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The average effective mass of charge carriers produced by an intense ultrashort laser pulse in a transparent
solid increases significantly as the excitation mechanism changes from multiphoton transitions to interband
tunneling. We theoretically investigate this phenomenon for several dielectrics and semiconductors. For diamond
as a representative dielectric, we present a detailed analysis of the laser-induced change of optical properties.
When the concentration of free carriers is high, we find that the average effective mass controls not only the
intraband charge-carrier transport but also the interband contributions to the optical response. We observe that the
excitation-induced birefringence is particularly large for parameters for which the plasma response compensates

for the linear response of an unperturbed solid.
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I. INTRODUCTION

The effective mass of charge carriers controls the optical
and electric properties of solids. When electrons and holes
are produced by an intense laser pulse, their transient state
is characterized by an average effective mass that may sig-
nificantly exceed that in a state prepared by a weak laser
pulse. While this basic fact is well established [1-9] and
explained by band nonparabolicity, the quest for extending the
frontiers of ultrafast optoelectronic metrology requires a more
detailed knowledge of the properties of photoexcited solids.
In this paper, we study the optical response of dielectrics and
semiconductors excited by an intense few-cycle laser pulse,
the spectrum of which lies within the medium’s transparency
region. In this nonresonant regime, band nonparabolicity is
essential when a laser pulse drives interband transitions within
a large part of the first Brillouin zone. This occurs when prob-
abilities of various multiphoton excitation pathways become
comparable to each other. Consequently, band nonparabolicity
is particularly important in the nonperturbative regime.

Early work on the optical effective mass of laser-excited
carriers was motivated by the problem of optical determina-
tion of the carrier density [1]. Since the Drude model operates
with the density-to-mass ratio, the mass must be known to
extract the density from reflection or transmission spectra.
Conversely, presuming the applicability of the Drude model,
an optical measurement of the effective mass is possible only
if the density of charge carriers is known. Such measurements
on silicon at the melting threshold showed a 20% increase
of the optical effective mass [3], confirming theoretical pre-
dictions [2]. Hot free electrons and dense electron-hole plas-
mas were also investigated using terahertz pump-probe spec-
troscopy. While band nonparabolicity played an important
role in these experiments [10,11], their research focus was on
studying scattering phenomena. In particular, it was observed
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that intervalley scattering leads to a significant change in the
effective mass [5,12], while deviations from the Drude model
were explained by long-range transport and backscattering
events [6,13-15]. Typical times for electron scattering lie
between 100 fs and 100 ps [16,17], even when the exciting
laser field is strong [18]. Thus, to a first approximation,
scattering is negligible during the interaction with a laser pulse
that is as short as a few femtoseconds (unless the pulse is
weak and indirect interband transitions dominate the optical
response). At the same time, the peak intensity of such a short
pulse may be very high without inducing any damage, which
allows one to study extremely nonlinear processes [19]. Sev-
eral recent theoretical papers reported on the optical effective
mass of charge carriers produced by such intense few-cycle
laser pulses. A good fit quality with the Drude model was
reported in Ref. [7], where the average effective mass of
charge carriers in silicon was predicted to increase, depending
on the orientation, by 20%—30% upon the increase of the peak
laser intensity from 10'? to 5 x 10'> W/cm?. The latter theo-
retical work employed the time-dependent density-functional
theory, and it was extended to finite electron temperatures [8],
where the authors came to the following conclusion: “In spite
of the large difference of the electron-hole distributions be-
tween the thermal model and the numerical pump-probe simu-
lation, the real parts of the dielectric functions are qualitatively
similar.” The time-dependent density-functional theory was
also applied to model how an intense ultrashort laser pulse
changes the optical properties of diamond [20], and one of the
main findings was that the pulse may induce anisotropy in an
isotropic solid. Very recently, the same team predicted that,
at extremely high intensities, the induced anisotropy reaches
a level where laser-excited diamond may acquire a hyper-
bolic dispersion [9], where the real part of the permittivity
is positive in one direction and negative in a perpendicular
direction. In the context of attosecond measurements, the
formation of the effective mass after sudden excitation has re-
cently been a matter of theoretical and experimental research
[21,22].
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The purpose of this paper is to systematically analyze
how an intense few-cycle laser pulse changes the optical
properties of a transparent solid. The motivation for this
work came from several sources. Apart from a lack of such
an analysis in the literature, we wanted to point out that
the average effective mass experiences a manifold increase
within the parameter space relevant to ultrafast nondestructive
measurements. The dependence of the effective mass on laser-
pulse parameters is important for measuring charge-carrier
density [23,24], analyzing data acquired by ultrafast reflection
[25,26] and transmission [27-30] spectroscopies in the strong-
field regime, and interpreting time-resolved measurements of
optical-field-driven charge-carrier transport [31-33].

II. METHODS

The main challenge in modeling the interaction of intense
few-femtosecond laser pulses with solids is that interband
transitions take place in the entire Brillouin zone among many
bands. At the same time, the brief duration and the strength of
the interaction allow one to make approximations that would
be unjustified for longer, less intense laser pulses [19]. From
several recent experiments and their numerical analysis, we
infer that relaxation processes, lattice motion, and electron-
hole interaction usually play a minor role [34-36].

For the purposes of this paper, we chose to solve the
time-dependent Schrédinger equation (TDSE) in a stationary
basis of Kohn-Sham orbitals, where the electron-electron
interaction and correlation enter our model only by affecting
band energies and transition matrix elements. For diamond
as a prototypical dielectric, this approximation has recently
been shown to produce results that are very similar to those
obtained with the time-dependent density-functional theory
(TDDFT) [37], where the effect of electron-electron interac-
tion was reevaluated at every step of time propagation. This is
consistent with the observation that freezing the Coulomb and
exchange-correlation terms in TDDFT calculations to their
ground-state values tends to have a negligible effect on the
polarization response of a bulk solid [38]. In this case, local
fields and band renormalization induced by exciting a small
fraction of valence electrons can be neglected. Under this pre-
sumption, it is advantageous to work in a stationary basis of
Bloch states, rather than employ TDDFT. The main advantage
is flexibility. Band energies, transition matrix elements, and
other input parameters can, in principle, be obtained with any
suitable electronic-structure method: tight binding, density-
functional theory, quasiparticle self-consistent GW, etc.

A. Numerical simulations

For each crystal momentum k and each initial valence band
n, we solved the TDSE

d N
i () = <H.£°) + = A(t)-f))wnk(r» (M
t mo

in the basis of stationary three-dimensional Bloch states |mk):

V() =Y (k, 1)e™ 77 k). @)

Here, p is the momentum operator, ¢ > 0 is elementary
charge, m( is the free-electron mass, and the eigenstates
of the unperturbed Hamiltonian are defined by I:Ilio)lmk) =
€ (K)|mKk). The expansion coefficients «,,, (k, t) are the prob-
ability amplitudes of finding an electron in state |mk) pro-
vided that the electron was initially in state |nk). So the initial
condition for solving Eq. (2) is o, (K, fo) = 8,un, Where £y is
the starting time of a simulation.

In this velocity-gauge model, the electric field F(¢) acting
on electrons enters Eq. (1) via A(t) = —fioo F(t')dt'. We
define the vector potential via

A(t) = —eLEQ(TL — |t]) cos* <L> sin(wpt), (3)
wr, ZTL

where eg, is a unit vector that defines the polarization of the
laser pulse, F is approximately equal to the amplitude of
the electric field, wy is the pulse’s central frequency, 6 is the
Heaviside step function, and 71, > —f9 > 0 is related to the
full width at half maximum (FWHM) of the pulse intensity
via T, = w FWHM/[4 arccos(27%12)].

All the information about a medium that our numerical
model requires is €,,(k) and the matrix elements of the mo-
mentum operator:

Pmn(K) = (mk|[p|nk), “

where the integration is performed over a unit cell. We ob-
tained this input data from density-functional theory using
standard packages: WIEN2K [39] for SiO, and ABINIT [40]
for all the other solids. For most of our calculations, we
used the Tran-Blaha correction to the Becke-Johnson meta—
generalized gradient approximation exchange-correlation po-
tential with Perdew-Wang correlation. This functional is
known to produce more accurate values of the energy band
gap compared to the local-density approximation (LDA) [41].
The energy cutoff was set to 19 hartrees, and we used a
nonshifted Monkhorst-Pack k grid.

Most of the results in this paper were obtained by analyzing
occupations at the end of the laser pulse:

Fn@®) =Yl (k, LI, (5)

neVB

where we add contributions from all the valence bands (VBs).
In Sec. III E, we also show results that require the evaluation
of the electric current density J(#). It is convenient to express
J(¢) via the density operator:

P(t) = Z [V () (Y (1)1 (6)
neVB
e 3

d’k
JO)=—— | —S TP+ A} + AJ@). (7)
mo Jpz (27)

Here, the integral is taken over the first Brillouin zone (BZ),
and AJ(?) is an adiabatic correction introduced in Ref. [42].
Note that Eq. (7) does not explicitly account for spin degener-
acy (if the valence states are doubly occupied, the right-hand
side of this equation needs to be multiplied by 2).
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B. Linear response

Let us consider a solid excited by an intense laser pulse. Investigating the laser-induced change in a medium’s optical proper-
ties, we are interested in its response to a weak probe pulse, the electric field of which is Fyope (1) = —A;)mbe(t ). This response can
be calculated numerically, using the method described in the previous section, or analytically, using the standard time-dependent
perturbation theory. The analytical approach has two main advantages: it allows us to decompose the laser-induced change in
optical properties into intra- and interband components, and it also obviates the necessity to control numerical convergence
when we consider the limit of an infinitesimally weak probe pulse. However, the expressions derived below are applicable only
to nonoverlapping pump and probe pulses.

The first-order perturbation theory yields the following expression for the electric current density induced by a weak probe
pulse:

ez d3k (A robe(t) ' Vk)pnn(k) 2 Re[(an(k) A robe(t))pmn (k)]
J t) = —— n k P + — P
probe( ) mo Juz (2]_[)3 ;f( ) A o l%}; hwmn
oo
+ / dt $(K, T, 1)Aprobe(t — T) 5 ®)
0
where the Cartesian components of the § tensor are given by
2 —i(t—TL—71)o, a —iTw,
sap (k. 7. 1) = 2o Im [Ze (=Tmom®) 5 (k)Y ply (K)ph, (K)e ™ m“”}. ©)
Here,

Pum (K) = (nkK| o (T1)|Imk) (10)

is the density matrix at the end of the pump pulse [p,, (k) = f,(K)], p5,(K) = e;Pm,(K) denotes the Cartesian components of
the momentum matrix element (@ € {x, y, z}, €, is a unit vector), and we have introduced the transition frequencies

€n(K) — €,(K)
s (11)

Equation (8) incorporates first-order adiabatic velocity-gauge corrections [42]. These corrections compensate for numerical
artifacts arising in the velocity gauge due to the violation of the Thomas-Reiche-Kuhn rule caused, e.g., by basis truncation.

The model defined by Egs. (8) and (9) considerably simplifies if one neglects interband coherences, that is, the off-diagonal
elements of p,;,(K). In the next section, we provide some evidence that this is a reasonable approximation; we also verified this
approximation by directly evaluating Eq. (9) with and without interband coherences. Once the off-diagonal elements of p,, (k)
are neglected, s,g (K, 7, ) no longer depends on ¢, so that the integration over 7 in Eq. (8) becomes a convolution. In this case,
the linear response of the medium can be described with the tensor of linear susceptibility (!, which we first define in the time
domain. In cgs units,

t
Pprobe(t) = / dt 'V (T)Fprobe(t — T). (12)
0

Let us distinguish between the intra- and interband contributions deriving 2 D(r) from Egs. (8) and (9):

s (1 ~intra s inter
M = +x .

X X

The terms that enter §"™ must not contain matrix elements describing transitions between different states, while %™ may
contain only off-diagonal elements of the momentum matrix. Neglecting interband coherences, we obtain

2 3 o

s intra eT d’k 0 Phn
=0(t)— —_— (k) ——— 13
2 =00 fBZ Gy L0 (13)

and
; 2e? d’k 1 — e—itom®)

inter — e V7 _ (KT ¢ (k p k s 14
Xep (T) =€ (f)hm% o ) E Jn(k)Im E Pum K Py, (K) o (&) (14)

n m#n mn

where 0(7) is the Heaviside step function and we have introduced a phenomenological decoherence rate, y = T{l. Without
decoherence, the absorption spectrum in the numerical model would consist of a discrete set of infinitely narrow absorption
lines.

In the frequency domain,

Pprobe(@) = £V (@0)F probe (@) (15)
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Using F[f ()] = [ _oooo f () expliwt]dt as the definition of the Fourier transform and employing the well-known expression for
the inverse-mass tensor,
1 apy
-1 - Fnn
K)o = 16
(=" (n, K)]ap = Timo ks " (16)
we arrive at the following expressions for the frequency-domain intra- and interband tensors of linear susceptibility:
. e2
A ) = — f 2y Z L)~ (n, K), (17)
Xlnler(w) e? / 4’k Z £.0K) Z < 2i Im [pa (k)pﬂ (k)]
ap hmO sz (27 )3 n — 602 (k) w+iy nm mn
@ (&) phn(k) @, () phn (K
+ P (K) Piun Dy (K) P (K) (18)

Let us compare the intraband susceptibility to that in the
collisionless Drude model:

2
A e A — A —
2P0 (w) = —E(Nemel + Nyiiy '),

where N, and N, are the concentrations of electrons and
holes, while 727! and s, are their average inverse-mass
tensors. Assuming that there are no charge carries in the
ground state (before the pump pulse), we set N, = N, =
N._,, define the average tensor of the reduced inverse mass
as gt = m; '+, !, and write

2

A 4 A —
2P () = = il - (19)

Henceforth, we will refer to 7 as the average inverse mass.
Comparing Eq. (19) with Eq. (17) and using

(2 )3 > falk),

neCB

Nejp =

where the summation is performed over conduction bands
(CBs), we define the average inverse mass as

oo Jig K, 100w )
T @k e i)

Not surprisingly, this result represents averaging the inverse-
mass tensor over the ensemble of electrons and holes using
the occupation numbers as averaging weights.

In the next section, we investigate the optical response to a
linearly polarized laser pulse. Let €p,e be a unit vector that
is parallel to the electric field of the probe pulse. We evaluate
the average inverse mass with respect to the probe pulse as

(20)

-1 A1
Mg = €probe (meff eprobe) . 21

The average effective mass with respect to this pulse is then
defined by mefr = 1/mg.

III. RESULTS AND DISCUSSION

A. Comparison of several crystals

In Fig. 1, we compare average effective masses (20) for
several solids excited by a 4-fs, 800-nm laser pulse. The

(

optic axis of each uniaxial crystal was taken as the laser-beam
axis. For Al,O3, SiO;, and GaN, the optic axis was parallel
to [001], and we took the [100] direction as the polarization
direction of the pump pulse epymp. For diamond, which is
an isotropic medium, we took [111] as the beam axis and
€pump |l [110]. We evaluated the effective masses using
Egs. (20) and (21), with eyope being perpendicular to both
€pump and the optic axis.

The peak electric field in this and other figures is the field
within the medium. The relationship of this field with the

(a) 125
— Al,03
10.0 GaN
— Si0,
€ 7.54 — diamond (TrB)
\:: ® diamond (LDA)
g 5.01
2.5
0.0 =0 !

06 08 10 12 14 16 18 20

F§™ (VA-1)
(b) 125
— AlLO3
10.0 1 GaN
— SiO;
Eo 7.5 1 —— diamond (TrB)
\a: - diamond (LDA)
E“’ 5.0 1
2.5
\\Fhu___._.
0.0 T T T T :
0.5 1.0 1.5 2.0 2.5 3.0
Yk

FIG. 1. (a) The dependence of the average effective mass on
the peak electric field of a 4-fs, 800-nm laser pulse. For diamond,
we compare data obtained with two exchange-correlation potentials:
Tran-Blaha [41] (TrB) and local-density approximation (LDA). For
all the other solids, we show only the outcomes of calculations with
the Tran-Blaha functional. (b) The same data as in (a) plotted against
the Keldysh parameter.
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vacuum field of an incident laser pulse may be complex
because laser-induced interband transitions change the reflec-
tivity and may be responsible for complex propagation effects.
Since our goal is to study the general properties of electron-
hole plasmas created by an intense few-cycle laser pulse,
we assume that the laser pulse in our simulations represents
a pulse that has propagated to a particular position within
a solid. The maximal electric field that we used for Fig. |
was 2 V/A, which is close to the damage threshold of the
considered materials. At 1 V/A, we do not expect any of
these materials to be damaged by such a laser pulse (at this
field strength, we observe the highest concentration of excited
electrons in GaN, where it takes a value of 1.9 x 10*! cm™?).

Figure 1 thus illustrates that a significant increase in the
effective mass is a general effect observed in many solids. As
we mentioned in the Introduction, this increase is expected
upon the transition from the multiphoton excitation regime to
the tunneling one because the multiphoton regime presumes
that the probability of absorbing N photons rapidly decreases
with N (as long as the transitions are energetically allowed).
If the probability of absorbing N + 1 photons is much smaller
than that of absorbing N photons, then a laser pulse will
usually inject carriers within a fraction of the Brillouin zone,
where the lowest multiphoton order dominates. As long as
the involved valence and conduction bands are approximately
parabolic within this reciprocal-space volume, their contribu-
tions to the average effective mass are approximately indepen-
dent of the peak injection field. To support these arguments
with evidence, we plot in Fig. 1(b) the average effective
masses as functions of the Keldysh parameter [43]

VK = ‘e[i;:)%p‘\/ Egm*, (22)

where E, is the direct band gap. Here, we evaluated the
reduced mass m* at the I point. Since some bands are degen-
erate at k = 0, we did not limit the band selection to the top
valence and bottom conduction bands. Instead, we calculated
a weighted average over all the bands: for each band, we
calculated its curvature in the direction of the pump field and
multiplied it by the concentration of charge carriers created
in this band by the 1-V/A pulse. The Keldysh parameter
classifies the regimes of interband transitions into multiphoton
(yx >> 1) and tunneling (yx < 1). From Fig. 1(b) we see that
the transition from the multiphoton regime to the tunneling
one is indeed accompanied by a large increase in the average
effective mass.

B. The composition of the average effective mass

In this section, we examine various factors that contribute
to the average effective mass and its properties. As a represen-
tative crystal for our analysis, we chose diamond—a medium
with isotropic linear properties, a relatively simple band
structure, and a high damage threshold. Figure 1 shows that,
for diamond, the Tran-Blaha and LDA exchange-correlation
potentials produce similar average effective masses. We note,
however, that there are considerable differences in the elec-
tronic structure. For example, the direct band gaps in the
Tran-Blaha and LDA calculations were 6.4 and 5.5 eV, respec-
tively. Even though the LDA exchange-correlation potential

4
—— total
CB1-CB3
31 holes
o
g
T 2 CB1-CB3
g
1 4
holes
0

06 08 1.0 12 14 16 1.8 2.0
FRUmP (VA-T)

FIG. 2. Contributions to the average inverse mass of charge
carriers (solid black curve) from the valence-band states (holes),
as well as from the lowest three conduction bands (CB1-CB3) in
diamond.

is known to underestimate band gaps, it is a well-studied
approximation in which the effective potential experienced
by each electron is local, which gives us more confidence
in our numerical results (in general, nonlocal potentials lead
to additional terms in velocity-gauge propagation equations).
Therefore, we use the LDA for the numerical analysis in this
and following sections.

In Fig. 2, we show how different bands contribute to the
average inverse mass. The lowest three conduction bands of
diamond are degenerate at the I point (neglecting the spin-
orbit interaction), so we plot the sum of their contributions.
We also plot the inverse mass averaged over all the holes, as
well as the net inverse mass obtained by averaging over all the
charge carriers. Electrons and holes in diamond have compa-
rable average masses, which is why valence and conduction
bands make comparable contributions to m ;. We also see that
higher conduction bands contribute surprisingly little. After
the 2-V/A pulse, 28.1% of excited electrons reside in bands
above the third conduction band, but their relative contribution
to the average inverse mass is as little as 9.4%.

Figure 3 gives a more detailed view of what contributes to
the dependence of the effective mass on the peak laser field.
For the 1- and 2-V/A pulses, we plot k- and energy-dependent
quantities that determine the average mass of charge carriers.
Figures 3(a) and 3(b) visualize excitations within the primitive
unit cell in reciprocal space, where we added the diagonal
elements of the density matrix for all the conduction bands
and integrated the transition probabilities along the bz vector.
More precisely, these two false-color diagrams visualize

12
v, &) = Z / d&3pun(k), (23)
necB ¥ ~1/2
k = &by + &by + &3b;, (24)

where b; are the primitive vectors of the reciprocal lattice.
In their basis, the coordinates of the crystal momentum
are & = (a;k)/(2m), where a; are Bravais lattice vectors.
Figures 3(a) and 3(b) illustrate that an intense laser pulse
drives transitions within a substantial part of the first Brillouin
zone.

The rigorous definition of the average effective mass
demands knowledge of p,,(k). Nevertheless, in our
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FIG. 3. The left and right columns represent simulations with
peak laser fields of 1 and 2 V/A, respectively. (a) and (b) The
probability density of exciting a valence-band electron at a certain
crystal momentum. The probability densities were integrated over the
first Brillouin zone along the b vector. (c) and (d) The area of each
bar represents the number of charge carriers with an energy within
the corresponding 2-eV-wide bin. (e) and (f) The average inverse
masses of charge carriers (holes for negative energies and electrons
for positive ones) within the energy bins that were used for (c)
and (d).

experience, the shape of a reciprocal-space excitation
pattern is insignificant. We illustrate it in Figs. 3(c)-3(f).
In Figs. 3(c) and 3(d), each bar represents the concentration
of charge carriers in states in which the energy belongs to
the corresponding 2-eV-wide energy bin. These probability
distributions are very sensitive to F} . For each bin, we also
calculate the average inverse mass of charge carriers within
the bin’s energy range and plot the result in Figs. 3(e) and
3(f). These energy-dependent inverse masses depend on how
the |k, n) states within a particular energy bin are populated,
that is, on the reciprocal-space excitation pattern. However,
this dependence is weak, as we see by comparing Figs. 3(e)
and 3(f). Knowing such an energy-dependent effective mass
for a representative laser pulse, one can directly relate energy-
dependent occupation numbers to the average effective mass.
For example, using the 2-V/A occupations [Fig. 3(d)] to
average the 1-V/A inverse masses from Fig. 3(e) yields an
average inverse mass of 1.0m, while the accurate value from
Eq. (20) is 0.8m. Applying the same procedure to extrapolate
from 1 to 0.5 V/A, we get 2.6m as the estimation of inverse
mass, which is close to the accurate value of 2.9m at
0.5V/A.

C. Intra- and interband contributions to the optical response

When a laser pulse excites electrons from valence to con-
duction bands, the linear susceptibility of the solid ()

5 le—3
== = ntraband :
T,=100fs Eq 4
I1— T,=10fs :

w?Re[AxM(w)]
o

-2 | . i |
0 2 4 6 8 10
hw (eV)

FIG. 4. The change in the real part of the linear susceptibil-
ity induced by a 1-V/A, 4-fs, 800-nm laser pulse in diamond
(LDA). The dashed black line represents w”Ax™?(w). Plotting
o’ Re[AxV(w)], we compare two dephasing times: y~' =T, =
10 fs (thin red curve) and 7> = 100 fs (thick gray curve). The vertical
dotted line shows the position of the band edge for direct transitions.

changes. We decompose this change, A%"(w), into two
components: We evaluate the intraband component A § " ()
assuming that the interaction with a weak probe pulse consists
of changing the crystal momentum of each charge carrier
according to the acceleration theorem, disregarding transi-
tions between bands. This is equivalent to the Drude model
that neglects relaxation (scattering) processes. In this model,
w? A{"?(w) is a frequency-independent, real-valued quan-
tity [see Eq. (17)] representing the response to an infinitesi-
mally weak long-wavelength probe pulse.

The difference between the total and intraband changes in
the linear susceptibility is the interband component:

AR (@) = AZ V() — AF™ (W), (25)

which represents the optical response due to transitions be-
tween bands. Even if a probe pulse has no frequency com-
ponents above the band edge, it is responsible for two types
of interband dynamics: virtual transitions describe a transient
polarization induced by the probe pulse, while real transi-
tions among valence or conduction bands describe excitation
and deexcitation of charge carriers left by a pump pulse.
If the frequency of a probe field exceeds the band edge,
then A ™" (w) also reflects transitions between valence- and
conduction-band states driven by a weak probe pulse.
In Fig. 4, we compare the real part of

AxV (@) = eprone (AR (@)eprone)
with
AXintra ((,()) = eprobe(A)?imra (a))eprobe)

for a 1-V/A pulse interacting with diamond in the local-
density approximation. Below the band edge, the electron-
hole plasma created by the laser pulse decreases the real
part of the linear susceptibility. The intraband contribution to
the susceptibility does not depend on dephasing, and in this
plot, it is represented by a horizonal line that coincides with
@’ Re[AgV(w)] in the limit w — 0. Intraband dynamics
dominate the optical response for photon energies Ziw < 3 eV,
with the exception of the range 0.5¢V < hw < 0.6eV. The
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FIG. 5. The change in the linear response at iw =4 eV as a
function of the peak laser field for y~! = 7, = 10 fs.

resonant transitions in this range mainly take place among the
lowest conduction bands, which are degenerate at the I" point.

Figures 5 and 6 show how the intra- and interband con-
tributions to Re[A %" (w)] depend on the peak laser field.
Since we consider the case where all energy bands are initially
either fully occupied or empty, both A% and A %™ are
proportional to N,_; and therefore rapidly increase with the
amplitude of the laser pulse, as shown in Fig. 5. Furthermore,
both A " and Re[A £™°'] are negative at fiw = 4 eV.

It is well known that band curvatures control the prob-
abilities of interband transitions. In particular, this is why

(a) 2.0
T,=100fs
© — T,=10fs
£ 151
F
=
g 1.0
&)
2 051 —
0.0 T T T T : :
0.50 0.75 1.00 1.25 150 1.75 2.00
FEU™ (VA1)
(b) 10°
— |Re[AXinter]| P
107ty = o Ne - h/Mess /./’/
=1024 o Ne—n ey
3
(9}
x

1017 1618 1619 1620 1621 1022
Ne-n (cm~3)

FIG. 6. The laser-induced susceptibility change, Ax"(w)=
€probe (AR V(@) €prove) at fiw = 4 eV. (a) The ratio of Re[Ax™] to
the intraband component of Ax ", plotted against the peak laser
field. Consistent with Fig. 4, there is almost no difference between
the two dephasing times: y ! = T, = 10 fs (thin red curve) and
T, = 100 fs (thick gray curve). (b) The dependence of Re[A x™']
on the concentration of charge carriers for 7, = 10 fs.

the effective mass appears in the Keldysh parameter [43].
Figure 6 strongly suggests that, for large excitation probabili-
ties, the relationship between the average band curvatures and
the interband component of the laser-induced susceptibility
change is particularly simple: Re[A e o Noy, /mege. This
result is not obvious because the effective mass does not
explicitly appear in Eq. (18). Also, for weak laser fields,
Re[Ax™"] oc N,_;. The change in the scaling law as F""
increases explains the decrease in Re[A y™er]/Ay™ in
Fig. 6(a). (Note that Re[A R0 ¢ Ny, /Mg by definition.)
The observation that Re[ A x ™| oc A" in the strong-field
regime is consistent with the interdependence of inter- and
intraband dynamics [19,36,44]. It also explains why the Drude
fit works so well [7] for the net response, Re[Ax(]. The
fact that a substantial part of this response is of the interband
nature translates into the phenomenological relaxation time,
which was found to be on the order of ~1 fs in numerical
simulations that neglected relaxation processes [45].

D. Excitation-induced birefringence

Prior to the excitation by a laser pulse, diamond is an
isotropic crystal. By exciting charge carriers, a laser pulse
induces birefringence, which is easily measured by optical
means. One could expect that a linearly polarized pulse should
turn diamond into a uniaxial crystal, but according to our
calculations, this is not the case—for a sufficiently strong
injection field, laser-excited diamond is, in general, a biaxial
crystal. In Fig. 7, we illustrate the induced birefringence
probed by an infinitesimally weak pulse. We obtained the data
for Fig. 7 by analyzing the " (w) tensor [see Eqs. (17) and
(18)]. For a given wave vector k, a biaxial crystal supports
two modes characterized by effective permittivities €.¢, which
satisfy the following equation:

() kk'
det| 1 +4m " — gege| 1 — TE =0. (26)

Birefringence results from the difference between the two
effective permittivities.

In Fig. 7, we plot the effective permittivities for three fre-
quencies of probe light: hw € {1, 2, 4} eV, which we show in
purple, green, and blue, respectively. We see from this plot that
the induced birefringence decreases with the probe frequency
and increases with the strength of the injection field. The de-
pendence on Fg P §s, however, not monotonous. We observe
particularly large values of the induced birefringence for field
strengths for which the real part of the permittivity takes neg-
ative values due to the presence of electron-hole plasma. This
happens for plasma frequencies wp = /47 No_je?/me 2,
wny(w), where ny is the unperturbed refractive index of the
solid. For the iw = 1 eV data set, this condition is fulfilled
for F3"™ > 1.2 V/A.

E. Pump-probe simulations

This section provides evidence that the average effective
mass defined by Eq. (20) indeed determines the strength of
the electric current induced by a probe pulse. For these pump-
probe simulations, we used the same 4-fs, 800-nm pump
pulse, followed by a 12-fs, 2000-nm linearly polarized probe
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FIG. 7. The effective permittivities for light propagating in the
direction of the pump beam. The three shaded areas correspond to
light frequencies 7w = 1 eV (purple), 2 eV (green), and 4 eV (blue).
The upper and lower boundaries of each shaded area correspond
to two modes that propagate preserving their polarization state (the
polarization directions of these modes depend on Fj"""). The dots
represent numerical data; the curves are cubic splines. For these
calculations, we used y ! = 7, = 10 fs.

pulse with a peak electric field of 0.1 V/A. The two pulses
had no overlap, and their polarizations were orthogonal to
each other. To determine the effective mass from the pump-
probe simulations, we first evaluate how the pump pulse
changes the medium polarization in the direction of the probe
field. We accomplish this by subtracting the polarization
induced by the sole probe pulse from that induced by both
pulses. For each amplitude of the pump pulse, this procedure
yields a time-dependent function A P (t), which we fit with the
following ansatz within the central cycle of the probe pulse:

o0
AP@Y~ Pyt ot + Ny [ At 20)
t

Here, N,_;, is the concentration of conduction-band electrons
after the pump pulse. From the three fit parameters (P, Jo,
and m_;), we are interested only in m_;, plotting it with
the dashed curve in Fig. 8. The good agreement between the
outcomes of this analysis and those of Eq. (20) validates
the analysis presented in the previous sections. This is not
a trivial result because the assumption of purely intraband
motion is generally inapplicable at those crystal momenta
where some bands are either degenerate or experience an
avoided crossing. In the vicinity of such crystal momenta,
even a weak infrared pulse can drive interband transitions
with a significant probability [46]. Figure 8 demonstrates that
even though the dynamics of a particular charge carrier in
the field of a weak probe pulse may violate our assumptions,

6 um,
—— pump only le—3F0"=1.0 VAT
54 === pump-probe fit é 1 i
s Alpn .
44 F 0 p——=NH T
3] AP N ] /]
o = 14 - (t) v
g s 71— mea
7531 < ; ,
& [ TheEes 20 40 60
21 =F t(fs)
M A A S SSS.
0 T T T T

04 06 08 10 12 14 16 18 2.0
F§U™ (VA-1)

FIG. 8. Comparison of the effective inverse masses calculated
with two methods: The solid black curve, labeled “pump only,” is
identical to that in Fig. 2; it was obtained by applying Eq. (20) to
the outcomes of simulations with a sole pump pulse. The dashed red
curve represents pump-probe simulations, where the time-dependent
polarization induced by the probe pulse was approximated with the
relaxation-free Drude model. The inset illustrates the Drude fit for
FPM™ =1 V/A and FP™ = 0.1 V/A.

the dynamics of the entire electron-hole plasma are well
described by the intraband approximation, especially when
charge carriers occupy a large part of the Brillouin zone. The
good agreement illustrated by Fig. 8 also demonstrates that
interband coherences, neglected in Egs. (17) and (18), have a
negligible effect on the low-frequency optical response of a
laser-excited solid.

The inset in Fig. 8 illustrates how the fit was performed.
We also note that AP after the probe pulse is not zero.
Charge carriers can get displaced and accelerated by the end
of a weak probe pulse, which would be impossible if the
pulse induced strictly intraband dynamics. The transitions that
are responsible for the formation of the residual polarization
and electric current are the same transitions that manifest
themselves in Fig. 4 as the low-energy resonances.

The effective mass evaluated from the Drude fit depends
on the amplitude of the probe pulse, which we illustrate in
Fig. 9. We obtained these data by scanning over F"™™ in
the same pump-probe arrangement as before. The amplitude
of the pump pulse was Fj " =1 V/A. The decrease in
m}} with a growing amplitude of the probe pulse is due
to the interband motion in nonparabolic bands. Indeed, for

2.2

2.0

-1
Megs Mo

1.8 1

1.6 T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Fgrobe (VA_I)

FIG. 9. The dependence of the effective inverse mass, evaluated
from the Drude fit, on the amplitude of the probe pulse. For these
simulations, we used F§"™ =1 V/A.
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Fgmbe = 0.4 V/A, the amplitude of the reciprocal-space ex-

cursion is [e FP"™|/ (hiwprobe) = 6.45 nm~!, which is as large
as 37% of the reciprocal-lattice period. The fact that the
effective mass considerably depends on the amplitude of the
probe pulse implies a significant nonlinearity of the intraband

polarization response.

IV. SUMMARY

The effective mass averaged over all charge carries excited
by a laser pulse in a transparent solid strongly depends on
the amplitude of the pulse. This effect stems from band
nonparabolicity, it is particularly important in the tunneling
regime, and it is pronounced in all the solids that we inves-
tigated. Apart from pointing out the magnitude of this effect,
we also make several observations related to its nature and
properties. Even though the coherence between energy bands
occupied by a pump pulse has measurable outcomes [47], we
point out that it has a minor effect on the permittivity change
within the transparency region. This is one of the reasons
why the Drude response dominates A () in most of this
region. The insignificance of interband coherences means that,
to a good approximation, an average effective mass depends
only on band occupations and band curvatures. Moreover,
the availability of k-dependent data is not essential for eval-
uating the average effective mass—it can be estimated with

reasonable accuracy from energy-dependent average band
curvatures, excitation probabilities, and the density of states. It
is possible because the average mass of charge carriers within
an eV-wide energy range weakly depends on the peak electric
field of a laser pulse.

We observed that, starting from a certain field strength,
the interband component of A" (w) becomes proportional
to the N,_;,/meg ratio, that is, to the square of the plasma
frequency; in this regime, we expect the intraband motion
to have an impact on interband transitions. Investigating the
excitation-induced birefringence, we observed that it is par-
ticularly large when the plasma frequency exceeds the probe-
pulse frequency multiplied by the unperturbed refractive in-
dex. We also observed that the average effective mass that
describes the ballistic acceleration of charge carriers in the
field of a near-infrared probe pulse considerably depends on
the pulse’s amplitude.
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