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Modeling molecular magnets with large exchange and on-site anisotropies

Sumit Haldar,1,* Rajamani Raghunathan,2,† Jean-Pascal Sutter,3,‡ and S. Ramasesha1,§

1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
2UGC-DAE Consortium for Scientific Research, Indore 452017, India

3LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France

(Received 18 June 2018; revised manuscript received 6 November 2018; published 7 December 2018)

Spins in molecular magnets can experience both anisotropic exchange interactions and on-site magnetic
anisotropy. In this paper, we study the effect of exchange anisotropy on the molecular magnetic anisotropy
both with and without on-site anisotropy. When both the anisotropies are small, we find that the axial anisotropy
parameter DM in the effective spin Hamiltonian is the sum of the individual contributions due to exchange and
on-site anisotropies. We find that even for axial anisotropy of about 15%, the low-energy spectrum does not
correspond to a single-parent spin manifold but has intruder states arising from other parent spins. In this case,
the low-energy spectrum cannot be described by multiplet states arising from a single approximate total spin
state. We study the magnetic susceptibility, specific heat as a function of temperature, and magnetization as a
function of applied field to characterize the system in this limit. We find that there is synergy between the two
anisotropies, particularly for large systems with higher site spins.
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I. INTRODUCTION

Molecular spin clusters such as single-molecule magnets
(SMMs) and single-chain magnets (SCMs) have been stud-
ied extensively over the last few decades [1–10]. The main
bottleneck for application of these systems in technologies
appears to be the fast relaxation of the magnetization from the
fully magnetized to the nonmagnetized state for the presently
known SMMs and SCMs [11,12]. This is due to the low
blocking temperature (measured as the temperature at which
the relaxation time for magnetization, τR , is 100 s), which de-
pends on the energy barrier between two fully and oppositely
magnetized states. Hence, research in this field is focused on
enhancing the blocking temperature [13,14].

The energy barrier �, between two fully and oppositely
magnetized states of an anisotropic spin cluster of spin S

is given by � = |DM |S2 for an integer spin cluster and
|DM |(S2 − 1/4) for a half-integer spin cluster. Therefore,
there are two routes to enhancing �: (i) by increasing DM and
(ii) by increasing S. Increasing DM can be achieved by using
magnetic building blocks in unusual coordination numbers
and geometry. Indeed, this has been demonstrated for hepta
coordinated complexes [15–19]. Increasing S can be achieved
by using rare earth ions as the building blocks. However, it has
been shown by Waldmann [20] that the magnetic anisotropy
of a ferromagnetic assembly of spins is smaller than the
anisotropy of individual spins, as each spin center with spin
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si only contributes a fraction,

si (2si − 1)

S(2S − 1)
, (1)

of the site anisotropy to the anisotropy of the SMM or SCM
with total spin S. This result assumes that all the individual
magnetic ions have nonzero axial anisotropy di and zero
planar anisotropy ei , and that all the spin centers have the
same magnetic axes. Notwithstanding this nuance, the result
is illustrative of the fact that the anisotropy of the clusters is
smaller than that of individual ions.

With 3d transition-metal complexes, the highest blocking
temperature reported is 4.5 K, although the energy barrier �

is 62 cm−1 [21]. This could be due to the large off-diagonal
anisotropy terms that lead to quantum tunneling of magneti-
zation. The anisotropy can be enhanced by choosing ions of
4d, 5d, or 4f metals wherein the relativistic effects are large,
leading to large spin-orbit interactions [13,22,23,25]. For ex-
ample, in the Dy4 systems, the energy barrier is 692 cm−1

[26]. However, large quantum tunneling of magnetization
leads to small hysteresis loops. In our previous studies [27],
we have shown that large magnetic anisotropy of building
blocks leads to significant breaking of the spin symmetry.
In this event, associating a parent spin state1 to define the
DM and EM parameters of a cluster is not possible due
to intrusion of states from different parent spins within the
given spin manifold. This has also been shown experimentally
by magnetic relaxation studies of Mn6 nanomagnets [29].
Lippert et al. [30] have also shown that increasing the gap
between the ground spin state and the excited spin states will
slow down the magnetic relaxation, both thermal and quantum

1Parent spin is the spin of the state from which the multiplets arise
due to anisotropic terms in the Hamiltonian.
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tunneling, leading to larger effective barrier. In these cases, the
Waldmann conclusion that the contribution of the individual
anisotropies decreases with increasing total spin of the cluster,
resulting in smaller barriers, is no longer valid. The properties
of the system will have to be computed from the eigenstates
of the full Hamiltonian.

The origin of single ion anisotropy as well as anisotropic
exchange interactions lie in spin-orbit interactions. Indeed, it
is difficult to assume isotropic or simple Heisenberg exchange
interactions between spin sites that are highly anisotropic.
High nuclearity complexes with large anisotropic interactions
are known in a few cases, [Mn6

IIIOsIII]3+ cluster has J x =
−9 cm−1, J y = +17 cm−1 and J z = −16.5 cm−1 [24,31,32]
and [MnIIMoIII] complex has J z = −34 cm−1 and J x =
J y = −11 cm−1 [33,34]. In this paper, we employ a gener-
alized ferromagnetic XYZ model for nearest-neighbor spin-
spin interactions and on-site anisotropy. Using the full Fock
space of the Hamiltonian, we follow the properties such as
magnetization, susceptibility, and specific heat of spin chains
with ferromagnetic interaction and different site spins. In the
next section, we discuss briefly spin Hamiltonians we have
studied and present the numerical approach for obtaining the
properties of the model. In Sec. III, we present the result
of a purely anisotropic exchange model. This will be fol-
lowed by the results on a model with both exchange and
site anisotropies in Sec. IV. We will end the paper with a
discussion of all the results.

II. METHODOLOGY

The basic starting Hamiltonian for studying most magnetic
materials is the isotropic Heisenberg exchange model given
by

ĤHeis =
∑

〈i,j〉
Jij �̂is · �̂js, (2)

where the summation is over nearest neighbors. Our study is
confined to ferromagnetic open chains with nearest-neighbor
exchange interactions. Hence Jij = Ji,i+1 = J < 0, with all
site spins having the same spin of either 1, 3/2, or 2. This
model assumes that spin-orbit interactions are weak and hence
the exchange constant J associated with the three components
of the spin are equal (J x

ij = J
y

ij = J z
ij ). The isotropic model

conserves both total Ms and total S, and hence we can choose
a spin-adapted basis such as the valence bond (VB) basis to
set up the Hamiltonian matrix. The Rumer-Pauling VB basis
is nonorthogonal and hence the Hamiltonian matrix is non-
symmetric. While computing eigenstates of a nonsymmetric
matrix is reasonably straightforward, computing properties of
the eigenstates in the VB basis is nontrivial. However, the
VB eigenstates can be transformed to eigenstates in constant
Ms basis, and the latter basis being orthonormal is easily
amenable to computing properties of the eigenstates [35].

When the spin-orbit interactions are weak, we can include
the anisotropy arising from it by adding the site anisotropy
term,

Ĥaniso =
∑

i

�̂is · ¯̄Di · �̂is, (3)

TABLE I. Energy gaps (in units of |J |) from the ground state of
the low-lying states lying below the lowest state with Ms = 0. Ms

is conserved and is a good quantum number. The total spin Stot is
calculated from the expectation value 〈Ŝ2〉 of the state. Intruder states
are shown in red.

N = 5, XXZ model

ε s = 1 s = 3/2 s = 2

Ms Stot Energy Ms Stot Energy Ms Stot Energy

0.10 ±5 5.00 0 ±7.5 7.50 0 ±10 10.00 0
±4 4.99 0.158 ±6.5 7.49 0.237 ±9 9.99 0.316
±3 4.99 0.282 ±5.5 7.49 0.442 ±8 9.99 0.601
±2 4.99 0.370 ±4.5 7.49 0.612 ±7 9.99 0.852
±1 4.99 0.423 ±6.5 6.50 0.706 ±9 9.00 0.941
0 4.99 0.441 ±3.5 7.49 0.749 ±6 9.99 1.071

±2.5 7.49 0.852 ±8 8.99 1.217
±5.5 6.49 0.902 ±5 9.99 1.256
±1.5 7.49 0.921 ±4 9.99 1.407
±0.5 7.49 0.955 ±7 8.99 1.462

±3 9.99 1.526
±2 9.99 1.610
±1 9.99 1.661
±6 8.99 1.673
0 9.99 1.678

0.15 ±5 5.00 0 ±7.5 7.50 0 ±10 10.00 0
±4 4.99 0.236 ±6.5 7.49 0.354 ±9 9.99 0.472
±3 4.99 0.420 ±5.5 7.49 0.658 ±8 9.99 0.895
±4 4.00 0.514 ±6.5 6.50 0.771 ±9 8.99 1.028
±2 4.98 0.551 ±4.5 7.489 0.914 ±7 9.991 1.272
±1 4.98 0.630 ±5.5 6.49 1.063 ±8 8.99 1.441
0 4.97 0.656 ±3.5 7.48 1.118 ±6 9.98 1.598

±2.5 7.48 1.273 ±7 8.99 1.805
±4.5 6.49 1.305 ±5 9.98 1.876
±1.5 7.48 1.375 ±8 8.00 2.050
±0.5 7.48 1.426 ±4 9.98 2.104

±6 8.98 2.120
±3 9.98 2.282
±5 8.97 2.386
±7 8.00 2.399
±2 9.98 2.408
±1 9.98 2.484
0 9.98 2.510

where Di is the anisotropy matrix. If the anisotropy matrix Di

is identical for all spins, we can rotate the spin axis to coincide
with the direction of the eigenvectors of D. In this case, the
Hamiltonian can be written as

Ĥaniso =
∑

i

[
dzŝ

2
i,z + dxŝ

2
i,x + dyŝ

2
i,y

]
, (4)

(dx , dy , and dz are local ion anisotropies) and treating it as
a perturbation. Usually, it is sufficient to deal with just the
z component of the site diagonal anisotropy and set dx =
dy = 0. If the local anisotropy axis is not aligned with the
global spin axis, then it will generate other components of
the anisotropy parameter when all of them are referred to
the global axis. In our study, we have confined ourselves
only to uniaxial site diagonal anisotropy, i.e., d = dz < 0 and
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TABLE II. Molecular anisotropy parameter DM (S ) for different multiplets arising from total spins 10, 9, and 8 in a s = 2 spin chain of
five sites for different ε and d/J values. DM (S ) values are computed by fitting the energy gaps to DM (S )S2

z using a least-squares algorithm.

N = 5, s = 2

Approximate d/J = 0, ε = 0.1 d/J = 0.1, ε = 0.1 d/J = 0, ε = 0.15

total spin E0 DM (S ) E0 DM (S ) E0 DM (S )

10 0.0 −0.0168 0.0 −0.0321 0.0 −0.0251
9 0.58 −0.0162 0.38 −0.0289 0.49 −0.0244
8 1.20 −0.0155 0.85 −0.0255 1.02 −0.0230

dx = dy = 0. For weak on-site anisotropy ( d
J

� 1), we can
obtain the splitting of the multiplets of a given total spin
state perturbatively by determining the molecular anisotropy
parameters DM and EM given by the eigenstates of the
Hamiltonian in a given spin state S [36],

Ĥmol = DM

(
Ŝ2

z − 1
3S(S + 1)

) + EM

(
Ŝ2

x − Ŝ2
y

)
. (5)

Spin-orbit interaction can also lead to anisotropy in the ex-
change Hamiltonian, leading to a general XYZ model whose
Hamiltonian is given by

ĤXYZ =
∑

i

∑

j

�̂is · ¯̄Jij · �̂js, (6)

where ¯̄Jij is a 3 × 3 matrix [37]. If the ¯̄Jij ’s are the same
for all nearest-neighbor interactions, then by transforming the
J matrix to the eigenvector frame of reference results in the
XYZ Hamiltonian, which can be written as

ĤXYZ =
∑

〈ij〉

[
J xŝx

i ŝx
j + J yŝ

y

i ŝ
y

j + J zŝz
i ŝ

z
j

]
. (7)

In this model, there does not exist any spin symmetry and
we need to solve the Hamiltonian for its eigenstates in the
full Fock basis with no restrictions on total S or Ms . In cases
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FIG. 1. Dependence of molecular anisotropy parameter |DM | on
ε for spin chains with site spins s = 1, 3/2, and 2 and chain length
N = 5. DM values are computed by fitting the energy gaps to the
Hamiltonian DMS2

z for on-site anisotropy d/J = 0 and 0.09. The
error in the fit is largest for s = 2 and d/J = 0.09 at 4%, which
is negligible. The dotted line is from perturbation theory, treating
on-site anisotropy as a perturbation, over the eigenstates of the XXZ
model.

where a system has the same exchange constant along x and
y directions but different from the exchange constant in the
z direction, we obtain the XXZ model with the Hamiltonian,
which is given by

ĤXXZ =
∑

〈ij〉
J x

[
ŝx
i ŝx

j + ŝ
y

i ŝ
y

j

] + J zŝz
i ŝ

z
j . (8)
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FIG. 2. (a) Plot of χ
xx

T as a function of temperature computed
with applied field along x direction. (b) Plot of χ

zz
T as a function

of temperature computed with applied field along z direction for
different values of exchange anisotropy ε, in the absence of on-site
anisotropy. The susceptibilities are computed for field magnitude
H = |J |/gμB = 0.005. Color coding and line type are the same for
all panels. [Note the scales on the y axis are different for (a) and (b)].
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FIG. 3. Dependence of magnetization (M) on applied magnetic
field (gμBH/|J |) at temperature kBT /|J | = 1.0. (a) Mx versus
gμBHx/|J |, (b) Mz versus gμBHz/|J | for different values of ex-
change anisotropy ε, in the absence of on-site anisotropy. Color
coding and line type are the same for all panels.

For convenience, we write the general XYZ Hamiltonian
in Eq. (7) as

Ĥ =
∑

〈ij〉
J
[
ŝz
i ŝ

z
j + (γ + δ)ŝx

i ŝx
j + (γ − δ)ŝy

i ŝ
y

j

]
, (9)

where J z = J , γ = J x+J y

2J
and δ = J x−J y

2J
. The deviation of

J x+J y

2 from J z is then represented by the parameter ε =
1 − γ and the difference between the exchange along x and y

directions in normalized units is δ. This model can be solved
in the Ms basis. Besides exchange anisotropy, a system can
also have site anisotropy, in which case, the Ĥaniso should be
considered together with the respective Hamiltonian, either
perturbatively (for weak on-site anisotropy) or in the zeroth-
order Hamiltonian itself.

The effect of large anisotropic exchange or large site
anisotropy is to mix states with different total spin S. Thus,
the conventional approach to define molecular anisotropy
constants through the effective Hamiltonian [Eq. (5)] fails as
the low-lying multiplet states cannot be identified as arising
from a unique total spin state, as the total spin of a state is not
conserved. In such situations, the approach we have taken is

0 1 2 30

2

4

C
v

ε=0.10
ε=0.15
ε=0.20
ε=0.25

0 1 2 3
kBT/|J|

0 1 2 3

s=1 s=3/2 s=2

FIG. 4. Dependence of specific heat (Cv) on temperature
(kBT /|J |) of spin chains with s = 1, 3/2, and s = 2 and systems
size N = 5 for different values of axial exchange anisotropy ε, in
the absence of on-site anisotropy. Color coding and line type are the
same for all panels.

to obtain the thermodynamic properties such as susceptibility
χ (T ), magnetization M (T ), and specific heat Cv (T ) of the
system as a function of Hamiltonian parameters. These are
computed from the canonical partition function obtained from
the full spectrum of the Hamiltonian. The full Fock space
of the Hamiltonian is given by (2si + 1)N , where N is the
number of sites in the spin chain. The largest system we
have studied corresponds to si = 2 and N = 5, which spans
a Fock space of dimensionality of 3125. We need to calculate
〈〈Ms〉〉 for the magnetic properties, which is a thermodynamic
average of the expectation values in the eigenstates. To obtain
the spin expectation value 〈Ŝ2〉 in an eigenstate, we have
computed the spin-spin correlation functions 〈ŝz

i ŝ
z
j 〉, 〈ŝx

i ŝx
j 〉

and 〈ŝy

i ŝ
y

j 〉.

III. ANISOTROPIC EXCHANGE MODELS

Here, we discuss the magnetic anisotropy arising only from
the exchange anisotropy. In the small exchange anisotropy
limit, we first consider the XXZ model and XYZ model with
small δ. We will end this section with a discussion of the
XYZ models with large anisotropy parameters ε and δ. All
the exchange interactions are taken to be ferromagnetic.

A. Small anisotropy XXZ models

In this model, we set δ to zero in Eq. (9) and study spin
chains with site spins 1, 3/2, and 2 in chains of four and five
sites with open boundary conditions and ferromagnetic ex-
change interactions. We have not considered spin-1/2 systems
since we wish to study the synergistic effect of anisotropic
exchange and on-site anisotropy. The latter exists only for
site spin greater than half. The ground state in each case
corresponds to ±Ms = Ns, where N is the number of sites
and s is the site spin. The total spin of the states is calculated
from the eigenstates as the expectation value of Ŝ2.

In Table I, we present the energy gaps from the ground
state of the low-lying states up to first Ms = 0 state of short
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TABLE III. Energy gaps from the ground state (in units of |J |)
of the low-lying states lying within the manifold of spin S � ns for
a five-site spin chain with s = 1, 3/2, and 2. Both Ms and S are
not conserved and not good quantum numbers. The total spin Stot

is calculated from the expectation value 〈Ŝ2〉 of the state. Intruder
states are shown in red. Multiplets beyond the lowest two are shown
in green. 〈Ms〉 are given for states for which it could be computed.
〈Ms〉 values are not quoted for the states which show large mixing of
different Ms states.

ε = 0.095, δ = 0.005

s = 1 s = 3/2 s = 2

Ms Stot Energy Ms Stot Energy Ms Stot Energy

±5.00 5.00 0 ±7.50 7.50 0 ±10.00 10.00 0
±4.00 5.00 0.150 ±6.50 7.50 0.230 ±9.00 10.00 0.301
±3.00 5.00 0.270 ±5.50 7.50 0.420 ±8.00 10.00 0.570
±1.97 5.00 0.350 ±4.50 7.50 0.580 ±7.00 10.00 0.810
±1.03 5.00 0.390 ±6.50 6.50 0.700 ±9.00 9.00 0.932
— 5.00 0.423 ±3.50 7.50 0.710 ±6.00 10.00 1.015

±2.43 7.50 0.810 ±5.00 9.99 1.190
±1.51 7.50 0.870 ±8.00 9.00 1.195
±5.50 6.50 0.900 ±3.95 10.00 1.332

— 7.50 0.930 ±7.00 9.00 1.430
— 10.00 1.440
— 10.00 1.500
— 10.00 1.540
— 10.00 1.552

ε = 0.15, δ = 0.05
±5.00 5.00 0 ±7.50 7.50 0 ±9.96 10.00 0
±3.80 5.00 0.214 ±6.40 7.50 0.330 ±8.87 10.00 0.441
— 5.00 0.352 ±5.13 7.50 0.610 ±7.74 10.00 0.831
— 5.00 0.403 ±6.50 6.50 0.800 ±8.95 9.00 1.025
— 5.00 0.450 ±3.40 7.50 0.820 — 9.98 1.170
±3.93 4.00 0.514 ±1.30 7.50 0.981 ±7.86 9.00 1.410
— 5.00 0.600 ±5.32 6.50 1.040 — 9.98 1.423

±0.16 7.50 1.200 — 9.98 1.461
±3.94 6.50 1.253 — 9.98 1.60
±1.93 6.50 1.410 — 9.98 1.732

— 7.50 1.480 — 8.98 1.743
±5.44 5.50 1.533 — 9.98 1.770
±0.40 6.50 1.565 — 8.97 2.013
±4.30 5.50 1.740 — 9.98 2.030

— 6.50 1.790 — 8.98 2.030
— 7.50 1.820 — 9.98 2.030

spin chains of length up to five spins for different ε values. The
table for spin chains of four spins is given in the Supplemental
Material [28]. We notice from the table that for ε = 0.1, the
lowest energy states of the s = 1 chains satisfy E(|Ms | =
Ns) < E(|Ms | = Ns − 1)... < E(|Ms | = 0) and the total
spin of these states is also very close to Ns. In this case, we
can least-squares fit the energy gaps to the Hamiltonian DMS2

z

and the error in the fit is negligible. The diagonal anisotropy of
these states is shown in Fig. 1. The molecular |DM | can also
be computed by treating d/J as a perturbation and we see
that the perturbation theory underestimates |DM | in all cases
and breaks down significantly for large ε values and higher
site spins. When d/J = 0, our perturbation scheme cannot be
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FIG. 5. (a) Plot of χ
xx

T as a function of temperature com-
puted with applied field along x direction (Hx = |J |/gμB = 0.005),
(b) plot of χ

yy
T as a function of temperature computed with applied

field along y direction (Hy = |J |/gμB = 0.005), and (c) plot of χ
zz
T

as a function of temperature computed with applied field along z

direction (Hz = |J |/gμB = 0.005) for different values of ε and δ,
in the absence of on-site anisotropy. Color coding and line type is
the same for all panels. [Note scale for (c) is different from those of
(a) and (b)].

applied, as it is developed only for systems with anisotropic
magnetic centers [27,36]. In the XXZ model, we do not
have off-diagonal anisotropy, i.e., EM = 0 in the anisotropic
Hamiltonian given by Eq. (5). We note in Table I that for spin
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FIG. 6. Dependence of magnetization (M) on applied mag-
netic field (gμBH/|J |) at temperature kBT /|J | = 1.0. (a) Mx ver-
sus gμBHx/|J |, (b) My versus gμBHy/|J |, and (c) Mz versus
gμBHz/|J | for different values of ε and δ, in the absence of on-site
anisotropy. Color coding and line type are the same for all panels.

chains with s = 3/2 and s = 2, there are intruder states within
the manifold of S � 7.5 and �10, respectively. We also find
that as ε is increased to 0.15, even the s = 1 spin chain has
intruders. Furthermore, for site spin 2, the intruders within
the S = 10 manifold are from progressively lower total spin
states, namely S = 9, 8, and 7. In this case, however, we are
able to fit the spectra of the manifold with approximate spin
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FIG. 7. Dependence of specific heat (Cv) on temperature
(kBT /|J |) of spin chains with s = 1, 3/2, and s = 2 and systems
size N = 5 for different values of ε and δ, in the absence of on-site
anisotropy. Color coding for second and third panels are same as for
the first panel.

state (obtained from 〈Ŝ2〉 of the state) to the Hamiltonian:

ĤS = E0(S) + DM (S)Ŝ2
z . (10)

We find that the multiplets arising from low-lying total spin
states can be described by the above spin Hamiltonian. Values
of E0 and DM are listed for different total spins for the chain
of five s = 2 spins in Table II. The DM values for the low-
lying multiplets being close in value may be because the
dominant basis states which contribute to the eigenstates of
the system are common.

For the N = 4 chains, the intruder states occur in the s = 1
chain for ε = 0.25 and for s = 3/2 and s = 2 chain for ε =
0.20 (see Supplemental Material [28]). Thus, intruders arise
at smaller ε values for longer chains and higher site spin. The
|DM | increases linearly with increase in anisotropy (Fig. 1).

0 0.3 0.60 0.3 0.6
|d/J|

0 0.3 0.6-3

-2

-1

0

1

2

ΔE
/|J

|

ε=0.4ε=0.15ε=0

± 5
± 4
± 3
± 2
± 1
0

Ms

FIG. 8. The effect of on-site anisotropy |d/J | on the splitting of
the multiplet states for different strengths of the anisotropy in the
XXZ model for the five-site s = 1 chain. Solid lines are for the states
arising from S = 5 state and broken lines are for the states arising
from S = 4 state. Same color code and line type are used for all
panels.
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TABLE IV. Energy gaps (in units of |J |) from the ground state
of the low-lying states lying below the lowest state with Ms = 0 for
d/J = 0.1. Ms is conserved and is a good quantum number. The total
spin Stot is calculated from the expectation value of 〈Ŝ2〉 of the state.
Intruder states are shown in red. Multiplets beyond the lowest two
are shown in green.

N = 5, d/J = 0.1, XXZ model

ε s = 1 s = 3/2 s = 2

Ms Stot Energy Ms Stot Energy Ms Stot Energy

0.1 ±5 5.00 0 ±7.5 7.50 0 ±10 10.00 0
±4 4.99 0.258 ±6.5 7.49 0.437 ±9 9.99 0.616
±3 4.98 0.456 ±5.5 7.49 0.809 ±8 9.99 1.166
±4 4.00 0.570 ±6.5 6.50 0.906 ±9 9.00 1.241
±2 4.97 0.594 ±4.5 7.48 1.118 ±7 9.98 1.650
±1 4.95 0.676 ±5.5 6.49 1.234 ±8 8.99 1.745
0 4.94 0.703 ±3.5 7.46 1.363 ±6 9.97 2.067

±4.5 6.47 1.503 ±7 8.98 2.185
±2.5 7.44 1.545 ±5 9.96 2.419
±1.5 7.45 1.666 ±8 8.00 2.427
±3.5 6.45 1.713 ±6 8.96 2.564
±0.5 7.42 1.726 ±4 9.94 2.706

±7 8.00 2.824
±5 8.94 2.879
±3 9.93 2.928
±2 9.91 3.087
±4 8.91 3.135
±6 8.00 3.162
±1 9.90 3.182
0 9.90 3.213

We have obtained the thermodynamic properties of these
spin chains as a function of temperature and the magnetization
as a function of magnetic field at a fixed temperature. We
show in Fig. 2 χ

xx
T (= χ

yy
T ) and χ

zz
T dependence on

temperature for spin chains of five spins for different values
of the site spins. To obtain the thermodynamic average
of the magnetization at a given temperature, we have first
calculated the expectation value of the αth component of the
magnetization in the eigenstate |ψk〉 as

〈
Mα

k

〉 = gμB〈ψk|Ŝα|ψk〉, (11)

where Ŝα (α = x, y, z) are spin operators, g is the
gyromagnetic ratio taken as 2, β = 1

KBT
and μB is the Bohr

magneton. The thermodynamic average of the expectation
values 〈〈Mα (T )〉〉 are given by

〈〈Mα (T )〉〉 = 1

Z

∑

k

e−β(E0
k −gμBHi 〈Mα

k 〉)
〈
Mα

k

〉
, (12)

where Z is the canonical partition function. The susceptibility
χ

αα
is then given by χ

αα
= Mα/Hα with Hα taken to be

|J |/gμB = 0.005. Expectedly, the susceptibility increases
with site spin in all cases. The χ

zz
T component is much

larger than the χ
xx
T component and both show a maxima.

The maxima is at a higher temperature for χ
xx
T compared

to χ
zz
T and the χ

xx
T maxima is also broader. We also note

that χ
zz
T is larger than χ

xx
T by a factor of between 2 and 3,

even though maximum anisotropy ε is only 0.25. Besides, the
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-50
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Δχ
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T
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3  K
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o

l-1
)

ε=0.10
ε=0.15
ε=0.20
ε=0.25

0 0.5 1
d/J

0 0.5 1

s=1 s=3/2 s=2

(a)

0 0.5 10

100

200

Δχ
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T
 (
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3  K
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o

l-1
)

0 0.5 1
d/J

0 0.5 1

s=1 s=3/2 s=2

(b)

FIG. 9. The effect of on-site anisotropy d/J on (a)�χ
xx

T =
[χ

xx
T (ε, d �= 0) − χ

xx
T (ε, d = 0)] at gμBHx/|J | = 0.005,

kBT /|J | = 1.0 and (b) �χ
zz
T = [χ

zz
T (ε, d �= 0) − χ

zz
T (ε, d = 0)]

at gμBHz/|J | = 0.005, kBT /|J | = 1.0 for ε = 0.10, 0.15, 0.20 and
0.25. Same color code and line type are used for all panels. Also
note the sign of �χ

xx
T is –ve while �χ

zz
T is +ve.

temperature of the maxima also increases with the increase
in site spin. The ZZ component is larger for large anisotropy
while the XX component is smaller at large anisotropy. This
is because as ε increases it becomes easier to magnetize along
the z axis, while it becomes harder to magnetize in the x-y
plane. This trend is also seen in the magnetization plots as
a function of the magnetic field shown in Fig. 3. We note
that the magnetization 〈Mz〉 increases with ε while 〈Mx〉
decreases with ε for the same applied field.

The dependence of specific heat, Cv , on temperature for
different ε values is shown in Fig. 4. We find that for small
ε, the specific heat shows two peaks, the first peak is narrow
and the second peak is broad. This is seen for all site spins.
To identify the region of the energy spectrum responsible
for the two-peak structure, we calculated specific heat for
different energy cutoffs. We found that only for an energy
cutoff, Ecut > 3|J |, the two-peak structure started appearing.
Thus, although the second peak occurs around 0.6|J |, the
states contributing to this are at higher energies. Even though
the origin of the two-peak structure of the specific heat cannot
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be pinpointed, we can still use the magnetic specific heat
dependence on temperature as a tool to estimate the anisotropy
of the chain.

Introducing small planar anisotropy, δ, does not signif-
icantly change the low-energy spectrum in Table III and,
consequently, there is no discernible change in the thermo-
dynamic properties. The main difference is that Ms is also not
conserved even for small values of δ.

B. Large anisotropy XYZ models

To explore the properties of the spin chains in the large
anisotropy limit, we have studied s = 1, 3/2, and 2 models
with ε up to 0.75 and δ up to 0.15. In this limit, there are no
conserved spin quantities, hence we have studied only thermo-
dynamic properties by computing thermodynamic averages
from expectation values in the eigenstates of the Hamiltonian.

All three diagonal components of the susceptibility as a
function of temperature are shown in Fig. 5. We find that for
large anisotropy, χ

zz
T increases with ε and δ, while χ

xx
T and

χ
yy
T decreases with ε and δ. χ

zz
T shows a smooth maxima

for all cases we have studied but χ
xx
T and χ

yy
T do not

show a discernible maxima. The χ
zz
T maxima occur at lower

temperature than χ
xx
T and χ

yy
T maxima (when they exist).

More significantly, χ
zz
T is higher for higher anisotropy while

χ
xx
T and χ

yy
T are higher for lower anisotropy.

In Fig. 6, we show the behavior of magnetization as a
function of the field at kBT /|J | = 1. We find very different
behavior for Mz compared to Mx or My . The Mz compo-
nent shows saturation at low magnetic fields. The saturation
field decreases with increasing site spin. On the other hand,
the Mx and My components show saturation only for small
anisotropy. For large anisotropy, they do not show saturation
and show a nearly linear increase in magnetization component
over the full range of the applied magnetic field. Furthermore,
the magnitude of the magnetization decreases with increasing
anisotropy at a given field strength. The specific heat behavior
is similar to the weak anisotropy case; we find a sharp peak at
low temperature followed by a broad peak at higher tempera-
tures. At higher anisotropies, we find a single peak in the Cv vs
T plot 7 and the temperature of the peak maxima is higher for
higher anisotropy. For a fixed anisotropy, the peak maximum
shifts to higher temperature as the site spin increases from
s = 1 to s = 2.

IV. SYSTEMS WITH XXZ EXCHANGE
AND ON-SITE ANISOTROPIES

In an earlier paper, we discussed the role of on-site single
ion anisotropy on the anisotropy of a spin chain. In this
section we will discuss the effect of both exchange and on-site
anisotropy on the magnetic properties of a spin chain [27].

We have introduced on-site anisotropy (d/J ) in Eq. (9) and
studied the spin chains with site spins s = 1, 3/2, and 2 of
length of five spins. We have also set δ = 0 and study only
XXZ models in the presence of site anisotropy. We have taken
the same on-site anisotropy aligned along the z axis for all the
spins. When the on-site anisotropy is weak, we find that the
resultant molecular magnetic anisotropy is nearly a sum of
the molecular anisotropy due to on-site anisotropy alone and

0 0.5 1-12

-6

0

ΔΜ
x (

μ Β
)

ε=0.10
ε=0.15
ε=0.20
ε=0.25

0 0.5 1
d/J

0 0.5 1

s=1 s=3/2 s=2

(a)

0 0.5 10

0.5

1

1.5

ΔΜ
z (

μ Β
)

0 0.5 1
d/J

0 0.5 1

s=1 s=3/2 s=2

(b)

FIG. 10. The effect of on-site anisotropy d/J on (a)
�Mx = Mx (ε, d �= 0) − Mx (ε, d = 0) at gμBHx/|J | = 0.25,
kBT /|J | = 1.0, and (b) �Mz = Mz(ε, d �= 0) − Mz(ε, d = 0) at
gμBHz/|J | = 0.25, kBT /|J | = 1.0 for ε = 0.10, 0.15, 0.20, and
0.25. Same color and line type are used for all panels.

the molecular anisotropy due to exchange anisotropy alone.
Thus, the two anisotropies are additive, as seen in Fig. 1. This
is true up to ε = 0.1 for all the site spins.

In Table IV, we show the low-energy spectrum of the
N = 5 spin chain for s = 1, 3/2, and 2, where both exchange
and on-site anisotropies are large. In Fig. 8, we show the
dependence of the low-lying multiplet energies as a function
of the site anisotropy |d/J |. We note that as the exchange
anisotropy is increased, the multiplets corresponding to dif-
ferent total spins start mixing, and lead to intruder states in
the highest spin manifold. In cases where we cannot define
the molecular magnetic anisotropy in terms of the parameter
DM of the effective spin Hamiltonian, we follow the system
by computing the magnetic susceptibilities, magnetization,
and specific heat. We have shown in Fig. 9, the difference in
the �χ

xx
T = χ

xx
T (ε, d �= 0) − χ

xx
T (ε, d = 0) and �χ

zz
T =

χ
zz
T (ε, d �= 0) − χ

zz
T (ε, d = 0) of magnetic susceptibility

as a function of d/J at kBT /|J | = 1 for different ε values.
We find that nonzero d enhances �χ

zz
T but decreases �χ

xx
T

values. In case of site spin s = 1, the dependence of �χ
xx
T

and �χ
zz
T on site anisotropy is weak and linear. In case of

s = 3/2 and s = 2, the difference �χ
zz
T increases sharply
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0 1 2 30

1
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v
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d/J=0.30
d/J=0.50
d/J=0.70

0 1 2 3
kBT/|J|

0 1 2 3

s=1 s=3/2 s=2

FIG. 11. Dependence of specific heat (Cv) on temperature
(kBT /|J |) of spin chains with s = 1, 3/2, and s = 2 with systems
size N = 5 for ε = 0.10 in the presence of d/J = 0.10, 0.30, 0.50,
and 0.70. Same color and line type are used for all panels.

as d/J is increased and for higher d/J it tends to saturate.
The saturation is more apparent in the s = 2 case. �χ

xx
T

on the other hand decreases with increasing d/J . This is
because the on-site anisotropy is oriented along the z axis.
This is also the reason why �χ

xx
T shows a sharper drop

with d/J for larger ε while �χ
zz
T shows a sharper rise for

larger ε.
Similarly, in Fig. 10, we plot �Mx and �Mz for different s

and ε, as a function of d/J . The field strength is gμBH =
|J |/2. We note that the �Mx decreases sharply with d/J

for s = 2 and large ε while �Mz increases with d/J and
saturates for s = 2 case while in the s = 3/2 and s = 1 cases,
the saturation does not occur even for d/J = 1.0. Again �Mz

is larger when ε is small while �Mx is larger for large ε.
The specific heat behavior is shown in Fig. 11. We find

that the two-peak structure persists for small d/J for ε = 0.1.
However, increasing d/J leads to a single peak. The peak
position shifts to higher temperatures as d/J increases and
the peak also becomes sharper as d/J increases. This is true
for all site spins.

V. CONCLUSIONS

Our study of anisotropic ferromagnetic exchange models
with site anisotropy shows that for small exchange and site
anisotropies, the energy-level splitting of the total spin states
can be characterized by the axial anisotropy parameter DM ,
which is a sum of the exchange alone and ion anisotropy
alone DM parameters. For large anisotropic exchange, neither
the total spin nor its z component are conserved. However,
it is possible to define the molecular anisotropy parameters
DM and EM for approximate total spin states, with the
parameters depending on the total spin. The anisotropy
parameters DM (S) are only weakly dependent on S, and EM

arises for δ �= 0 and is far smaller than DM for the parameter
range of this study. Since these states will have overlapping
multiplets, we have studied the behavior of thermodynamic
properties such as χ , Cv , and M . This is also true when the
on-site anisotropy is large, even in the absence of exchange
anisotropy. We find two-peak structure in Cv vs T when the
exchange is weakly anisotropic. We also find that this feature
prevails for weak on-site anisotropy as well. The dual peak
structure is more pronounced for smaller on-site spins. In
general, the effect of anisotropy, as seen from the presence
of intruder states from different parent spin states, is more
pronounced in the case of higher site spins and longer chain
length. The synergy between site anisotropy and exchange
anisotropy becomes complicated when both are strong. We
observe that the difference in susceptibilities as well as
magnetization as a function of the site anisotropy strength
for large exchange anisotropy becomes highly nonlinear,
particularly for systems with higher site spin.

ACKNOWLEDGMENTS

S.R. and J.-P.S. acknowledge the support through Indo-
French Centre for Promotion of Advanced Research (IFC-
PAR)/Centre Franco-Indien Pour La Promotion de la
Recherche Avancee (CEFIPRA) projects. S.R. also thanks
Department of Science & Technology for support through dif-
ferent projects and a fellowship and Indian Science Academy
for senior scientist position. R.R. thanks Thematic Unit
of Excellence-Department of Science & Technology (TUE-
DST) for support.

[1] R. Sessoli, D. Gatteschi, H. L. Tsai, D. N. Hendrickson,
A. R. Schake, S. Wang, J. B. Vincent, G. Christou, and K.
Folting, High-spin molecules:[Mn12O12(O2CR)16(H2O)4], J.
Am. Chem. Soc. 115, 1804 (1993).

[2] R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Mag-
netic bistability in a metal-ion cluster, Nature 365, 141 (1993).

[3] M. Takahashi, Analytical and numerical investigations of spin
chains, Prog. Theor. Phys. 91, 1 (1994).

[4] J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Macro-
scopic Measurement of Resonant Magnetization Tunneling in
High-Spin Molecules, Phys. Rev. Lett. 76, 3830 (1996).

[5] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and
B. Barbara, Macroscopic quantum tunneling of magnetization
in a single crystal of nanomagnets, Nature 383, 145 (1996).

[6] G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli,
Single-molecule magnets, MRS Bull. 25, 66 (2000).

[7] R. Clérac, H. Miyasaka, M. Yamashita, and C. Coulon, Ev-
idence for single-chain magnet behavior in a MnIII − NiII

chain designed with high spin magnetic units: A route to high
temperature metastable magnets, J. Am. Chem. Soc. 124, 12837
(2002).

[8] D. Gatteschi and R. Sessoli, Quantum tunneling of magneti-
zation and related phenomena in molecular materials, Angew.
Chem., Int. Ed. 42, 268 (2003).

[9] C. Coulon, H. Miyasaka, and R. Clérac, Single-chain mag-
nets:Theoretical approach and experimental systems, In Single-
Molecule Magnets and Related Phenomena (Springer-Verlag,
Berlin, 2006).

214409-9

https://doi.org/10.1021/ja00058a027
https://doi.org/10.1021/ja00058a027
https://doi.org/10.1021/ja00058a027
https://doi.org/10.1021/ja00058a027
https://doi.org/10.1038/365141a0
https://doi.org/10.1038/365141a0
https://doi.org/10.1038/365141a0
https://doi.org/10.1038/365141a0
https://doi.org/10.1143/ptp/91.1.1
https://doi.org/10.1143/ptp/91.1.1
https://doi.org/10.1143/ptp/91.1.1
https://doi.org/10.1143/ptp/91.1.1
https://doi.org/10.1103/PhysRevLett.76.3830
https://doi.org/10.1103/PhysRevLett.76.3830
https://doi.org/10.1103/PhysRevLett.76.3830
https://doi.org/10.1103/PhysRevLett.76.3830
https://doi.org/10.1038/383145a0
https://doi.org/10.1038/383145a0
https://doi.org/10.1038/383145a0
https://doi.org/10.1038/383145a0
https://doi.org/10.1557/mrs2000.226
https://doi.org/10.1557/mrs2000.226
https://doi.org/10.1557/mrs2000.226
https://doi.org/10.1557/mrs2000.226
https://doi.org/10.1021/ja0203115
https://doi.org/10.1021/ja0203115
https://doi.org/10.1021/ja0203115
https://doi.org/10.1021/ja0203115
https://doi.org/10.1002/anie.200390099
https://doi.org/10.1002/anie.200390099
https://doi.org/10.1002/anie.200390099
https://doi.org/10.1002/anie.200390099


HALDAR, RAGHUNATHAN, SUTTER, AND RAMASESHA PHYSICAL REVIEW B 98, 214409 (2018)

[10] K. Bernot, L. Bogani, A. Caneschi, D. Gatteschi, and R. Sessoli,
A family of rare-earth-based single chain magnets: Playing with
anisotropy, J. Am. Chem. Soc. 128, 7947 (2006).

[11] D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets
(Oxford University Press, Oxford, 2007), p. 316.

[12] S. Demir, M. I. Gonzalez, L. E. Darago, W. J. Evans, and J.
R. Long, Giant coercivity and high magnetic blocking tem-
peratures for N3−

2 radical-bridged dilanthanide complexes upon
ligand dissociation, Nat. Commun. 8, 2144 (2017).

[13] D. N. Woodruff, R. E. P. Winpenny, and R. A. Layfield,
Lanthanide single-molecule magnets, Chem. Rev. 113, 5110
(2013).

[14] S. K. Langley, D. P. Wielechowski, B. Moubaraki, and K.
S. Murray, Enhancing the magnetic blocking temperature and
magnetic coercivity of CrIII

2 LnIII
2 single-molecule magnets via

bridging ligand modification, Chem. Commun. 52, 10976
(2016).

[15] R. Ruamps, L. J. Batchelor, R. Maurice, N. Gogoi, P. Jiménez-
Lozano, N. Guihéry, C. Degraaf, A. L. Barra, J. P. Sutter, and
T. Mallah, Origin of the magnetic anisotropy in heptacoordinate
NiII and CoII complexes, Chem.-Eur. J. 19, 950 (2013).

[16] N. Gogoi, M. Thlijeni, C. Duhayon, and J. P. Sutter, Heptaco-
ordinated nickel(II) as an Ising-type anisotropic building unit:
Illustration with a pentanuclear [(NiL)3(W(CN)8)2] complex,
Inorg. Chem. 52, 2283 (2013).

[17] T. S. Venkatakrishnan, S. Sahoo, N. Bréfuel, C. Duhayon,
C. Paulsen, A. L. Barra, S. Ramasesha, and J. P. Sutter, En-
hanced ion anisotropy by nonconventional coordination geom-
etry: Single-chain magnet behavior for a [FeIIL2NbIV(CN)8]
helical chain compound designed with heptacoordinate FeII,
J. Am. Chem. Soc. 132, 6047 (2010).

[18] A. K. Bar, C. Pichon, N. Gogoi, C. Duhayon, S. Ramasesha,
and J. P. Sutter, Single-ion magnet behavior of heptacoordinated
Fe(II) complexes: On the importance of supramolecular organi-
zation, Chem. Commun. 51, 3616 (2015).

[19] A. K. Bar, N. Gogoi, C. Pichon, V. M. L. D. P. Goli, M. Thlijeni,
C. Duhayon, N. Suaud, N. Guihíry, A. L. Barra, S. Ramasesha,
and J. P. Sutter, Pentagonal bipyramid FeII complexes: Ro-
bust Ising-spin units towards heteropolynuclear nanomagnets,
Chem.- Eur. J. 23, 4380 (2017).

[20] O. Waldmann, A criterion for the anisotropy barrier in single-
molecule magnets, Inorg. Chem. 46, 10035 (2007).

[21] C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S.
Parsons, S. P. Perlepes, G. Christou, and E. K. Brechin, A record
anisotropy barrier for a single-molecule magnet, J. Am. Chem.
Soc. 129, 2754 (2007).

[22] J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer,
C. E. Anson, C. Benelli, R. Sessoli, and A. K. Powell, Dys-
prosium triangles showing single-molecule magnet behavior of
thermally excited spin states, Angew. Chem., Int. Ed. 45, 1729
(2006).

[23] J. D. Rinehart and J. R. Long, Exploiting single-ion anisotropy
in the design of f-element single-molecule magnets, Chem. Sci.
2, 2078 (2011).

[24] V. S. Mironov, L. F. Chibotaru, and A. Ceulemans, Mech-
anism of a strongly anisotropic MoIII − CN-MnII spin-spin
coupling in molecular magnets based on the [Mo(CN)7]4− hep-
tacyanometalate: A new strategy for single-molecule magnets

with high blocking temperatures, J. Am. Chem. Soc. 125, 9750
(2003).

[25] M. V. Bennett and J. R. Long, New cyanometalate build-
ing units: Synthesis and characterization of [Re(CN)7]3− and
[Re(CN)8]3−, J. Am. Chem. Soc. 125, 2394 (2003).

[26] R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison,
W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, and R. E. P.
Winpenny, Magnetic relaxation pathways in lanthanide single-
molecule magnets, Nat. Chem. 5, 673 (2013).

[27] S. Haldar, R. Raghunathan, J. P. Sutter, and S. Ramasesha,
Modelling magnetic anisotropy of single-chain magnets in |d/J|
� 1 regime, Mol. Phys. 115, 2849 (2017).

[28] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.98.214409 for the table corresponding to
spin chains of four spins as well as the plots of magnetic
susceptibility, specific heat, and magnetization.

[29] S. Carretta, T. Guidi, P. Santini, G. Amoretti, O. Pieper, B.
Lake, J. Van Slageren, F. El Hallak, W. Wernsdorfer, H. Mutka,
M. Russina, C. J. Milios, and E. K. Brechin, Breakdown of
the Giant Spin Model in the Magnetic Relaxation of the Mn6
Nanomagnets, Phys. Rev. Lett. 100, 157203 (2008).

[30] K. A. Lippert, C. Mukherjee, J. P. Broschinski, Y. Lippert, S.
Walleck, A. Stammler, H. Bögge, J. Schnack, and T. Glaser,
Suppression of magnetic quantum tunneling in a chiral single-
molecule magnet by ferromagnetic interactions, Inorg. Chem.
56, 15119 (2017).

[31] V. Hoeke, A. Stammler, H. Bögge, J. Schnack, and T.
Glaser, Strong and anisotropic superexchange in the single-
molecule magnet (SMM) [MnIII

6 OsIII]3+: Promoting SMM be-
havior through 3d-5d transition metal substitution, Inorg. Chem.
53, 257 (2014).

[32] J. Dreiser, K. S. Pedersen, A. Schnegg, K. Holldack, J.
Nehrkorn, M. Sigrist, P. Tregenna-Piggott, H. Mutka, H. Weihe,
V. S. Mironov, J. Bendix, and O. Waldmann, Three-axis
anisotropic exchange coupling in the single-molecule magnets
NEt4[MnIII

2 (5 − Brsalen)2(MeOH)2MIII(CN)6] (M = Ru, Os),
Chem.- Eur. J. 19, 3693 (2013).

[33] V. S. Mironov, Origin of dissimilar single-molecule mag-
net behavior of three MnII

2 MoIII complexes based on
[MoIII(CN)7]4− heptacyanomolybdate: Interplay of MoIII −
CN-MnII anisotropic exchange interactions, Inorg. Chem. 54,
11339 (2015).

[34] K. Qian, X.-C. Huang, C. Zhou, X.-Z. You, X.-Y. Wang, and
K. R. Dunbar, A single-molecule magnet based on hepta-
cyanomolybdate with the highest energy barrier for a cyanide
compound, J. Am. Chem. Soc. 135, 13302 (2013).

[35] S. Sahoo, R. Rajamani, S. Ramasesha, and D. Sen, Fully sym-
metrized valence-bond based technique for solving exchange
Hamiltonians of molecular magnets, Phys. Rev. B 78, 054408
(2008).

[36] R. Raghunathan, S. Ramasesha, and D. Sen, Theoretical ap-
proach for computing magnetic anisotropy in single molecule
magnets, Phys. Rev. B 78, 104408 (2008).

[37] M. A. Palacios, E. M. Pineda, S. Sanz, R. Inglis, M. B. Pitak, S.
J. Coles, M. Evangelisti, H. Nojiri, C. Heesing, E. K. Brechin,
J. Schnack, and R. E. P. Winpenny, Copper keplerates: High-
symmetry magnetic molecules, Chem. Phys. Chem. 17, 55
(2016).

214409-10

https://doi.org/10.1021/ja061101l
https://doi.org/10.1021/ja061101l
https://doi.org/10.1021/ja061101l
https://doi.org/10.1021/ja061101l
https://doi.org/10.1038/s41467-017-01553-w
https://doi.org/10.1038/s41467-017-01553-w
https://doi.org/10.1038/s41467-017-01553-w
https://doi.org/10.1038/s41467-017-01553-w
https://doi.org/10.1021/cr400018q
https://doi.org/10.1021/cr400018q
https://doi.org/10.1021/cr400018q
https://doi.org/10.1021/cr400018q
https://doi.org/10.1039/C6CC06152D
https://doi.org/10.1039/C6CC06152D
https://doi.org/10.1039/C6CC06152D
https://doi.org/10.1039/C6CC06152D
https://doi.org/10.1002/chem.201202492
https://doi.org/10.1002/chem.201202492
https://doi.org/10.1002/chem.201202492
https://doi.org/10.1002/chem.201202492
https://doi.org/10.1021/ic3027368
https://doi.org/10.1021/ic3027368
https://doi.org/10.1021/ic3027368
https://doi.org/10.1021/ic3027368
https://doi.org/10.1021/ja9089389
https://doi.org/10.1021/ja9089389
https://doi.org/10.1021/ja9089389
https://doi.org/10.1021/ja9089389
https://doi.org/10.1039/C4CC10182K
https://doi.org/10.1039/C4CC10182K
https://doi.org/10.1039/C4CC10182K
https://doi.org/10.1039/C4CC10182K
https://doi.org/10.1002/chem.201605549
https://doi.org/10.1002/chem.201605549
https://doi.org/10.1002/chem.201605549
https://doi.org/10.1002/chem.201605549
https://doi.org/10.1021/ic701365t
https://doi.org/10.1021/ic701365t
https://doi.org/10.1021/ic701365t
https://doi.org/10.1021/ic701365t
https://doi.org/10.1021/ja068961m
https://doi.org/10.1021/ja068961m
https://doi.org/10.1021/ja068961m
https://doi.org/10.1021/ja068961m
https://doi.org/10.1002/anie.200503564
https://doi.org/10.1002/anie.200503564
https://doi.org/10.1002/anie.200503564
https://doi.org/10.1002/anie.200503564
https://doi.org/10.1039/c1sc00513h
https://doi.org/10.1039/c1sc00513h
https://doi.org/10.1039/c1sc00513h
https://doi.org/10.1039/c1sc00513h
https://doi.org/10.1021/ja029518o
https://doi.org/10.1021/ja029518o
https://doi.org/10.1021/ja029518o
https://doi.org/10.1021/ja029518o
https://doi.org/10.1021/ja029795v
https://doi.org/10.1021/ja029795v
https://doi.org/10.1021/ja029795v
https://doi.org/10.1021/ja029795v
https://doi.org/10.1038/nchem.1707
https://doi.org/10.1038/nchem.1707
https://doi.org/10.1038/nchem.1707
https://doi.org/10.1038/nchem.1707
https://doi.org/10.1080/00268976.2017.1346832
https://doi.org/10.1080/00268976.2017.1346832
https://doi.org/10.1080/00268976.2017.1346832
https://doi.org/10.1080/00268976.2017.1346832
http://link.aps.org/supplemental/10.1103/PhysRevB.98.214409
https://doi.org/10.1103/PhysRevLett.100.157203
https://doi.org/10.1103/PhysRevLett.100.157203
https://doi.org/10.1103/PhysRevLett.100.157203
https://doi.org/10.1103/PhysRevLett.100.157203
https://doi.org/10.1021/acs.inorgchem.7b02453
https://doi.org/10.1021/acs.inorgchem.7b02453
https://doi.org/10.1021/acs.inorgchem.7b02453
https://doi.org/10.1021/acs.inorgchem.7b02453
https://doi.org/10.1021/ic4022068
https://doi.org/10.1021/ic4022068
https://doi.org/10.1021/ic4022068
https://doi.org/10.1021/ic4022068
https://doi.org/10.1002/chem.201203781
https://doi.org/10.1002/chem.201203781
https://doi.org/10.1002/chem.201203781
https://doi.org/10.1002/chem.201203781
https://doi.org/10.1021/acs.inorgchem.5b01975
https://doi.org/10.1021/acs.inorgchem.5b01975
https://doi.org/10.1021/acs.inorgchem.5b01975
https://doi.org/10.1021/acs.inorgchem.5b01975
https://doi.org/10.1021/ja4067833
https://doi.org/10.1021/ja4067833
https://doi.org/10.1021/ja4067833
https://doi.org/10.1021/ja4067833
https://doi.org/10.1103/PhysRevB.78.054408
https://doi.org/10.1103/PhysRevB.78.054408
https://doi.org/10.1103/PhysRevB.78.054408
https://doi.org/10.1103/PhysRevB.78.054408
https://doi.org/10.1103/PhysRevB.78.104408
https://doi.org/10.1103/PhysRevB.78.104408
https://doi.org/10.1103/PhysRevB.78.104408
https://doi.org/10.1103/PhysRevB.78.104408
https://doi.org/10.1002/cphc.201500956
https://doi.org/10.1002/cphc.201500956
https://doi.org/10.1002/cphc.201500956
https://doi.org/10.1002/cphc.201500956



