
PHYSICAL REVIEW B 98, 214414 (2018)

Phenomenology of chiral Dzyaloshinskii-Moriya interactions in strained materials
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We use phenomenological symmetry arguments to demonstrate that while chiral magnetic (Dzyaloshinskii-
Moriya) interactions are conventionally restricted by symmetry to appear in a limited set of noncentrosymmetric
materials, they may arise in a material with any symmetry when coupled to a strain field. We derive point-
group specific free-energy functionals that capture the relationship between an applied strain field and chiral
magnetic couplings, demonstrating how strain may offer highly selective control over magnetic textures. Finally,
we discuss several examples of common strain configurations that may lead to out-of-plane modulation in the
magnetic moment of a quasi-two-dimensional film as required for applications in magnetic devices.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya (DM) interaction between
magnetic atoms is of fundamental importance to the properties
of many magnetic materials, leading to phenomena such as
helimagnetism [1], weak ferromagnetism in antiferromagnetic
systems [2], and magnetic skyrmions [3,4]. The DM interac-
tion can be described by an antisymmetric coupling between
spins, conventionally expressed as a Dr,r ′ · [S(r ) × S(r ′)]
term in a spin Hamiltonian describing spins located at r and
r ′ interacting through the DM vector D [5], or phenomeno-
logically as an antisymmetric coupling in the magnetic or-
der parameters [1,2]. The DM interaction has been studied
extensively in a range of materials, such as MnSi [6], FeGe
[7,8], and others [9–11]. However, the antisymmetric form
of this interaction restricts which components of spin may
appear in the DM terms of the energy [2,5]; notably the chiral
Dzyaloshinskii-Moriya (cDM) interaction cannot contribute
to the macroscopic properties of a centrosymmetric material.
The requirement that the host crystal be noncentrosymmetric
greatly restricts the space of materials where the effects of the
DM interaction can be studied and utilized.

To expand the space of materials where the DM interac-
tion may arise, it is necessary to break the symmetries of
the crystal which forbid antisymmetric magnetic couplings.
Recent work on interfacial DM effects [12–16] has relied on
symmetry breaking at a surface or in a multilayer to observe
DM couplings. However, this approach cannot be generalized
outside the space of thin films and generally relies on the pre-
cise control of material interfaces. One way to systematically
achieve symmetry breaking in the bulk of a material is through
the application of a strain field. Furthermore, unlike mate-
rials with an intrinsic cDM interaction, strain-coupled cDM
effects can be in principle dynamically controlled through
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mechanical deformation. In this work, we demonstrate that
strain gradients (flexomagnetism), and sometimes even ho-
mogeneous strain (piezomagnetism), allow for cDM cou-
plings to arise in materials belonging to any point group.
Based on symmetry arguments, we derive possible couplings
between magnetic order parameters and strain within the
three-dimensional (3D) crystallographic point groups and thus
reveal how strain and its gradient can lead to specific types
of cDM interactions. Our analysis does not rely on a specific
atomistic mechanism leading to a cDM interaction, but rather
focuses on whether an effective cDM interaction can generally
arise [17]. Finally, we provide examples of two relevant strain
fields which can lead to cDM interactions in intrinsically
DM-inactive materials. Our analysis expands upon previous
reports of strain and geometry-coupled magnetic phenomena
[18–24], and provides a general roadmap for controlling chiral
magnetic interactions via strain in materials of all symmetries.

II. FORMALISM

To determine which magnetic and strain couplings may
contribute to the free energy of a material with a particular
point group, we construct a general free-energy density
functional in terms of symmetry-invariant polynomials of the
magnetic order parameters {m(α),m(β ), . . .}, strain e and their
gradients [25–31]. The free-energy density functional F can
be written as

F (B) = F (B0) +
∑
bi∈B

∂F
∂bi

bi + 1

2

∑
bi ,bj ∈B

∂2F
∂bi∂bj

bibj + · · · ,

where B = {m(α),∇m(α),m(β ),∇m(β ), . . . , e,∇e} is a joint
field consisting of the individual field variables for the
magnetization order parameters, strain, and their gradients.
The derivative terms ∂F/∂bi, ∂

2F/∂bi∂bj , . . . are evaluated
in the reference state denoted by B0 and thus must obey
the symmetry of the point group of the homogeneous
unstrained, nonmagnetized material. To enforce these
symmetry constraints, we rewrite the free-energy functional
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in terms of the symmetry-invariant polynomials of bi ,

F (B) =
∑

n

∑
k

J
(n)
k V

(n)
k ,

where the V
(n)
k basis function is the kth symmetry-invariant

polynomial of order n consisting of the components of B, and
J

(n)
k is a scalar coefficient. The basis functions are defined as

V
(n)
k =

∑
σ∈�(σ (n)

k )

cσ

∏
i∈σ

bi,

where � defines the orbit of σ
(n)
k , the kth symmetrically

unique product of order parameters of order n in terms of
products of bi and coefficients cσ . By this construction, each
basis function groups symmetrically equivalent terms and
thereby guarantees that F is invariant under symmetry opera-
tions in the point group. The coefficients J

(n)
k can be similarly

expressed in terms of the nth derivatives of F , but as both J
(n)
k

and the derivatives of F typically appear as empirical param-
eters fit to experimental data or quantum-mechanical calcula-
tions, their exact relationship to each other is not important.

To obtain the full basis set {V (n)
k } up to order n, we follow

the procedure described by Thomas and Van der Ven [30,32].
We first derive a symmetry-adapted set of field variables for B,
as described in the Supplemental Material, Note 1 [33], which
separates the components of B into independent subspaces
whose interactions with each other can be efficiently evalu-
ated. We then project out the symmetrically invariant com-
ponent of every nth-order monomial of B using the Reynolds
operator R(P ) = ∑

p̂i∈P UB,p̂i /|P | for the desired point group
P which contains |P | symmetry operations p̂i , where the
operator UB,p̂i describes the action of p̂i on B. Finally, we use
Gram-Schmidt orthogonalization to construct an orthonormal
basis set of symmetry-invariant polynomial basis functions.
Note that since any magnetic order parameter must obey
time-reversal symmetry, the symmetry group must include
time reversal. We restrict our analysis to systems which may
undergo a second-order transition to a paramagnetic state
[2,34] and work with the “grey” point groups, defined as the
direct product of the crystallographic symmetry operators and
the time-reversal operator.

Within a free-energy functional F (m(α),∇m(α),m(β ),

∇m(β ), . . .), the DM interaction appears to first order in two
forms: the inhomogeneous or chiral DM (cDM) interaction
and the homogeneous DM (hDM) interaction [1,2,35]. The
cDM interaction is an antisymmetric coupling between a
magnetic order parameter m(α) and its gradient, yielding terms
in the form of a Lifshitz invariant w

(α)
kn = εijkm

(α)
i ∂m

(α)
j /∂rn,

where εijk is the permutation tensor and summation over
repeated indices is implied. These terms impart a chirality
dependence to the free energy based on a rotation of m(α)

about the rk direction propagating along the rn axis of the
crystal. One may refer to wkk terms as “helicoid” interactions
and wkn, n �= k terms as “cycloid” interactions [35], which
represent magnetic textures similar to those found in Bloch
and Néel domain walls respectively as shown schematically
in Fig. 1(a). The hDM interaction is an antisymmetric cou-
pling between two different magnetic order parameters m(α)

and m(β ), yielding terms of the form h
(αβ )
k = εijkm

(α)
i m

(β )
j . A

notable example of this interaction is the emergence of “weak

ferromagnetism” due to spin canting in antiferromagnetic
systems in the case where m(α) is the total magnetization
and m(β ) = s1 − s2 is the difference in the magnetic moment
vectors of the antiferromagnetic sublattices s1 and s2 [2].

The magnetic order parameters m(α),m(β ), . . . are gen-
erally defined as m(α) = ∑

c
(α)
i si where {si} are the local

magnetic moments of the sublattices in the material and the
coefficients ci are chosen such that the order parameters
are orthogonal and span irreducible subspaces of the point
group of the material [2,31,36]. In the special case of total
magnetization m (ci = 1), permutation of {si} leaves m invari-
ant, meaning that total magnetization transforms as an axial
vector, with Um,p̂

ij = (det R)Rij , where R is the Cartesian
rotation matrix associated with symmetry operation p̂. Corre-
spondingly, the gradient of total magnetization ∇m transforms
as a rank-2 pseudotensor with U∇m,p̂

(i ′j ′ )(ij ) = (det R)Ri ′i Rj ′j ,
where (ij ) represents the mi,j = ∂mi/∂rj component of ∇m.

In this work, we consider the simplest case of a
DM interaction: the emergence of cDM couplings wkn =
εijkmi∂mj/∂rn in the total magnetization m, where we drop
the superscripts (α) for the sake of clarity. In this case, the
coefficients multiplying the wkn terms are the components
Dkn of the Dzyaloshinskii tensor, and the various couplings
between strain and wkn yield the possible contributions of
strain to this micromagnetic term. This situation where m is
a good order parameter is relevant to materials which are low-
temperature ferromagnets or helimagnets and for practical
applications in magnetic materials and skyrmionics [37–41].
More generally, this case provides an informative example
of how strain and strain gradients can give rise to antisym-
metric couplings in high-symmetry materials. Because total
magnetization is a universal magnetic order parameter whose
symmetry behavior depends on only the point group of a
material, these couplings provide a sufficient condition for
the possibility of strain-coupled cDM based on point-group
symmetry alone.

The free energy associated with the reversible mechan-
ical deformation of a solid defined by the vector field u

is characterized by strains and strain gradients. Strain is a
measure of the symmetric component of the first derivative
of u, parametrized by Eab = 1/

√|P (ab)| ∑ij=P (ab) ∂ui/∂rj

for a � b where P (ab) is the set of unique permutations of
{a, b}. We choose to normalize the strain terms using the
Frobenius norm, equivalent to conventional Kelvin notation
[30]. Strain gradient can then be defined in terms of the
Cartesian derivatives of E, with Eab,k = ∂Eab/∂rk . While
alternative formulations of strain gradient exist, they are for-
mally equivalent to Eab,k [27,42] and can be related to each
other using identities given in the Supplemental Material,
Note 1 [33]. The symmetry operators for strain and strain
gradient are similar to those of second- and third-rank tensors:

U
E,p̂

(a′b′ )(ab) =
√

|P (ab)|
|P (a′b′)|

∑
i ′j ′=P (a′b′ )

Ri ′a Rj ′b,

U
∇E,p̂

(a′b′,k′ )(ab,k) =
√

|P (ab)|
|P (a′b′)|

∑
i ′j ′=P (a′b′ )

Ri ′a Rj ′b Rk′k,
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FIG. 1. (a) Helicoid and cycloid spin textures comprising the two variants of cDM interactions in total magnetization m. (b) A map of
cDM interactions in materials across all 32 point groups. Point groups where cDM interactions are intrinsically allowed are denoted by ovals
and color-coded by whether symmetry allows for helicoidal (green) or cycloidal (brown) cDM terms in the free energy, or both (black). Point
groups where cDM interactions are enabled by a strain field are denoted by rectangles and color-coded by whether cDM interactions couple
to homogeneous strain (blue) or only strain gradients (red). The connections between point groups indicate group-subgroup relationships and
illustrate which point groups can be reached by symmetry-breaking operations. (c,d) The couplings between elastic strains and strain gradients
and cDM interactions which yield a modulation in mz (the out-of-plane component of total magnetization) of a m3̄m or 6/mmm material,
for out-of-plane and in-plane gradients in strain respectively. (e) Couplings between homogeneous strain and cDM interactions yielding a
modulation in mz for a 4̄3m material.

as derived in the Supplemental Material, Note 2 [33]. Finally,
while we work with infinitesimal strain, our results rely solely
on symmetry arguments and directly generalize to any other
strain metric.

III. RESULTS AND DISCUSSION

We now proceed to evaluate the form of the cDM in-
teraction in m in the free-energy density across all point
groups. This portion of the energy functional, FcDM, is an ad-
dition to the traditional terms appearing in the total magnetic
free-energy functional F [4]—at minimum, direct exchange
A

∑
i,j (∂mi/∂rj )2 for some exchange constant A, and mag-

netocrystalline anisotropy Fani, which is symmetry dependent
and enumerated for all points groups in the Supplemental Ma-
terial, Note 3 [33]. For the cDM interaction, while we focus
on a limited number of examples in this discussion, complete
tables of symmetry-invariant basis functions governing the
cDM and strain-coupled cDM interactions are available in
the Supplemental Material, Notes 4 and 5 respectively [33].
Note that while the basis sets given in the Supplemental

Material are equivalent, those presented in the main text are
reformatted for clarity.

In most noncentrosymmetric point groups, FcDM can be
nonzero without any additional symmetry breaking from
strain. For example in the 432 and 23 point groups, the
allowed cDM interaction consists of helicoids described by a
single term, F432

cDM = J cDM(w11 + w22 + w33) for some scalar
parameter J cDM, equivalent to the previously proposed ex-
pression for this point group, J cDM(m · ∇ × m) [43]. The
cDM interaction is similarly limited to helicoids in 622, 32,
4̄2m, 422, and 222. In 6mm, 3m, 4mm, and mm2 the allowed
cDM interactions are of purely cycloid type, and finally, in
6, 3, 4̄, 4, m, and 2 both interaction types are possible. In
these materials, although the behavior of the cDM interaction
is generally determined by the structure of the material itself,
strain couplings provide a route to introducing anisotropies in
the Dzyaloshinskii tensor which have been recently discussed
as a route towards controlling emergent phase behavior, such
as skyrmion vs antiskyrmion formation [44]. We refer the
reader to the Supplemental Material, Note 5 [33], for a com-
plete list of these couplings.
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TABLE I. Basis functions coupling cDM interactions to strain
gradients within the m3̄m point group.

V c
1 = √

3/3εijkwijEkk,k

V c
2 = √

6/6εijkwij (Eii,k + Ejj,k )

V c
3 = √

6/6εijkwij (Eki,i + Ekj,j )

V c
4 = √

6/6εijk (wij + wji )Eii,k

V c
5 = √

6/6εijk (wij + wji )Eki,i

V c
6 = √

3/3εijkwiiEij,k

In centrosymmetric point groups such as m3̄m = 432 ⊗ i,
the presence of inversion symmetry forbids the cDM interac-
tion from arising in the absence of a secondary source of sym-
metry breaking. A strain field may lift this restriction, offering
precise control over the character of the cDM interaction
through strain engineering. To understand how strain fields
couple to magnetic interactions, it is informative to examine
the free-energy functionals of the highest symmetry m3̄m and
6/mmm point groups as all other point groups are subgroups
of m3̄m or 6/mmm and thus allow any couplings seen here.
Generating the basis set of symmetry-invariant polynomials
of {m,∇m, e,∇e}, we find that while homogeneous strain
does not break inversion symmetry, strain gradients give rise
to cDM terms in the free-energy functional allowing for FcDM

to be nonzero under all symmetries. The cDM component
of the free-energy density has the form FcDM = ∑

i J
cDM
i Vi

where J cDM
i are scalar parameters. For the m3̄m and 6/mmm

point groups, abbreviated as c and h, the basis functions Vi

are defined in Tables I and II respectively. In both cases,
any gradient of axial strain and gradients of shear strain
in the plane of shear (V c

1...5, V h
1...11) give rise to cycloid

terms. Gradients of shear strain orthogonal to the shear plane

TABLE II. Basis functions coupling cDM interactions to strain
gradients within the 6/mmm point group, where we assign the
sixfold axis to be oriented along r3.

V h
1 = εij3wi3Ej3,3

V h
2 = εij3w3iEj3,3

V h
3 = εij3wi3E33,j

V h
4 = εij3w3iE33,j

V h
5 = √

3/3εij3wi3(
√

2Ejj,j + Eij,i )

V h
6 = √

3/3εij3w3i (
√

2Ejj,j + Eij,i )

V h
7 = √

3/6εij3wi3(Ejj,j + 3Eii,j − √
2Eij,i )

V h
8 = √

3/6εij3w3i (Ejj,j + 3Eii,j − √
2Eij,i )

V h
9 = (w12 − w21)E33,3

V h
10 = √

2/2(w12 − w21)(E22,3 + E11,3)

V h
11 = √

2/2(w12 − w21)(E23,2 + E13,1)

V h
12 = √

2/2(w11 + w22)(E23,1 − E13.2)

V h
13 = w33(E23,1 − E13,2)

V h
14 = √

2/2(w11 − w22)E12,3 + 1/2(w12 + w21)(E22,3 − E11,3)

V h
15 = 1/2(w11 − w22)(E23,1+E13,2)+1/2(w12+w21)(E23,2 − E13,1)

(V c
6 , V h

12...15) lead to helicoid terms. As inversion symmetry is
lifted by any strain gradient, these remaining restrictions on
the cDM interactions arise from the rotation and rotoinversion
axes left unperturbed by the strain field.

While strain gradients are necessary for cDM interactions
in centrosymmetric materials, homogeneous strain can still be
used to activate and control these magnetic couplings in ma-
terials belonging to the 4̄3m, 6̄m2, and 6̄ point groups. These
point groups are not centrosymmetric, but the combination of
rotation and rotoinversion axes nonetheless forbids the cDM
interaction without external symmetry breaking. Thus, since
it is not necessary to break inversion symmetry in these point
groups, the cDM interaction may arise due to strain alone. For
example, F 4̄3m

cDM contains the following two pure-strain terms:

V 4̄3m
1 =

∑
k

εijkwijEij ,

V 4̄3m
2 =

∑
k

εijkwiiEjj ,

in addition to the six V c polynomials which depend on
strain gradients. Here, shear strains break rotational symmetry
and lead to cycloid interactions in the plane of shear, while
anisotropic biaxial strains can disrupt mirror planes and thus
lead to helicoid terms propagating normal to the plane of
strain. In the hexagonal 6̄m2 and 6̄ point groups, anisotropic
biaxial strain in the basal plane E11 − E22 and any shear
which lifts a rotational symmetry lead to cycloids, while E13

or E23 shear which breaks the basal plane mirror symmetry
can lead to helicoids. This situation where homogeneous
strain determines the form of the cDM interaction is of
particular interest as homogeneous strain is likely to be easier
to control experimentally than a strain gradient. Furthermore,
this coupling is likely to readily yield a large response by
analogy to the significant effect of strain on magnetic textures
in chiral helimagnets [45].

The implication of these couplings is that high-symmetry
materials currently considered to be cDM inactive may in-
deed exhibit cDM interactions if strained in a particular way.
Figure 1(b) provides a summary of the cDM interactions
which arise intrinsically in each point group, or whether the
magnetism is piezomagnetically or flexomagnetically con-
trolled for point groups where symmetry breaking is nec-
essary. The group-subgroup relationships indicated by con-
nections between higher and lower-symmetry point groups
illustrate which symmetries need to be lifted to allow a desired
type of chiral magnetic behavior.

As an example of these couplings, consider a quasi-2D film
with a magnetic configuration that exhibits some modulation
in the out-of-plane component of magnetization. Defining
the film to lie in the xy plane, the magnetic configurations
giving modulations in mz are the helicoid interactions wxx

and wyy and cycloid interactions wyx and wxy . The impact
of strain gradients on these interactions can be summarized
by two cases: the strain gradient lies in the out-of-plane z

direction, or the in-plane y direction. The first case may arise
in an epitaxial thin film due to a mismatch in lattice constant,
modulus, or thermal-expansion coefficient with the substrate,
where the strain decays exponentially over a characteristic
length δ (Eij,z ∝ Eij ∝ e−z/δ) [46–48]. The second case is
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representative of a biphasic material with a composition fluc-
tuation along the y direction and an elastic strain linear with
composition order parameter ν [Eij,y ∝ ν cos (y/δ)] [49]. For
a centrosymmetric material belonging to m3̄m or 6/mmm,
helicoid interactions require a gradient in shear strain orthog-
onal to the plane of shear. Thus, wxx and wyy couple to
Exy,z in the first case and Exz,y in the second case. Cycloid
interactions wxy and wyx couple to in-plane gradients of axial
strains and shear gradients lying in the plane of shear: Exx,z,
Eyy,z, and Ezz,z in the first case and Eyz,y in the second. For
a noncentrosymmetric material belonging to the 4̄3m point
group, helicoid interactions may additionally form due to a
biaxial strain, essentially scaling with Poisson’s ratio, while
cycloid interactions may arise due to in-plane shear. These
couplings are summarized in Figs. 1(c) and 1(d) for m3̄m and
6/mmm, and Fig. 1(e) for 4̄3m.

While the above examples demonstrate that strain and
strain gradients may in principle give rise to cDM interactions,
an outstanding question is the strength of this coupling. In
the case of a coupling to homogeneous strain, there is direct
experimental evidence that the magnitude of the induced
interaction can be significant. It has been reported that small
applied strains (≈0.3%) can distort skyrmion lattices by up
to 20% in FeGe, a well-known chiral helimagnet [45]. The
period of these magnetic modulations is roughly proportional
to A/D, the ratio of micromagnetic exchange strength to
cDM, implying that the effect of strain can be significant even
on the scale of intrinsic cDM. Much fewer data are available
regarding the strength of potential couplings between cDM
and strain gradients. Beck and Fähnle report that in epitaxial
Fe on W, the gradient in misfit strain yields a cDM interaction
approximately one to two orders of magnitude weaker than the
cDM induced by the Fe/W interface [50]. However, the Fe/W
interface yields a very strong cDM interaction (A/Dinterface ≈
8 nm) [51], meaning that A/Dstrain-gradient ≈ 400 nm, which
is within an order of magnitude of the strength of intrinsic
cDM in bulk chiral helimagnets such as FeGe [52]. Thus, we
anticipate that in certain materials, strain-gradient induced

cDM may yield significant changes in magnetic structure,
especially if no other antisymmetric magnetic interactions are
present.

IV. CONCLUSION

In this work, we have used phenomenological arguments to
demonstrate that the chiral Dzyaloshinskii-Moriya interaction
in the total magnetization may arise in materials belonging to
any point group as a result of even a relatively simple strain
field. We have (1) argued that gradients in strain lift inversion
symmetry allowing antisymmetric couplings to form in oth-
erwise centrosymmetric materials, and (2) we have identified
three noncentrosymmetric point groups where homogeneous
strain alone can control chiral magnetic interactions. Our
results also give a complete representation of the strain de-
pendence of the Dzyaloshinskii tensor for all point groups,
which illustrates how strain may be used to induce anisotropic
cDM interactions. To illustrate how these couplings may
arise in real materials, we presented two practically rele-
vant examples of strained materials where, despite the high
symmetry of the underlying crystal, the strain field can give
rise to relevant cDM interactions. Our discussion highlights
how chiral magnetism may be controlled through mechanical
forces, especially in situations when large strains and strain
gradients can be expected, such as in piezoelectrics, polycrys-
tals, polyphasic materials, nanomaterials, and electrochemical
systems [53–59]. We hope this will inspire targeted characteri-
zation work via phase-field simulations and mechanomagnetic
experiments.
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