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Photocontrol of magnetic structure in an itinerant magnet
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We study the photoinduced magnetic transition in an itinerant magnet described by the double-exchange
model, in which conduction electrons couple with localized spins through the ferromagnetic (FM) Hund
coupling. It is shown that intense light applied to the FM ground state induces an antiferromagnetic (AFM)
order, in contrast to the AFM-to-FM transition due to the photocarrier injection. In particular, we focus on the
mechanism for instability of the FM structure by the light irradiation. The magnon spectrum in the Floquet
state is formulated on the basis of the perturbative expansion of the Floquet Green’s function. The magnon
dispersion shows softening at momentum (π, π ) in the square lattice with increasing the light amplitude,
implying photoinduced AFM instability. This result is mainly attributed to a nonequilibrium electron distribution,
which promotes low-energy Stoner excitations. The transient optical conductivity spectra characterized by
interband excitations and Floquet sidepeaks are available to identify the photoinduced AFM state.
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I. INTRODUCTION

Ultrafast optical control of magnetism has attracted much
interest in the past two decades, accompanied by rapid
progress in laser light technologies [1–3]. After the pioneer-
ing work on the ultrafast demagnetization due to the rapid
spin-temperature increase [4], various strategies to control
magnetism have been proposed and demonstrated. Among
them, photoinduced phase transitions involved with magnetic
phase transitions make it possible to control magnetism in
picosecond or femtosecond timescales owing to the multi-
ple degrees of freedom of electrons and strong correlation
between them [5–7]. Another approach called the Floquet
engineering is known as an efficient technique to control
the electron-electron interaction directly and nonthermally
using a time-periodic field [2,8–10]. Many proposals for novel
Floquet states and related phenomena have been made along
this direction [11–28].

One of the prototypical ferromagnetic (FM) interactions
in metals is the double-exchange (DE) interaction. This was
originally proposed by Zener and Anderson–Hasegawa for
FM oxides in the 1950s [29–31]. An essential element of the
DE interaction is a strong intra-atomic exchange interaction
between mobile electrons and localized spins, which favors
the FM configuration. Therefore, the electronic transport and
the magnetism strongly correlate with each other in the DE
systems. This correlation has been ubiquitously observed not
only in the FM oxides but also in magnetic semiconductors
[32,33], f -electron systems [34], and molecular magnets
[35], and has described a number of phenomena such as the
colossal magnetoresistance [36,37], the anomalous Hall effect
[38–41], and skyrmion physics [42,43].

Photoinduced dynamics in the DE system has also been in-
vestigated experimentally [44–54] and theoretically [55–61],
in particular, in perovskite manganites. Most of those studies
have focused on the photoirradiation effects in insulating
phases with an antiferromagnetic (AFM) long-range order,
and showed formation of a metallic FM domain or an increase

in the FM correlation. These experimental observations are
well interpreted by extension of the DE scenario; photoin-
jected carriers mediate the DE interaction even though the
system is out of equilibrium.

In this paper, we study the photoinduced nonequilibrium
dynamics in the DE model. In Ref. [62], the authors have
numerically demonstrated that an initial FM metal state is
changed to an almost perfect Néel state by photoirradiation,
which is in sharp contrast to the naive DE scenario in equilib-
rium states. In order to elucidate the microscopic mechanism
that drives the FM state into the AFM state, here we study
the magnetic structure in a continuous-wave (cw) field by
using the Floquet Green’s function. We show that a magnon
dispersion is softened and has a dip at momentum q = (π, π )
by the photoirradiation, which indicates that the AFM insta-
bility develops at finite threshold intensity. It is revealed that a
nonequilibrium electron distribution plays an essential role to
induce the instability. We also calculate the transient optical
conductivity spectra in a nonequilibrium state through the
real-time simulation, and show that an interband-excitation
peak and Floquet sidepeaks appear in the transient and steady
states.

This paper is organized as follows. We describe our formu-
lation including a model Hamiltonian and numerical methods
in Sec. II. Section III consists of two parts: first we show
the results of the real-time dynamics in Sec. III A, and then
show the magnetic excitation spectra in the photoirradiated
FM metal by using the Floquet Green’s function in Sec. III B.
Section IV is devoted to a summary.

II. FORMULATION

First, we introduce the model Hamiltonian and the Floquet
Green’s function method in Secs. II A and II B. Next, we
derive expressions of the response function in Sec. II C, which
is used in the real-time simulation given in Sec. II D to
evaluate the transient optical conductivity.
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A. Model

We adopt the DE model defined by the Hamiltonian

H =
∑
ijs

hij c
†
iscjs − J

S

∑
iss ′

Si · σ ss ′c
†
iscis ′ , (1)

where c
†
is (cis ) is a creation (annihilation) operator of a

conduction electron with spin s (= ↑,↓) at site i, Si is
a localized-spin operator with magnitude S, and σα (α =
x, y, z) are the Pauli matrices. The localized spins are treated
as classical vectors in the calculations for the real-time dy-
namics, and the quantum operators in the Floquet Green’s
function method. The first term (H0) represents the hopping
of the conduction electrons with the transfer integral hij , and
the second term (H ′) represents the Hund coupling between
the conduction electrons and the localized spins with the
coupling constant J (>0). The total number of sites and that
of electrons, and the electron density are denoted by N, Ne,
and ne ≡ Ne/N , respectively. Static and dynamical properties
in equilibrium states in the DE model have been intensively
studied to date, and the FM metallic phase is realized in
a wide parameter range J � 4 and ne � 0.8 [63]. A vector
potential A of light is introduced as the Peierls phase as hij �→
hij exp[ieA(t )(r i − rj )/h̄], where t represents time, r i is a
position vector at site i, and e (<0) is the electron charge.
We adopt the cw field for which the vector potential is given
by A(t ) = (F0/�) sin(�t ), where F0 and � ≡ 2π/T are
amplitude and frequency of the electric field, respectively. In
the real-time dynamics shown in Sec. III A, we turn on the cw
field at t = 0. In the Floquet Green’s function method based
on the Keldysh formalism, the cw light is always applied to
the system. The calculations for a pulse field are presented
in Ref. [62]. We consider the two-dimensional square lattice
with the lattice constant a. The transfer integral hij is given
by hij = −h (<0) in the nearest-neighbor bonds and hij = 0
in the others. Energy and time are measured in units of h

and h̄/h, respectively. From now on, the nearest-neighbor
hopping amplitude h, the reduced Planck constant h̄, the
electron charge e, and the lattice constant a are taken to be
unity.

In order to carry out a perturbative expansion which will
be introduced in Sec. II B, in which the localized spins are
treated as the quantum spins, we rewrite the Hamiltonian by
the Holstein-Primakoff transformation for the localized spin
operators as

Sz
i = S − a

†
i ai, S+

i = (S−
i )† =

√
2S

√
1 − a

†
i ai

2S
ai, (2)

where a
†
i (ai ) is a creation (annihilation) operator of a magnon

at site i. Up to the leading order in 1/S, the Hund coupling
term of the Hamiltonian is written as

H ′ = −J

S

∑
i

[(c†i↑ci↑ − c
†
i↓ci↓)(S − a

†
i ai )

+
√

2S(c†i↑ci↓a
†
i + c

†
i↓ci↑ai )]. (3)

By introducing the Fourier transformations for the electron
and magnon operators,

cks = 1√
N

∑
i

e−ikr i cis , ak = 1√
N

∑
i

e−ikr i ai , (4)

we redefine H0 as

H0 =
∑

ks

εksc
†
kscks . (5)

The electron band εks is defined by εks = εk − J sgn(s) − μ

including the chemical potential μ, where εk and sgn(s) are
given by

εk = −2(cos kx + cos ky ), (6)

and

sgn(s = ↑) = +1, sgn(s = ↓) = −1, (7)

respectively. Equation (3) is also rewritten as

H ′ = J

SN

∑
kk′qq ′s

δk+q,k′+q ′ sgn(s)c†ksck′sa
†
qaq ′

− J

√
2

SN

∑
kq

(c†k↑ck+q↓a†
q + c

†
k↓ck−q↑aq ), (8)

where the first and second terms, respectively, termed H ′
1

and H ′
2, originate from the longitudinal term (Szσ z) and the

transverse terms (Sxσ x + Syσ y) in the Hund coupling.
The system before light irradiation is assumed to be a fully

polarized FM state in which all of the conduction-electron
spins and the localized spins are directed along the +z direc-
tion. The initial state wave function is given by

|�0〉 =
εk↑<0∏

k

c
†
k↑|0〉, (9)

where |0〉 is a vacuum for the electrons and magnons.

B. Floquet Green’s function and self-energy

In this section, we introduce the Floquet Green’s function
and derive a magnon self-energy using the perturbative ex-
pansion with respect to the Hund coupling. This method is
based on the Keldysh formalism, which is briefly summarized
in Appendices A and B.

We define the full and bare contour-ordered Green’s func-
tions for the electrons as

Gks (t, t ′) = −i〈TCcks (t )c†ks (t ′)〉, (10)

Gks (t, t ′) = −i〈TCcIks (t )c†Iks (t ′)〉, (11)

and those for the magnons as

Dq (t, t ′) = −i〈TCaq (t )a†
q (t ′)〉, (12)

Dq (t, t ′) = −i〈TCaIq (t )a†
Iq (t ′)〉, (13)

respectively, where 〈· · ·〉 ≡ 〈�0| · · · |�0〉 represents the ex-
pectation value with respect to the initial state in Eq. (9).
The operator with the subscript “I” is the interaction-picture
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operator, whose time evolution is governed by the noninter-
acting Hamiltonian H0. As mentioned in Sec. II A, the time-
dependent vector potential A(t ) is introduced in the transfer
integral as the Peierls phase, which causes a momentum shift
in the energy band: εk �→ εk−A(t ). The time periodicity of
A(t ) allows one to introduce the Floquet representation of
the two-time Green’s function, called the Floquet Green’s
function, as

Gmn(ω) =
∫ T

0

dta

T

∫ ∞

−∞
dtr ei(ω+m�)t−i(ω+n�)t ′G(t, t ′), (14)

G(t, t ′) =
∑

n

∫ ∞

−∞

dω

2π
e−in�ta e−i[ω+(n/2)�]tr Gn,0(ω), (15)

where ta = (t + t ′)/2 and tr = t − t ′. Note that Eqs. (14) and
(15) are applicable to any two-time function. The inverses of
the bare Green’s functions including a bath self-energy are
given by

(
GR,−1

ks

)
mn

(ω) = δmn[ω+n�+J sgn(s) + μ + i�] − ε̄mn,k,

(16)(
GK,−1

ks

)
mn

(ω) = 2iδmn[1 − 2f (ω + n�)]�, (17)

for the retarded and Keldysh Green’s functions of the elec-
trons, respectively. Here we introduce coupling strength
between the system and the bath, � (>0), and the
Fermi-Dirac distribution function given by f (ω) = 1/(eβω +
1) with inverse temperature β. We also define ε̄mn,k =
T −1

∫ T

0 dt ei(m−n)�t εk−A(t ), which is explicitly written as

ε̄mn,k = −2Jm−n(F0/�)(cos kx + cos ky ) (18)

for m − n = 0 mod 2, and

ε̄mn,k = −2iJm−n(F0/�)(sin kx + sin ky ) (19)

for m − n = 1 mod 2, assuming linearly polarized light along
the diagonal direction in the square lattice as F0 = (F0, F0).
The function Jn is the nth-order Bessel function of the first
kind.

First, we consider the longitudinal component of the Hund
coupling, H ′

1, and derive the contour-ordered self-energy �1

from the first-order expansion of the S matrix defined by

SC = TC exp

[
−i

∫
C
dt̄ H ′

I (t̄ )

]
, (20)

where H ′
I (t ) = H ′

I1(t ) + H ′
I2(t ) is the perturbation in the in-

teracting picture. The result is obtained as

�1(t, t ′) = −iJ

SN

∑
ks

sgn(s)Gks (t ′, t )δC (t, t ′+), (21)

where δC is the contour delta function, and t ′+ means the time
that is infinitesimally later than t ′ on the contour. The corre-
sponding diagram is shown in Fig. 1(a). We notice that �1

is instantaneous and independent of the external momentum.
The off-diagonal components, �12

1 and �21
1 , vanish because

FIG. 1. The self-energy diagrams for (a) the longitudinal compo-
nent �1(t, t ′) in Eq. (21) and (b) the transverse component �2,q (t, t ′)
in Eq. (26). Solid and dashed lines represent the free propagators of
the electron and magnon, respectively.

of δC (t, t ′+), while the diagonal components are given as
follows:

�11
1 (t, t ′) = −iJ

SN

∑
ks

sgn(s)G11
ks (t ′, t )[+δ(t − t ′+)]

= δ(t − t ′)
−iJ

SN

∑
ks

sgn(s)G12
ks (t, t ), (22)

�22
1 (t, t ′) = −iJ

SN

∑
ks

sgn(s)G22
ks (t ′, t )[−δ(t − t ′−)]

= −Σ11
1 (t, t ′), (23)

with t ′± = t ′ ± 0. Thus, the retarded component of �1 is
given by

�R
1 (t, t ′) = 1

2

(
�11

1 − Σ22
1 + �21

1 − �12
1

)
= δ(t − t ′)

−iJ

SN

∑
ks

sgn(s)G<
ks (t, t ). (24)

The Floquet representation of the retarded self-energy, which
is termed the Floquet self-energy, is obtained from Eqs. (14)
and (15) as(

�R
1

)
mn

(ω) = −iJ

SN

∑
ks

sgn(s)
∫ ∞

−∞

dω̄

2π
(G<

ks )m−n,0(ω̄). (25)

As for the transverse component of the Hund coupling,
H ′

2, the contour-ordered self-energy �2 is obtained from the
second-order term in the S matrix as

�2,q (t, t ′) = −2iJ 2

SN

∑
k

Gk+q↓(t, t ′)Gk↑(t ′, t ). (26)

The corresponding diagram is shown in Fig. 1(b). In a similar
way to Eq. (24), the retarded self-energy is given by

�R
2,q (t, t ′) = − iJ 2

SN

∑
k

[
GR

k+q↓(t, t ′)GK
k↑(t ′, t )

+GK
k+q↓(t, t ′)GA

k↑(t ′, t )
]
, (27)

and the corresponding Floquet self-energy is obtained as

(
�R

2,q

)
mn

(ω) = − iJ 2

SN

∑
k

∑
l

∫ ∞

−∞

dω̄

2π

× [(
GR

k+q↓
)
m,n+l

(ω + ω̄)
(
GK

k↑
)
l,0(ω̄)

+ (
GK

k+q↓
)
m,n+l

(ω + ω̄)
(
GA

k↑
)
l,0(ω̄)

]
. (28)
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Finally, the total Floquet self-energy of the magnon is ob-
tained as (

�R
q

)
mn

(ω) = (
�R

1

)
mn

(ω) + (
�R

2,q

)
mn

(ω). (29)

The full magnon Green’s function DR
q is given by the Dyson

equation:(
DR,−1

q

)
mn

(ω) = (
DR,−1

q

)
mn

(ω) − (
�R

q

)
mn

(ω), (30)

where the bare magnon Green’s function is given by(
DR,−1

q

)
mn

(ω) = δmn(ω + n� + i�). (31)

In the numerical calculations, the dimension in the Floquet
space is limited to 2Np + 1, and the Floquet indices run over
{0,±1, . . . ,±Np}.

We show that the Floquet self-energy in Eq. (29) at F0 = 0
and � → 0 coincides with the equilibrium self-energy given
in Ref. [64]. The bare Green’s functions are obtained from
Eqs. (16) and (17) as

(
GR

ks

)
mn

(ω) = δmn

ω + n� + iη − εks

= (
GA

ks

)
nm

(ω)∗, (32)(
GK

ks

)
mn

(ω) = −2πiδmn[1 − 2f (ω + n�)]δ(ω + n� − εks ),

(33)(
G<

ks

)
mn

(ω) = 2πiδmnf (ω + n�)δ(ω + n� − εks ), (34)

where η is a positive infinitesimal. The retarded self-energy
�R

1 in Eq. (25) is expressed as

�R
1 = (

�R
1

)
nn

(ω − n�)

= −iJ

SN

∑
ks

sgn(s)
∫ ∞

−∞

dω̄

2π
2πif (ω̄)δ(ω̄ − εks )

= J

SN

∑
k

[f (εk↑) − f (εk↓)]. (35)

As for the self-energy �R
2 in Eq. (28), the contour integral in

the complex ω̄ plane gives the following expression:

�R
2,q (ω) = (

�R
2,q

)
nn

(ω − n�)

= 2J 2

SN

∑
k

f (εk↑) − f (εk+q↓)

ω − (εk+q↓ − εk↑) + 2iη
. (36)

Therefore, the retarded self-energy for the magnons takes the
following form:

�R
q (ω) = �R

1 + �R
2,q (ω)

= J

SN

∑
k

[f (εk↑) − f (εk+q↓)]

×
[

1 + 2J

ω − (εk+q↓ − εk↑) + 2iη

]
, (37)

which is in agreement with Eq. (6) in Ref. [64]. We note
that Re �R

q=0(ω = 0) = 0, which ensures the presence of the
gapless mode at q = 0 up to the leading order in 1/S.

C. Response function

In this section, we derive general expressions of two-body
response functions, following the formalism for the optical
conductivity that was presented in Ref. [65]. Let us consider a
response of a one-body operator defined by

Oα (t ) =
∑
μν

Oα
μν (t )ψ†

μψν (38)

to an external field f α (t ). Here, ψ†
μ is a creation operator

of a fermion with quantum number ν and α represents a
physical index such as the Cartesian coordinate α = x, y, z

and momentum transfer α = q. The coupling Hamiltonian is
given by

Vext(t ) = −
∑
μν

Fμν (t )ψ†
μψν, (39)

where F is a functional of the external field f . A response
function (susceptibility) is defined by a functional derivative:

χαβ (t, t ′) = δ〈Oα (t )〉
δf β (t ′)

. (40)

The expectation value 〈Oα (t )〉 is written in terms of the lesser
Green’s function G<

μν (t, t ′) = i〈ψ†
ν (t ′)ψμ(t )〉 for fermions as

〈Oα (t )〉 = −i
∑
μν

Oα
μν (t )G<

νμ(t, t ). (41)

The derivative of Eq. (41) with respect to the external field
f β (t ′) yields

χαβ (t, t ′) = χdia
αβ (t, t ′) + χ

pm
αβ (t, t ′), (42)

χdia
αβ (t, t ′) = −i

∑
μν

δOα
μν (t )

δf β (t ′)
G<

νμ(t, t ), (43)

χ
pm
αβ (t, t ′) = −i

∑
μν

Oα
μν (t )

δG<
νμ(t, t )

δf β (t ′)
, (44)

where χdia and χpm describe the “diamagnetic” and “param-
agnetic” responses, respectively. We consider the full Green’s
function given by

Ĝ−1
μν (t, t ′) = Ĝ−1

μν (t, t ′) + σ zδ(t − t ′)Fμν (t ) − �̂μν (t, t ′)

(45)

with Ĝ−1
μν (t, t ′) = δμνσ

zδ(t − t ′)(i∂t − εν ) being the bare
Green’s function. The derivative in Eq. (44) is expressed as

δG<
νμ(t, t )

δf β (t ′)
= −

∑
κλ

∫ ∞

−∞
dt̄

[
GR

νκ (t, t̄ )
δFκλ(t̄ )

δf β (t ′)
G<

λμ(t̄ , t )

+G<
νκ (t, t̄ )

δFκλ(t̄ )

δf β (t ′)
GA

λμ(t̄ , t )

]
, (46)

where we take the variation of the Dyson equation [Eq. (A10)]
with respect to f and neglect the vertex correction which
arises from δ�/δf β [65–70]. The explicit forms of Oα

μν and
Fμν are required for further calculations. However, in most
cases, the coupling F (t̄ ) depends only on the external field
f β (t ′) at time t ′ = t̄ , i.e., δF (t̄ )/δf β (t ′) ∝ δ(t̄ − t ′), which
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leads to

χ
pm
αβ (t, t ′) = i Tr

[
Oα (t )GR(t, t ′)

∂F (t ′)
∂f β (t ′)

G<(t ′, t )

+Oα (t )G<(t, t ′)
∂F (t ′)
∂f β (t ′)

GA(t ′, t )

]
, (47)

where the indices for the quantum numbers are omitted and
Tr denotes the trace over the quantum numbers. The retarded
and advanced Green’s functions in Eq. (47) guarantee the
causality: χpm(t, t ′) ∝ θ (t − t ′).

We consider the optical conductivity for an example, which
is defined by a response of the electric current density j =
(jx, jy ) to the electric field F = (Fx, F y ) as

〈jα (t )〉 =
∑

β

∫ ∞

−∞
dt̄ σαβ (t, t̄ )Fβ (t̄ ) (48)

=
∑

β

∫ ∞

−∞
dt̄ χαβ (t, t̄ )Aβ (t̄ ), (49)

where χ is the current susceptibility, satisfying the relation

σαβ (t, t ′) = −
∫ ∞

t ′
dt̄ χαβ (t, t̄ ). (50)

The optical conductivity at time ta, σαβ (ω, ta ), is obtained
from the Fourier transformation of the two-time function
σαβ (t, t ′) in Eq. (50) as

σαβ (ω, ta ) =
∫ ∞

−∞
dtr eiωtr σαβ (t, t ′). (51)

The current density and the coupling Hamiltonian between the
vector potential and the electrons are given by

jα (t ) = 1

N

∑
ks

vα
k−A(t ),sc

†
kscks , (52)

Vext(t ) =
∑

ks

(εk−A(t ),s − εk,s )c†kscks , (53)

respectively, with vks = ∂kεks . Then, Oα
μν and Fα

μν in
Eqs. (38) and (39) are identified as

Oα
ks,k′s ′ (t ) = δkk′δss ′vα

k−A(t ),s/N, (54)

Fks,k′s ′ (t ) = −δkk′δss ′ (εk−A(t ),s − εks ), (55)

respectively. The derivatives with respect to the vector poten-
tial are given by

δOα
ks,k′s ′ (t )

δAβ (t ′)
= −δ(t − t ′)δkk′δss ′

1

N

∂2εk−A(t ),s

∂kα∂kβ
, (56)

δFks,k′s ′ (t̄ )

δAβ (t ′)
= δ(t̄ − t ′)δkk′δss ′v

β

k−A(t ′ ),s . (57)

By substituting these equations into Eqs. (43) and (47),
and using relations GA

μν (t ′, t )∗ = GR
νμ(t, t ′) and G<

μν (t, t ′)∗ =
−G<

νμ(t ′, t ), we obtain

χdia
αβ (t, t ′) = δ(t − t ′)

i

N

∑
ks

∂2εk−A(t ),s

∂kα∂kβ
G<

ks,ks (t, t ) (58)

and

χ
pm
αβ (t, t ′) = − 2

N
Im Tr[vα (t )GR(t, t ′)vβ (t ′)G<(t ′, t )],

(59)

respectively, where the trace stands for summations over the
momentum and spin variables. Note that Eqs. (58) and (59)
hold even if the Green’s function has off-diagonal components
in the momentum and spin bases. Thus, these are straightfor-
ward extensions of the expressions in Ref. [65].

D. Real-time evolution

In this section, we present the numerical method to calcu-
late the real-time dynamics. A part of this was introduced in
Refs. [60–62]. We treat the localized spins as classical vectors,
which is justified in the limit of large S. Let us suppose
that the localized spin configuration {Si} is given at time t .
Then, the Hamiltonian in Eq. (1) at time t is diagonalized as
H (t ) = ∑

ν εν (t )φ†
ν (t )φν (t ), where φ†

ν is a creation operator
of the electron with the single-particle energy εν . The wave
function of the electrons at time t is described as a single
Slater determinant given by |�(t )〉 = ∏Ne

ν=1 ψ†
ν (t )|0〉 since

there is no many-body interaction. The creation operator ψ†
ν

is represented by

ψ†
ν (t ) =

2N∑
μ=1

φ†
μ(t )uμν (t ), (60)

where the unitary matrix uμν (t ) = 〈0|φμ(t )ψ†
ν (t )|0〉 satisfies

the initial condition uμν (t = 0) = δμν . Note that both φν (t )
and ψν (t ) are the time-dependent operators in the Schrödinger
picture, because the localized spin configuration {Si (t )} de-
pends on time. When we assume that {Si (t )} is fixed during
a short time interval [t, t + δt], the unitary matrix uμν (t ) is
given recursively by

uμν (t + δt ) =
2N∑
λ=1

〈μ(t + δt )|λ(t )〉eiελ(t )δtuλν (t ), (61)

where |λ(t )〉 = φ
†
λ(t )|0〉. The time step δt in the present

numerical calculations is chosen to be much smaller than
the timescales of h, J , and �. The expectation value of a
one-body operator O(t ) = ∑

μν Oμν (t )φ†
μ(t )φν (t ) is given by

〈O(t )〉 =
Ne∑

λ=1

2N∑
μ=1

2N∑
ν=1

u∗
μλ(t )Oμν (t )uνλ(t ). (62)

The dynamics of the localized spins is described by the
Landau-Lifshitz-Gilbert (LLG) equation,

∂ Si

∂t
= heff

i × Si + αSi × ∂ Si

∂t
, (63)

where heff
i (t ) = −〈∂H (t )/∂ Si〉 = (J/S)

∑
ss ′ 〈σ ss ′c

†
iscis ′ 〉 is

the effective field, and α is the damping constant. The local
spin configuration at time t + δt is calculated with the fixed
effective field heff

i (t ) for which the LLG equation is solved
analytically [60].
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In order to calculate the optical conductivity, we introduce
the retarded and lesser Green’s functions in this formalism as
follows:

GR
ν (tr , ta ) = −iθ (tr )e−iεν (ta )tr , (64)

G<
ν (tr , ta ) = inν (ta )e−iεν (ta )tr . (65)

Here, we define tr = t − t ′ and ta = t , rather than ta =
(t + t ′)/2, to reduce the computational cost, and nν (ta ) =
〈φ†

ν (ta )φν (ta )〉. The function θ (t ) is the step function. These
Green’s functions are reduced to the equilibrium ones
[Eqs. (A15) and (A17)] in the absence of the external field.
The Green’s function in the momentum space is given by

GX
ks,k′s ′ (tr , ta ) ≈

∑
ν

〈ks|ν(ta )〉GX
ν (tr , ta )〈ν(ta )|k′s ′〉 (66)

for X = R and <, where |ks〉 = c
†
ks |0〉. We assume that each

single-particle level εν and its occupation nν are independent
of tr , for simplicity. This function Gks,k′s ′ has the off-diagonal
components in the momentum and spin bases, because of
breakings of the translational symmetry in the real space
and the rotational symmetry in the spin space. We obtain
the optical conductivity σαβ (ω, ta ) by using Eqs. (51), (50),
(58), and (59) with the Green’s function in Eq. (66). The
computational time scales as O(N3), which is much faster
in a nonequilibrium or inhomogeneous system described by
a bilinear Hamiltonian than that of a direct evaluation of an
extended Kubo formula [56–59].

III. RESULTS

A. Real-time dynamics

In this section, we show the real-time dynamics obtained
by the method introduced in Sec. II D. We adopt the two-
dimensional square lattice with N = 16 × 16 sites, which
is much larger than that in Ref. [62]. The periodic- and
antiperiodic-boundary conditions are imposed along the x and
y directions, respectively. The electron number density is set
to ne = 0.5 (quarter-filling), which provides a FM metallic
state in the ground state at J = 4. The polarization of the cw
field is taken to be the diagonal direction, i.e., Fx

0 = F
y

0 = F0.
The amplitude and frequency are set to F0 = 2 and � = 1,
respectively. The magnitude of the localized spin is taken to
be |Si | = S = 1. We chose numerical values of the Gilbert
damping constant α = 1 and the time step δt = 0.005. We
introduce initial fluctuations to the localized spins; the polar
angles are uniformly distributed in [0, δθ ] with δθ = 0.1 rad
in the initial state [60–62].

The real-time dynamics induced by the cw field is shown
in Figs. 2(a)–2(d). We present the single-particle energy levels
εν , their occupation numbers nν = 〈φ†

νφν〉, the spin structure
factor defined by S(q ) = N−2 ∑

ij eiq(r i−rj ) Si ·Sj , the Drude
weight Re σxx (0), and the optical conductivity Re σxx (ω), as
functions of time t . Figure 2(e) shows the optical conductivity
averaged during t = 900 and 1000.

In the initial state before light irradiation (t < 0), the FM
metallic state is realized due to the strong Hund coupling. The
lower (major-spin) and upper (minor-spin) bands are centered
at ±J , and the lower band is filled up to εν = −J = −4.

FIG. 2. (a)–(d) Time profiles of several physical quantities in
the real-time dynamics. (a) The single-particle energy levels εν

and the occupation numbers nν . (b) The spin structure factor S(q )
at q = (0, 0) and (π, π ). (c) The static component of the optical
conductivity, σxx (ω = 0, t ). (d) The optical conductivity spectrum
σxx (ω, t ). The amplitude and frequency of the cw field are set
to F0 = 2 and � = 1, respectively. (e) The time-averaged optical
conductivity. The spectra σxx (ω, t ) for � = 0.5, 1.0, and 1.5 are
averaged during t = 900 and 1000. We chose F0/� = 2 and J = 4.

In an early stage after turning on the cw field, 0 < t � 30,
the localized spin structure and the electron band structure
remain unchanged. The electron momentum distribution is
shifted by A(t ) in the momentum space, which results in
coherent oscillations in nν and Re σxx (ω = 0) with a period
of 2π/(2�) = 3.14 [see Figs. 2(a) and 2(c)]. Then, the FM
order characterized by S(0, 0) is gradually weakened and the
Drude weight diminishes in 30 � t � 100. Subsequently, the
AFM order characterized by S(π, π ) develops until t ≈ 400.
The detail of transient spin structure is discussed in Ref. [71].
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Finally, the system reaches the AFM steady state, where the
electrons almost uniformly fill the lower band as shown in
Fig. 2(a). In the optical conductivity shown in Figs. 2(d) and
2(e), the interband transition peak and its Floquet sidepeaks
appear at ω = 2J and ω = 2J ± n� (n = 1, 2), respectively.

The emergence of the AFM steady state is understood in
terms of the energetics of the FM and AFM states; when
we assume the ideal FM or AFM spin configuration and the
uniform electron distribution in the lower band, the AFM state
has a lower energy than the FM state in a wide range of
J and ne. Details are presented in Ref. [62]. A microscopic
mechanism of the FM-to-AFM transition and the origin of the
polarization dependence [see Figs. 2(d)–2(f) in Ref. [62]] are
addressed in the following section on the basis of the Floquet
Green’s function method.

B. Magnon spectra in photoirradiated FM metal

In this section, we study the magnetic and electronic ex-
citations in the photoirradiated FM metallic state. We show
the time-averaged spectral functions of the magnons and
electrons, which are obtained from the Floquet Green’s func-
tion method as follows. First, we define the inverse of the
bare electron Green’s functions (GX,−1

ks )mn(ω) in Eqs. (16)
and (17), and compute (GX

ks )mn(ω). Then, we solve the
Dyson equation in Eq. (30) for the magnon Green’s function
(DR

q )mn(ω) with the retarded self-energy (�R
q )mn(ω). The

dimension of the Floquet space is set to Np = 8–16, for
which we have numerically confirmed the convergence. The
positive constant � and the inverse temperature β introduced

FIG. 3. The time-averaged spectral functions of (a) the spin-up
electrons and (b) the magnons in the cw field with F0 = 0.8 and
� = 1. Solid and dashed curves in (b) show the low-energy magnon
dispersions obtained from Eq. (67) in the absence and presence of the
field, respectively. The Hund coupling is set to J = 5. The number
of sites is N = 256 × 256 in (a) and N = 32 × 32 in (b).

FIG. 4. The magnon dispersion for (a) F0 = 0.0–1.2 and
(b) F0 = 1.0–1.1. The other parameters are set to � = 1 and J = 5.

in Eqs. (16), (17), and (31) are set to � = 0.05 and β → ∞,
respectively. The chemical potential is chosen to be μ = −J ,
which keeps the system quarter-filled, i.e., ne = 0.5. The
number of sites is taken as N = 32 × 32 in most of the
numerical calculations.

Figure 3 shows the imaginary parts of the time-averaged
Green’s functions, GR

k↑(ω) ≡ (GR
k↑)00(ω) and DR

q (ω) ≡
(DR

q )00(ω), in the cw field with F0 = 0.8 and � = 1.
In Fig. 3(a) for the electronic band, it is shown that the
bandwidth is reduced by a factor of J0(F0/�) ≈ 0.85
and several Floquet sidebands spaced by the frequency �

appear. Modulation of the spectral intensity results from the
hybridization between these Floquet bands. Thus, the magnon
spectral function shown in Fig. 3(b) shows softening in the
whole range of q. As a comparison, we show the dispersion
relation at F0 = 0 by a solid curve.

We focus on the low-energy magnon dispersion ωq , which
is approximately given by the equation

Re
(
DR,−1

q

)
00(ωq ) = ωq − Re

(
�R

q

)
00(ωq ) = 0. (67)

As shown in Fig. 4, the magnon dispersion is softened with
increasing the electric-field amplitude F0. In the case of weak
irradiation, i.e., F0 < 1 shown in Fig. 4(a), the dispersion is
similar to that of F0 = 0 and the bandwidth is reduced. How-
ever, when F0 ≈ 1.0–1.1 shown in Fig. 4(b), a dip appears
at (π, π ) and the magnon energy at q = (π, π ) reaches zero
at F0 ≈ 1.07, which gives rise to instability of the FM state
against the AFM one. This observation is consistent with the
results in Ref. [62] and Sec. III A, where the FM-to-AFM
transition was demonstrated by the numerical simulation of
the real-time dynamics.
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FIG. 5. The magnon energy at q = (π, π ) as a function of the
electric-field amplitude divided by the frequency, for different values
of (a) the frequency at J = 5 and (b) the Hund coupling at � = 1.
A solid curve in (a) shows the magnon dispersion in the limit of
� → ∞. The chemical potential is set to μ = −J .

In Fig. 5, we show the cw frequency � and the Hund
coupling J dependences of the magnon energy at the M point,
ωq=(π,π ), as functions of F0/�. In the high-frequency limit
(� → ∞), the off-diagonal components in the Floquet space
can be neglected, which simplifies the magnon self-energy in
Eq. (29) to the following form:(
�R

q

)
00(ω)

= J

SN

∑
k

[f (εk↑) − f (εk+q↓)]

×
[

1 + 2J

ω − J0(F0/�)(εk+q − εk ) − 2J + 2iΓ

]
(68)

for the linearly polarized light with F0 = (F0, F0). This ex-
pression is similar to the equilibrium self-energy in Eq. (37)
except that the bandwidth is reduced by a factor of J0(F0/�)
due to the dynamical localization (DL) [72–77]. The magnon
energy at q = (π, π ) calculated from the self-energy in
Eq. (68) is shown as a solid curve in Fig. 5(a), which fits
the data for � = 40 (�J, h) quite well. The self-energy
is reduced to Re(�R

q )00(ω = 0) ≈ 0 at the zero points of
the Bessel function, which means a flat dispersion: ωq = 0.
Therefore, the dip structure as in Fig. 4(b) is not understood
only in terms of DL. On the other hand, in the case where � is
comparable to or smaller than J and h, the results for � � 4 in
Fig. 5(a) show deviations from the high-frequency curve. The
origin of the deviations is ascribed not only to DL but also to
nonequilibrium electron distributions. It is also found that the
magnon energy is scaled to a single curve that crosses the zero
energy at F0/� ≈ 1.1 for � � 2. This result is consistent with
the fact that the characteristic timescale when the FM order is
broken is scaled by F0/� with finite threshold intensity [see
Fig. 3(e) in Ref. [62]]. Figure 5(b) shows ωq=(π,π ) for different
values of the Hund coupling, indicating that the larger Hund
coupling makes the magnon energy higher and thus requires
the larger F0 to induce the instability.

The magnon self-energies and spectra in the equilibrium
and steady states are shown in Fig. 6, where the high-energy
continuum is seen around ω = 2J = 10, in addition to the
low-energy spin-wave excitations. These high-energy Stoner
excitations originate from creations of an electron in the
upper band and a hole in the lower band, as diagrammatically
represented by Fig. 1(b). It is found in Fig. 6(f) that the
high-energy continuum expands to the low-energy region

FIG. 6. Top: the real part of the self-energy. Middle: the imagi-
nary part of the self-energy. Bottom: the magnon spectral function.
(a)–(c) are for the equilibrium state (F0 = 0), and (d)–(f) are for the
steady state in the cw field (F0 = 1.07). The other parameters are set
to � = 1 and J = 5.

especially at q = (π, π ) with increasing F0. The energy range
of the continuum excitations reflects the electron distribution
and the electron joint density of states, since the imaginary
part of the self-energy in the equilibrium state obtained from
Eq. (37) is given by

Im �R
q (ω) ≈ −2J 2

SN

∑
k

f (εk↑)πδ[ω − (εk+q↓ − εk↑)],

(69)

where f (εk+q↓) ≈ 0 is taken.
The mechanism of this magnon softening is ascribed to

the electron distribution in the light-induced steady state and
is understood on the basis of the equilibrium magnon self-
energy in Eq. (37). The momentum distribution function of
the spin-up electrons defined by

nk↑ =
∫ ∞

−∞

dω

2π
Im G<

k↑(ω) (70)

is shown in Fig. 7(a), where the distribution is changed into a
uniform distribution, nk↑ = ne, with increasing F0. Assuming
that the expression of the equilibrium self-energy in Eq. (37)
is valid in the steady states, we notice that the transverse
component of the self-energy �2 reduces the magnon energy
as

Re �R
2,q (ω = 0) ≈ −2J 2

SN

∑
k

nk↑
εk+q − εk + 2J

< 0. (71)

Here, we replace the Fermi-Dirac function f (εks ) by nks ,
neglect nk+q↓, and assume that 2J is larger than the bandwidth
(=8 in the present model) [78]. In the perturbative process
in �2 representing the Stoner excitation, the change in the
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FIG. 7. (a) The momentum distribution of the spin-up electrons.
(b) The real part and (c) the imaginary part of the time-averaged self-
energy at q = (π, π ). Insets of (b) and (c) are the extensions for the
low-energy region. We chose � = 1 and J = 5.

electron distribution increases the available momentum phase
space governed by nk↑ in the summation over k, in Eq. (71).
This means that, under the photoirradiation, the low-energy
electron-hole excitations are allowed because of the change
in nk↑ and generate a new scattering continuum in ω < 2J .
The energy gain by the Stoner processes takes its maximum
at q = (π, π ) in the present square lattice, since the energy
denominator εk+q − εk + 2J = 2J − 2εk > 0 takes its min-
imum. Figures 7(b) and 7(c) show the time-averaged self-
energy at q = (π, π ) for different values of the cw amplitude.
In the low-energy region around ω ≈ 0, the real part decreases
with increasing F0 and the imaginary part is almost zero for
F0 � 1.2. These results mean that the magnon at q = (π, π )
remains well-defined and is softened by the photoirradiation.

Finally, we discuss the polarization dependence of the soft-
ening. The momentum distribution function and the magnon
dispersion are shown in Fig. 8 for different amplitudes. We
set the linearly polarized light along the x direction as F0 =
(
√

2Fx
0 , 0). Equations (18) and (19) are changed to

ε̄mn,k = −2Jm−n(
√

2Fx
0 /�) cos kx − 2 cos ky (72)

for m − n = 0 mod 2, and

ε̄mn,k = −2iJm−n(
√

2Fx
0 /�) sin kx − 2i sin ky (73)

FIG. 8. (a) The momentum distribution nk↑ and (b) the magnon
dispersion ωq with F0 = (

√
2F x

0 , 0). Other parameter values are
� = 1 and J = 5.

for m − n = 1 mod 2, respectively. It is shown that the mo-
mentum distribution decreases along the �-Y line and in-
creases along the X-M line with increasing Fx

0 . Thus, the
magnon momentum that minimizes the energy denominator
in Eq. (71) under the condition of nk↑ > 0 is given by q ≈
(π, 0). Consequently, the magnon at q = (π, 0) is softened
rather than that at q = (π, π ). This is consistent with the
polarization dependence of the transient spin structure shown
in Figs. 2(d)–2(f) in Ref. [62]. As for the circularly polarized
light, no major differences from the case of F0 = (F0, F0)
are observed except for the dip structure seen in Fig. 4(b)
(not shown). This is because the electric field does not couple
directly to the electron spins in the present model, where the
spin-orbit coupling is not taken into account.

IV. SUMMARY

We have studied the photoinduced dynamics in the itin-
erant magnet described by the DE model. It is found that
the initial FM metallic state is changed to the AFM state by
the cw field, which is in sharp contrast to the well-known
AFM-to-FM transition due to the photocarrier injection. We
presented formulation for the transient optical conductivity
spectra by extending the formalism based on a nonequilibrium
Green’s function [65] to an inhomogeneous system, since
the inhomogeneous (site-dependent) magnetic field originated
from the localized spins acts on the conduction electrons in
the transient state. It is found that, in the photoinduced AFM
steady state, the interband excitation peak at ω = 2J and the
Floquet sidepeaks at ω = 2J ± n� (n = 1, 2, . . . ) appear.
These are available to identify the FM-to-AFM transition
proposed in the present paper.

We also investigated the magnetic excitation properties in
the FM metal in the cw light by using the Floquet Green’s
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function method. The magnon Green’s function is calculated
in the perturbative expansion with respect to the Hund cou-
pling, where the Hartree-type and bubble-type diagrams are
taken into account. It is found that, with increasing the cw
amplitude, the magnon dispersion is softened in the whole
momentum range, and the dip structure appears at q = (π, π )
in the square lattice for F0 � 1. This implies that the FM
state is unstable due to the photoirradiation and is transformed
into the AFM state at the finite cw amplitude. In the low-
frequency regime � � 2, the magnon energy at q = (π, π )
is scaled to the single curve and is lower than that in the
high-frequency limit � → ∞. These observations based on
the Floquet Green’s function method are consistent with the
results by the real-time simulation in Ref. [62], and indicate
that the FM-to-AFM transition does not depend on the clas-
sical/quantum treatment of the localized spins. We propose
the microscopic mechanism of the FM-to-AFM transition as
follows. In the FM steady state, the electron momentum distri-
bution is modulated by the cw field, which enhances the low-
energy Stoner excitation and reduces the magnon energy. The
nonequilibrium electron distribution induced by the cw field
plays a crucial role in the softening of the magnons and the
appearance of the dip structure in the magnon dispersion. This
is beyond the DL effect that appears in the high-frequency
limit and leads to the monotonic reduction of the magnon
bandwidth.

We expect that the present theoretical results will be
checked by the experiments. Candidate materials are the per-
ovskite manganites La1−xSrxMnO3 and layered manganites.
It has been already observed that the AFM insulator associated
with the charge and orbital orders is changed into the transient
FM metal by photoirradiation. We expect that the laser light
applied to the FM metallic phase in manganites induces the
AFM spin alignment in the nonequilibrium state. As discussed
in Ref. [62], the intense pulse light is better than the cw
light adopted in the present paper. The light frequency should
be smaller than the Hund coupling to avoid the interband
transition. An observation of the Brillouin-zone folding due
to emergence of the AFM order by the angle-resolved photoe-
mission spectroscopy is one possible measurement. Although
relaxation effects are included in the present formulas as the
Gilbert damping [Eq. (63)] and the heat bath [Eqs. (16) and
(17)], more realistic treatments of the spin and energy re-
laxations are required to compare the theoretical calculations
with the experiments.
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APPENDIX A: KELDYSH FORMALISM

We briefly introduce the Keldysh formalism and the
contour-ordered Green’s function (see, e.g., Refs. [67,79–85]
for details). Let |�(−∞)〉 ≡ |�0〉 be an initial state. The
expectation value of an operator O(t ) at time t is represented

FIG. 9. The Schwinger-Keldysh contour: C = C1 + C2.

as

〈O(t )〉 ≡ 〈�0|O(t )|�0〉
= 〈�0|U †(t,−∞)OU (t,−∞)|�0〉, (A1)

where O = O(−∞), and the unitary operator U is given by

U (t, t ′) =
{
TC1 exp

[−i
∫ t

t ′ dt̄ H (t̄ )
]

(t > t ′),

TC2 exp
[−i

∫ t

t ′ dt̄ H (t̄ )
]

(t < t ′).
(A2)

The symbol TC1 (TC2 ) represents a (anti-)time-ordered op-
erator. Using U (t, t ′)U (t ′, t ′′) = U (t, t ′′) and U †(t, t ′) =
U (t ′, t ), the expectation value in Eq. (A1) is written as

〈O(t )〉 = 〈�0|TC exp

[
−i

∫
C
dt̄ H (t̄ )

]
O(t )|�0〉, (A3)

where TC is the contour-ordered operator defined on the
Schwinger-Keldysh contour C depicted in Fig. 9.

When the Hamiltonian H is divided into the noninteracting
part H0 = ∑

ν ενψ
†
νψν and the perturbative part H ′ as H =

H0 + H ′, it is useful to introduce the interaction picture to
perform a perturbative expansion. By introducing a time-
evolution operator U0(t, t ′) as the noninteracting counterpart
of Eq. (A2), in which H is replaced with H0, we define the S

matrix as

SC = TC exp

[
−i

∫
C
dt̄ H ′

I (t̄ )

]
, (A4)

where H ′
I (t ) = U

†
0 (t,−∞)H ′(t )U0(t,−∞) is the perturba-

tion in the interacting picture. The expectation value of O(t )
in Eq. (A3) is given by

〈O(t )〉 = 〈�0|TCSCOI(t )|�0〉, (A5)

with OI(t ) = U
†
0 (t,−∞)OU0(t,−∞).

We introduce the contour-ordered Green’s function G(t, t ′)
as

iGμν (t, t ′) = 〈TCψμ(t )ψ†
ν (t ′)〉 = 〈TCSCψIμ(t )ψ†

Iν (t ′)〉,
(A6)

where ψ†
ν is a creation operator of a boson or fermion with a

quantum number ν. The contour-ordered Green’s function is
expressed in a matrix form as

Ĝμν (t, t ′) =
[
G11

μν (t, t ′) G12
μν (t, t ′)

G21
μν (t, t ′) G22

μν (t, t ′)

]
, (A7)

where the superscripts 1 and 2 denote the branch of the con-
tour C to which the time variables belong. Since the contour-
ordered function G satisfies the equation G11 + G22 = G12 +
G21, the redundancy is eliminated by the Keldysh rotation
given by

Ĝ �→ G̃ = LσzĜL† =
[
GR GK

0 GA

]
, (A8)
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where

L = 1√
2

[
1 −1

1 1

]
(A9)

is a unitary matrix and GR, GA, and GK are the retarded,
advanced, and Keldysh Green’s functions, respectively. The
lesser Green’s function G< = G12 and the greater one G> =
G21 are given by G< = (GK − GR + GA)/2 and G> =
(GK + GR − GA)/2.

The equation of motion (Dyson equation) of the contour-
ordered Green’s function Ĝ is given by

[Ĝ−1 ◦ Ĝ](t, t ′) = σ zδ(t − t ′) + [�̂ ◦ Ĝ](t, t ′), (A10)

where Ĝ−1
μν (t, t ′) = δμνσ

zδ(t − t ′)(i∂t − εν ) is the inverse of
the bare Green’s function and �̂ is the self-energy. Here, we
omit a summation over the quantum numbers. The symbol “◦”
in Eq. (A10) represents the convolution defined by

[Â ◦ B̂](t, t ′) =
∫ ∞

−∞
dt̄ Â(t, t̄ )σ zB̂(t̄ , t ′) (A11)

for two-time functions Â and B̂. The Keldysh rotation trans-
forms Eq. (A10) into

[(G̃−1 − �̃) ◦ G̃](t, t ′) = δ(t − t ′), (A12)

with

[Ã ◦ B̃](t, t ′) =
∫ ∞

−∞
dt̄ Ã(t, t̄ )B̃(t̄ , t ′). (A13)

We identify G̃−1 − �̃ in Eq. (A12) as the inverse of the full
Green’s function G̃−1. Finally, the Dyson equation is written
as [

GR GK

0 GA

]−1

=
[GR GK

0 GA

]−1

−
[
�R �K

0 �A

]
, (A14)

which is an integrodifferential equation with respect to time.
In the case of the noninteracting fermionic Hamiltonian

given by H0 = ∑
ν ενψ

†
νψν , the bare Green’s functions are

written as

GR
ν (t, t ′) = −iθ (t − t ′)e−iεν (t−t ′ ) = GA

ν (t ′, t )∗, (A15)

GK
ν (t, t ′) = −i(1 − 2n(0)

ν )e−iεν (t−t ′ ), (A16)

G<
ν (t, t ′) = in(0)

ν e−iεν (t−t ′ ), (A17)

where n(0)
ν = 〈ψ†

νψν〉 is the initial distribution function.

APPENDIX B: FLOQUET GREEN’S FUNCTION

The Floquet Green’s function method [66,67,86–92] de-
scribes efficiently the nonequilibrium steady states driven by
a time-periodic external field, in which the Green’s function

G(t, t ′) satisfies the relation

GX(t + T , t ′ + T ) = GX(t, t ′) (X = R,A,K ), (B1)

with a period of T = 2π/�. Owing to the periodicity, we
introduce the Floquet representation of a two-time function
A(t, t ′) and its inverse transformation as

Amn(ω) =
∫ T

0

dta

T

∫ ∞

−∞
dtr ei(ω+mΩ )t−i(ω+nΩ )t ′A(t, t ′), (B2)

A(t, t ′) =
∑

n

∫ ∞

−∞

dω

2π
e−inΩta e−i[ω+(n/2)Ω]tr An,0(ω), (B3)

respectively. Here, the indices m and n are integer numbers,
and ta = (t + t ′)/2 and tr = t − t ′. Equation (B2) leads to
the redundancy: Amn(ω) = Am+l,n+l (ω − l�). In the Floquet
representation, the Dyson equation given in Eq. (A14) is
simplified to a set of the algebraic equations; the retarded and
Keldysh components of G̃ are given by

(GR,−1)mn(ω) = (GR,−1)mn(ω) − �R
mn(ω), (B4)

GK
mn(ω) = −[GR(GK,−1 − �K )GA]mn(ω), (B5)

respectively, where (GX,−1)mn is the inverse matrix of GX
mn.

Since the inverse of the bare Keldysh Green’s function,
GK,−1, is proportional to an infinitesimal constant, the full
Keldysh Green’s function in Eq. (B5) is given by GK

mn(ω) =
(GR�KGA)mn(ω). To stabilize nonequilibrium steady states
in an external field, we introduce a heat bath with constant
density of states, which are incorporated via the following
self-energies: (

�R
bath

)
mn

(ω) = −iδmn�, (B6)(
�K

bath

)
mn

(ω) = −2iδmn[1 − 2f (ω + n�)]�, (B7)

where � (>0) is the coupling strength between the system and
the bath, and f (ω) is the Fermi-Dirac distribution function
[66,67,88,89]. In this paper, we merge these bath self-energies
into the bare Green’s functions in Eqs. (16) and (17).

We define the Wigner representation as

A(ω, ta ) =
∫ ∞

−∞
dtr eiωtr A(t, t ′) (B8)

=
∑

n

e−inΩtaAn,0

(
ω − n�

2

)
, (B9)

which is useful to investigate the dynamical properties in
the nonequilibrium systems at time ta . In particular, the time
average of A(ω, ta ) is represented by

A(ω) ≡
∫ T

0

dta

T
A(ω, ta ) = Ann(ω − n�), (B10)

where n is chosen such that ω − n� ∈ (−�/2,�/2].
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