei(2S−nr )�0 = e2iSN�0
∏

r

e−inr�0 .

(C3)

Because of the above condition NS�0 ≡ 0 mod 2π , the
prefactor in the Eq. (C3) disappears. Thus, during the discus-
sion of magnetic translation symmetry, regardless of whether
it is a spin or boson model, we can safely treat the action of P
as flipping the U (1) charge. Of course, when we think about
particle density 〈nb〉, we should keep in mind that PnbP =
2S − nb. Thus, for a particle-hole symmetric system, we must
have a half filling 〈nb〉 = S, where 0 � nb � 2S. In the main
text, we ignored this subtlety. For a generic boson model,
P : nb �→ N − nb, where N is an arbitrary integer that one
has a freedom to choose. Thus, for the nb fractional, there is
no particle-hole symmetry.

APPENDIX D: CONSTRAINTS ON TOPOLOGICAL
ORDERS

In the main text, we explained why certain SETs cannot be
realized for a given symmetry setting. To do so, we showed
that the flux seen by each anyon with a certain quantum
number does not transform properly under the spin-flip/time-
reversal symmetry. Here, we provide a more compact way to
prove this using the symmetry fractionalization of magnetic
translation algebra. Assume that the anyon does not permute
under magnetic translation symmetries. Our analysis relies on
the following formula given in Ref. [72]:

�T̃1
�T̃2

�−1
T̃1

�−1
T̃2

= λa�U (φ), (D1)

where �O represents a fractionalized action of a symmetry
operator O, φ represents the magnetic flux per unit cell, and
λa represents the anyon flux of a per unit cell. For a given
localized (anyonic) excitation, Eq. (D1) gives a phase factor
acquired by encircling the anyon excitation around one unit
cell. One can argue that this phase factor should be invariant
under the on-site symmetry action which commutes with
magnetic translations because this phase factor is a physical
observable. This condition can be also shown directly from
the twisted group cohomology condition.

For φ = 1/2, π flux per unit cell, spin-flip and time-
reversal symmetries commute with magnetic translations.
Moreover, λa�U (φ) transforms in the following way under
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each symmetry action:

P : λa�U (π ) �→ λaP�U (−π ) = λaP ·F̄ �U (π ),

T1 : λa�U (π ) �→ λaT1 �U (−π ) = λaT1 ·F̄ �U (π ), (D2)

T2 (= P · T1) : λa�U (π ) �→ λaT2 �U (π ),

where we used the fact that the action of U (−2π ) is equivalent
to the braiding with an antifluxon F̄ . For a Z2 toric-code
order, the anyon does not transform under these on-site sym-

metries, and the fluxon must be equivalent to a vison. For Z2

double-semion order, s ↔ s̄ under time-reversal symmetry,
and the fluxon must be equivalent to a bosonic anyon b = ss̄.
Using Eq. (D2), one can check whether the right-hand side of
Eq. (D1) is invariant under symmetry actions, and determine
whether a certain symmetry fractionalization pattern is consis-
tent. For the generalization to smaller fractions for the flux or
filling, we can apply this analysis in the exact same manner to
Zn topological orders, knowing how anyons transform under
the on-site symmetries.
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