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Demonstration of resonant inelastic x-ray scattering as a probe of exciton-phonon coupling
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Resonant inelastic x-ray scattering (RIXS) is a promising technique for obtaining electron-phonon coupling
constants. However, the ability to extract these coupling constants throughout the Brillouin zone for crystalline
materials remains limited. To address this need, we developed a Green’s function formalism to capture
electron-phonon contributions to core-level spectroscopies without explicitly solving the full vibronic problem.
Our approach is based on the cumulant expansion of the Green’s function combined with many-body theory
calculated vibrational coupling constants. The methodology is applied to x-ray photoemission spectroscopy,
x-ray absorption spectroscopy (XAS), and RIXS. In the case of the XAS and RIXS, we use a two-particle
exciton Green’s function, which accounts implicitly for particle-hole interference effects that have previously
proved difficult. To demonstrate the methodology and gain a deeper understanding of the experimental technique,
we apply our formalism to small molecules, for which unambiguous experimental data exist. This comparison
reveals that the vibronic coupling constant probed by RIXS is in fact related to exciton-phonon coupling rather
than electron-phonon coupling, challenging the conventional interpretation of the experiment.
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I. INTRODUCTION

Electron-phonon coupling (EPC) is an inescapable aspect
of condensed matter systems that has a pronounced influence
on many quantities of interest. Interactions between electrons
and phonons induce structural and magnetic transitions, and
contribute to the temperature dependence of charge and spin
transport [1–6]. Notably, exchange of phonons produces the
attractive interaction between electrons that binds Cooper
pairs in conventional BCS superconductors [7]. As observed
in photoemission and inverse photoemission, phonons renor-
malize quasiparticle energies and spectral weights, and be-
stow them with lifetimes [8–10]. Phonons can accompany
optical transitions, modifying both transition energies and
probabilities [11], effects that make particularly significant
contributions for indirect-gap systems and organic molecules.

Several experimental techniques are able to measure
electron-phonon coupling strengths to varying degrees of
efficacy. These include inelastic neutron scattering [12] and
conventional inelastic x-ray scattering [13,14], one electron
addition or removal processes such as scanning tunneling
spectroscopy [15,16], electron energy loss spectroscopy [17],
angle resolved photoemission (ARPES) and inverse photoe-
mission [18,19], and techniques involving neutral excitations
including Raman and optical spectroscopies [11,20]. All of
these approaches have certain unsatisfactory limitations with
respect to accurately quantifying the electron-phonon inter-
action strength throughout the full Brillouin zone. Resonant
inelastic x-ray scattering (RIXS)—which can generate col-
lective excitations by the perturbation present in the interme-
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diate, resonantly core-excited state—has emerged in the last
decade as a new technique for accomplishing this objective
[21,22]. RIXS holds certain advantages over these other tech-
niques including element and orbital selectivity, sensitivity
to small sample quantities, and momentum resolution. Most
importantly, it is commonly assumed that RIXS offers a direct
probe of electron-phonon coupling [22,23], contrary to the
indirect nature of some of the other measurements.

With the renewed consideration of the possible role of
electron-phonon coupling in Cooper pairing in unconven-
tional superconductors [24], there is a desire to use RIXS
to quantify momentum-dependent electron-phonon coupling
strengths in these materials [22]. Within typical RIXS analysis
[23], the coupling strength between the electronic system and
the lattice is extracted as a fitting parameter and interpreted as
the usual transport electron-phonon coupling constant. This
is based on the assumption that while the RIXS intermediate
state contains both a core-hole and excited electron, the core-
hole is fully screened and effectively inert with respect to
producing phonons. This assertion has gone without rigorous
investigation despite the importance of the subject. This is
due partly to the difficulty of applying first-principles methods
to strongly correlated materials. Therefore, to investigate the
phonon generating process in a RIXS measurement and the
role played by the core-hole we turn to a simpler system,
namely acetone, for which high quality experimental RIXS
data are available showing a series of well-resolved phonon
features [25].

In Sec. II, we use density functional theory (DFT) calcu-
lations to demonstrate quantitatively that the usual interpreta-
tion of the EPC parameter measured by RIXS as the transport
EPC parameter cannot explain previously reported RIXS data
for acetone. We further show that assuming an EPC value
calculated as an exciton-phonon coupling parameter yields
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a RIXS spectrum in close agreement with the experimen-
tal result. This revised interpretation of the meaning of the
coupling constant extracted from RIXS measurements as an
exciton-phonon coupling value rather than an electron-phonon
coupling parameter is fully consistent with the established
understanding of Raman spectroscopy [26–29], which is es-
sentially the optical analog of RIXS.

This observation that the electron-lattice interaction probed
by RIXS differs from what is typically assumed provides
further motivation for developing effective methods for cal-
culating the phonon contribution to RIXS. Such calculations
typically work within a Hilbert space that explicitly contains
the vibrational degrees of freedom. This has been pursued, for
example, by ab initio many-electron vibronic wave-function
techniques for small molecules [30], and through exact diago-
nalization of extended Hubbard models for strongly correlated
materials [22,31]. Both approaches suffer from rapid expan-
sion of the Hilbert space making them poorly suited for scal-
ing up to the general case of treating the full q-dependence of
several phonon modes that may contain multiple quanta of ex-
citations in the RIXS final state. This inability to perform a de-
tailed analysis on a wide range of systems of interest has lim-
ited the use of RIXS to explore vibronic coupling in materials.

Our objective is to construct a practical prescription for in-
cluding vibrational contributions to core-level spectra broadly,
and RIXS in particular, that can be applied to general periodic
systems. We present an alternate route than those mentioned
above in which explicit reference to vibrational modes is
largely removed, but phonons are accounted for implicitly
as giving contributions to the electronic Green’s functions
and associated spectral functions. Within perturbation theory,
to obtain satisfactory spectral functions that exhibit accurate
phonon satellite structure, it is necessary to go beyond the
typical Dyson-Migdal Green’s function approach. To accom-
plish this, we employ the cumulant expansion for the Green’s
function, which has recently been applied to study vibronic
coupling in valence-level photoemission [32,33].

We begin this effort in Sec. III by considering vibra-
tional sidebands in x-ray photoemission spectra (XPS). We
show how these phonon sidebands can be calculated from
first-principles via a vibronically dressed core-hole Green’s
function formalism. These parameter free calculations are in
excellent agreement with high resolution experimental data
available for the Si 2p XPS of SiH4 and SiF4 molecules.
In Sec. IV, we generalize the one-particle core-hole Green’s
function of XPS to a two-particle exciton Green’s function
suitable for x-ray absorption (XAS) or emission (XES). We
perform frozen-phonon Bethe-Salpeter calculations of the
absorption spectrum to construct a vibronic self-energy for
the exciton. The methodology is applied to the N K-edge
XAS of N2 and the O K-edge XAS of CO and acetone. To
evaluate the vibrational contribution to RIXS, we find it most
effective to employ a mixed representation of the RIXS cross
section in which explicit intermediate states are removed in
favor of a Green’s function, but final vibronic states are kept.
This is described in Sec. V using the vibronically dressed
exciton Green’s function and applied again to the O K-edge
of acetone.

Our application of the methodology developed here to
small molecules is intended only to clearly demonstrate the

validity of the technique. The advantage of small molecules
as test cases is that their electronic and vibrational struc-
ture is relatively simple, and experimental data showing
well resolved vibrational features are available. However, the
methodology is meant to be applied to periodic systems.
While we envisage that predictive calculations would be based
in density functional theory, any electronic structure technique
that contains an explicit dependence on atomic positions could
be used.

II. RIXS AS A PROBE OF EXCITON-PHONON COUPLING

The resonant inelastic x-ray scattering cross-section is
given formally by the Kramers-Heisenberg equation [34]

σ (ωi, ωloss ) =
∑
F

∣∣∣∣∣
∑
M

〈�F | �+
2 |�M〉 〈�M | �1 |�I 〉

ωi − (EM − EI ) + i�M

∣∣∣∣∣
2

× δ(ωloss − (EF − EI )), (1)

which includes a summation over many-body intermediate
(M) and final (F ) states, assuming the system begins in a
particular initial state (I ). The many-body energies of these
states are given by ES for S ∈ {I,M,F }, �M is the inverse
lifetime of the intermediate state, ωi is the incident photon
energy, ωloss the energy transfer, and �j the photon operator
for the incident (j = 1) or scattered (j = 2) photon. To
focus on the phonon contribution to the RIXS spectrum, one
can apply the Kramers-Heisenberg expression to an effective
Hamiltonian with a first-order electron-phonon interaction:

H =
∑
nk

εnkc
+
nkcnk +

∑
νq

ωqν (b+
qνbqν + 1/2)

+
∑
nn′k

∑
νq

Mν
nn′ (k, q)c+

n′k+qcnk(b+
−qν + bqν ). (2)

Mν
nn′ (k, q) is the coupling constant between electrons indexed

by band n and wave vector k with energy εnk, created by c+
nk,

and phonons of wave vector q and branch ν having frequency
ωqν , created by b+

qν .
It is common within RIXS analysis to reduce the problem

to a Holstein Hamiltonian consisting of a single electronic
state interacting with a single mode:

H = εic
+
i ci + ω0b

+
i bi + Mc+

i ci (b
+
i + bi ). (3)

With the usual assumptions that there is no electronic inter-
action between orbitals and the vibrational mode does not
scatter an electron between orbitals or sites (no recoil), that the
ground- and excited-state vibrational potential energy surfaces
are harmonic with equivalent curvature, and that the core-hole
may be neglected, it becomes possible to diagonalize this
Hamiltonian by a canonical transformation [35,36]. Taking
the low-temperature limit that the system begins in the zero
oscillator level, this brings the phonon contribution to the
Kramers-Heisenberg RIXS cross section to the form

σ (ωi, ωloss ) =
∑
nf

∣∣∣∣∣
∑
nm

Bn′′n′ (g)Bnm0(g)

ωi − (g − nm)ω0 + iγm

∣∣∣∣∣
2

× δ(ωloss − nf ω0), (4)
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FIG. 1. RIXS spectrum at the O K-edge of acetone showing
a progression of phonon excitations separated by the vibrational
energy ωvib = 210 meV. Calculations resulting from an electron-
phonon coupling constant assuming an intermediate state with an
excited electron (red), an oxygen core-hole (green), and an exciton
(blue) are compared to experimental results (open symbols) [25].
Calculated spectra are shown without the elastic contribution and
are normalized to the intensity of the first phonon peak. (Inset)
Calculated potential energy surfaces (PES) for the three possible
excited states along with the ground-state (GS) PES (gray). The
dashed vertical line indicates the ground-state equilibrium C=O
bond length and the black dots are placed at the minima of each PES.
All PES curves are offset arbitrarily in energy.

where n′ = min(nm, nf ), n′′ = max(nm, nf ), and g =
(M/ω0)2 is the dimensionless coupling strength. The phonon
contribution may then be evaluated analytically using the
Franck-Condon factors

Bmn(g) = (−1)m
√

e−gm!n!
n∑

l=0

(−g)l
√

g
m−n

(n − l)!l!(m − n + l)!
.

(5)
When the ground- and excited-state potential energy surfaces
differ, it is necessary to instead use a more general form of the
Franck-Condon factors [37].

The above is the basis for the model presented by Ament
et al. [23] that is commonly used to extract electron-phonon
coupling values. Equation (4) produces a RIXS intensity that
consists of a series of peaks separated by the phonon energy
with relative intensities that depend on the electron-phonon
coupling strength (see Fig. 1). Fitting experimental data with
this series by tuning g yields a value for the electron-phonon
coupling constant. This and closely related approaches have
been used to quantify the electron-phonon coupling strength
in titanates and 1D cuprates [31,38–40], and have influenced
the conceptual understanding of vibronic effects in RIXS
[21,41].

Assuming the validity of the interpretation of g in Eq. (4)
as the usual transport electron-phonon coupling strength, it
should be possible, for an amenable system, to calculate the
electron-phonon coupling constant ab initio and use the re-

TABLE I. Vibronic forces for acetone obtained from the slope
of the excited-state PES (C = O stretching mode) evaluated at the
ground-state equilibrium bond length with respect to different types
of excitations (see Sec. II).

Excitation type Force (eV/Å)

electron −1.0
core-hole −3.5
exciton −7.7

sulting value of g as a fixed parameter in Eq. (4) to accurately
calculate the RIXS phonon contribution. We conduct this test
using the O K-edge of acetone. This choice is motivated by
the availability of high quality experimental data [25] show-
ing a clear and substantial phonon progression in the RIXS
spectrum, the relative simplicity of the intermediate state that
involves two degenerate anti-bonding electronic π∗ orbitals
coupled to one vibrational mode (the C=O bond stretching),
and the suitability of acetone for first-principles calculations
(unlike strongly correlated materials).

To probe the interpretation of g, we evaluate the O K-edge
RIXS spectrum of acetone with Eq. (4) for three values of g

corresponding to electron-phonon coupling (ge), core-hole–
phonon coupling (gh), and exciton-phonon coupling (geh).
To calculate these g values, we first use density functional
theory to construct the ground-state and excited-state potential
energy surfaces along the C=O bond stretching mode of
gas-phase acetone. The excited-state potential energy surface
is calculated under the three respective conditions: (ge) the
addition of an electron to the lowest unoccupied molecular
orbital (LUMO), (gh) the introduction of a 1s core-hole on
oxygen, and (geh) the addition of an electron to the LUMO and
the introduction of an oxygen core-hole in order to simulate
a core-valence exciton. The four potential energy surfaces
(including the ground-state (GS) surface) are presented in
the inset of Fig. 1. The excited-state forces for the three
scenarios are obtained as the DFT Hellmann-Feynman forces
using the ground-state equilibrium atomic positions, or equiv-
alently by taking the derivative of the respective potential
energy surfaces at the ground-state equilibrium bond length.
The coupling constants are related to the force constants by

M =
√

h̄
2μω

|F | or g = F 2

2h̄μω3 , where μ is the reduced mass

of the oxygen in acetone and ω corresponds to the respec-
tive excited-state vibrational frequencies [see Eq. (10) for a
general expression of the coupling constant]. The values of
the forces are given in Table I of Appendix A along with
numerical details of the calculations.

We next evaluate Eq. (4) with each of the three coupling
constants treated as fixed parameters. The resulting phonon
RIXS spectra are presented in Fig. 1 compared to the ex-
perimental results of Schreck et al. [25]. The conclusion is
immediately evident: the value of g corresponding to the
electron-phonon coupling case is unable to explain the ex-
perimental data, but using the value of g corresponding to
exciton-phonon coupling yields a result in close agreement
with experiment.

The use of Eq. (4), which results from the canonical
transformation of Eq. (3), is only strictly justified in the first
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two scenarios in which a single fermion is added (or removed)
from the ground-state. When we add an exciton, which can be
viewed as a quasiboson, each ci operator in Eq. (3) is replaced
by a product of two fermion operators and the canonical
transformation no longer strictly holds [42]. However, in
the low exciton density limit the canonical transformation is
reasonably satisfied [43,44].

The agreement with experiment found when using geh

rather than ge can be rationalized by the observation that
phonons in RIXS are created by the perturbation in the inter-
mediate state, which consists of an exciton. Our interpretation
of RIXS as a probe of exciton-phonon coupling rather than
electron-phonon coupling is implicitly supported by previ-
ous quantum chemistry or DFT based calculations of RIXS
spectra of small molecules [30,45–48]. These calculations
evaluate the Kramers-Heisenberg equation for the RIXS cross
section in the time-domain by time-evolving a nuclear wave
packet on a potential energy surface constructed by explicitly
including the core-hole in the active subspace. Results of such
calculations agree with experiment to a high level of accuracy.
While not previously explicitly stressed, this indicates the
important role played by the core-hole. Additionally, it has
long been recognized that the coupling constant probed in
optical Raman spectroscopy relates to the intermediate state
interaction of an optical exciton and a phonon [11,49–52].
Given the close analogy between the Raman and RIXS pro-
cesses, it should not be entirely surprising that RIXS measures
the coupling strength between an intermediate state core-level
exciton and a phonon. Lastly, we note that the concept of
exciton-phonon coupling is not new. In addition to the optical
Raman work, exciton-phonon coupling has been described
explicitly in calculations of the temperature dependence of
optical absorption spectra [52–55].

Only in the case that the core-hole is well screened and
other excited-state effects may be neglected could the RIXS
coupling constant approach the electron-phonon coupling
value. However, we expect that these conditions will generally
not hold, even for the copper L3-edge. Tests for Cu2O, pre-
sented in Appendix B, indicate that a Cu 2p core-hole is not
particularly well screened and should contribute appreciably
to the generation of phonons during a RIXS measurement.
Although RIXS measures exciton-phonon coupling rather
than electron-phonon coupling we anticipate that it will be
possible to disentangle the latter from the former, which will
be the subject of future work.

III. XPS: ONE-PARTICLE SPECTRAL FUNCTIONS

During the x-ray photoemission process, a core-level elec-
tron absorbs an x-ray photon and gets ejected from the mate-
rial. The resulting core-hole acts as a perturbation that can
cause secondary excitations; in addition to the main quasi-
particle peak, these satellites are referred to as the intrinsic
contribution. The photoelectron likewise acts as a brief pertur-
bation when initially removed. This gives the extrinsic effects.
The intrinsic and extrinsic effects may counteract, giving
rise to an interference term. For XPS, we ignore the role of
the photoelectron and treat only the intrinsic contribution to
vibrational excitations.

Within the above approximation, the XPS photocurrent
is proportional to the core-hole spectral function, or the
imaginary part of the core-hole (α) Green’s function. Nor-
mally, one constructs the dressed Green’s function Gα (ω)
from a bare Green’s function G0

α (ω) and an approximate
self-energy, �α (ω), through the Dyson equation [Gα (ω)]−1 =
[G0

α (ω)]−1 − �α (ω). While this may be effective at renormal-
izing quasiparticle energies, for low-order approximations to
the self-energy it typically yields poor spectral functions with
weakened and misplaced satellite features [56,57]. A better
procedure, well suited to core-level spectroscopy [58–62], is
to re-express the full Green’s function as a cumulant expan-
sion in the time domain Gα (t ) = G0

α (t )eCα (t ), where Cα (t )
is the cumulant. The diagrammatic summation of this series,
using the same approximation to the self-energy, implicitly
recovers some vertex corrections neglected by the Dyson
series and produces superior spectral functions.

The cumulant ansatz to the interacting Green’s function
originates in the linked-cluster expansion [63] and provides
an exact solution with only a lowest order self-energy for the
case of an isolated, deep core-hole [58,64]. This is similar to
the observation that the Holstein-type vibronic Hamiltonian
can be solved exactly by a canonical transformation when
electronic recoil is neglected. The cumulant expansion is no
longer exact when recoil becomes important, such as for
valence level electrons and holes, nevertheless, its recent use
in such cases has been promising [33,56,57,65,66].

First-principles work with the cumulant expansion has
mainly been employed to describe plasmon satellites in
conjunction with Hedin’s GW self-energy (G is the single
particle Green’s function and W is the screened Coulomb
interaction). This has proven to be quite successful at repro-
ducing the valence-level photoemission spectrum of silicon
[56,62,67–70] and has even reasonably reproduced the low
energy plasmon satellites in SrVO3 [71,72] and charge trans-
fer effects in the XPS [73] and XAS [74] spectra of NiO, sug-
gesting the applicability of the GW -cumulant approach may
extend to moderately correlated materials. Only very recently
has the cumulant expansion been applied to the vibronic cou-
pling problem [32,33,75]. Here, one exchanges the plasmonic
GW self-energy for the Fan-Migdal vibronic self-energy GD

(D is the phonon propagator). These studies focused on va-
lence level photoemission; we are unaware of any application
of vibronic cumulants to core-level spectroscopies.

Working at a second-order approximation, the cumulant
may be expressed in the time domain as

Cα (t, t ′) = [
G0

α (t, t ′)
]−1

×
∫ t

t ′

∫ t

t ′
dt1dt2 G0

α (t, t1)�α (t1, t2)G0
α (t2, t

′). (6)

We approximate the phonon contribution to the core-hole self-
energy with the second-order Fan-Migdal term,

�α (t ′, t ) = i
∑
qλ

∣∣Mqλ
α

∣∣2
G0

α (t ′, t )Dqλ(t ′, t ) , (7)

which neglects the Debye-Waller contribution. The localized
nature of the core-hole in XPS permits the neglect of recoil,
which significantly simplifies the problem as was shown
by Nozières and De Dominicis [64] and Langreth [58] for
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plasmons, and by Dunn [76] and Gunnarsson et al. [61] for
phonons. The core-hole Green’s functions may be factored out
of the integrals in Eq. (6) to give

Cα (t, t ′) = −
∑
qλ

∣∣Mqλ
α

∣∣2
∫ t

t ′

∫ t

t ′
dτdτ ′Dqλ(τ, τ ′)θ (τ − τ ′).

(8)
The two terms required to evaluate the core-hole cumulant are
the phonon Green’s function in the presence of the core-hole,
Dqλ, and the core-hole–phonon coupling parameter, M

qλ
α .

These quantities may be obtained with density functional
theory or density functional perturbation theory. For small
molecules, such as we consider below, ab initio molecular
dynamics (AIMD) is also a convenient way to obtain both
quantities.

Within the AIMD approach, the time-ordered phonon
Green’s function can be expressed as the autocorrelation
function iDqλ(t ) = 〈0| T Bqλ(t )Bqλ(0) |0〉, where Bqλ(t ) =
b+

−qλ(t ) + bqλ(t ) is the displacement operator for a phonon of
mode λ and momentum q. The classical equivalent, suitable
when the nuclei are treated classically within MD, is

Dqλ(t, t ′) = −i
∑
ij

Q
qλ

i (t )Qqλ

j (t ′)e−iq·(Ri−Rj ) (9)

in which Q
qλ

i (t ) =
√

μiωqλ

2Nh̄
δ �Ri (t ) · �ξqλ

i is the normalized
atomic displacement projected along the phonon normal mode
vector ξ

qλ

i for atom i. N is the number of atoms in the unit
cell and μ is the average reduced mass of the unit cell. The
electron-phonon coupling is given by

Mqλ
α =

∑
j

e−iq·Rj

√
h̄

2Nμjωqλ

�Fj (Rj , t = 0) · �ξqλ (10)

with Fj the force on atom j at position Rj at t = 0.

Numerical results

We consider the Si 2p core-hole vibrational coupling in the
x-ray photoemission spectra of SiH4 and SiF4 molecules. The
main motivations for this choice are the availability of high
quality experimental data [77] showing clearly distinguishable
phonon sidebands and the suitability of the system to first-
principles methods. To construct the electron-phonon self-
energy from Eq. (7), we generate the phonon Green’s function
and the core-hole phonon coupling constant from a molecular
dynamics simulation in which we switch on a core-hole in
the silicon 2p level at t = 0. Tracking the positions of ligand
atoms (H or F), we observe that only the A1 breathing mode
is excited by the core-hole, which is expected from symmetry
considerations. We therefore express the dynamics in terms
of this breathing mode. Figure 2(a) shows the imaginary part
of the breathing mode phonon Green’s function in the time
domain constructed as the autocorrelation function of the
normal mode coordinate.

An advantage of using the AIMD autocorrelation function
to construct the vibrational Green’s function is that it naturally
captures any anharmonic contribution present, though the
response in this case is nearly harmonic. Since the observed
response is harmonic and t = 0 corresponds to a maximum
in the displacement amplitude, we can use the AIMD forces

FIG. 2. Construction of the core-hole vibronic spectral function.
(a) The imaginary part of the ligand displacement-displacement
correlation function for SiH4 (red) and SiF4 (blue) obtained from
ab inito molecular dynamics simulations in the presence of a Si
2p core-hole. (b) The imaginary part of the full core-hole Green’s
function for SiH4 (red) and SiF4 (blue) in the time domain. Silicon
2p core-hole spectral function due to vibrational interactions for
(c) SiH4 (red) and (d) SiF4 (blue). The first peak of each spectral
function is displaced from zero by −M2/ω as discussed in the text.

at t = 0 to obtain the core-hole phonon coupling constant
according to Eq. (10). The core-hole self-energy is evaluated
by Eq. (7), which then gives the cumulant by Eq. (6) and
finally the dressed core-hole Green’s function. The imaginary
part of the core-hole Green’s function in the time domain is
shown in Fig. 2(b). Fourier transforming to frequency space
gives the core-hole spectral functions, shown in Figs. 2(c) and
2(d) for SiH4 and SiF4, respectively. The Lorentzian width of
the features in Fig. 2 originates from the addition of a finite
CVV Auger core-hole lifetime [77,78] to the bare core-hole
Green’s function.

A few observations about the spectral functions are worth
mentioning. Most immediately, the spectral functions show
clear vibrational sidebands at multiples of the phonon fre-
quency. The degree of asymmetry of each series depends
on the coupling strength. For SiH4, the coupling constant is
relatively weak (g = 0.25) and only three features are seen
in the spectral function with monotonically decreasing inten-
sities, giving a very asymmetric structure. The situation is
quite different for SiF4, which exhibits intermediate coupling
(g = 2.4); numerous vibronic features are observed with non-
monotonically varying intensities, giving a more symmetric
overall form.
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Due to the vibronic coupling, there is a well known
shift [33,58] of the first vibrational peak to lower energy by
−M2

λ/ωλ with respect to the bare-particle peak position. For
this reason, the leading, zero phonon peak in each spectral
function appears at negative energy. For weak coupling
(SiH4) this shifts the overall spectral weight to slightly lower
energy, while in the intermediate coupling case (SiF4), the
overall spectral weight is barely displaced. Often, vibrational
features are not experimentally resolved and contribute to a
spectral width that is generically interpreted. Neglect of this
vibronic shift can lead to misquantification of bare-particle
energies, which can confuse comparison between experiment
and calculation.

In more general cases, the above observations may be pre-
cisely quantified with the aid of the boson excitation spectrum

βα (ω) = 1

π
|Im �α (ω + εα )| . (11)

Physically, the response of a system to the perturbation caused
by a core-excitation can be described in terms of secondary
bosonic excitations (phonons in this case). The intensity with
which bosons of energy ω are generated by the perturbation is
given by βα (ω). The energy shift and renormalization factor
of the quasiparticle peak can be expressed in terms of the
excitation spectrum, respectively, as

�Eα =
∫

dω
βα (ω)

ω
and Zα = exp

[∫
dω

βα (ω)

ω2

]
.

(12)
The boson excitation spectrum gives an alternate expression
for the cumulant (at the second order)

Cα (t ) =
∫

dω
βα (ω)

ω2
[e−iωt + iωt − 1] (13)

that can be convenient for frequency-domain calculations.
Turning finally to the XPS spectra, the silicon 2p orbitals

are split by spin-orbit coupling into 2p3/2 and 2p1/2 levels,
which are separated by about 0.6 eV [79]. To compare our
calculations with experimental results [77], we obtain the full
silicon 2p XPS signal by convolving each spectral function
with a bare core-hole spectrum that consists of two delta
functions (for the 2p3/2 and 2p1/2 levels) that have a 2:1
intensity ratio. This comparison is presented in Fig. 3. An
additional linewidth, beyond the Lorentzian core-hole broad-
ening, was added by further convolving with a Gaussian to
account for the experimental resolution [77]. We note that the
experimental observation of phonon side bands in XPS further
demonstrates the ability of a core-hole to create phonons.

IV. XAS: TWO-PARTICLE SPECTRAL FUNCTIONS

It is often a good approximation to describe the x-ray
absorption event with a two-particle picture in which a photon
creates a core-hole and a photoelectron (or annihilates the
pair for the x-ray emission case). Evaluation of the two-
particle Green’s function presents a significant challenge be-
yond the one-particle Green’s function as one must now treat
the interaction between the photoelectron and core-hole in
addition to their interactions with the lattice. Following the
recent suggestion of Antonius and Louie [52], we first solve
the electronic problem for the two-particle excitonic states,

FIG. 3. Calculated XPS spectra of SiF4 (top) and SiH4 (bot-
tom) compared to experimental results [77] (open symbols). Shaded
curves represent the individual 2p3/2 (red) and 2p1/2 (blue) contribu-
tions. Vertical gray lines indicate the positions of electronic peaks in
the absence of electron-phonon interactions.

and then dress the excitons with phonons. This separation
of the electronic interaction kernel from the electron-lattice
problem is justified by the significantly different timescales
of the interactions. Whereas Antonius and Louie considered
vibronic effects on optical excitons at the Dyson-Migdal level,
we treat the phonon contribution to the core-level exciton
within the Migdal-cumulant approximation.

We generate the purely electronic two-particle Green’s
function L(ω) and corresponding excitation spectrum μ0(ω)
by solving the Bethe-Salpeter equation (BSE) [80]. The BSE
describes the electron and hole quasiparticles at the density
functional theory level, typically with GW self-energy correc-
tions. Near threshold, the electron and hole can pair into an ex-
citon state by interacting with each other through the screened
direct and bare exchange interactions, which are treated by
summing ladder diagrams. Each excitonic state ξ will be
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a mixture of electron-hole pairs |φξ 〉 = ∑
nkα A

ξ

nkα |nk; α〉
and thus the exciton creation operator is defined in terms of
electron and hole operators as a+

ξ = ∑
nkα A

ξ

nkαc+
nkcα . Details

of the BSE as it applies to optical and core-level excitations
can be found in many references [81–84] and reviews [70].

Using this electronic solution as a starting point, we now
treat the interaction between the purely electronic excitons
and phonons. Denoting the phonon-dressed exciton Green’s
function as �(ω), the x-ray absorption coefficient is

μ(ω) = − 1

π

∑
ξ,ξ ′

(dξ )∗dξ ′ Im 〈0| aξ ′�(ω + εi )a
+
ξ |0〉 , (14)

where the matrix elements of the photon operator � are
given by dξ = 〈ψξ | � |0〉. The ground-state wave function
|0〉 contains no excitons or phonons in the limit of zero
temperature. The vibronic wave function |ψξ 〉 = a+

ξ |0〉 =∏
ν |φξ 〉 |nν = 0〉 contains both vibrational |nν〉 and electronic

|φξ 〉 parts, but is a solution of H0 (without an electron-phonon
interaction). (Here we have introduced the short-hand nota-
tion ν = {q, λ} for the phonon mode and momentum.) The
photon operator does not directly create phonons within the
ground-state vibrational basis. Rather, phonons are generated
by the electron-lattice interaction during the propagation of
the exciton.

The main challenge is to evaluate the dressed exciton
propagator �(ξ ′, ξ, ω + εi ) = 〈0| aξ ′�(ω + εi )a

+
ξ |0〉. In the

absence of the electron-phonon interaction (or more complex
electronic interactions not captured by the BSE) �(ξ ′, ξ, ω)
will be diagonal (ξ = ξ ′) and will reduce to the bare exciton
propagator L(ξ, ω). Exciton-phonon scattering can mix the
pure excitonic states through intraband scattering, which we
include in the propagation of the exciton. In principle, scat-
tering can also give rise to nondiagonal elements of the prop-
agator (ξ 	= ξ ′), however, the nondiagonal elements typically
involve interband scattering, which will be negligible except
near band crossings. Therefore we restrict our effort to just the
diagonal contributions.

Within the cumulant notation, the phonon-dressed exciton
Green’s function may be expressed in terms of the bare
exciton Green’s function as

�(ξ, t ) = L(ξ, t )eC(ξ,t ). (15)

Here we treat the exciton as an effective quasiparticle that in-
teracts with phonons. If the exciton is restricted to an isolated
level and recoil during phonon scattering may be neglected,
evaluation of the cumulant in Eq. (15) follows similarly to the
procedure presented in the XPS section. However, this will
not be the case in general.

Analogously to Eq. (6), a second-order approximation to
the exciton cumulant may be written as

C(ξ, t ) = [L(ξ, t )]−1

×
∫ t

0

∫ t

0
dτdτ ′L(ξ, t − τ )�(ξ, τ − τ ′)L(ξ, τ ).

(16)

The exciton self-energy �ξ contains a generalized Fan-
Migdal-like term

�FM (ξ, t ) = i
∑
ν,ξ1

[
Mν

ξξ1

]2
L(ξ1, t )Dν (t ) (17)

FIG. 4. Diagrammatic series included in the cumulant expansion
for the fully interacting exciton Green’s function �ξ (in red). The
two-particle bare exciton propagator Lξ is represented by the double
black lines while the oscillating red curves indicate phonons. The
cumulant expansion accounts for self-consistency terms, such as
rainbow diagrams (fourth diagram), and approximately includes
vertex corrections (fifth diagram) [60]. Higher order replicas are also
included.

for the interaction of a bare exciton with a phonon. Here, there
is an important difference with respect to the XPS core-hole
self-energy in Eq. (7). Equation (17) contains a summation
over exciton states, which accounts for intraband scattering
during the propagation. Consequently, it is not possible to
factor out the propagator lines in Eq. (16) as was done for
the XPS problem to arrive at Eq. (8), which was effectively an
exact solution.

Even though the cumulant expansion is no longer exact
when phonons can scatter the exciton between different states,
a reasonable result can still be obtained from the second or-
der approximation through exponential resummation [36,65].
Expanding the cumulant in powers of the exciton-phonon
interaction as C(t ) = ∑

m Cm(t ), we see that even stopping
at second order in the cumulant, the exponential form of the
exciton propagator �(t ) = L(t ) exp[C2(t )] will accumulate
terms to infinite order. Beyond generating multiple replicas of
the Fan-Migdal diagram, the second-order cumulant will also
approximately reproduce diagrams that include vertex correc-
tions such as the last one in Fig. 4. This partial re-summation
is a common approximation for the cumulant [32,33,65,73]
for both phonon and electronic contributions.

A. Exciton-phonon coupling

The electron-lattice matrix elements Mν
ξξ ′ are evaluated

as an exciton-phonon scattering process rather than separate
electron-phonon and core-hole–phonon scattering events. We
construct the exciton-phonon coupling constants by general-
izing the frozen-phonon procedure presented by Tinte and
Shirley [85] and Gilmore and Shirley [86] to study the vi-
brational contribution to the XAS linewidth of SrTiO3. This
defines the force constants

Fν
ξξ ′ = −∂Qν

[
EGS

tot (Qν ) + 〈ξ ′| HBSE(Qν ) |ξ 〉 ]∣∣
δQν=0 (18)

as derivatives of the excited-state total energy with respect
to given atomic displacements. This expression partitions the
atomic position dependent excited-state total energy into the
sum of the ground-state potential energy surface EGS

tot (Q) and
the energy separation between the ground- and excited-state
PES [HBSE(Q)]. In the above expression ξ and ξ ′ are excitonic
eigenstates of the equilibrium lattice and Eq. (18) accounts
also for the scattering between exciton states by phonons.
The exciton-phonon coupling constants are obtained from the
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force constants as Mν
ξξ ′ =

√
h̄

2μων
F ν

ξξ ′ . We anticipate that it

should be possible in the general case of a periodic solid
to construct the exciton-phonon coupling constants without
the need for supercells in a manner analogous to density
functional perturbation theory.

To evaluate the Fan-Migdal exciton self-energy we need
the phonon Green’s function in addition to the exciton-phonon
coupling constants. Rather than calculate explicitly the full
response of the lattice to the creation of an exciton we assume
that the lattice response is harmonic with a frequency ex-
tracted from the excited-state potential energy surface, which
is obtained during the calculation of the force constants.

B. Numerical results

To demonstrate the above methodology, we calculate the
vibrational contributions to the N K-edge of the N2 molecule
and to the O K-edges of gas-phase acetone and CO. We
select these three molecules because for each the problem
can be well approximated as a single exciton state interacting
with a single vibrational stretching mode, and because high
resolution experimental data exist showing multiple phonon
sidebands (for N2 and CO). The paragraphs below refer
specifically to acetone unless otherwise stated.

The acetone O K-edge XAS consists of an isolated feature
at 531.5 eV that corresponds to the excitation of an oxygen
1s electron into a π∗ antibonding orbital between the oxygen
and nearest carbon atom, and a broad continuum at higher
energy. We obtain the purely electronic absorption spectrum
by solving the Bethe-Salpeter equation with all atoms fixed at
their equilibrium positions using the OCEAN code [83,88,89].
Figure 5 presents this result, focusing on the 1s1π∗ feature
at 531.5 eV. To evaluate the exciton-vibron force constant,
we perform the numerical derivative in Eq. (18) explicitly
by repeating the BSE calculation several times while moving
the oxygen atom in order to make incremental adjustments
to the C = O bond length. The excited-state potential energy
surface, constructed as the sum of the ground-state PES and
the BSE excitation energy, is given in the inset of Fig. 5.
The derivative of the excited-state potential energy surface
at the ground-state equilibrium bond length gives an exciton-
vibrational force constant of F = −7.6 eV/Å for the bond
stretching mode. This is equivalent to a value of M = 0.35
eV or g = 5.4. This compares very well to the value of F =
−7.7 eV/Å obtained from the constrained DFT calculation
presented in Sec. II. The same procedure was repeated for
the CO molecule yielding a larger force constant of F = 13.7
eV/Å and stronger coupling of M = 0.6 eV (g = 13). For N2,
we find a force constant of F = −6.7 eV/Å, again agreeing
well with the constrained DFT result of F = −7.0 eV/Å. This
corresponds to a weaker coupling constant of M = 0.24 eV
(g = 0.92).

The phonon Green’s function was modeled in the harmonic
limit using the frequency found from a quadratic fit to the
excited-state potential energy surface. For acetone, this gave
ω = 0.15 meV, ω = 0.16 meV for CO, and for N2 ω =
0.25 meV, though in the latter two cases the frequencies can be
clearly observed experimentally as the energy separation be-

FIG. 5. Calculation of the O K-edge XAS of acetone. The arrow
indicates the 1s1π∗ resonance. The inset shows the 1s1π∗ excited-
state PES with respect to the C = O bond length constructed as the
sum of the ground-state PES and the BSE excitation energy. The
tangent line at the ground-state C = O equilibrium bond length gives
the excited-state force while the excited-state vibrational frequency
is obtained from the quadratic fit (blue curve).

tween phonon sidebands. Anharmonic vibrational responses
could be obtained through atomic displacement autocorre-
lation functions, as done for XPS, generated by excited-
state molecule dynamic simulations. However, beyond the
challenge of such calculations, in many periodic systems the
harmonic response will be sufficient.

With the exciton-phonon coupling constant and the phonon
Green’s function, we evaluate the exciton self-energy �FM

ξ in
Eq. (17). The exciton cumulant is then formed by Eq. (16)
and the imaginary part of the resulting full exciton Green’s
function gives the effective XAS spectral function. Since
the three cases we are considering involve excitations into
isolated levels, the exciton spectral function is effectively
equivalent to the XAS signal (the pure electronic spectrum
can be approximated as a single Lorentzian with core-hole
lifetime broadening). Additional instrumental broadening was
added using a HWHM corresponding to the original experi-
mental work [46,90]. The final spectra are compared to the
experimental data in Fig. 6.

As with the XPS results, the energy shift of the quasipar-
ticle peak and the degree of symmetry of the overall spectral
shape depend on the exciton-phonon coupling strength. N2 has
relatively weak coupling (g ∼ 0.92) and its spectrum shows
noticeable asymmetry while the coupling strength of CO is
quite large (g ∼ 13) and the spectrum is symmetric. Acetone
has fairly strong coupling (q ∼ 5.4) and a generally symmet-
ric spectrum. The overall agreement between the calculation
and experiment for acetone is quite good while deviations in
the intensities of higher-order satellites are noticeable for N2.
This could be an indication of anharmonicity of the excited-
state vibrations that we have neglected.
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FIG. 6. Vibrational contribution to the x-ray absorption spectra of the K-edge of N2 (left) and the O K-edges of CO and acetone (right).
Theoretical spectra (colored curves) are compared to experiment (open symbols). Gray vertical lines indicate the energy positions of the purely
electronic quasiparticle spectra. The energy shift and degree of symmetry of the vibronic spectra depend on the exciton-phonon coupling
strength. Experimental results are taken from Chen et al. [90] for N2 and from Püttner et al. [87] for CO.

V. PHONON CONTRIBUTION IN RIXS

The cross-section for resonant inelastic x-ray scattering
was introduced in Sec. II. In the present work, we restrict
our attention to the so-called quasielastic line. In this limit,
the system returns to the electronic ground state at the end
of the scattering process, leaving only vibrational excitations
such that the final state propagator D(ωloss) is the ground-state
phonon Green’s function. However, the results obtained in this
section could be generalized to final states with a combination
of electronic and vibrational excitations.

The RIXS cross-section can be written in terms of the in-
teracting two-particle propagator �(ω) without explicit sum-
mation over all intermediate states as

σ (ωi, ωloss ) =
∑
f

| 〈ψf | �+
o �(ωi )�i |ψi〉 |2

× δ(εf i − ωloss). (19)

The photon operator �i (�o) corresponds to the incoming
(outgoing) photon. Within the delta function, εf i = εf − εi

is the energy difference between the initial and final states.
The final state vibronic wave function (|ψf 〉 = |φi〉 |n(f )

ν 〉)
differs from the initial wave function (|ψi〉 = |φi〉 |n(i)

ν 〉) only
by the number of phonons in each state. Therefore we replace
the summation index f by the final-state vibrational levels,
n

(f )
ν , of each mode ν = {q, λ}. There is no summation over

initial states since we again assume the low-temperature limit
that the initial state is the electronic ground state with all
phonons in the zero oscillator level. For this reason, we will
not explicitly include the f superscript hereafter.

If we momentarily limit our consideration to a single
phonon mode ν ′ for notational simplicity, we can write the
RIXS amplitudes in the excitonic basis as

〈nν ′ | 〈φi | �∗
o�(ωi )�i |φi〉 |0〉

=
∑
ξ1,ξ2

(
do

ξ2

)∗
di

ξ1
�(n)(ξ1, ξ2, ν

′, ωi ). (20)

For later convenience, on the right-hand side, we separate
the oscillator level n (in the superscript of �) from the
mode index ν ′ (within the parentheses of �). We can then
express the RIXS cross section as a summation over n phonon

contributions �(n) as

σ (ωi, ωloss ) = − 1

π
Im

∑
n

∣∣∣∣ ∑
ξ1,ξ2

(
do

ξ2

)∗
di

ξ1
�(n)(ξ1, ξ2, ν

′, ωi )

∣∣∣∣
2

×Dn
ν ′ (ωloss). (21)

The final-state summation will be limited to a manage-
able range because the phonon contribution to RIXS at the
quasielastic line will contain only a small number of observ-
able phonon peaks.

The RIXS amplitudes �(n) can be represented by the
diagrams in Fig. 7. The basic element of the diagrams is �ξ ,
which gives the full contribution in the n = 0 case where
the final state contains no phonons. This is the same as the
XAS phonon-dressed exciton propagator given by Eq. (15)
in Sec. IV (see also Fig. 4). In the context of RIXS, we
refer to this term as the exciton propagator dressed by virtual
(intermediate-state) phonons. This term includes the contribu-
tions of virtual phonons to infinite order.

When the final-state contains a nonzero number of
phonons, the RIXS amplitudes may be written down follow-
ing usual diagrammatic rules, supplying Mν ′

ξξ ′ for a vertex, �ξ

for an exciton line and D>
ν ′ for a phonon propagator. The term

FIG. 7. Diagrams for the RIXS amplitudes for (a) zero, (b) one,
and (c) two real (final-state) phonons. Heavy red lines indicate
phonon-dressed exciton propagators and blue oscillating curves rep-
resent final-state phonons.
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with one real (final-state) phonon [Fig. 7(b)] is

�(1)(ξ, ξ ′, ν ′, t ) = iMν ′
ξξ ′�ξ (t − τ̃ )D>

ν ′ (t − τ̃ )�ξ ′ (τ̃ ), (22)

where internal time integration is implied by the shorthand
notation P (τ̃ ) = ∫ t

0 dτP (τ ) for a given propagator P . The
phonon Green’s function iD>

ν ′ (t − τ ) = 〈0| T bν ′ (t )b+
ν ′ (τ ) |0〉

is a causal one (half of the full phonon Green’s function)
and corresponds to the propagation of a real phonon which
is created at time τ and destroyed at time t > τ . For two real
phonons [Fig. 7(c)], we have

�(2)(ξ, ξ ′, ν ′, ν ′′, t ) = i2
∑
ξ1

Mν ′′
ξξ1

�ξ (t − τ̃2)D>
ν ′′ (t − τ̃2)

×�ξ1 (τ̃2−τ̃1)Mν ′
ξ1ξ ′D

>
ν ′ (t−τ̃1)�ξ ′ (τ̃1).

(23)

One can build the higher terms �(n) contributing any number
of real phonons to the RIXS final state by analogy.

The numerical evaluation of these terms for a periodic
crystal is feasible, though cumbersome. For a simpler demon-
stration, we take the no recoil limit, which physically involves
zero momentum transfer scattering between excitons and Ein-
stein type vibrational modes. In the next section, we derive
a more compact and tractable representation of the RIXS
amplitudes for the no recoil approximation that also allows
us to include some vertex corrections. In the section after, we
present numerical results for acetone and a general analysis of
the weak-coupling limit.

A. No recoil approximation

To clarify the following discussion, we draw a few low
order contributions to �(1) in Fig. 8, where we switch from
the phonon-dressed exciton propagator �ξ to the bare exciton
propagator Lξ and explicitly draw the virtual phonons in red
(real phonons remain in blue). The above construction of the
RIXS amplitudes accounts exactly for diagrams such as those
shown in Figs. 8(a) and 8(b), as well as all replicas. However,
it neglects contributions from vertices where the emission of

FIG. 8. Low-order diagrams for exciton-phonon interactions dur-
ing the RIXS process. Black lines are bare exciton propagators,
and red oscillating curves represent virtual phonons while blue
oscillating curves are used for real phonons. Diagrams (a) and (b)
are contained within the diagram of Fig. 7(b) for �(1) while (c) is a
vertex correction accounted for by Eq. (25).

a real phonon occurs concomitantly with the excitation of a
virtual phonon [Fig. 8(c)].

To account for these vertex corrections, we recognize
that in the absence of recoil, �(0) takes the same form
as the XPS core-hole Green’s function. Namely, �

(0)
ξ (t ) =

Lξ (t ) exp[Cξ (t )] where the cumulant is given by Eq. (8)
except for the substitution of exciton-phonon coupling
constants for the core-hole–phonon coupling parameters.
Through a manipulation of the S-matrix expansion presented
in Appendix C, the one real phonon contribution is

�(1)(ξ, ν ′, t ) = �(0)(ξ, t )Y (ξ, ν ′, t ), (24)

where we have defined the vertex part

Y (ξ, ν ′, t ) = iMν ′
ξ

∫ t

0
D>

ν ′ (t − τ )dτ, (25)

which involves only real (final-state) phonons. Extending this
result to an arbitrary number of final-state phonons, the RIXS
amplitudes can be expressed as

�(n)(ξ, ν ′, t ) = �(0)(ξ, t )
[Y (ξ, ν ′, t )]n√

n!
. (26)

This expression contains no explicit summation over virtual
phonons, which is typically the most expensive part of RIXS
calculations. These effects are implicitly accounted for within
�(0). Contributions due to a particular number of final-state
phonons may be evaluated separately up to arbitrary n.

B. Numerical results

For numerical demonstration, we again chose the O K-
edge of the acetone molecule, which involves the coupling
of a single localized exciton to the C=O bond stretching
mode. Evaluation of Eq. (21) requires the photon matrix
elements and pure electronic excitation spectrum, exciton-
phonon coupling constant, and the phonon Green’s functions
for the electronic ground-state and the core-excited interme-
diate state. These quantities were already obtained in Sec. IV
during the calculation of the vibrational contribution to the O
K-edge XAS spectrum of acetone. Calculation of the x-ray
absorption coefficient gives essentially �(0), to which we add
a core-hole lifetime for the RIXS intermediate state. The
vertex part is then calculated according to Eq. (25) and the two
quantities are combined in Eq. (26) to give �(n). Additional
Gaussian broadening was added to the final spectrum, given
in Fig. 9, to account for the experimental resolution. While
the overall agreement with experiment is favorable, small
differences in the intensities and peak positions at higher os-
cillator numbers can be attributed to the neglect of anharmonic
contributions [25]. Calculations were performed assuming a
zero-temperature limit, which is reasonable since the relevant
vibrational energy is 210 meV.

For phonon modes in periodic crystals, it is reasonable to
assume a single vibrational frequency for both the ground and
core-excited states. This will be less accurate for local vibra-
tional modes in molecules. However, evaluating the Franck-
Condon overlap integrals for a model of acetone, we found
that the differing curvatures of the ground and core-excited
PES should make only minor corrections to the shape of the
RIXS spectrum for the present case. Consequently, we used
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FIG. 9. Calculated phonon contribution to the O K-edge RIXS
spectrum of acetone (blue curve) compared to experimental results
[25] (black symbols). Spectra were normalized to the intensity of
the first phonon peak and the loss energy is given in units of the
vibrational energy (ωvib = 210 meV). Anharmonic effects become
significant in the experimental data after the fourth phonon peak.

the same frequency for both the real and virtual vibrations in
the calculation for acetone.

In the limit of weak coupling, one can consider only
the lowest order diagrams. For example, Devereaux et al.

[22] recently calculated the RIXS cross-section for a small
cluster model of CuO in the limit of no virtual phonons and
one final-state phonon. In an effort to quantify the region
of applicability of this weak-coupling limit, we compare
model calculations of the one-phonon contribution to RIXS
σ (1) as a function of coupling strength (i) when all virtual
phonons are neglected, (ii) when virtual phonons are included
to infinite order without vertex corrections, and (iii) when
virtual phonons are included to infinite order with vertex
corrections. These results are presented in Fig. 10. The yellow
line gives the intensity of the first phonon peak when virtual
phonons are neglected. The red and blue lines correspond to
the inclusion of all virtual phonons, without or with vertex
corrections, respectively. The solid lines are evaluated using
a ratio �M/ωph of the intermediate-state lifetime to phonon
frequency appropriate for the Cu L-edge of a 2D cuprate while
the dashed lines use a value consistent with the O K-edge.

We confirm that the weak-coupling approximation is rea-
sonable for coupling strengths less than about 1, however,
this depends on the ratio of the core-hole lifetime and the
phonon frequency. Due to the longer core-hole lifetime of
the O 1s level, the curves for the O K-edge including vir-
tual phonons deviate from the weak-coupling approximation
earlier than those for the Cu L-edge. For the O K-edge, the
values of σ (1) including virtual phonons already differ by a
factor of 2 from the weak-coupling approximation by g = 1.
The deviation of the results obtained with all virtual phonons
(red and blue curves) from the zero virtual phonon values
(yellow line) indicates that the calculated σ (1) contribution
is overestimated since the two-phonon contribution (σ (2))
becomes non-negligible and takes spectral weight from σ (1).
If the coupling strength varies throughout the Brillouin zone
the correction to the one phonon intensity will also vary in

FIG. 10. Intensity of the first phonon peak with respect to the
coupling strength. Calculations were done for a single phonon mode
in the no-recoil limit using different approximations; yellow line:
lowest-order contribution (no virtual phonons); red curves: virtual
phonons, but no vertex corrections [Eq. (22)]; and blue curves: virtual
phonons including vertex corrections [Eq. (24)]. Dashed and solid
lines correspond to different core-hole lifetimes. The ratio �M/ωvib

was set to 2 (dashed lines) and 6 (solid lines) as typical values for
O K- and Cu L-edges, respectively. All curves were consistently
normalized to the value of the lowest order contribution (yellow
line). Vertical dashed lines indicate values of the coupling strength
measured by RIXS for TiO2 [39] and Li2CuO2 [31].

momentum space, likely making it important to go beyond
the weak-coupling limit.

For periodic systems with several active phonon modes
at different frequencies it can be difficult to distinguish the
second harmonic of low-frequency modes from the first har-
monic of higher frequency modes, making it nonobvious
to experimentally identify weak-coupling cases. This partly
explains why quantitative experimental studies of electron-
phonon coupling by RIXS are still limited. However, we
note that some of these measurements report intermediate or
even strong coupling values [31,38,39,91]. For reference, in
Fig. 10, we use vertical dashed lines to indicate experimen-
tally obtained coupling parameters for TiO2 and the quasi-1D
Li2CuO2.

VI. CONCLUSIONS

We have studied the phonon contribution to the RIXS loss
spectrum from the qualitative, quantitative and formal per-
spectives. Contrary to common assertion, we find that RIXS
is not a direct probe of electron-phonon coupling, even when
measured at the Cu L3-edge. Both excitonic binding effects
and direct core-hole–phonon interactions cause considerable
deviations from the electron-phonon interpretation. We find,
however, that an exciton-phonon coupling description is able
to quantitatively explain previous experimental data for ace-
tone. We expect that the exciton-phonon description of the
RIXS interaction will hold in general. This result significantly
impacts the use of RIXS to quantify electron-phonon coupling
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strengths in cuprates and other materials since it remains
unclear how to convert exciton-phonon interaction values to
electron-phonon coupling constants (e.g., those relevant to
superconductivity).

The notion that RIXS intensities are reflective of electron-
phonon coupling strengths in cuprates assumes that a Cu 2p3/2

core-hole, at about 930 eV binding energy, should be fully
screened. Experimental x-ray photoemission spectra [77] at
the much shallower Si 2p level (around 100 eV) of silicon
tetrahalides have shown obvious phonon sidebands, clearly
signaling the ability of a core-hole to excite vibrations. Our
test calculations on Cu2O, presented in Appendix B, suggest
the contribution of the deeper Cu 2p hole to the electron-
lattice interaction is comparable to that of the excited electron
and cannot be neglected. Although we find that the electron-
lattice interaction probed by RIXS is better characterized as
exciton-phonon coupling than electron-phonon coupling, we
suspect that future work may reveal how to disentangle the
latter quantity, which is the principle interest, from the former.

Based on the quantitative agreement of the calculated
phonon contribution to RIXS—assuming exciton-phonon
coupling—with experimental data for acetone, we have de-
veloped a many-body Green’s function description of the
phonon contribution to the RIXS cross section. We employed
a cumulant expansion for the exciton Green’s function, in
conjunction with a Fan-Migdal type exciton self-energy. This
methodology succeeded in accurately reproducing phonon
satellite structure observed experimentally in the x-ray ab-
sorption spectrum of CO and N2, as well as the phonon
excitation series of acetone measured by RIXS. The Green’s
function formulation is advantageous compared to wave-
function-based calculations that require onerous summations
of all possible RIXS intermediate states. Our methodology
includes only an explicit summation over the RIXS final
states, which are limited to the lowest few phonon oscillator
levels in practice.

We chose to demonstrate our formalism on acetone due to
the availability of high quality and unambiguous experimental
data. However, we intend that the methodology be applied
to periodic crystals. Periodic systems present additional nu-
merical challenges associated with sampling phonon coupling
strengths throughout the Brillouin zone. While computation-
ally demanding, such sampling is still possible within the
framework of first-principles calculations [33].
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APPENDIX A: NUMERICAL DETAILS

All density functional theory, density functional perturba-
tion theory, and ab initio molecular dynamics calculations
were performed with the QUANTUM ESPRESSO package [92],
which employs pseudopotentials, a plane-wave basis, and
periodic boundary conditions. Unless stated otherwise, we
used ultrasoft, PBE/GGA pseudopotentials taken from the
QUANTUM ESPRESSO pseudopotential library, and a plane-

wave cutoff of 50 Ry for the wave functions and 400 Ry for
the charge density.

To evaluate the excited-state potential energy surfaces and
force constants in Sec. II, a single acetone molecule was
placed in a cubic box of length 20 Å and atomic positions
were relaxed to their ground-state equilibrium positions. We
used the frozen-phonon scheme in which the oxygen atom
was given several displacements from its equilibrium position
and the total energy evaluated at each displacement for each
of the three excited-state scenarios (extra electron, core-hole
and exciton). The resulting forces are presented in Table I.
The core-hole and exciton cases required the use of an oxygen
pseudopotential with one 1s core electron removed. The extra
electron and exciton configurations constrained an additional
electron to the LUMO level, which we confirmed had signifi-
cant overlap with an anti-bonding C = O molecular orbital in
both cases.

To preform the Born-Oppenheimer MD simulations for
the XPS spectral functions in Sec. III we constructed an
ultrasoft, PBE Si pseudopotential with a 2p hole. Calculations
were performed to mimic the gas-phase by placing a single
molecule in the center of a 15 Å vacuum cell. We used an MD
time step of 50 h̄/ERyd. The bare core-hole spectral function
used in the convolution with the vibronic spectral function
was constructed by hand from experimental knowledge of
the Si 2p spin-orbit splitting and binding energies. Values
for the spin-orbit splitting and the respective binding energies
(which depend moderately on the local chemical environ-
ment) could be obtained numerically, e.g., from all-electron
DFT or Hartree-Fock calculations.

To obtain the exciton-phonon force constants used in Secs.
IV and V, Bethe-Salpeter calculations for the x-ray absorption
spectra of N2 and acetone were performed using the OCEAN

code [83,88,89] with QUANTUM ESPRESSO as the underlying
DFT engine. Both molecules were treated as gas-phase by
placing them in a cubic supercell of side length 20 Å. Ground-
state (non-core-hole) LDA, norm-conserving pseudopoten-
tials were used with an energy cutoff of 100 Ry. Convergence
was reached for acetone by including 96 unoccupied bands
for the core-hole screening calculation and 72 bands for the
exciton basis.

In certain cases, such as those involving a core-hole in
a 1s level, an alternative approach to obtaining the exciton-
phonon coupling constants is to generate the excited-state
potential energy surface with simpler self-consistent DFT
calculations using a core-hole pseudopotential and placing an
extra electron in the LUMO orbital [93,94]. We extracted the
force constants from the excited state potential energy sur-
faces using both the BSE and constrained core-hole–excited-
electron approaches. The exciton forces may be also esti-
mated from the Hellmann-Feynman theorem in the core-hole–
excited-electron case and then project onto normal vibrational
coordinates following the procedure described in Sec. II.

APPENDIX B: Cu 2 p CORE-HOLE IN Cu2O

Our study of the O K-edge RIXS of acetone clearly
shows the importance of direct coupling of the core-hole to
vibrations. Since many RIXS studies are performed at the Cu
L3-edge, we now estimate the contribution from a Cu 2p hole
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TABLE II. Forces on the nearest-neighbor oxygens due to an
electronic excitation on a Cu site in crystalline Cu2O.

Excitation type Force (eV/Å)

effective electron 0.135
core-hole 0.165
exciton 0.257

in generating lattice dynamics. We select crystalline Cu2O
for this test and approximate the forces on nearest-neighbor
oxygen sites due to an excitation on a copper site. As in the
acetone example from Sec. II, we model an extra electron, a
core-hole, and an exciton. The resulting forces are given in
Table II. The force resulting from the introduction of a Cu
2p core-hole is approximately 60% of the force due to an
exciton, and slightly larger than the force from the addition
of an electron localized at the copper site. From this, we
conclude that the Cu 2p hole is not screened enough to neglect
it’s coupling to phonons. The details of these calculations are
provided in the following paragraphs.

DFT calculations were performed on a (3 × 3 × 3) super-
cell of Cu2O using LDA norm-conserving pseudo-potentials.
The experimental structure was initially relaxed in order to
minimize the electron-ion forces for the ground-state con-
figuration. Keeping the ground-state atomic positions fixed,
SCF calculations were made for core-hole and “exciton”
configurations. For these, we made a copper pseudopotential
with one electron removed from the 2p shell and used this
pseudopotential on one of the 108 copper sites in the supercell.
The core-hole configuration has an overall positive charge of
1|e| for the supercell that can be compensated by a uniform
negative charge. Explicitly adding an extra electron to the
bottom of the conduction band (instead of using a uniform
neutralizing charge density) gives the exciton configuration

since this extra electron will be localized around the core-hole
site. For each configuration, we obtain the force on the oxygen
atoms nearest to the copper site with the core-hole. We find
that the force on the nearest oxygen atoms for the core-hole
configuration is 64% of the force resulting from the exciton
configuration. This strongly suggests that even for the deeply
bound Cu 2p levels a core-hole is not completely screened
and contributions directly to the generation of phonons.

To mimic the addition of an extra, localized electron, to
otherwise neutral Cu2O, we substituted Zn for one of the
Cu sites. Due to the impurity nature of the Zn atom, the
highest occupied electron level is localized around the zinc
site. We repeated the calculation after removing this elec-
tron (giving a supercell with total positive charge of 1|e|)
and defined the force due to the excited electron as the
difference between forces on nearest oxygen atoms for the
neutral and charged (Zn and Zn+1) impurity configurations
[Fe = (FZn-O) − (FZn+1-O)]. The resulting force on the nearest
oxygen site is smaller than for either the exciton or core-hole
configurations, possibly due to the less localized nature of
the extra electron compared to the bound exciton. Although
more effective schemes for localizing an extra electron can
likely be constructed with a local orbital basis DFT code, the
comparison between the core-hole and exciton configurations
already indicates that the core-hole–phonon coupling should
not be neglected at the Cu KL3-edge.

APPENDIX C: ZERO MOMENTUM TRANSFER RIXS

In order to clarify the origin of Eq. (24), we recall the S-
matrix expansion and consider the n = 0 and n = 1 elements
of the �(n) series. In the zero momentum transfer limit, the
interaction part of the Hamiltonian is V = ∑

ν,ξ Mν
ξξ a

+
ξ aξBν .

The term with zero real phonons may be written formally as

�(0)(ξ, ξ, t ) = −i

∞∑
m=0

(−i)2m

(2m)!

∫ t

0
dt1· · ·

∫ t

0
dt2m 〈0| T aξ (t )V (t2m) · · · V (t1)a+

ξ (0) |0〉 . (C1)

Since H 0 commutes with the number operator a+
ξ aξ and all exciton lines have the same index ξ , we may factor out the bare

exciton Green’s function iLξ (t ) = 〈0| T aξ (t )a+
ξ (0) |0〉 from this series [36,58,64] leaving

�(0)(ξ, ξ, t ) = Lξ (t )
∞∑

m=0

(−i)2mM
ν1
ξξ · · · Mν2m

ξξ

(2m)!

∑
ν1...ν2m

∫ t

0
dt1 · · ·

∫ t

0
dt2m 〈0| T Bν2m

(t2m) · · · Bν1 (t1) |0〉 . (C2)

After pairing all phonon operators into phonon Green’s function, the series may be summed up, giving an exponential generating
function exp[C(t )], which involves only interactions with virtual phonons [58]. Thus, �(0)(ξ, ξ, t ) = Lξ (t )eC(t ). For the one real
phonon case (n = 1), two types of phonon Green’s function will be present in the expansion of Eq. (C1) after pairing all phonon
operators. One is related to the propagation of virtual phonons and other describes the real phonon. Using the same argument as
before, we factor the bare exciton propagator out of the series

�(1)(ξ, ξ, ν ′, t ) = Lξ (t )
∞∑

m=0

(−i)2mM
ν1
ξξ · · · Mν2m

ξξ

(2m + 1)!

∑
ν1...ν2m+1

(2m + 1)
∫ t

0
dt2m+1M

ν ′
ξ 〈0| T Bν2m+1 (t2m+1)bν ′ (t ) |0〉 δν ′ν2m+1

×
∫ t

0
dt1· · ·

∫ t

0
dt2m 〈0| T Bν2m

(t2m) · · · Bν1 (t1) |0〉 . (C3)
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The main difference between �(1) and �(0) is the presence of
the first integral, with integration variable t2m+1. This integral
contains the real phonon with one vertex and a single time
integration variable, and may be condensed to the expression

Y (ξ, ν ′, t ) = iMν ′
ξ

∫ t

0
D>

ν ′ (t − τ )dτ. (C4)

Since this Y factor does not involve virtual phonons, it may be
considered separately. It appears 2m+1 times in the (2m+1)-th
term in the expansion of Eq. (C3) and combines with 1

(2m+1)!

to give a final factor of 1
(2m)! . If we factor this term out of the

sum the remaining terms are the same as the �(0) contribution

for the virtual phonon dressed exciton propagator. This gives

�(1)(ξ, ξ, ν ′, t ) = �(0)(ξ, ξ, t )Y (ξ, ν ′, t ). (C5)

Extending this result to an arbitrary number of final state
phonons, we arrive at Eq. (26),

�(n)(ξ, ξ, ν ′, t ) = �(0)(ξ, ξ, t )
[Y (ξ, ν ′, t )]n√

n!
. (C6)

The factor 1√
n!

comes from the normalization of the final-state
vibrational wave function.

[1] A. B. Migdal, Interaction between electrons and lattice vibra-
tions in a normal Metal, J. Exp. Theor. Phys. (U.S.S.R.) 34,
1438 (1958) [Sov. Phys. JETP 34, 996 (1958)].

[2] G. M. Eliashberg, Interactions between electrons and lattice
vibrations in a superconductor, J. Exp. Theor. Phys. (U.S.S.R.)
38, 966 (1960) [Sov. Phys. JETP 11, 696 (1960)].

[3] A. J. Millis, B. I. Shraiman, and R. Mueller, Dynamic
Jahn-Teller Effect and Colossal Magnetoresistance in
La1−xSrxMnO3, Phys. Rev. Lett. 77, 175 (1996).

[4] C. Grimaldi, E. Cappelluti, and F. Marsiglio, Spin-Hall Conduc-
tivity in Electron-Phonon Coupled Systems, Phys. Rev. Lett. 97,
066601 (2006).

[5] J. A. Pascual-Gutiérrez, J. Y. Murthy, and R. Viskanta, Thermal
conductivity and phonon transport properties of silicon using
perturbation theory and the environment-dependent interatomic
potential, J. Appl. Phys. 106, 063532 (2009).

[6] F. Giustino, Electron-phonon interactions from first principles,
Rev. Mod. Phys. 89, 015003 (2017).

[7] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[8] M. Hengsberger, D. Purdie, P. Segovia, M. Garnier, and Y. Baer,
Photoemission Study of a Strongly Coupled Electron-Phonon
System, Phys. Rev. Lett. 83, 592 (1999).

[9] F. Giustino, S. G. Louie, and M. L. Cohen, Electron-Phonon
Renormalization of the Direct Band Gap of Diamond, Phys.
Rev. Lett. 105, 265501 (2010).

[10] G. M. Bancroft, H. W. Nesbitt, R. Ho, D. M. Shaw, J. S. Tse,
and M. C. Biesinger, Toward a comprehensive understanding
of solid-state core-level XPS linewidths: Experimental and
theoretical studies on the Si2p and O1s linewidths in silicates,
Phys. Rev. B 80, 075405 (2009).

[11] V. Perebeinos, J. Tersoff, and Ph. Avouris, Effect of Exciton-
Phonon Coupling in the Calculated Optical Absorption of Car-
bon Nanotubes, Phys. Rev. Lett. 94, 027402 (2005).

[12] L. Pintschovius, Electron-phonon coupling effects explored
by inelastic neutron scattering, Phys. Status Solidi 242, 30
(2005).

[13] M. D’Astuto, P. K. Mang, P. Giura, A. Shukla, A. Mirone,
M. Krisch, F. Sette, P. Ghigna, M. Braden, and M. Greven,
Electron-phonon interaction in N-doped Cuprates: An inelasatic
X-ray scattering study, Int. J. Mod. Phys. B 17, 484 (2003).

[14] A. Q. R. Baron, H. Uchiyama, S. Tsutsui, Y. Tanaka, D.
Ishikawa, J. P. Sutter, S. Lee, S. Tajima, R. Heid, and K. P.
Bohnen, Phonon spectra in pure and carbon doped MgB2 by in-
elastic X-ray scattering, Physica C: Supercond. 456, 83 (2007).

[15] Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C.
Renner, Scanning tunneling spectroscopy of high-temperature
superconductors, Rev. Mod. Phys. 79, 353 (2007).

[16] J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Effective
Tunneling Density of States in Superconductors, Phys. Rev.
Lett. 10, 336 (1963).

[17] S. I. Tanaka, K. Mukai, and J. Yoshinobu, Direct observation of
the electron-phonon coupling between empty states in graphite
via high-resolution electron energy-loss spectroscopy, Phys.
Rev. B 95, 165408 (2017).

[18] A. Fujimori, K. Kobayashi, T. Mizokawa, K. Mamiya, A.
Sekiyama, H. Eisaki, H. Takagi, S. Uchida, R. J. Cava,
J. J. Krajewski, and W. F. Peck, Photoemission and inverse-
photoemission study of superconducting YNi2B2C: Effects of
electron-electron and electron-phonon interactions, Phys. Rev.
B 50, 9660 (1994).

[19] C. Zhang, Z. Liu, Z. Chen, Y. Xie, R. He, S. Tang, W. He, J.and
Li, T. Jia, S. N. Rebec, E. Y. Ma, H. Yan, D. Hashimoto, M.and
Lu, S. K. Mo, Y. Hikita, R. G. Moore, H. Y. Hwang, D. Lee,
and Z. Shen, Ubiquitous strong electron-phonon coupling at the
interface of FeSe/SrTiO3, Nat. Commun. 8, 14468 (2017).

[20] A. C. Ferrari, Raman spectroscopy of graphene and graphite:
Disorder, electron-phonon coupling, doping and nonadiabatic
effects, Solid State Commun. 143, 47 (2007).

[21] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P.
Hill, and J. van den Brink, Resonant Inelastic X-ray Scattering
Studies of Elementary Excitations, Rev. Mod. Phys. 83, 705
(2010).

[22] T. P. Devereaux, A. M. Shvaika, K. Wu, K. Wohlfeld, C. J.
Jia, Y. Wang, B. Moritz, L. Chaix, W. S. Lee, Z. X. Shen,
G. Ghiringhelli, and L. Braicovich, Directly Characterizing the
Relative Strength and Momentum Dependence of Electron-
Phonon Coupling Using Resonant Inelastic X-Ray Scattering,
Phys. Rev. X 6, 041019 (2016).

[23] L. J. P. Ament, M. van Veenendaal, and J. van den Brink,
Determining the electron-phonon coupling strength from Res-
onant Inelastic X-ray Scattering at transition metal L-edges,
Europhys. Lett. 95, 27008 (2011).

[24] M. Le Tacon, A. Bosak, S. M. Souliou, G. Dellea, T. Loew, R.
Heid, K. P. Bohnen, G. Ghiringhelli, M. Krisch, and B. Keimer,
Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon
anomalies and elastic central peak due to charge-density-wave
formation, Nat. Phys. 10, 52 (2013).

[25] S. Schreck, A. Pietzsch, B. Kennedy, C. Såthe, P. S. Miedema,
S. Techert, V. N. Strocov, T. Schmitt, F. Hennies, J.-E.

214305-14

https://doi.org/10.1103/PhysRevLett.77.175
https://doi.org/10.1103/PhysRevLett.77.175
https://doi.org/10.1103/PhysRevLett.77.175
https://doi.org/10.1103/PhysRevLett.77.175
https://doi.org/10.1103/PhysRevLett.97.066601
https://doi.org/10.1103/PhysRevLett.97.066601
https://doi.org/10.1103/PhysRevLett.97.066601
https://doi.org/10.1103/PhysRevLett.97.066601
https://doi.org/10.1063/1.3195080
https://doi.org/10.1063/1.3195080
https://doi.org/10.1063/1.3195080
https://doi.org/10.1063/1.3195080
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevLett.83.592
https://doi.org/10.1103/PhysRevLett.83.592
https://doi.org/10.1103/PhysRevLett.83.592
https://doi.org/10.1103/PhysRevLett.83.592
https://doi.org/10.1103/PhysRevLett.105.265501
https://doi.org/10.1103/PhysRevLett.105.265501
https://doi.org/10.1103/PhysRevLett.105.265501
https://doi.org/10.1103/PhysRevLett.105.265501
https://doi.org/10.1103/PhysRevB.80.075405
https://doi.org/10.1103/PhysRevB.80.075405
https://doi.org/10.1103/PhysRevB.80.075405
https://doi.org/10.1103/PhysRevB.80.075405
https://doi.org/10.1103/PhysRevLett.94.027402
https://doi.org/10.1103/PhysRevLett.94.027402
https://doi.org/10.1103/PhysRevLett.94.027402
https://doi.org/10.1103/PhysRevLett.94.027402
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1142/S0217979203016133
https://doi.org/10.1142/S0217979203016133
https://doi.org/10.1142/S0217979203016133
https://doi.org/10.1142/S0217979203016133
https://doi.org/10.1016/j.physc.2007.01.028
https://doi.org/10.1016/j.physc.2007.01.028
https://doi.org/10.1016/j.physc.2007.01.028
https://doi.org/10.1016/j.physc.2007.01.028
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRevLett.10.336
https://doi.org/10.1103/PhysRevB.95.165408
https://doi.org/10.1103/PhysRevB.95.165408
https://doi.org/10.1103/PhysRevB.95.165408
https://doi.org/10.1103/PhysRevB.95.165408
https://doi.org/10.1103/PhysRevB.50.9660
https://doi.org/10.1103/PhysRevB.50.9660
https://doi.org/10.1103/PhysRevB.50.9660
https://doi.org/10.1103/PhysRevB.50.9660
https://doi.org/10.1038/ncomms14468
https://doi.org/10.1038/ncomms14468
https://doi.org/10.1038/ncomms14468
https://doi.org/10.1038/ncomms14468
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/PhysRevX.6.041019
https://doi.org/10.1103/PhysRevX.6.041019
https://doi.org/10.1103/PhysRevX.6.041019
https://doi.org/10.1103/PhysRevX.6.041019
https://doi.org/10.1209/0295-5075/95/27008
https://doi.org/10.1209/0295-5075/95/27008
https://doi.org/10.1209/0295-5075/95/27008
https://doi.org/10.1209/0295-5075/95/27008
https://doi.org/10.1038/nphys2805
https://doi.org/10.1038/nphys2805
https://doi.org/10.1038/nphys2805
https://doi.org/10.1038/nphys2805


DEMONSTRATION OF RESONANT INELASTIC X-RAY … PHYSICAL REVIEW B 98, 214305 (2018)

Rubensson, and A. Föhlisch, Ground state potential energy
surfaces around selected atoms from resonant inelastic X-ray
scattering, Sci. Rep. 7, 20054 (2016).

[26] A. Compaan and H. Z. Cummins, Raman scattering, lumines-
cence, and exciton-phonon coupling in Cu2O, Phys. Rev. B 6,
4753 (1972).

[27] M. G. Sceats and S. A. Rice, On the use of Raman scattering to
probe exciton-phonon coupling in molecular crystals, J. Chem.
Phys. 62, 1098 (1975).

[28] C. Trallero-Giner, A. Cantarero, and M. Cardona, One-phonon
resonant Raman scattering: Fröhlich exciton-phonon interac-
tion, Phys. Rev. B 40, 4030 (1989).

[29] Y. Gillet, S. Kontur, M. Giantomassi, C. Draxl, and X. Gonze,
Ab initio approach to second-order resonant Raman scattering
including exciton-phonon interaction, Sci. Rep. 7, 7344 (2017).

[30] R. C. Couto, V. V. Cruz, E. Ertan, S. Eckert, M. Fondell, M.
Dantz, B. Kennedy, T. Schmitt, A. Pietzsch, F. F. Guimarães,
H. Ågren, F. Gel’mukhanov, M. Odelius, V. Kimberg, and
A. Föhlisch, Selective gating to vibrational modes through
resonant X-ray scattering, Nat. Commun. 8, 14165 (2017).

[31] S. Johnston, C. Monney, V. Bisogni, K. J. Zhou, R. Kraus,
G. Behr, V. N. Strocov, J. Málek, S. L. Drechsler, J. Geck,
T. Schmitt, and J. Van Den Brink, Electron-lattice interactions
strongly renormalize the charge-transfer energy in the spin-
chain cuprate Li2CuO2, Nat. Commun. 7, 10563 (2016).

[32] S. M. Story, J. J. Kas, F. D. Vila, M. J. Verstraete, and J. J. Rehr,
Cumulant expansion for phonon contributions to the electron
spectral function, Phys. Rev. B 90, 195135 (2014).

[33] J. P. Nery, Ph. B. Allen, G. Antonius, L. Reining, A. Miglio,
and X. Gonze, Quasiparticles and phonon satellites in spectral
functions of semiconductors and insulators: Cumulants applied
to the full first-principles theory and the Fröhlich polaron, Phys.
Rev. B 97, 115145 (2018).

[34] H. A. Kramers and W. Heisenberg, Über die Streuung von
Strahlung durch Atome, Z. Phys. 31, 681 (1925).

[35] I. G. Lang and Y. A. Firsov, Kinetic Theory of Semiconductors
with Low Mobility, J. Exp. Theor. Phys. (U.S.S.R.) 43, 1843
(1962) [Sov. Phys. JETP 16, 1301 (1963)].

[36] D. G. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press,
New York, 1990).

[37] J. L. Chang, A new formula to calculate Franck-Condon factors
for displaced and distorted harmonic oscillators, J. Mol. Spec-
trosc. 232, 102 (2005).

[38] W. S. Lee, S. Johnston, B. Moritz, J. Lee, M. Yi, K. J. Zhou,
T. Schmitt, L. Patthey, V. Strocov, K. Kudo, Y. Koike, J. Van
Den Brink, T. P. Devereaux, and Z. X. Shen, Role of Lattice
Coupling in Establishing Electronic and Magnetic Properties
in Quasi-One-Dimensional Cuprates, Phys. Rev. Lett. 110,
265502 (2013).

[39] S. Moser, S. Fatale, P. Krüger, H. Berger, P. Bugnon, A. Magrez,
H. Niwa, J. Miyawaki, Y. Harada, and M. Grioni, Electron-
Phonon Coupling in the Bulk of Anatase TiO2 Measured by
Resonant Inelastic X-Ray Spectroscopy, Phys. Rev. Lett. 115,
096404 (2015).

[40] S. Fatale, S. Moser, J. Miyawaki, Y. Harada, and M. Grioni,
Hybridization and electron-phonon coupling in ferroelectric
BaTiO3 probed by resonant inelastic x-ray scattering, Phys.
Rev. B 94, 195131 (2016).

[41] H. Yavas, M. van Veenendaal, J. van den Brink, L. J. P. Ament,
A. Alatas, B. M. Leu, M.-O. Apostu, N. Wizent, G. Behr, W.

Sturhahn, H. Sinn, and E. E. Alp, Observation of phonons with
resonant inelastic x-ray scattering, J. Phys. Condens. Matter 22,
485601 (2010).

[42] L. V. Keldysh and A. N. Kozlov, Collective properties of
excitons in semiconductors, Zh. Eksp. Teor. Fiz. 54, 978 (1968)
[Sov. Phys. JETP 27, 521 (1968)].

[43] V. M. Agranovich and B. S. Toshich, Collective properties of
Frenkel excitons, Zh. Eksp. Teor. Fiz. 53, 149 (1967) [Sov.
Phys. JETP 26, 104 (1968)].

[44] M. K. Grover and R. Silbey, Exciton-phonon interactions in
molecular crystals, J. Chem. Phys. 52, 2099 (1970).

[45] P. Sałek, A. Baev, F. Gel’mukhanov, and H. Ågren, Dynamical
properties of X-ray Raman scattering, Phys. Chem. Chem.
Phys. 5, 1 (2003).

[46] Y.-P. Sun, F. Hennies, A. Pietzsch, B. Kennedy, T. Schmitt,
V. N. Strocov, J. Andersson, M. Berglund, J.-E. Rubensson,
K. Aidas, F. Gel’Mukhanov, M. Odelius, and A. Föhlisch,
Intramolecular soft modes and intermolecular interactions in
liquid acetone, Phys. Rev. B 84, 132202 (2011).

[47] E. Ertan, V. Kimberg, F. Gel’Mukhanov, F. Hennies, J.-E.
Rubensson, T. Schmitt, V. N. Strocov, K. Zhou, M. Iannuzzi,
A. Föhlisch, M. Odelius, and A. Pietzsch, Theoretical simula-
tions of oxygen K-edge resonant inelastic x-ray scattering of
kaolinite, Phys. Rev. B 95, 144301 (2017).

[48] V. Vaz da Cruz, E. Ertan, R. C. Couto, S. Eckert, M. Fondell, M.
Dantz, B. Kennedy, T. Schmitt, A. Pietzsch, F. F. Guimarães,
H. Ågren, F. Gel’mukhanov, M. Odelius, A. Föhlisch, and
V. Kimberg, A study of the water molecule using frequency
control over nuclear dynamics in resonant X-ray scattering,
Phys. Chem. Chem. Phys. 19, 19573 (2017).

[49] M. Kira and S. W. Koch, Many-body correlations and excitonic
effects in semiconductor spectroscopy, Prog. Quantum Elec-
tron. 30, 155 (2006).

[50] M. Hoffmann and Z. G. Soos, Optical absorption spectra of the
Holstein molecular crystal for weak and intermediate electronic
coupling, Phys. Rev. B 66, 024305 (2002).

[51] T. D. Krauss and F. W. Wise, Raman-scattering study of
exciton-phonon coupling in PbS nanocrystals, Phys. Rev. B 55,
9860 (1997).

[52] G. Antonius and S. G. Louie, Theory of the exciton-phonon
coupling, arXiv:1705.04245.

[53] D. Yarkony and R. Silbey, Comments on exciton phonon
coupling: Temperature dependence, J. Chem. Phys. 65, 1042
(1976).

[54] J. C. Marini, B. Stebe, and E. Kartheuser, Exciton-phonon
interaction in CdSe and CuCl polar semiconductor nanospheres,
Phys. Rev. B 50, 14302 (1994).

[55] A. Marini, Ab Initio Finite-Temperature Excitons, Phys. Rev.
Lett. 101, 106405 (2008).

[56] M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J. J.
Kas, J. J. Rehr, M. G. Silly, F. Sirotti, and L. Reining, Valence
Electron Photoemission Spectrum of Semiconductors: Ab Initio
Description of Multiple Satellites, Phys. Rev. Lett. 107, 166401
(2011).

[57] J. Lischner, D. Vigil-Fowler, and S. G. Louie, Physical Origin
of Satellites in Photoemission of Doped Graphene: Ab Ini-
tio GW Plus Cumulant Study, Phys. Rev. Lett. 110, 146801
(2013).

[58] D. C. Langreth, Singularities in the x-ray spectra of metals,
Phys. Rev. B 1, 471 (1970).

214305-15

https://doi.org/10.1038/srep20054
https://doi.org/10.1038/srep20054
https://doi.org/10.1038/srep20054
https://doi.org/10.1038/srep20054
https://doi.org/10.1103/PhysRevB.6.4753
https://doi.org/10.1103/PhysRevB.6.4753
https://doi.org/10.1103/PhysRevB.6.4753
https://doi.org/10.1103/PhysRevB.6.4753
https://doi.org/10.1063/1.430552
https://doi.org/10.1063/1.430552
https://doi.org/10.1063/1.430552
https://doi.org/10.1063/1.430552
https://doi.org/10.1103/PhysRevB.40.4030
https://doi.org/10.1103/PhysRevB.40.4030
https://doi.org/10.1103/PhysRevB.40.4030
https://doi.org/10.1103/PhysRevB.40.4030
https://doi.org/10.1038/s41598-017-07682-y
https://doi.org/10.1038/s41598-017-07682-y
https://doi.org/10.1038/s41598-017-07682-y
https://doi.org/10.1038/s41598-017-07682-y
https://doi.org/10.1038/ncomms14165
https://doi.org/10.1038/ncomms14165
https://doi.org/10.1038/ncomms14165
https://doi.org/10.1038/ncomms14165
https://doi.org/10.1038/ncomms10563
https://doi.org/10.1038/ncomms10563
https://doi.org/10.1038/ncomms10563
https://doi.org/10.1038/ncomms10563
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.90.195135
https://doi.org/10.1103/PhysRevB.97.115145
https://doi.org/10.1103/PhysRevB.97.115145
https://doi.org/10.1103/PhysRevB.97.115145
https://doi.org/10.1103/PhysRevB.97.115145
https://doi.org/10.1007/BF02980624
https://doi.org/10.1007/BF02980624
https://doi.org/10.1007/BF02980624
https://doi.org/10.1007/BF02980624
https://doi.org/10.1016/j.jms.2005.03.004
https://doi.org/10.1016/j.jms.2005.03.004
https://doi.org/10.1016/j.jms.2005.03.004
https://doi.org/10.1016/j.jms.2005.03.004
https://doi.org/10.1103/PhysRevLett.110.265502
https://doi.org/10.1103/PhysRevLett.110.265502
https://doi.org/10.1103/PhysRevLett.110.265502
https://doi.org/10.1103/PhysRevLett.110.265502
https://doi.org/10.1103/PhysRevLett.115.096404
https://doi.org/10.1103/PhysRevLett.115.096404
https://doi.org/10.1103/PhysRevLett.115.096404
https://doi.org/10.1103/PhysRevLett.115.096404
https://doi.org/10.1103/PhysRevB.94.195131
https://doi.org/10.1103/PhysRevB.94.195131
https://doi.org/10.1103/PhysRevB.94.195131
https://doi.org/10.1103/PhysRevB.94.195131
https://doi.org/10.1088/0953-8984/22/48/485601
https://doi.org/10.1088/0953-8984/22/48/485601
https://doi.org/10.1088/0953-8984/22/48/485601
https://doi.org/10.1088/0953-8984/22/48/485601
https://doi.org/10.1063/1.1673263
https://doi.org/10.1063/1.1673263
https://doi.org/10.1063/1.1673263
https://doi.org/10.1063/1.1673263
https://doi.org/10.1039/B209717F
https://doi.org/10.1039/B209717F
https://doi.org/10.1039/B209717F
https://doi.org/10.1039/B209717F
https://doi.org/10.1103/PhysRevB.84.132202
https://doi.org/10.1103/PhysRevB.84.132202
https://doi.org/10.1103/PhysRevB.84.132202
https://doi.org/10.1103/PhysRevB.84.132202
https://doi.org/10.1103/PhysRevB.95.144301
https://doi.org/10.1103/PhysRevB.95.144301
https://doi.org/10.1103/PhysRevB.95.144301
https://doi.org/10.1103/PhysRevB.95.144301
https://doi.org/10.1039/C7CP01215B
https://doi.org/10.1039/C7CP01215B
https://doi.org/10.1039/C7CP01215B
https://doi.org/10.1039/C7CP01215B
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1103/PhysRevB.66.024305
https://doi.org/10.1103/PhysRevB.66.024305
https://doi.org/10.1103/PhysRevB.66.024305
https://doi.org/10.1103/PhysRevB.66.024305
https://doi.org/10.1103/PhysRevB.55.9860
https://doi.org/10.1103/PhysRevB.55.9860
https://doi.org/10.1103/PhysRevB.55.9860
https://doi.org/10.1103/PhysRevB.55.9860
http://arxiv.org/abs/arXiv:1705.04245
https://doi.org/10.1063/1.433182
https://doi.org/10.1063/1.433182
https://doi.org/10.1063/1.433182
https://doi.org/10.1063/1.433182
https://doi.org/10.1103/PhysRevB.50.14302
https://doi.org/10.1103/PhysRevB.50.14302
https://doi.org/10.1103/PhysRevB.50.14302
https://doi.org/10.1103/PhysRevB.50.14302
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevB.1.471
https://doi.org/10.1103/PhysRevB.1.471
https://doi.org/10.1103/PhysRevB.1.471
https://doi.org/10.1103/PhysRevB.1.471


ANDREY GEONDZHIAN AND KEITH GILMORE PHYSICAL REVIEW B 98, 214305 (2018)

[59] P. Nozières and E. Abrahams, Threshold singularities of the x-
ray Raman scattering in metals, Phys. Rev. B 10, 3099 (1974).

[60] L. Hedin, Effects of recoil on shake-up spectra in metals, Phys.
Scr. 21, 477 (1980).

[61] O. Gunnarsson, V. Meden, and K. Schonhammer, Corrections
to Migdal’s theorem for spectral funtions: A cumulant treatment
of the time dependent Green’s function, Phys. Rev. B 50, 10462
(1994).

[62] F. Aryasetiawan, L. Hedin, and K. Karlsson, Multiple Plasmon
Satellites in Na and Al Spectral Functions from Ab Initio
Cumulant Expansion, Phys. Rev. Lett. 77, 2268 (1996).

[63] A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods
of Quantum Field Theory in Statistical Physics (Dover, New
York, 1975).

[64] P. Nozières and C. T. De Dominicis, Singularities in the X-ray
absorption and emission of metals. III. One-body theory exact
solution, Phys. Rev. 178, 1097 (1969).

[65] J. J. Kas, J. J. Rehr, and L. Reining, Cumulant expansion of the
retarded one-electron Green function, Phys. Rev. B 90, 085112
(2014).

[66] J. S. Zhou, J. J. Kas, L. Sponza, I. Reshetnyak, M. Guzzo,
C. Giorgetti, M. Gatti, F. Sottile, J. J. Rehr, and L. Reining,
Dynamical effects in electron spectroscopy, J. Chem. Phys. 143,
184109 (2015).

[67] F. Caruso and F. Giustino, The GW plus cumulant method and
plasmonic polarons: Application to the homogeneous electron
gas, Eur. Phys. J. B 89, 238 (2016).

[68] F. Borgatti, J. A. Berger, D. Céolin, J. S. Zhou, J. J. Kas, M.
Guzzo, C. F. McConville, F. Offi, G. Panaccione, A. Regoutz,
D. J. Payne, J.-P. Rueff, O. Bierwagen, M. E. White, J. S. Speck,
M. Gatti, and R. G. Egdell, Revisiting the origin of satellites in
core-level photoemission of transparent conducting oxides: The
case of n-doped SnO2, Phys. Rev. B 97, 155102 (2018).

[69] F. Caruso, H. Lambert, and F. Giustino, Band Structures of
Plasmonic Polarons, Phys. Rev. Lett. 114, 146404 (2015).

[70] G. Onida, Electronic excitations: Density-functional versus
many-body Green’s function approaches, Rev. Mod. Phys. 74,
601 (2002).

[71] M. Gatti and M. Guzzo, Dynamical screening in correlated
metals: Spectral properties of SrVO3 in the GW approximation
and beyond, Phys. Rev. B 87, 155147 (2013).

[72] K. Nakamura, Y. Nohara, Y. Yosimoto, and Y. Nomura, Ab
initio GW plus cumulant calculation for isolated band systems:
Application to organic conductor (TMTSF)2PF6 and transition-
metal oxide SrVO3, Phys. Rev. B 93, 085124 (2016).

[73] J. J. Kas, F. D. Vila, J. J. Rehr, and S. A. Chambers, Real-
time cumulant approach for charge-transfer satellites in x-ray
photoemission spectra, Phys. Rev. B 91, 121112 (2015).

[74] J. J. Kas, J. J. Rehr, and J. B. Curtis, Particle-hole cumulant
approach for inelastic losses in X-ray spectra, Phys. Rev. B 94,
035156 (2016).

[75] A. Gali, T. Demján, M. Vörös, G. Thiering, E. Cannuccia, and
A. Marini, Electron-vibration coupling induced renormalization
in the photoemission spectrum of diamondoids, Nat. Commun.
7, 11327 (2016).

[76] D. Dunn, Electron-Phonon interactions in an insulator, Can. J.
Phys. 53, 321 (1975).

[77] T. D. Thomas, C. Miron, K. Wiesner, P. Morin, T. X.
Carroll, and L. J. Sæthre, Anomalous Natural Linewidth in the

2p Photoelectron Spectrum of SiF4, Phys. Rev. Lett. 89, 223001
(2002).

[78] F. P. Larkins, Influence of core hole screening on molecular
Auger rates and inner-shell lifetimes, J. Electron Spectros.
Relat. Phenomena 67, 159 (1994).

[79] R. Sankari, M. Ehara, H. Nakatsuji, Y. Senba, K. Hosokawa,
H. Yoshida, A. De Fanis, Y. Tamenori, S. Aksela, and K. Ueda,
Vibrationally resolved O 1s photoelectron spectrum of water,
Chem. Phys. Lett. 380, 647 (2003).

[80] E. E. Salpeter and H. A. Bethe, A relativistic equation for
bound-state problems, Phys. Rev. 84, 1232 (1951).

[81] M. Rohlfing and S. G. Louie, Excitonic Effects and the Optical
Absorption Spectrum of Hydrogenated Si Clusters, Phys. Rev.
Lett. 80, 3320 (1998).

[82] M. Rohlfing and S. G. Louie, Electron-Hole Excitations in
Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312
(1998).

[83] E. L. Shirley, Ab Initio Inclusion of Electron-Hole Attraction:
Application to X-Ray Absorption and Resonant Inelastic X-Ray
Scattering, Phys. Rev. Lett. 80, 794 (1998).

[84] S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Ab Initio
Calculation of Excitonic Effects in the Optical Spectra of Semi-
conductors, Phys. Rev. Lett. 80, 4510 (1998).

[85] S. Tinte and E. L. Shirley, Vibrational effects on SrTiO3 Ti
1s absorption spectra studied using first-principles methods,
J. Phys. Condens. Matter 20, 365221 (2008).

[86] K. Gilmore and E. L. Shirley, Numerical quantification of the
vibronic broadening of the SrTiO3 Ti L-edge spectrum, J. Phys.
Condens. Matter 22, 315901 (2010).

[87] R. Püttner, I. Dominguez, T. J. Morgan, C. Cisneros, R. F. Fink,
E. Rotenberg, T. Warwick, M. Domke, G. Kaindl, and A. S.
Schlachter, Vibrationally resolved O 1s core-excitation spectra
of CO and NO, Phys. Rev. A 59, 3415 (1999).

[88] J. Vinson, J. J. Rehr, J. J. Kas, and E. L. Shirley, Bethe-Salpeter
equation calculations of core excitation spectra, Phys. Rev. B
83, 115106 (2011).

[89] K. Gilmore, J. Vinson, E. L. Shirley, D. Prendergast, C. D.
Pemmaraju, J. J. Kas, F. D. Vila, and J. J. Rehr, Efficient
implementation of core-excitation Bethe-Salpeter equation cal-
culations, Comput. Phys. Commun. 197, 315901 (2015).

[90] C. T. Chen, Y. Ma, and F. Sette, K-shell photoabsorption of the
N2 molecule, Phys. Rev. A 40, 6737(R) (1989).

[91] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L.
Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio,
J. I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z. X.
Shen, Evidence for ubiquitous strong electron-phonon coupling
in high-temperature superconductors, Nature 412, 510 (2001).

[92] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. Dal Corso et al., QUANTUM ESPRESSO: A modular
and open-source software project for quantum simulations of
materials, J. Phys.: Condens. Matter 21, 395502 (2009).

[93] D. Prendergast and G. Galli, X-Ray Absorption Spectra of
Water from First Principles Calculations, Phys. Rev. Lett. 96,
215502 (2006).

[94] C. Gougoussis, M. Calandra, A. P. Seitsonen, and F. Mauri,
First-principles calculations of X-ray absorption in a scheme
based on ultrasoft pseudopotentials: From α-quartz to high-Tc

compounds, Phys. Rev. B 80, 075102 (2009).

214305-16

https://doi.org/10.1103/PhysRevB.10.3099
https://doi.org/10.1103/PhysRevB.10.3099
https://doi.org/10.1103/PhysRevB.10.3099
https://doi.org/10.1103/PhysRevB.10.3099
https://doi.org/10.1088/0031-8949/21/3-4/039
https://doi.org/10.1088/0031-8949/21/3-4/039
https://doi.org/10.1088/0031-8949/21/3-4/039
https://doi.org/10.1088/0031-8949/21/3-4/039
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevB.50.10462
https://doi.org/10.1103/PhysRevLett.77.2268
https://doi.org/10.1103/PhysRevLett.77.2268
https://doi.org/10.1103/PhysRevLett.77.2268
https://doi.org/10.1103/PhysRevLett.77.2268
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1063/1.4934965
https://doi.org/10.1063/1.4934965
https://doi.org/10.1063/1.4934965
https://doi.org/10.1063/1.4934965
https://doi.org/10.1140/epjb/e2016-70028-4
https://doi.org/10.1140/epjb/e2016-70028-4
https://doi.org/10.1140/epjb/e2016-70028-4
https://doi.org/10.1140/epjb/e2016-70028-4
https://doi.org/10.1103/PhysRevB.97.155102
https://doi.org/10.1103/PhysRevB.97.155102
https://doi.org/10.1103/PhysRevB.97.155102
https://doi.org/10.1103/PhysRevB.97.155102
https://doi.org/10.1103/PhysRevLett.114.146404
https://doi.org/10.1103/PhysRevLett.114.146404
https://doi.org/10.1103/PhysRevLett.114.146404
https://doi.org/10.1103/PhysRevLett.114.146404
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevB.87.155147
https://doi.org/10.1103/PhysRevB.87.155147
https://doi.org/10.1103/PhysRevB.87.155147
https://doi.org/10.1103/PhysRevB.87.155147
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1103/PhysRevB.91.121112
https://doi.org/10.1103/PhysRevB.91.121112
https://doi.org/10.1103/PhysRevB.91.121112
https://doi.org/10.1103/PhysRevB.91.121112
https://doi.org/10.1103/PhysRevB.94.035156
https://doi.org/10.1103/PhysRevB.94.035156
https://doi.org/10.1103/PhysRevB.94.035156
https://doi.org/10.1103/PhysRevB.94.035156
https://doi.org/10.1038/ncomms11327
https://doi.org/10.1038/ncomms11327
https://doi.org/10.1038/ncomms11327
https://doi.org/10.1038/ncomms11327
https://doi.org/10.1139/p75-042
https://doi.org/10.1139/p75-042
https://doi.org/10.1139/p75-042
https://doi.org/10.1139/p75-042
https://doi.org/10.1103/PhysRevLett.89.223001
https://doi.org/10.1103/PhysRevLett.89.223001
https://doi.org/10.1103/PhysRevLett.89.223001
https://doi.org/10.1103/PhysRevLett.89.223001
https://doi.org/10.1016/0368-2048(93)02028-K
https://doi.org/10.1016/0368-2048(93)02028-K
https://doi.org/10.1016/0368-2048(93)02028-K
https://doi.org/10.1016/0368-2048(93)02028-K
https://doi.org/10.1016/j.cplett.2003.08.108
https://doi.org/10.1016/j.cplett.2003.08.108
https://doi.org/10.1016/j.cplett.2003.08.108
https://doi.org/10.1016/j.cplett.2003.08.108
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRevLett.80.3320
https://doi.org/10.1103/PhysRevLett.80.3320
https://doi.org/10.1103/PhysRevLett.80.3320
https://doi.org/10.1103/PhysRevLett.80.3320
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.80.794
https://doi.org/10.1103/PhysRevLett.80.794
https://doi.org/10.1103/PhysRevLett.80.794
https://doi.org/10.1103/PhysRevLett.80.794
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1088/0953-8984/20/36/365221
https://doi.org/10.1088/0953-8984/20/36/365221
https://doi.org/10.1088/0953-8984/20/36/365221
https://doi.org/10.1088/0953-8984/20/36/365221
https://doi.org/10.1088/0953-8984/22/31/315901
https://doi.org/10.1088/0953-8984/22/31/315901
https://doi.org/10.1088/0953-8984/22/31/315901
https://doi.org/10.1088/0953-8984/22/31/315901
https://doi.org/10.1103/PhysRevA.59.3415
https://doi.org/10.1103/PhysRevA.59.3415
https://doi.org/10.1103/PhysRevA.59.3415
https://doi.org/10.1103/PhysRevA.59.3415
https://doi.org/10.1103/PhysRevB.83.115106
https://doi.org/10.1103/PhysRevB.83.115106
https://doi.org/10.1103/PhysRevB.83.115106
https://doi.org/10.1103/PhysRevB.83.115106
https://doi.org/10.1016/j.cpc.2015.08.014
https://doi.org/10.1016/j.cpc.2015.08.014
https://doi.org/10.1016/j.cpc.2015.08.014
https://doi.org/10.1016/j.cpc.2015.08.014
https://doi.org/10.1103/PhysRevA.40.6737
https://doi.org/10.1103/PhysRevA.40.6737
https://doi.org/10.1103/PhysRevA.40.6737
https://doi.org/10.1103/PhysRevA.40.6737
https://doi.org/10.1038/35087518
https://doi.org/10.1038/35087518
https://doi.org/10.1038/35087518
https://doi.org/10.1038/35087518
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.96.215502
https://doi.org/10.1103/PhysRevLett.96.215502
https://doi.org/10.1103/PhysRevLett.96.215502
https://doi.org/10.1103/PhysRevLett.96.215502
https://doi.org/10.1103/PhysRevB.80.075102
https://doi.org/10.1103/PhysRevB.80.075102
https://doi.org/10.1103/PhysRevB.80.075102
https://doi.org/10.1103/PhysRevB.80.075102

