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Two-level system damping in a quasi-one-dimensional optomechanical resonator
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Nanomechanical resonators have demonstrated great potential for use as versatile tools in a number of
emerging quantum technologies. For such applications, the performance of these systems is restricted by the
decoherence of their fragile quantum states, necessitating a thorough understanding of their dissipative coupling
to the surrounding environment. In bulk amorphous solids, these dissipation channels are dominated at low
temperatures by parasitic coupling to intrinsic two-level system (TLS) defects; however, there remains a discon-
nect between theory and experiment on how this damping manifests in dimensionally reduced nanomechanical
resonators. Here, we present an optomechanically mediated thermal ringdown technique, which we use to
perform simultaneous measurements of the dissipation in four mechanical modes of a cryogenically cooled
silicon nanoresonator, with resonant frequencies ranging from 3–19 MHz. Analyzing the device’s mechanical
damping rate at fridge temperatures between 10 mK and 10 K, we demonstrate quantitative agreement with
the standard tunneling model for TLS ensembles confined to one dimension. From these fits, we extract the
defect density of states (P0 ∼ 1−4 × 1044 J−1 m−3) and deformation potentials (γ ∼ 1–2 eV), showing that
each mechanical mode couples on average to less than a single thermally active defect at 10 mK.

DOI: 10.1103/PhysRevB.98.214303

I. INTRODUCTION

Over the past decade, a number of quantum phenomena
have been observed in nanomechanical resonators, includ-
ing motional ground state cooling [1–3], preparation into
squeezed and entangled states [4–7], and nonclassical interac-
tion with electromagnetic fields [8–10]. This level of quantum
control has generated significant interest in the use of nanores-
onators for various quantum applications, such as coherent
interfacing between two nonclassical degrees of freedom [11–
13], storage of quantum information [1,9,10], and quantum-
limited metrology [14,15]. In each of these applications, it
is crucial that the nanomechanical resonator maintain its
quantum coherence for the duration of the intended operation.
For instance, to perform quantum state transfer between the
optical and mechanical degrees of freedom of an optome-
chanical resonator—a prerequisite for numerous mechanically
mediated quantum information protocols [8–11,16–19]—the
phononic and photonic modes of the device must couple to
each other faster than the rate at which the phononic state
decoheres [20]. For a mechanical resonator with angular fre-
quency ωm coupled at its damping rate � to an environmental
bath at a temperature T , this decoherence rate is given by
�th = nth�, where nth = (eh̄ωm/kBT − 1)−1 is the bath’s ther-
mal phonon occupation [20]. Therefore, in order to minimize
decoherence in nanomechanical resonators, such that they can
be used as a viable quantum resource, it is critical to focus on
understanding their low-temperature damping mechanisms.

Though dissipation in mechanical systems can arise from
a number of sources, at cryogenic temperatures energy loss
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is often caused by coupling between the motion of the res-
onator and its intrinsic material defects [21]. In the simplest
treatment, these defects can be modeled as two-level systems
(TLSs) with an energy separation E =

√
�2 + �2

0, realized
by tunneling with a characteristic energy �0 between the
two lowest-energy configurational states of the defect, which
are split by an asymmetry energy � [22]. For nonresonant
defect-phonon interactions at low frequencies (h̄ωm < E),
local strain variations due to the motion of the resonator distort
the environment of the TLS defects, perturbing this energy
separation away from its static value. The TLS ensemble
will then relax towards this new thermal equilibrium via
interactions with surrounding phonons at a rate

τ−1 = γ 2

ρDcD+2
e

πSD−1

(2π )Dh̄D+1 ED−2�2
0 coth

(
E

2kBT

)
, (1)

which is strongly dependent on the dimensionality D of the
system [23]. Here, γ is the deformation potential of the
device, which characterizes the coupling between the TLSs
and the motion of the resonator, while ρD and ce are the
D-dimensional mass density (ρ3 = ρ is the conventional,
three-dimensional density) and effective speed of sound of the
resonator’s material, with SD being the surface area of the D-
dimensional unit hypersphere. This finite relaxation rate intro-
duces a phase lag for phonons that interact with defects in the
solid, leading to a TLS-induced damping rate of the form [22]
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where cq is the mode-dependent effective speed of sound
and we have integrated over the energy distribution of
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the TLS ensemble, represented by the function h(�,�0)
(see Appendix E). For TLSs that are amorphous in nature,
h(�,�0) = P0/�0 is assumed, where P0 is a constant that
characterizes the density of states of the TLS ensemble,
as this choice of h(�,�0) effectively models the broad
distribution in TLS separation energies associated with a
disordered environment [22]. Using this energy distribution
function, along with the relaxation rate of Eq. (1), one
finds a low-temperature dissipation that obeys �TLS ∼ T D ,
whereas at high temperatures, the damping rate plateaus to
a dimensionally independent constant [23]. Therefore, one
must carefully consider the dimensionality of the system in
question, which will become reduced if the typical thermal
phonon wavelength is longer than one or more of the device’s
characteristic dimensions [23,24].

This relaxation damping model has been very successful
in describing the absorption of sound waves in bulk amor-
phous solids, where a T 3 dependence in acoustic attenuation
has been observed at low temperatures for a number of
glassy materials in accordance with their three-dimensional
nature [25]. However, the situation becomes significantly
more complicated when considering the reduced geometries
associated with nano/micromechanical resonators. Although

a linear temperature dependence in mechanical dissipation
was first observed for early cryogenic measurements on cm-
scale single-crystal silicon torsional oscillators [26,27], this
behavior was rationalized as being due to the crystalline
nature of the resonator material [28] or electronic defects [29],
as opposed to reduced dimensionality effects. While a similar
linear trend was later reported in polycrystalline aluminum
nanobeams [30], the vast majority of cryogenic dissipation
measurements performed on driven micro/nanomechanical
resonators have demonstrated a considerably weaker low-
temperature dependence of � ∼ T 1/3 [31–34]. Attempts to
explain this sublinear temperature dependence have associ-
ated it with the large strain induced by the external drive fields
applied to these resonators [35] or possibly their beamlike
geometries [24,36]; however, a full quantitative description
has yet to be found. In light of this disconnect between theory
and experiment, a clear and careful analysis of TLS damping
in reduced-dimensionality nanomechanical resonators is re-
quired in order to elucidate this dissipation mechanism [23].

Here, we present measurements of the dissipation in a ther-
mally driven silicon nanomechanical resonator using a sim-
plified version of the optomechanically mediated ringdown
technique developed by Meenehan et al. [37]. Our method
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FIG. 1. (a) Simplified schematic of the gated homodyne optomechanical detection system (see Appendix A for details). AOM = acousto-
optic modulator, VC = variable coupler, LO = local oscillator, BS = beam splitter, BPD = balanced photodetector, ADC = analog-to-
digital converter. (b) Low-temperature coupling apparatus on the mixing chamber plate of the dilution refrigerator (see Ref. [38] for details).
(c) Optical microscope image highlighting the 210-nm-thick gold layer (yellow) which is deposited onto the silicon to within ∼10 μm of the
device to improve thermalization at low temperatures. (d) A zoomed-in scanning electron micrograph of the optomechanical device studied in
this work. Overlaid in red is a finite-element method (FEM) simulation showing the magnitude of the electric field for the optical whispering
gallery mode used in this work. Scale bars are (c) 10 μm and (d) 3 μm. (e) Image of the chip in its gold-plated copper holder. (f)–(i) The
voltage spectral density Sv obtained by continuously monitoring the resonator’s mechanical motion in exchange gas at 4.2 K. Measurements
were performed with 10 μW of optical power input to the fridge (corresponding to an input power of Pin = 7.5 μW at the microdisk) and
2.6 mW in the LO. Inset are FEM simulations of the displacement profiles for (f) the fundamental out-of-plane torsional mode (3.53 MHz),
along with the (g) “side-to-side” (6.28 MHz), (h) antisymmetric “breathing-like” (15.44 MHz) and (i) symmetric “breathing-like” (18.31 MHz)
in-plane flexural modes. Red (green) indicates out-of-plane (in-plane) motion, while blue denotes zero displacement.
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circumvents the need for single-photon detectors, as well as
the requirement that the device must exist in the sideband-
resolved regime, all while measuring the Brownian motion of
the device to avoid any effects that may arise from large strains
due to an external drive [35]. Using this measurement scheme,
we are able to determine the damping rate for four of the
device’s mechanical modes over three orders of magnitude in
fridge temperature ranging from 10 mK to 10 K. Fitting these
data, we demonstrate quantitative agreement with the standard
tunneling model for dissipation due to TLS defects embedded
in a one-dimensional geometry. Extracting information about
the density of states and deformation potentials of these TLS
ensembles, we speculate that they are caused by glassy sur-
face defects [24,39] created during fabrication of the device
[40,41]. Finally, we show that at 10 mK each mechanical
mode couples on average to less than a single thermally
active defect, entering the regime where quantum-coherent
interactions between phonons and an individual defect may
be possible [42].

II. CRYOGENIC OPTOMECHANICAL RINGDOWN
MEASUREMENTS

The optomechanical device studied in this paper [see
Figs. 1(c) and 1(d)] consists of a half-ring mechanical res-
onator (width w = 200 nm, thickness d = 250 nm) partially
surrounding a whispering gallery mode microdisk cavity (see
Appendix B for details), both of which are fabricated from
single-crystal silicon. The device chip is thermally anchored
to the mixing chamber plate of a dilution refrigerator and
measured using a gated homodyne detection scheme [see
Fig. 1(a)], capable of simultaneously transducing the mo-
tion of several mechanical modes of the half-ring resonator
[Figs. 1(f)–1(i)] with sub-microsecond resolution in the time
domain.

To perform these measurements, we excite the first-
order radial mode of the optomechanical cavity [azimuthal
mode number M = 49; see Fig. 1(d)], with resonant fre-
quency ωc/2π = 188.8 THz (λc = 1587.9 nm) and linewidth
κ/2π = 1.0 GHz (Qo = 1.9 × 105). Due to the large dis-
parity between the energy of this optical mode (hundreds of
THz) and the measured mechanical modes (tens of MHz),
coupled with the diminishing thermal conductivity of silicon
at low temperatures [43], even small input powers to the
optical cavity act to rapidly heat the mechanics. This heating
effect can be modeled by considering a mechanical mode
simultaneously coupled at its intrinsic damping rate �i to
the thermal environment of the fridge, and at a rate �p to a
hot phonon bath generated by either the absorption of cavity
photons or radiation pressure backaction (or a combination of
the two), with the total damping rate of the system given by
� = �i + �p. If light is coupled into the optical cavity at time
t = t0, the average phonon occupancy of the mechanical mode
as a function of time is then given by [37]

〈n〉 (t ) = 〈n〉 (t0)e−�(t−t0 ) + neq(1 − e−�(t−t0 ) ). (3)

Here, neq = (nth�i + np�p)/� is the equilibrium phonon oc-
cupation of the mode, with nth and np being the average
phonon occupancies of the environmental and photon-induced
baths, respectively (see Appendix G). We note that for the
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FIG. 2. (a) Area under the peak (including contributions from
both the mechanical signal and imprecision noise) at the beginning of
the measurement pulse for the 18.31 MHz mechanical mode plotted
versus fridge temperature. The uncertainty in each point is smaller
than the marker size. For the high input power used here (Pin = 75
μW), the shot noise of the optomechanical measurement is suffi-
ciently suppressed to resolve the mode’s initial phonon occupation.
Fitting this linear trend (dashed line), we calibrate the peak area
in terms of the mechanical mode temperature, with the y intercept
indicating an imprecision noise floor equivalent to 29.5 fm2/Hz
(see Appendix C). Inset highlights the rapid increase in the peak
area during the first 5 μs of the measurement for each temperature
(color-coded to match the main figure), taken by averaging data
from 5000 individual optical pulses 4 ms in length and scaled by
discarding the initial 20 μs of transient signal due to the applied
numerical bandpass filter. Each data point in the main figure is
extracted from a fit of Eq. (3) over the full pulse duration of this
data. The rapid settling of the signal for t < 0 is set by the 10 MS/s
effective sampling rate of our data acquisition (see Appendix A). (b)
A typical heating curve corresponding to the point in (a) with the
fridge temperature at 200 mK. The data (orange) are calibrated in
terms of both temperature and average phonon occupancy, showing
that the mechanical mode heats to T ≈ 80 K (〈n〉 ≈ 105) within the
first millisecond of the measurement pulse. The solid black line is a
fit to Eq. (3), used to extract the initial and final phonon occupancy
of the mode. Inset shows the continuously monitored spectral density
of the mechanical resonance over the ∼1.2 MHz bandwidth window
used for these measurements. Orange illustrates the area under the
peak due to mechanical motion, while gray indicates the noise floor.

temperatures considered here, np � nth and � ≈ �p, such that
neq ≈ np.

This rapid heating (see Fig. 2) prevents one from contin-
uously monitoring the device’s motion at low temperatures.
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FIG. 3. (a) The first millisecond of pulsed data for the 18.31 MHz
mechanical mode, obtained by averaging 500 individual probe pulses
with the fridge at its base temperature of 10 mK. Measurements
are performed by varying the delay time between pump and probe
pulses (each with Pin = 7.5 μW and a full duration of 2 ms) as
indicated by the color bar. These traces are fitted with Eq. (3) to
extract their initial and final occupations. Inset is a schematic of
the pump-probe sequence. The gray line indicates the state of the
laser (high = on, low = off), with the solid (dashed) red line being
the average occupancy of the mechanical mode with the laser on
(off). (b) Thermally excited ringdown measurements at a number
of fridge temperatures. The solid lines are fits to the data using
Eq. (4), allowing for extraction of the intrinsic damping rate �i at
each temperature. The disparity in the noise floor between the low
temperature (0.1 K, 0.5 K) and high temperature (1.2 K, 4.3 K)
data results from varying levels of optomechanical transduction (i.e.,
small variations in input power, optical coupling to the device,
etc.) between data runs and does not have an effect on the extracted
intrinsic mechanical damping rate.

However, by performing time-resolved measurements of the
mechanical resonator (see Appendix A) and looking at its
phonon occupancy for t < 1 μs, we show that the device is
initially thermalized to the fridge, reaching an average phonon
occupancy as low as 〈n〉 ≈ 28 for the 18.31 MHz mode at
T = 25 mK and allowing for complete calibration of the
device temperature at all times during the measurement (see
Fig. 2). Furthermore, we capitalize on this optically induced
heating to implement a pump/probe measurement technique

[37], as illustrated in the inset of Fig. 3(a). This allows us
to observe the thermalization of the laser-heated mechanical
mode back to the fridge temperature at its intrinsic damping
rate according to

〈n〉i
〈n〉f

= (neq − nth )e−�itoff + nth + nimp

neq + nimp
. (4)

Here, 〈n〉i and 〈n〉f are the measured phonon occupancies
of the mechanical mode (including the apparent contribution
nimp due to imprecision noise) at the beginning of the probe
pulse and at the end of the pump pulse, respectively, while
toff is the time delay between turning off the pump pulse and
turning on the probe pulse (see Appendix G). In Eq. (4), as
well as the experiment, we have chosen the lengths of the
pump pulse t1 and probe pulse t2 to be equal, as well as
to satisfy t1 = t2 � �−1 such that 〈n〉f = neq + nimp at the
end of each pulse. By varying the delay between pulses and
fitting the data to Eq. (4), as seen in Fig. 3(b), we can extract
the intrinsic mechanical damping rate of the device, allowing
us to map out its low-temperature dependence. We note that
in order to achieve sub-microsecond time resolution for our
measurements, we must integrate the mechanical spectra over
a relatively large bandwidth of ∼1.2 MHz. This prevents us
from measuring TLS-induced resonance frequency shifts, as
has been previously observed in other mechanical systems
[26,27,31–34], as well as superconducting microwave circuits
[39,44,45]. However, if one were to reduce this bandwidth, at
the expense of time resolution, it may be possible to track the
mechanical resonance frequency of the device as it heats up
during measurement.

III. QUANTITATIVE AGREEMENT WITH THE
ONE-DIMENSIONAL STANDARD TUNNELING MODEL

Measurements of the damping rate for each of the four
studied mechanical modes are performed with fridge tempera-
tures varying from 10 mK to 10 K. While each mode exhibits
qualitatively similar behavior, as seen in Fig. 4, in order to
quantitatively analyze the data, we must first determine the
dimensionality of the resonator. This is done by comparing the
transverse dimensions of our device (w = 200 nm, d = 250
nm) to the shortest thermal phonon wavelength present in the
system, given by λth = 2πh̄ct1/kBT ≈ 225 nm K/T , where
ct1 = 4679 m/s is the slowest speed of sound in single-crystal
silicon (see Appendix E). Our device therefore behaves one-
dimensionally for T � 1 K; however, to simplify the analysis
we consider our device to be quasi-one-dimensional for all
temperatures considered here. This approximation is justified
by the fact that at high temperatures, the TLS-induced damp-
ing rate plateaus to a constant value that is independent of the
dimensionality of the system [23]. Using this approximation,
we fit the data in Fig. 4 using the one-dimensional relaxation
TLS damping model, found by numerically integrating Eq. (2)
while taking D = 1 for the TLS relaxation rate in Eq. (1).
Parameters extracted from these fits are summarized in
Table I.

Upon inspection of these fit parameters, one can immedi-
ately see that the 6.28 MHz and 15.44 MHz mechanical modes
couple to a defect density (P0 ∼ 4 × 1044 J−1 m−3) that is
approximately four times larger than that sampled by the
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FIG. 4. The intrinsic damping rate �i measured for each of the four studied mechanical modes plotted versus fridge temperature, with
the right axis displaying their intrinsic dissipation Q−1

i = �i/ωm. Markers in each plot represent the experimentally determined damping rate
extracted from fits of Eq. (4) to data similar to those seen in Fig. 3(b), with error bars representing a single standard deviation in the uncertainty
of the fit. Solid lines are fits to Eq. (2), using D = 1 in Eq. (1) and h(�, �0) = P0/�0, demonstrating the temperature dependence of the
mechanical damping rate according to a one-dimensional amorphous TLS interaction model. From the fits, we obtain the parameters P0 and γ

for the TLS ensemble coupled to each mechanical mode, which are given in Table I. For T � 100 mK, the damping rate plateaus to a relatively
constant value, which could be due to a number of effects, including temperature-independent radiation of acoustic energy into the substrate
[46,47] or heating of the chip due to measurement (see Appendix C). Inset are the logarithm of the normalized strain energy density simulated
using FEM analysis for each mechanical mode. These simulations highlight the fact that the 3.53 MHz and 18.31 MHz modes have smaller
spatial strain profiles that are localized to the supports of the half ring (as characterized by their effective strain volumes; see Table I), whereas
the strain energy density profiles of the 6.28 MHz and 15.44 MHz modes extend into the rounded portion of the resonator.

3.53 MHz and 18.31 MHz modes (P0 ∼ 1 × 1044 J−1 m−3).
We attribute this disparity in TLS ensemble densities to
the fact that these first two modes have a larger extent to
their strain energy distribution compared to the latter two
modes (see Fig. 4 inset), as quantified by their effective strain
volumes Vstr (see Appendix D). This effect could also be
enhanced by the fact that the two modes with larger strain
volumes have a significant portion of their strain energy
density localized to the rounded portion of the ring, where
multiple crystal axis orientations are sampled. We also point
out that the extracted TLS density parameters are on the order
of that observed in bulk amorphous silica [48–50], much
larger than what would be expected for crystalline silicon
resonators, where the TLS density of states has been found
to be at least an order of magnitude smaller [26,28]. This is
likely due to the significantly larger surface-to-volume ratio of
our nanoscale devices, which results in defects at the surface
of the resonator [24,39–41] providing a larger contribution to
the overall defect density, as has been previously reported in
optomechanically measured gallium arsenide microdisks [51].
We note that this hypothesis is further supported by the fact
that over half of the strain energy for each mechanical mode

exists within the first 20 nm of the resonator’s surface (see
Appendix D).

From P0, we can also determine the total number of
thermally active defects located within the effective strain
volume of the resonator as Nth ∼ P0VstrkBT [23,24]. As can
be seen from Table I, at the lowest achievable temperature of
our fridge (10 mK), the resonator is already at the point of cou-
pling to less than a single defect on average. In this situation,
known as the small mode volume limit, the TLS no longer acts
as a bath and a fully quantum mechanical description must
be applied, resulting in the defect-phonon system undergoing
Rabi oscillation [23]. It is possible that this is the cause of the
mechanical damping rate flattening out to a constant value for
T � 100 mK, as in this regime other loss mechanisms, such as
radiation of acoustic energy at the resonator’s clamping points
[46,47], begin to dominate. An alternative explanation is that
this plateau is due to measurement-induced heating of the chip
at low temperatures (see Appendix C).

Finally, the extracted deformation potentials are on the
order of γ ∼ 1–2 eV, comparable to the those found in bulk
amorphous silica [48,49]. We point out that these values
are notably less than the 3 eV that has been previously
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TABLE I. Summary of the density of states parameter P0 and
deformation potential γ extracted from fits of the data in Fig. 4
to the one-dimensional TLS relaxation damping model given by
Eq. (2). The uncertainty in each of these fit parameters can be
found in Table V of Appendix F. Also included is the number
of thermally active defects Nth ∼ P0VstrkBT calculated using the
fridge base temperature of 10 mK for the TLS ensembles contained
within the effective strain volume Vstr of a given mechanical mode.
Each effective strain volume is determined using FEM simulations
of the mechanical mode’s strain energy density (see Appendix D).
The percentage of the total geometric volume V = 8.1 × 10−19 m3

occupied by each effective strain volume is given in parentheses.
As one can see, the two modes with larger effective strain volumes
(6.28 MHz, 15.44 MHz) couple to TLS ensembles with a defect
density of states approximately four times larger than that observed
for the two modes with smaller effective strain volumes (3.53 MHz,
18.31 MHz).

ωm/2π Vstr P0 γ Nth

(MHz) (×10−21 m3) (J−1 m−3) (eV) (at 10 mK)

3.53 3.6 (0.44%) 9.7 ×1043 1.3 0.05
6.28 6.3 (0.77%) 4.0 ×1044 1.2 0.35

15.44 11 (1.4%) 3.6 ×1044 1.3 0.55
18.31 1.7 (0.21%) 7.0 ×1043 2.2 0.02

reported for TLS defects caused by boron dopants in crys-
talline silicon [52], further supporting the hypothesis that
these TLSs are caused by glassy defects at the surface of the
resonator [24].

IV. CONCLUSION

We have performed simultaneous optomechanical ring-
down measurements of thermally driven motion for four
mechanical modes of a single-crystal silicon nanomechanical
resonator with resonant frequencies between 3 to 19 MHz.
From these low-strain measurements, we extract the damp-
ing rate for each mechanical mode over fridge temperatures
ranging from 10 mK to 10 K. Fitting these data to a one-
dimensional TLS damping model, we demonstrate that di-
mensionality has a strong effect on the defect-phonon interac-
tion, which is especially important for the reduced geometries
associated with nanoscale resonators. Extracting information
about the density of states and deformation potentials of the
TLS ensembles, we find that they are consistent with glassy
surface defects created during fabrication of the nanores-
onator, with a concentration similar to that observed in bulk
amorphous silica. Comparing the density of states for the TLS
ensembles coupled to each mechanical mode, we find that the
two modes exhibiting a larger spatial extent to their strain
profiles couple to TLSs roughly four times more dense than
those coupled to modes with smaller effective strain volumes.
To identify and eliminate these sources of TLS dissipation,
one could apply more sophisticated silicon surface treatments,
such as passivation and reconstruction in a hydrogen atmo-
sphere [53], to reduce defects at the device’s surface or use
higher resistivity silicon to remove any effects dopants may
have [52].

At the fridge base temperature of 10 mK we further find
that the small effective mode volumes of our device should

allow us to achieve coupling to less than an individual ther-
mally active defect on average for each of the four studied me-
chanical modes. Defect-phonon coupling on this level opens
the door to proposed cavity-QED-like experiments between
an individual defect and phonons within the resonator, provid-
ing a nonlinear quantum interaction which could be used for
the storage of quantum information [54], quantum control of a
single defect center [55,56], or nonclassical state preparation
of the mechanical element [42]. Furthermore, by tailoring the
phononic structure and mode frequencies of a nanoresonator,
it may be possible to engineer a Purcell-like defect-phonon
interaction, leading to enhancement or suppression of TLS
radiation into a specific mechanical mode [23]. Finally, in this
regime one could imagine using the mechanical resonator as a
probe of the dynamics of a single quantum defect, furthering
our incomplete knowledge of the microscopic nature of TLS
defects, as well as their interactions with each other [57–59].
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APPENDIX A: EXPERIMENTAL DETAILS

1. Device fabrication

To fabricate our optomechanical devices, we start with
a 〈100〉 p-doped (boron, 22.5 � cm) silicon-on-insulator
(SOI) wafer, consisting of a 250-nm-thick device layer of
monocrystalline silicon on top of a 3-μm-thick sacrificial
layer of silicon dioxide supported by a 0.5-mm-thick silicon
handle. The wafer is initially diced into 10 mm × 5 mm
chips and cleaned using a hot piranha solution (75% H2SO4,
25% H2O2) for 20 min. A masking layer (positive resist,
ZEP-520a) is deposited onto the clean silicon device layer
to pattern the half-ring/optical-disk structure using a 30 kV
e-beam lithography system (RAITH150 Two), followed by
a cold development at −15 ◦C (ZED-N50). The chip is then
reactive-ion etched (C4F8 and SF6) to transfer the pattern
to the silicon and subsequently cleaned with piranha so that
it can be spun with a new mask (positive photoresist, HPR
504). After optical lithography, Cr and Au layers (7 nm
and 210 nm, respectively) are sputtered on both sides of the
chip with equal thickness, surrounding the devices with a
gold thermalization layer, as shown in Fig. 1(c). Ultrasonic
liftoff in acetone and room-temperature piranha cleaning are
then used to ensure the cleanliness of these processed chips.
Finally, the chips are immersed in HF solution (49% HF) for
1 minute to etch the sacrificial oxide layer, as well as passivate
the exposed silicon surfaces of our devices [60], which is
followed by critical point drying to avoid stiction. We note
that through more sophisticated treatment techniques, such
as passivation and reconstruction of the silicon surfaces in a
hydrogen atmosphere [53], it may be possible to reduce the
defect density at the surface of the resonator, in turn leading
to a reduction in defect-induced mechanical damping.
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FIG. 5. Detailed schematic of the gated homodyne detection sys-
tem used to perform measurements of the cryogenic optomechanical
device presented in this work. WLM = wavelength meter, AOM =
acousto-optic modulator, VC = variable coupler, VOA = variable
optical attenuator, PM = power meter, OMC = optomechanical
cavity, FS = fiber stretcher, PID = proportional-integral-derivative
controller, V = voltmeter, LO = local oscillator, SW = optical
switch, BS = beam splitter, BPD = balanced photodetector, PD =
photodetector, ADC = analog-to-digital converter, DAQ = data
acquisition.

2. Gated homodyne measurement

To measure the motion of our optomechanical device, we
implemented a gated optical homodyne detection scheme, a
detailed schematic of which can be seen in Fig. 5. Light
from a tunable external cavity diode laser is fiber coupled
into the optical circuit, where its wavelength is monitored
using a 2% pick-off to a wavelength meter (WLM), with this
reading fed back into the laser controller to ensure long-term
frequency stability. The remainder of the signal is sent through
an acousto-optic modulator (AOM), allowing for gating of the
optical signal with a rise/fall time of ∼5 ns, faster than all
other timescales associated with the system. The laser light is
then sent through a variable coupler, where it is split into two
separate beams: the signal and the local oscillator (LO), with
the power in each arm set by a voltage-controlled variable
optical attenuator (VOA). For the measurements detailed in
this work, the LO is kept at a constant power of 2.6 mW,
while the power in the signal arm is varied depending on the
experiment. The light in the signal arm is coupled into and
out of the dilution unit using optical fiber feed-throughs, with
its polarization optimized using a fiber polarization controller
(FPC) and its power monitored by a power meter (PM). Inside
the fridge, a low-temperature dimpled tapered fiber [61,62] is
used to inject light into the optomechanical device, while also
collecting the optical signal exiting the cavity. After coupling
out of the fridge, this optical signal is recombined with the LO
via a 50/50 fiber beam splitter (BS), with both outputs sent to
a balanced photodetector (BPD). The path length difference
between the LO and signal arm of the circuit is maintained by
feeding the DC voltage difference signal of the BPD through
a proportional-integral-derivative (PID) controller and into a
fiber stretcher (FS) located in the LO arm, such that deviations

from the optical path length set point are compensated for.
This process locks the phase of the homodyne measurement
and allows for probing of a specific quadrature of the optical
field, with the mechanical motion extracted as fluctuations in
the AC portion of the BPD’s voltage difference signal, which
is recorded in the time domain using a 500 MS/s analog-to-
digital converter (ADC). The DC voltage readouts from each
of the BPD’s individual photodetectors are also collected, with
one output sent to a low-frequency data acquisition (DAQ)
card to monitor slow drifts, while the other is sent to the ADC
to observe rapid transients in this signal. Finally, we note that
we have included a voltage-controlled optical switch (SW)
after the fiber output from the fridge, such that we can opt
to toggle the optical signal out of the homodyne loop to a
standard, single-channel photodetector (PD), allowing for DC
spectroscopic measurements of the optical cavity’s line shape.

To implement the pulsing scheme used to measure the
mechanical dissipation of our devices, the optomechanical
detection system is initially set up by sending a continuous-
wave laser signal through the optical circuit. The dimpled
tapered fiber is then carefully aligned to couple with the
microdisk, after which the laser wavelength is tuned onto
resonance with one of the cavity’s optical modes and the
transduction of the mechanical signal is optimized. We note
that due to the relatively high optical powers (10–100 μW)
input to the fridge during this initial setup, the base plate,
along with the optomechanical device, heats up significantly.
Therefore, once we have ensured that the fiber is in place, the
optical circuit is toggled into the “off” state by closing the
AOM (extinction ratio of 50 dB), preventing optical power
from reaching the dimple. After approximately 1–2 hours in
this state, the fridge returns to its set-point temperature and is
ready for pulsing measurements.

For the double-pulse measurement outlined in the inset of
Fig. 3(a), we begin by sending a trigger signal from the DAQ
card to a 200 MHz frequency source, activating an output
signal that is amplified to 10 VRMS and sent to the AOM.
This electrical signal opens the AOM, generating the initial
pump pulse that is used to thermally excite the motion of the
mechanical resonator. The AOM is left open until the prede-
termined pulse time t1 has passed, at which point it is closed
by turning the frequency source off with a second signal from
the DAQ card. The mechanical resonator is then left in the
dark to decay towards thermal equilibrium for a set wait time
toff , after which a probe pulse, created in an identical manner
to the pump pulse, is sent to access the device. To ensure the
data from the probe pulse is recorded, the ADC is activated
using another trigger signal generated by the DAQ card at a
time chosen to be 10 or 100 μs—depending on the length of
toff—before the probe pulse is created. Finally, the AOM is
closed after a time t2 has elapsed following the generation
of the probe pulse, returning the optical circuit back to its
“off” state. Note that for the experiments performed here, we
always take t1 = t2, such that the phonon occupation of the
mechanical mode at the end of the pump pulse can be inferred
from observation of the probe pulse (see Appendix G), mini-
mizing the amount of data that needs to be collected. After a
200 ms wait to reinitialize the ADC, this procedure is repeated
until the desired number of pulses is acquired. Single-pulse
measurements are performed identically to the double-pulse
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measurements, with the omission of the pump pulse. We note
that the gating of the optical circuit is completely controlled
by outputs from the DAQ card, ensuring consistent timing
referenced to its 1 MHz internal clock.

3. Signal processing

The displacement of the half-ring resonator is dispersively
coupled to the monitored optical mode, modulating its effec-
tive index of refraction, and therefore resonance frequency,
such that the mechanical motion is encoded into the fluctuat-
ing phase of the optical signal that is transmitted through the
cavity. Therefore, once this signal beam is recombined with
the LO and sent to the BPD, the mechanical motion is trans-
duced into a time-varying voltage signal v(t ) acquired using
the ADC. To reduce the noise of our signal, we average each
50 point interval of acquired data into a single point, leading to
an effective data sampling rate of 10 MS/s (effective sampling
time of 100 ns). Following this averaging process, the data
are digitally demodulated, as well as low-pass filtered (−3
dB bandwidth of ∼1.2 MHz, time constant τ0 ≈ 0.8 μs)
around the frequency of interest ω via convolution with a
Blackman window H (t ). Mathematically, this is interpreted
as the “band-passed” Fourier transform

V (ω, t ) =
∫ ∞

−∞
v(t − t ′)e−iω(t−t ′ )H (t ′)dt ′, (A1)

performed at each time step t of the ADC signal. Note that
the ∼1.2 MHz bandwidth of the filter function is much larger
than the linewidth of any of the studied mechanical modes,
ensuring that the entire area of each considered resonance
peak will be encapsulated. Furthermore, while the data are
taken with an effective time step of 100 ns, this filter will
smooth over any features that evolve faster than its 0.8 μs
time constant. From the Fourier transform in Eq. (A1), we
can determine the time-resolved, band-passed power spectral
density of v(t ) as

Sv (ω, t ) = |V (ω, t )|2
τ0

. (A2)

If we choose our demodulation frequency to be equal to
one of our mechanical resonances (i.e., ω = ωm), this spec-
tral density will provide a direct measure of the mode’s
phonon occupancy as 〈n〉 (t ) ≈ kBTm(t )/h̄ωm ∝ Sx (ωm, t ) ∝
Sv (ωm, t ), where Sx (ω, t ) is the band-passed power spectral
density of the mechanical mode’s displacement x(t ) and Tm(t )
is the time-dependent mechanical mode temperature (see Ap-
pendix C below).

4. Optomechanical detection efficiency

To determine the overall efficiency of our optomechanical
detection, we analyze the losses at each junction of our optical
circuit. While coupling to the device, light from the tapered
optical fiber is scattered off the substrate, as well as lost
as photons travel through the fiber and out of the fridge,
with corresponding transmission efficiencies of ηs = 62.6%
and ηf = 72.0%, respectively. Further losses in the fiber at
room temperature result in a fraction ηRT = 81.6% of the
light that exits the fridge reaching the BPD. Including
the quantum efficiency of the BPD itself, ηBPD = 78.1%,

the total optomechanical detection efficiency of the system
(i.e., the fraction of photons coupled out of the device that
are converted into measured photoelectrons) is given by η =
ηsηfηRTηBPD = 28.7%.

5. Thermometry and temperature control

To measure the temperature of the base plate of the dilution
refrigerator, two complementary thermometers are used. The
counts of gamma ray emission from a 60Co nuclear orientation
(NO) thermometer over a 570 s time window, referenced to
a high-temperature count rate at 4.2 K, provides accurate
temperature readings below 50 mK, while the resistance curve
of a RuO thermometer is used for T � 50 mK. Uncertainty in
the temperature readings of the NO thermometer are obtained
as the standard deviation in the spread of reported tempera-
tures over the course of a measurement, while the RuO error
is taken as the uncertainty in the accuracy of the sensor as
specified by the supplier.

In order to heat the dilution refrigerator above its base
temperature of 10 mK, current is applied to a resistive heater
mounted on the mixing chamber plate, with temperature
stability for the duration of a given measurement ensured
by a PID-controlled feedback loop referenced to the RuO
thermometer. In the range of 10 mK to 800 mK, the cooling
power is provided by operating the dilution unit, while for
temperatures up to 4.2 K, fridge circulation is ceased and
cooling is supplied by the 1 K pot. Finally, above 4.2 K the
1 K pot is stopped, such that connection to the liquid helium
bath surrounding the fridge is the source of cooling for the
base plate.

APPENDIX B: OPTOMECHANICAL DEVICE PROPERTIES

The studied optomechanical device, as seen in Fig. 1(d),
is composed of a suspended half-ring mechanical resonator
(width w = 200 nm, thickness d = 250 nm) side-coupled to
a 10 μm diameter optical microdisk cavity, with a vacuum
gap of 75 nm between the optical and mechanical elements.
The microdisk cavity supports a number of optical modes,
each with a resonant frequency ωp, such that the total electric
field in the disk can be expressed as �E (�r, t ) = ∑

Ep(t ) �Ep(�r )
[63]. Likewise, the motion of the half-ring resonator can be
broken down into a set of mechanical modes at frequency
ωq , such that its displacement from equilibrium can be de-
scribed by �u(�r, t ) = ∑

xq (t )�uq (�r ) [63,64]. Here, we have
separated both the electric field and displacement profiles into
their time-dependent amplitudes, Ep(t ) and xq (t ), with their
spatially varying mode shapes, �Ep(�r ) and �uq (�r ), normalized
such that max|

√
ε(�r ) �Ep(�r )| = max|�uq (�r )| = 1 for all p and

q. In this way, we can characterize the spatial extent of
each optical mode through the effective optical mode volume
Vopt = ∫

ε(�r )| �Ep(�r )|2dV [63,65], as well as the extended
nature of the mechanical resonator via an effective mass
mq = ∫

ρ(�r )|�uq (�r )|2dV for each mechanical mode [63,64].
Both integrals are performed over the volume of the entire
optomechanical system, where ε(�r ) and ρ(�r ) are the dielectric
profile and mass density of the device, respectively.

In the experiment, we excite a single optical whisper-
ing gallery mode of the cavity at frequency ωp = ωc =
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2π × 188.8 THz, allowing us to observe its interaction with
the mechanical degrees of freedom of the system. Here, a
dispersive optomechanical coupling is realized by the fact that
the motion of the half-ring resonator perturbs the boundaries
of the microdisk cavity, shifting its resonant frequency. To first
order, these shifts can be expressed for a given mechanical
mode as ωc[xq (t )] ≈ ωc + Gxq (t ), where G = dωc/dxq is
the optomechanical coupling coefficient. Using a perturbative
approach [63,66], an expression for G can be found as

G = ωc

2Vopt

∫
�uq (�r ) · n̂(�r )

[
�ε| �Ep,‖(�r )|2

−�ε−1ε2(�r )| �Ep,⊥(�r )|2
]
dA, (B1)

where the integration is performed over the surface of the
mechanical resonator. Here, �Ep,‖(�r ) and �Ep,⊥(�r ) are the com-
ponents of �Ep(�r ) parallel and perpendicular to this surface,
as defined by its spatially varying unit normal vector n̂(�r ),
with �ε = εd − εs and �ε−1 = ε−1

d − ε−1
s defined in terms

of the permittivities of the device’s material εd and surround-
ing medium εs. We also introduce the single-photon, single-
phonon optomechanical coupling rate g0 = Gxzpf , which
corresponds to the shift in the optical cavity’s resonance
frequency due to the fluctuation amplitude of the resonator’s
zero-point motion xzpf = √

h̄/2mqωq (i.e., the root-mean-
square value of xq (t ) when the mechanical resonator is in its
ground state).

Due to optical heating of the mechanical mode, as well
as an anomalous optomechanical damping effect that will
be the subject of future studies, it is difficult to obtain an
experimentally determined value of G. However, by perform-
ing finite-element method (FEM) simulations of the optical
and mechanical mode shapes of the device, we can calculate
a value for G according to Eq. (B1). Furthermore, we use
this simulated mechanical mode shape to determine mq , from
which we also find xzpf , and subsequently, g0. These values
for each mechanical mode are found in Table II. We note that
due to the symmetry of the displacement with respect to the
optical field, we simulate G ≈ 0 for the two lower frequency
mechanical modes, even though this symmetry is broken in

TABLE II. Summary of the optomechanical properties for each
mechanical mode. The effective mass mq and optomechanical cou-
pling coefficient G are determined using FEM simulations for the
electric field and displacement profiles of the optomechanical device.
From these values, the zero-point fluctuation amplitude xzpf and the
single-photon optomechanical coupling rate g0 are also calculated.
Note that due to the symmetry of the simulated system, the values of
G given here represent a lower bound for the considered geometry
and are only nonzero for the two higher frequency mechanical
modes.

ωm/2π mq xzpf G/2π g0/2π

(MHz) (fg) (fm) (GHz/nm) (kHz)

3.53 610 62.4 – –
6.28 836 40.0 – –

15.44 743 27.0 2.34 63.4
18.31 772 24.4 5.13 125

the experiment, such that significant optomechanical coupling
exists.

APPENDIX C: MECHANICAL MODE TEMPERATURE

1. Calibration by varying fridge temperature

The measured signal in our experiment is a fluctuating
voltage v(t ) at the output of a balanced photodetector, which
encodes the mechanical motion of our device. Transform-
ing this signal into the frequency domain, we obtain its
single-sided, band-passed spectral density function (see Ap-
pendix A), which will in general be given by [64]

Sv (ω, t ) =
∑

q

αq (ω, t )Sq
x (ω, t ) + S imp

v (ω). (C1)

Here, αq (ω, t ) is the transduction coefficient for the single-
sided, band-passed displacement spectral density S

q
x (ω, t )

corresponding to the qth mechanical mode of the resonator
and S

imp
v (ω) is the frequency-dependent imprecision noise

floor of the measurement. If we consider a finite bandwidth
�ω surrounding the resonance frequency of a single me-
chanical mode, the sum in Eq. (C1) collapses and we can
approximate the transduction coefficient and noise floor as
constant over this frequency range. Furthermore, the time
dependence in αq (ω, t ) is due to the ring-up of the optical
cavity, which occurs on a timescale of 1/κ ≈ 1 ns, much faster
than any other component in our detection system. We can
therefore treat αq (ω, t ) as a step function in time, such that it
takes on a constant value once the laser reaches the optical
cavity. We then have

∑
q αq (ω, t )Sq

x (ω, t ) ≈ αSx (ω, t ) and

S
imp
v (ω) ≈ S

imp
v resulting in

Sv (ω, t ) ≈ αSx (ω, t ) + S imp
v , (C2)

where Sx (ω, t ) is the displacement spectral density of
the mechanical mode of interest, with resonant frequency
ωq = ωm.

In general, the coefficient α is a combination of a number
of experimental parameters such that it is difficult to deter-
mine a priori. We therefore look for a simple way to relate
the spectral density of our measurement to the temperature
of the mode in question. This is done by relating the spectrum
of the mechanical mode to its time-dependent temperature
Tm(t ) using the expression [67]∫

Sx (ω, t )dω ≈ 4πx2
zpfkB

h̄ωm
Tm(t ), (C3)

where the integration is performed over the bandwidth �ω

centered on ωm and we have assumed the experimentally
relevant high-temperature regime [i.e., kBTm(t ) � h̄ωm for all
t]. Combining Eq. (C3) with Eq. (C2), we find∫

Sv (ω, t )dω = χTm(t ) + ζ, (C4)

indicating that the area under the curve of the measured
voltage spectral density is linearly related to the mechanical
mode temperature, with proportionality χ = 4πx2

zpfkBα/h̄ωm

and a constant offset ζ = S
imp
v �ω set by the noise floor

and bandwidth of the measurement. Fitting Eq. (C4) to the
area under the voltage spectral density at the beginning of
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the pulse, when the mechanical mode is thermalized to the
fridge temperature Tf at t = t0, allows us to infer the initial
mode temperature as Tm(t0) = Tf and extract values for χ

and ζ . Provided the conditions stay the same throughout the
experiment, we can use these parameters to determine the
mode temperatures at later times during the pulse as the device
rapidly heats due to interaction with the photon-induced bath.
An example of this type of calibration is seen in Fig. 2.

2. Heating effects

In the previous section, we assumed that the device is ini-
tially thermalized to the mixing chamber of the fridge so that
their temperatures are identical. However, due to diminish-
ing thermal conductivities at low temperatures, this may not
be the case. To investigate this, we use a simple model to
estimate the chip temperature (in the vicinity of the device)
for varying optical input powers.

We begin by assuming that the chip holder is well ther-
malized to the fridge [via a large copper braid; see Fig. 1(b)]
such that its temperature is equal to that of the base plate.
Furthermore, we assume that the cooling power of the mix-
ing chamber is large enough that this temperature remains
constant over the course of the measurement (as this is what
we observe during the experiment). The bath temperature of
the device Tb is then limited by the thermal conductivity of
the 210-nm-thick gold layer applied to the top of our silicon
device layer to improve the thermal conductivity of our chip
at low temperatures. We note that Tb is the temperature of
the chip in the vicinity of our device (i.e., the temperature
of its thermal bath), as opposed to the mechanical mode
temperature Tm introduced in the previous section. Assuming
the thermal conductivity of the gold layer varies linearly at
low temperatures as kg = k0T , where k0 ≈ 30 W/m K2 [68],
the device’s bath temperature will be given by

Tb =
√

2LgQ̇d

Agk0
+ T 2

f . (C5)

Here, Q̇d is the heat load applied to the device, with Lg and Ag

being the length and cross-sectional area of the thermalizing
gold layer. For a double-pulse measurement at a power of
Pf = 10 μW input to the fridge, as was done during the mea-
surement, the fraction of power absorbed at the chip can be
approximated as Pabs ≈ ηf (1 − ηs )Pf = 2.7 μW. Including
the duty cycle of the measurement, which for pulse delay
times much less than the 200 ms wait time per measurement
can be approximated as 2×2 ms/200 ms ≈ 0.02, we get an
average power applied to the device during measurement of
Q̇d ≈ 54 nW. Conversely, for our longest wait time of 1 s, the
duty cycle decreases to 2×2 ms/1200 ms ≈ 0.003, leading a
lower average measurement power of Q̇d ≈ 9 nW.

Figure 6 shows the values of Tb according to Eq. (C5)
versus fridge/chip holder temperature Tf for each of these
two heat loads input to the device, where we have taken
Lg = 3.5 mm and Ag = 5 mm × 210 nm = 1.05 × 10−9 m2

according to the experiment. As can be seen for these applied
heat loads, the device is no longer thermalized to the fridge
at temperatures T � 100 mK. We note that this treatment
neglects a number of effects, such as a Kapitza boundary

FIG. 6. Plot of device’s bath temperature Tb vs fridge/chip-
holder temperature Tf according to Eq. (C5) for the largest (54 nW)
and smallest (9 nW) estimated average heat loads Q̇d applied to the
device during pulsed measurements. The black dashed line is that of
a perfectly thermalized device, i.e., Tb = Tf .

resistance between each interface of the apparatus [69], as
well as the relevant timescales associated with the measure-
ments and heating/cooling processes. Nonetheless, this simple
model provides evidence that the low-temperature plateau in
the damping rates seen in Fig. 4 may be due to measurement-
induced heating of the device’s thermal environment.

APPENDIX D: STRAIN ENERGY DISTRIBUTION
IN MECHANICAL RESONATORS

1. Effective strain volume

As mentioned in the main text, it is the strain induced by
the motion of the mechanical resonator that couples to defects
in the device’s material. It is therefore important to understand
the spatially varying strain profiles of each mechanical mode.
To do this, we begin with the total (time-dependent) strain
energy density of the resonator, which includes all mechanical
modes and is given by [70,71]

U (�r, t ) = 1
2Cabcdεab(�r, t )εcd (�r, t ), (D1)

such that the total (time-dependent) elastic potential energy of
the system is

Ep(t ) =
∫

U (�r )dV, (D2)

where the integral is performed over the entire volume of
the solid in question and we have used standard Einstein
summation notation (i.e., sum over repeated indices). Here,
Cabcd are the components of the elasticity tensor

↔
C of the

material, while εab(�r, t ) are the components of the strain
tensor ε

↔(�r, t ) induced by the mechanical motion, which can
be expressed as

ε
↔(�r, t ) =

∑
q

ξq (t )ε↔q (�r ). (D3)

As we did with the mechanical displacement in Appendix B,
we have broken this strain tensor into its time-varying
amplitude ξq (t ) = √

mqxq (t ) and spatially varying
strain profile tensor ε

↔
q (�r ), the components of which

are given by εq,ab(�r ) = 1
2
√

mq
(∂uq,a/∂x̃b + ∂uq,b/∂x̃a ),
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with uq,i (�r, t ) and x̃i being the ith components of
the mechanical displacement and coordinate vectors,
respectively. For systems that exhibit cubic symmetry,
such as the diamond lattice of silicon, the elasticity tensor
has only three independent, nonzero components, namely
Cxxxx =Cyyyy =Czzzz =C11 =165.6 GPa, Cxxyy = Cxxzz =
Cyyzz = Cyyxx = Czzxx = Czzyy = C12 = 63.9 GPa, and
Cxyxy = Cyxyx = Cxyyx = Cyxxy = Cxzxz = Czxzx = Cxzzx =
Czxxz = Cyzyz = Czyzy =Cyzzy =Czyyz = C44 = 79.5 GPa,
with all other components being zero [72]. Using these
symmetries of the elasticity tensor, the elastic strain energy
density for a given mechanical mode, time-averaged over its
mechanical oscillation period τm, can be expressed as

Uq (�r ) = 1

τm

∫ τm

0

1

2

{
C11

[
ε2
q,xx (�r ) + ε2

q,yy (�r ) + ε2
q,zz(�r )

]
+ 4C44

[
ε2
q,xy (�r ) + ε2

q,xz(�r ) + ε2
q,yz(�r )

]
+ 2C12

[
εq,xx (�r )εq,yy (�r ) + εq,xx (�r )εq,zz(�r )

+ εq,yy (�r )εq,zz(�r )
]}

dt. (D4)

As seen in Fig. 4, the majority of the strain energy density
for the optomechanical device studied in this work is localized
to certain portions of the resonator, such that the mechanical
motion will only couple to a specific subset of defects that
occupy these regions of high strain. To characterize the extent
to which each mechanical mode of the resonator probes these
defects, we define an effective strain volume [42]

Vstr =
∫

Uq (�r )

max[Uq (�r )]
dV, (D5)

analogous to the effective mode volumes for optical cavities
in cavity quantum electrodynamics (see Appendix B), where
max[Uq (�r )] is the maximum value of the strain energy density
for the qth mechanical mode. The effective strain volumes for
each of the four mechanical modes considered in this work
are calculated using FEM simulations of their strain energy
density profiles (see Fig. 4) with the smallest mesh allowable
(set by computing constraints) and are displayed in Table I of
Sec. III.

We are further interested in determining the fraction of the
strain energy that is localized to the surface of the resonator.
To do this, we use FEM simulations to compare the strain
energy located within the first 5, 10, 20, and 40 nm of the
resonator’s surface (note that this corresponds to roughly
the first 10, 20, 40, and 80 monolayers of silicon, as its
lattice constant is 5.4 nm) to the strain energy of the entire
structure for each mechanical mode. The results of these
calculations are given in Table III. As one can see, over half

TABLE III. Fraction of the strain energy localized to within 5,
10, 20, and 40 nm of the resonator’s surface for each of the four
studied mechanical modes.

ωm/2π 5 nm 10 nm 20 nm 40 nm

3.53 MHz 0.17 0.31 0.55 0.83
6.28 MHz 0.21 0.38 0.64 0.91
15.44 MHz 0.21 0.39 0.65 0.92
18.31 MHz 0.19 0.35 0.60 0.87

of the strain energy density is localized to the small volume
surrounding the first 20 nm of the resonator (corresponding
to roughly 37% of the resonator’s geometric volume) for each
mechanical mode, with nearly all of the strain energy being
located within 40 nm of the surface, further supporting our
hypothesis that the mechanical dissipation observed in this
work is caused by coupling to surface defects. We also note
that there is slightly less strain at the surface for the two lower
effective strain volume modes (3.53 MHz, 18.31 MHz) than
there is for the two high effective strain volume modes (6.28
MHz, 15.44 MHz), an effect that may contribute in part to the
higher defect density probed by these latter two modes.

2. Strain energy fraction

It is also useful to break the total energy of each mechanical
mode into fractions corresponding to each of the solid’s
phononic mode polarizations (i.e., to determine to what extent
the mode is longitudinal or transverse). To do this, we begin
with the total mechanical energy of the resonator, including
both kinetic and elastic potential energy, which is given by
[23]

Em = 1

2

∫ [
ρ(�r )| �̇u(�r, t )|2 + Cabcdεab(�r, t )εcd (�r, t )

]
dV.

(D6)

Using the orthonormality of the normal mode representation
of the elastic field, we can express this energy as [23]

Em =
∑

q

Eq

{
1

ω2
q

∫
ρ(�r )

[
c2
l

∑
a,b

εq,aa (�r )εq,bb(�r )

+ c2
t1

⎛
⎝∑

a

|εq,aa (�r )|2 −
∑
a �=b

εq,aa (�r )εq,bb(�r )

⎞
⎠

+ c2
t2

⎛
⎝2

∑
a �=b

εq,ab(�r )εq,ab(�r )

−
∑
a,b

εq,aa (�r )εq,bb(�r )

)]
dV

}
, (D7)

where Eq = h̄ωq (nq + 1/2) is the energy of the qth mechan-
ical mode with phonon occupancy of nq and

cl =
√

C11 + C12 + 2C44

2ρ
,

ct1 =
√

C11 − C12

2ρ
,

ct2 =
√

C44

ρ

(D8)

are the speeds of sound associated with the longitudinal elastic
wave polarized in the [110] direction, as well as the two
transverse waves polarized in the [001] and [11̄0] directions,
respectively [72]. Using ρ = 2330 kg/m3 as the uniform
density of silicon, these speeds of sound are found to be
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FIG. 7. SEM image of the studied device with the orientation
of the crystal axis in the silicon device layer specified. Scale bar is
3 μm.

cl = 9148 m/s, ct1 = 4679 m/s, and ct2 = 5857 m/s. Upon
inspection of Eq. (D7), we see that we can define a fraction
of the qth mode’s mechanical energy associated with each of
these polarizations as

eql = c2
l

ω2
q

∫
ρ(�r )

∑
a,b

εq,aa (�r )εq,bb(�r )dV,

eqt1 = c2
t1

ω2
q

∫
ρ(�r )

⎛
⎝∑

a

|εq,aa (�r )|2 −
∑
a �=b

εq,aa (�r )εq,bb(�r )

⎞
⎠dV,

eqt2 = c2
t2

ω2
q

∫
ρ(�r )

⎛
⎝2

∑
a �=b

εq,ab(�r )εq,ab(�r )

−
∑
a,b

εq,aa (�r )εq,bb(�r )

)
dV. (D9)

We note that since
∑

εq,aa (�r )εq,bb(�r ) = |Tr{ε↔q (�r )}|2, which
is an invariant of the strain tensor, eql remains constant with
respect to changes of coordinates (i.e., crystal orientations)
for a given mechanical mode; however, this is not the case
for eqt1 and eqt2 . We determine these fractions for the device
considered in this work by performing FEM simulations of
the strain profiles for each of its studied mechanical modes,
with the crystal orientation chosen to match the experiment
(see Fig. 7). The results of these calculations can be seen in
Table IV.

TABLE IV. Fraction of the elastic energy residing in each polar-
ization of the four mechanical modes studied in this work. The values
are determined using FEM simulations of the strain profile for each
mode, with the orientation of the silicon crystal axes chosen to match
the device used in the experiment (see Fig. 7).

ωm/2π eql eqt1 eqt2

3.53 MHz 0.15 0.42 0.43
6.28 MHz 0.34 0.54 0.12

15.44 MHz 0.34 0.52 0.14
18.31 MHz 0.39 0.32 0.29

APPENDIX E: STANDARD TUNNELING MODEL FOR
ACOUSTIC DAMPING IN ONE-DIMENSIONAL SYSTEMS

In the early 1970s, it was discovered by Zeller and Pohl
[73] that the cryogenic thermal properties of a number of
glassy solids deviated significantly from what was expected
according to the Debye model. To account for this anomalous
behavior, Anderson et al. [74] and Phillips [75] simultane-
ously developed what is now known as the standard tunneling
model, whereby phonons in the solid exchange energy with
the medium by driving changes in the configurational states
of its intrinsic defects. Further extensions to this model were
made by Jäckle et al. [76,77], who used it to correctly describe
the anomalous acoustic absorption observed in fused quartz
[78].

While early incarnations of the standard tunneling model
were used with great success to describe the cryogenic
properties of bulk amorphous solids, modifications to this
model are necessary in order to account for the behavior of
defect-phonon coupling in reduced dimensionality systems
fabricated from crystalline solids [23]. Here, we introduce the
standard tunneling model in its original form used to model
defects in amorphous solids and extend it to describe the me-
chanical dissipation in crystalline nanomechanical resonators.

1. Double-well potential model for tunneling systems

In the standard tunneling model, the configurational states
of the defects in the solid are modeled as a particle of mass
m confined to an asymmetric double-well potential [74,75],
as seen in Fig. 8. We assume this potential to be composed
of two identical harmonic wells separated by a barrier of
height B and the configurational coordinate q, with each well
having a ground state energy E0 = h̄�/2 offset from the
other by an asymmetry energy �. We consider the system to
be at low enough temperatures (kBT � h̄�) such that only
the ground state of each well will be populated with any
significant probability. This allows for a two-level system
(TLS) description of these two lowest lying configurational
states, with wave functions ψL(�r ) [ψR(�r )] corresponding to
the particle occupying the higher (lower) energy state in the
left (right) well. In this set of localized basis states, the
Hamiltonian will be given by [22,79]

ĤTLS = 1
2�σ̂z − 1

2�0σ̂x, (E1)

where we have chosen zero energy to be the midway point
between the minimum of each well and σ̂x (σ̂z) is the x (z)
Pauli spin matrix. In this Hamiltonian, quantum tunneling be-
tween the two states of the TLS is characterized by the tunnel
splitting or tunneling energy �0, which can be determined
using the Wentzel-Kramers-Brillioun (WKB) approximation
as �0 ≈ h̄�e−λ, where λ =

√
2mBq2/h̄2 is known as the tun-

neling or Gamow parameter and characterizes the penetration
of the wave functions into the barrier [22].

The Hamiltonian in Eq. (E1) can be diagonalized by ro-
tating the basis by an angle ϕ defined by tan(2ϕ) = �0/�,
resulting in the new Hamiltonian [22,79]

ĤTLS = 1
2Eσ̂z, (E2)
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FIG. 8. Schematic of a particle of mass m tunneling between the
two ground states of a double-well potential, separated by a barrier
of height B and a generalized configurational coordinate q, with an
asymmetry � between their two minima. The particle can tunnel
through the barrier, allowing it to be localized in the ground state
of either the left or right well (each with ground state energy E0 =
h̄�/2), as described by the wave functions ψL and ψR, respectively.

in the energy eigenstate basis

ψ+(�r ) = ψL(�r ) cos(ϕ) − ψR(�r ) sin(ϕ),

ψ−(�r ) = ψL(�r ) sin(ϕ) + ψR(�r ) cos(ϕ). (E3)

Here, E =
√
�2 + �2

0 is the energy separation between the
two states of the TLS, with the wave functions ψ±(�r ) corre-
sponding to the eigenvalues ±E/2. If the TLS is in thermal
equilibrium with a bath at a temperature T , we can use
the diagonalized Hamiltonian of Eq. (E2) to determine the
probability that the TLS is in either of its two states as

p0
± = e∓E/2kBT

eE/2kBT + e−E/2kBT
= 1

e±E/kBT + 1
, (E4)

with p0
+ (p0

−) corresponding to the excited (ground) state.
From these probabilities, we also define a population inver-
sion probability as

s0 = p0
+ − p0

− = − tanh

(
E

2kBT

)
. (E5)

2. Coupling to phononic systems

Tunneling systems that are embedded in a solid are able
to exchange energy with the various excitations of the sur-
rounding medium. Here, we focus on insulating solids, such
that the dominant excitation at low temperatures will be quan-
tized vibrations of the lattice, i.e., phonons. If the interacting
phonon has energy on the order of, or greater than, the TLS
separation energy, it can be directly absorbed, promoting a
TLS in its ground state to its excited state. However, for the
temperatures considered in this experiment (10 mK to 10 K),
TLSs at the frequencies relevant for this resonant interaction

(<20 MHz) will be thermally saturated such that absorption
or emission of a phonon is equally likely [23]. Therefore, this
dissipation mechanism does not need to be considered for
the MHz frequency mechanical modes studied in this work.
Instead, we focus on another TLS-phonon interaction, known
as the relaxation interaction [22,79,80], whereby nonresonant
phonons generate strains that perturb the local TLS environ-
ment, driving the system out of thermal equilibrium by shift-
ing the energy separation between their two levels. This allows
the TLSs to interact with the lower frequency vibrational
modes of the solid, absorbing and emitting phonons until it
can relax back to thermal equilibrium.

To model this relaxation effect, we consider the full Hamil-
tonian for the interaction between the modes of a mechanical
resonator and an ensemble of TLS defects, given by the so-
called “spin-boson” Hamiltonian [23,24,57]

Ĥ =
∑

q

h̄ωqb̂
†
q b̂q + 1

2

∑
j

Ej σ̂z

+
∑

j

(
�0j

Ej

σ̂x + �j

Ej

σ̂z

)
↔
γj : ε

↔ + Ĥ�. (E6)

In this Hamiltonian, the first two terms correspond to the
energies of the resonator’s mechanical modes, each with
angular frequency ωq and annihilation (creation) operator b̂q

(b̂†q), and the TLS ensemble, with tunneling, asymmetry, and

separation energies of �0j , �j , and Ej =
√
�2

j + �2
0j for each

TLS. The third term then describes the coupling between the
TLS ensemble and the mechanical motion of the resonator,
characterized by the dyadic (tensor) product ↔

γj : ε
↔ = γj,abεab

between the deformation potential tensor (i.e., the strain-TLS
coupling tensor) ↔

γj of the j th TLS and the strain tensor ε
↔

induced by the resonator motion [23,79,81]. Using Eq. (D3),
along with the fact that the (quantized) displacement am-
plitude of each mechanical mode can be expressed as x̂q =
xzpf (b̂q + b̂

†
q ), we can write the system Hamiltonian in the

more succinct form

Ĥ =
∑

q

h̄ωqb̂
†
q b̂q + 1

2

∑
j

Ej σ̂z

+
∑

j

∑
q

(μqj σ̂x + νqj σ̂z)(b̂q + b̂†q ) + Ĥ�, (E7)

where we have introduced the TLS-phonon coupling co-

efficients μqj = �0j

Ej

√
h̄

2ωq

↔
γj : ε

↔
q (�rj ) and νqj = �j

Ej

√
h̄

2ωq

↔
γj :

ε
↔

q (�rj ). We note that for each of these coefficients, the strain
is evaluated at the position of the j th TLS, denoted by the
position vector �rj . Finally, Ĥ� describes the interaction of
the resonator with its environmental bath, which accounts for
dissipation mechanisms aside from those due to TLS-phonon
interactions, as well as the thermal drive of the mechanical
motion.

Coupling between the mechanical modes of the resonator
and the TLS ensemble as described by the the Hamiltonian in
Eq. (E7) will act to shift the energy separation of each TLS in
time according to

E′
j (t ) = Ej,+(t ) − Ej,−(t ) = Ej + δEj (t ), (E8)
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with

δEj (t ) = 2
∑

q

νqj

[
βq (t ) + β∗

q (t )
]
, (E9)

where we have introduced βq (t ) = 〈b̂q (t )〉. This shift in the
separation energy will additionally act to perturb the differ-
ence in population between the excited and ground state of
each TLS away from equilibrium, leading to a time-dependent
inversion probability

sj (t ) = 〈σz〉 = pj,+(t ) − pj,−(t ) = s0
j + δsj (t ), (E10)

where δsj (t ) is the instantaneous deviation of the inversion
probability away from its equilibrium value s0

j in the absence
of the phonon-induced strain [see Eq. (E5)].

In order to determine δsj (t ), we must first realize that the
perturbed system will strive towards a new, time-dependent
equilibrium inversion probability s̄j (t ) = p̄j,+(t ) − p̄j,−(t ),
which can be found by inputting Eq. (E8) into the expression
for s0

j in Eq. (E5) and expanding to first order to obtain

s̄j (t ) = s0
j + ds0

j

dEj

δEj (t ) = s0
j − sech2

(
Ej

2kBT

)
δEj (t )

2kBT
.

(E11)

This “instantaneous” equilibrium probability can be inter-
preted as the inversion probability that the system would reach
if the TLS energy separation stayed at E′

j (t ) for a sufficiently
long time. However, a given TLS cannot immediately achieve
this new equilibrium, as it must do so by exchanging energy
with the surrounding phonon bath, such that the probabilities
of the excited and ground states evolve according to [22]

ṗj,+ = −pj,+υj,− + pj,−υj,+,

ṗj,− = pj,+υj,− − pj,−υj,+, (E12)

where υj,− (υj,+) is the phonon-induced transition rate as-
sociated with the excitation (deexcitation) of the TLS. By
examining the steady state of Eq. (E12), we can see that
these transition rates obey the condition of detailed bal-
ance, such that υj,+/υj,− = p0

j,+/p0
j,− = p̄j,+(t )/p̄j,−(t ) =

e−Ej /kBT [77,79]. Using this relation, along with the conser-
vation of probability pj,+(t ) + pj,−(t ) = 1, we find

ṡj = −(pj,+ − pj,−)(υj,+ + υj,−) + υj,+ − υj,−

= − sj − s̄j

τj

,
(E13)

where we have introduced the relaxation rate of the TLS
populations as

τ−1
j = υj,+ + υj,− = υj,−(e−Ej /kBT + 1). (E14)

This rate can be interpreted as the inverse of the relaxation
time τj required for the inversion probability of a given TLS to
relax back to its steady-state value after it has been perturbed
away from equilibrium. By inputting Eq. (E11) into Eq. (E13),
while using the fact that ṡj (t ) = δ̇sj (t ), we find

τj δ̇sj = −δsj − 1

2kBT
sech2

(
Ej

2kBT

)
δEj (t ), (E15)

which can be Fourier transformed to obtain

δsj (ω) = − 1

2kBT
sech2

(
Ej

2kBT

)
δEj (ω)

1 − iωτj

, (E16)

resulting in the frequency-domain solution for the deviation
of the inversion probability from equilibrium.

We now look to find an expression for the TLS relaxation
rate given by Eq. (E14). This can be done by applying a
Fermi’s golden rule calculation using the interaction Hamil-
tonian [i.e., the third term in Eq. (E7)] to determine the transi-
tion rate from the initial state |ψi〉 = |ψj,+, ni〉 to the final
state |ψf 〉 = |ψj,−, nf 〉, where ni (nf ) is the initial (final)
occupancy of the phonon state and ψj,+ (ψj,−) is the wave
function corresponding to the TLS in its excited (ground)
state. Enforcing nf = ni + 1, as well as Ej = h̄ωq (when the
TLS deexcites, it creates a single phonon of frequency ωq),
while averaging over the initial phonon states and summing
over the final phonon states, gives the total TLS deexcitation
rate [22,80]

υj,− =
(

�0j

Ej

)2 ∑
q

π

ωq

(〈nq〉+1)|↔
γj : ε

↔
q (�rj )|2δ(Ej − h̄ωq ),

(E17)

where 〈nq〉 = (eh̄ωq/kBT − 1)−1 is the average phonon occupa-
tion of the qth mechanical mode according to Bose-Einstein
statistics. Inputting this expression into Eq. (E14), the TLS
relaxation rate is then found to be [23]

τ−1
j =

(
�0j

Ej

)2 ∑
q

π

ωq

coth

(
Ej

2kBT

)
|↔
γj : ε

↔
q (�rj )|2

× δ(Ej − h̄ωq ). (E18)

To analyze how the delay in equilibration due this finite re-
laxation rate affects the dissipation of acoustic energy in each
of the mechanical modes, we again look to the Hamiltonian in
Eq. (E7) to determine the Heisenberg equation of motion for
b̂q as

˙̂bq = i

h̄
[Ĥ , b̂q ] = −

(
iωq + �q,n

2

)
b̂q

− i

h̄

∑
j

(μqj σ̂x + νqj σ̂z) − √
�q,nb̂q,n. (E19)

Here, we have used the fact that i
h̄

[Ĥ�, b̂q ] = −�q,n

2 b̂q −√
�q,nb̂q,n, where �q,n is the damping rate for the qth me-

chanical mode due to sources other than the TLS ensemble
and b̂q,n is a drive term due to noise (both thermal and
quantum) leaking in from the environment [67,82]. Taking the
expectation value of Eq. (E19), we find an analogous equation
of motion for βq as

β̇q = −
(

iωq + �q,n

2

)
βq − i

h̄

∑
j

νqj sj − √
�q,nβq,n,

(E20)

where we have neglected the term proportional to μqj . Trans-
forming Eq. (E20) into the frequency domain and grouping
terms proportional to βq , while using the fact that only the
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dynamical part of sj [i.e., δsj ; see Eq. (E16)] will contribute
to the mechanical damping, we find the expression for the total
dissipation rate of the qth mechanical mode as

�q = �q,n + �q,TLS, (E21)

where

�q,TLS =
∑

j

(
�j

Ej

)2
∣∣↔
γj : ε

↔
q (�rj )

∣∣2

kBT
sech2

(
Ej

2kBT

)
τj

1 + ω2
qτ

2
j

(E22)

is the mechanical damping rate due to the TLS-phonon re-
laxation interaction. We note that in the situation where TLS
damping dominates (i.e., �q,TLS � �q,n) for a given mode, we
can take �q ≈ �q,TLS, as is done for the fits in Fig. 4.

3. Determination of |↔
γ j : ε

↔
q (�r j )|2

In general, the product ↔
γj : ε

↔
q (�rj ) found in Eq. (E22) is a

complicated, spatially varying sum over a number of tensor
components. However, by using the local symmetries of the
simple cubic lattice of crystalline silicon, as well as making
some assumptions about our TLS ensemble, we can sim-
plify this quantity considerably. We begin by expressing the
deformation potential tensor as γ

↔
j = ↔

R :
↔
Wj = RabcdWj,ab

[81], where
↔
R is a fourth-rank tensor that describes the TLS

environment and

↔
Wj =

⎡
⎣ w2

j,x wj,xwj,y wj,xwj,z

wj,xwj,y w2
j,y wj,ywj,z

wj,xwj,z wj,ywj,z w2
j,z

⎤
⎦ (E23)

is a second-rank tensor that characterizes the orientation
of each TLS. Here, wj,x = sin(θj ) cos(φj ), wj,y =
sin(θj ) sin(φj ), and wj,z = cos(θj ) are the components of
the unit vector parallel to the defect’s elastic dipole moment,
with θj and φj specifying its orientation [23,81]. Using this
formalism, the tensor product found in μqj , νqj , and �q,TLS

can then be written as ↔
γj : ε

↔
q (�rj ) = RabcdWj,abεq,cd (�rj ).

Due to the simple cubic symmetry of the silicon lattice,
↔
R

will have only three independent parameters [81], namely
Rxxxx =Ryyyy =Rzzzz =R11, Rxxyy =Rxxzz =Ryyzz =Ryyxx =
Rzzxx =Rzzyy =R12, and Rxyxy =Ryxyx =Rxyyx =Ryxxy =
Rxzxz = Rzxzx = Rxzzx = Rzxxz = Ryzyz = Rzyzy = Ryzzy =
Rzyyz = R44, directly analogous to the elasticity tensor of
the system (see Appendix D). Furthermore, assuming that
the TLS ensemble is uniformly distributed (both in spatial
density and orientation), we can average |↔

γj : ε
↔

q (�rj )|2 over
the total volume V of the resonator and the solid angle of
TLS orientations, resulting in [23]

〈|↔
γj : ε

↔
q (�rj )|2〉

V
= 3ω2

q

Vρ

∑
η

γ 2
η

c2
η

eqη. (E24)

Here, the sum is over the three different phonon polarizations
(one longitudinal and two transverse), where γη, cη, and eqη

are the deformation potential, speed of sound, and fraction
of the resonance mode’s energy associated with each polar-
ization. In terms of the components of

↔
R, the deformation

potentials for each phonon polarization are given by

γl =
√

2R2
11 + 7R2

12 + 6R11R12 + 4R2
44

45
,

γt1 =
√

(R11 − R12)2

45
,

γt2 = 2R44√
45

,

(E25)

while explicit forms of cη and eqη are given by Eqs. (D8) and
(D9) in Appendix D.

4. Coupling to ensembles of TLS defects
with varying energy distributions

Using the previous results of this Appendix, we are now
equipped to determine the mechanical dissipation due to
coupling to a given ensemble of TLS defects. Starting with
the relaxation rate, we input the result for 〈|↔

γj : ε
↔

q (�rj )|2〉
V

from Eq. (E24) into Eq. (E18) to obtain

τ−1
j = 3π

Vρh̄

∑
q,η

�2
0j

Ej

γ 2
η

c2
η

eqη coth

(
Ej

2kBT

)
δ(Ej − h̄ωq ).

(E26)

In order to evaluate the sum over q, we must carefully
consider the density of states Dη(ω) associated with η polar-
ized phonons. For the system at hand, a discrete density of
states associated with the mechanical modes of the resonator
would seem to be an obvious choice. However, because a
large number of these modes are thermally populated for
the temperature range considered (at T = 10 mK modes
with frequencies up to ωq/2π = 144 MHz have at least one
phonon on average), we can instead use the simpler continuum
(Debye) density of states [23]. That said, we still need to deter-
mine the dimensionality of this density of states. This is done
by comparing the characteristic dimensions of the device to
its shortest thermal phonon wavelength λth = 2πh̄cmin/kBT ,
where cmin is the smallest speed of sound in the material. If
any of these dimensions are smaller than λth, then the device
is considered to be dimensionally reduced in that direction
[23,24]. For silicon, we take cmin = ct1 = 4679 m/s, such that
λth ≈ 225 nm K/T . Therefore, the resonator considered in
this work, which has cross-sectional dimensions of w = 200
nm and d = 250 nm (cross-sectional area of A = w × d =
5.0 × 10−14 m2), can be treated as one-dimensional for T � 1
K. In the temperature range T > 1 K, we assume the resonator
to be quasi-one-dimensional, such that for all relevant temper-
atures we can use the one-dimensional phononic density of
states Dη(ω) = L/πcη, where L is the length of the mechan-
ical resonator. With this choice of density of states, we can
replace the sum over q in Eq. (E26) with

∑
q → ∫

Dη(ω)dω,
which upon performing the integral results in

τ−1
j = 1

Aρh̄2

∑
η

�2
0j

Ej

γ 2
η

c3
η

coth

(
Ej

2kBT

)
. (E27)

Here, we have assumed eql = eqt1 = eqt2 ≈ 1/3, as this is
the average value for each of these fractions when a large
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number of mechanical modes are considered. We further note
that each phonon polarization will in general have a unique
deformation potential γη; however, determining exact values
for these parameters is beyond the scope of this work. There-
fore, we further simplify this expression for the relaxation
rate by assuming γl = γt1 = γt2 = γ , as well as introducing an

effective speed of sound ce = (
∑

η
1
c3
η
)
−1/3 = 3965 m/s, such

that

τ−1 = γ 2

Aρc3
e h̄

2

�2
0

E
coth

(
E

2kBT

)
. (E28)

Finally, inputting this relaxation rate, as well as the spa-
tially averaged value of |↔

γj : ε
↔

q (�rj )|2 from Eq. (E24) into
Eq. (E22) and replacing the sum over the TLS ensemble
with an integral over the TLS density of states,

∑
j →∫ ∞

0

∫ ∞
0 V h(�,�0)d�d�0 [83], we get the ensemble-

averaged TLS-induced damping rate

�TLS = γ 2

ρc2
qkBT

∫ ∞

0

∫ ∞

0

(
�

E

)2

sech2

(
E

2kBT

)

× ω2
mτ

1 + ω2
mτ 2

h(�,�0)d�d�0, (E29)

where, like in Eq. (E28), we have introduced a mode-
dependent effective speed of sound cq = (3

∑
η

eqη

c2
η

)
−1/2

. We

note that in Eqs. (E28) and (E29) we have taken ωq → ωm, as
well as dropped the explicit subscripts j and q, to match the
notation of Eqs. (1) and (2).

The functional form of h(�,�0) is chosen to characterize
the energy distribution of the TLS ensemble and, depending
on the dimensionality of the system, can have a drastic effect
on the temperature dependence of the TLS-induced mechani-
cal damping rate [22,23]. In the standard tunneling model, this
energy density function has the form

ha(�,�0) = P0

�0
, (E30)

where P0 is a constant that characterizes the density of states
of the TLS ensemble [22,74,75,79] and is typically on the
order of 1044 J−1 m−3 for glassy solids [23,24]. An energy
density function of this form reflects the broad distribution
of � and �0 exhibited for amorphous TLS distributions and,
for the one-dimensional resonator geometry considered here,
results in the damping rate

�a = γ 2P0

ρc2
qkBT

∫ ∞

0

∫ ∞

0

�2

�0E2
sech2

(
E

2kBT

)

× ω2
mτ

1 + ω2
mτ 2

d�d�0. (E31)

At low temperatures [ωmτmin � 1, where τmin = τ (E =
�0)], this mechanical damping rate can be approximated as

�a,LT ≈ π2γ 4P0kBT

6Aρ2h̄2c2
qc

3
e

, (E32)

which is linear in T as expected for a one-dimensional system
[23]. Meanwhile, at high temperatures (ωmτmin � 1) we find

�a,HT ≈ πγ 2P0ωm

2ρc2
q

. (E33)

We note that while the temperature dependence of �a,LT

differs significantly from the T 3 dependence seen in a number
of bulk amorphous solids [25], for high temperatures, the
mechanical damping rate approaches the same constant value
regardless of the dimensionality of the system [23], mini-
mizing the effect of our choice of a one-dimensional phonon
density of states for T > 1 K.

On the other hand, for TLS ensembles that exhibit crys-
talline behavior, a narrower distribution in TLS energies ex-
ists. To account for this, Phillips [28] suggested a distribution
function of the form

hc(�,�0) = D0

√
2

π

1

δ�
e− 1

2 ( �
δ� )2

δ(�0 − �̄0); (E34)

that is, the crystalline nature of the TLS ensemble results in a
well-defined tunneling energy of �̄0 and a Gaussian spread
in the asymmetry energy, with a standard deviation of δ�

centered around � = 0. We note that with this choice of
distribution function, we need only consider the relevant case
of ωmτ � 1, due to the fact that the experimentally measured
dissipation increases monotonically with temperature for each
of the mechanical modes studied in this paper (see Fig. 4) [28].
This allows us to approximate the mechanical damping rate in
Eq. (E29) as

�c = γ 2D0

ρc2
qkBT δ�

√
2

π

∫ ∞

0

(
�

Ē

)2

sech2

(
Ē

2kBT

)

× e− 1
2 ( �

δ� )2

τ−1(�, �̄0)d�, (E35)

where Ē2 = �2 + �̄2
0 and we have expressed τ as an ex-

plicit function of � and �0. To examine the low-temperature
limit of the damping due to this crystalline TLS distribution,
we take T � (δ�2 + �̄2

0)1/2/kB, allowing for the approxi-
mations sech2(Ē/2kBT ) ≈ 4e−Ē/kBT and coth (Ē/2kBT ) ≈ 1
over the regions of integration in Eq. (E35) that provide
the majority of the contribution to �c, resulting in a low-
temperature dependence according to

�c,LT ≈ 4γ 4D0�̄
2
0

Aρ2h̄2c2
qc

3
ekBT δ�

√
2

π

∫ ∞

0

�2

Ē3
e
− Ē

kBT e− 1
2 ( �

δ� )2

d�.

(E36)
In the opposite limit of T � (δ�2 + �̄2

0)1/2/kB, we have
sech2(Ē/2kBT ) ≈ 1 and coth (Ē/2kBT ) ≈ 2kBT/Ē, such
that the high-temperature value for �c is given by

�c,HT ≈ 2γ 4D0�̄
2
0

Aρ2h̄2c2
qc

3
eδ�

√
2

π

∫ ∞

0

�2

Ē4
e− 1

2 ( �
δ� )2

d�. (E37)

Here, the factor of kBT from the approximation of
coth (E/2kBT ) cancels that in the denominator of Eq. (E35),
such that �c,HT is temperature independent, similar to the
high-temperature limit of the damping rate due to the amor-
phous TLS distribution, albeit at a different value.
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FIG. 9. The intrinsic damping rate �i for each of the four studied mechanical modes versus temperature, with the right axis displaying
their intrinsic dissipation Q−1

i = �i/ωm. Each mode is fitted to both the amorphous (solid lines) and crystalline (dashed lines) TLS damping
models given by Eqs. (E31) and (E35), respectively. From these fits we extract P0 and γ for the amorphous TLS damping model, as well as
�̄0, δ�, and γ 4D0 for the crystalline TLS damping model, for each mechanical mode. The parameters from each fit are displayed in Tables V
and VI for the amorphous and crystalline models, respectively.

APPENDIX F: FITS TO AMORPHOUS AND CRYSTALLINE
TWO-LEVEL SYSTEM DAMPING MODELS

Here, we present fits of the one-dimensional TLS dissipa-
tion models, using both amorphous and crystalline distribu-
tions, to the mechanical damping rate data for the four me-
chanical modes studied in this work. These fits are displayed
in Fig. 9, with the parameters extracted from each given in
Tables V and VI. As one can see in Fig. 9, the crystalline
model exhibits a much more rapid decline in dissipation
versus temperature as compared to the amorphous model, far
undershooting the measured damping rates for T � 500 mK.
Furthermore, this crystalline model plateaus to a constant
value at high temperature that is slightly smaller than what
the amorphous model predicts. The amorphous TLS damping

TABLE V. Summary of the TLS density of states parameter P0

and deformation potential γ for the fits to the mechanical damping
rate using the amorphous TLS damping model [i.e., Eq. (E31)] in
Fig. 9 (solid lines), as well as in Fig. 4. The uncertainty in each
parameter is given by their standard deviations from the fit.

ωm/2π P0 γ

(MHz) (J−1 m−3) (eV)

3.53 (9.7 ± 3.4) × 1043 1.3 ± 0.1
6.28 (4.0 ± 2.7) × 1044 1.2 ± 0.2

15.44 (3.6 ± 1.9) × 1044 1.3 ± 0.2
18.31 (7.0 ± 4.3) × 1043 2.2 ± 0.4

model is therefore a better fit to our data, implying that
the low-temperature dissipation in our mechanical modes is
caused by coupling to a glassy distribution of defects.

APPENDIX G: MECHANICAL RESONATOR
HEATING MODEL

We model the thermalization of a given mode of our
mechanical resonator as a harmonic oscillator at frequency
ωm coupled at its intrinsic damping rate �i to the device’s
cold environmental bath at temperature Tb, as well as at a rate
�p to a hot phonon bath at temperature Tp created by optical
absorption of measurement photons and/or radiation pressure
backaction, as depicted schematically in Fig. 10(a). Due to

TABLE VI. Summary of the tunneling energy �̄0 and spread
in asymmetry energy δ�, as well as γ 4D0, for the fits to the
mechanical damping rate using the crystalline TLS damping model
[i.e., Eq. (E35)] in Fig. 9 (dashed lines). The uncertainty in each
parameter is given by their standard deviations from the fit.

ωm/2π �̄0 δ� γ 4D0

(MHz) (μeV) (meV) (eV4 m−3)

3.53 74 ± 6 24.6 ± 0.7 (3.6 ± 0.1) × 1024

6.28 133 ± 19 37.3 ± 1.1 (1.7 ± 0.2) × 1025

15.44 165 ± 12 19.3 ± 397 (2 ± 30) × 1025

18.31 129 ± 8 3.5 ± 2.0 (3.0 ± 1.7) × 1024
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(a)

(b)

FIG. 10. (a) Block diagram of the heating model for the exper-
imentally relevant case where the mechanical mode is coupled to a
cold environmental bath at its intrinsic damping rate �i and a hot
photon-induced bath at a rate �p, each with a phonon occupancy
of nth and np, respectively. (b) Diagram of the double pulse mea-
surement scheme used in this work. The solid gray line indicates the
duty cycle of the laser, while the solid (dashed) red line expresses the
phonon occupation of the mechanical mode with the laser on (off).

the high quality factors of the mechanical modes considered
in this paper, we can also treat both of these environmental and
photon-induced baths as harmonic oscillators at the mechani-
cal frequency, each with an average occupancy of nth and np,
respectively. In this situation, the rate equation for the average
occupation of the mechanical mode will be given by [37]

˙〈n〉 = −� 〈n〉 + �inth + �pnp, (G1)

with � = �i + �p being the total rate at which the mode
equilibrates to the two baths. We note that our treatment of
the mechanical mode occupation dynamics differs from that
of Ref. [37], as we have not included a time-dependent term
proportional to np that accounts for the finite equilibration
time of the hot photon-induced bath. This is justified by the
fact that the thermal relaxation time for our device, found by
approximating each half of our resonator as a simple rectangu-
lar beam 10 μm in length [84,85] with a cross-section-limited
thermal conductivity [86–88], is roughly 20 ns. Therefore, our
measurement scheme, with a temporal resolution on the order
of 1 μs, is unable to resolve this thermalization process and
we neglect to include this time-dependent term in Eq. (G1).

Solving the rate equation given in (G1), we find the time-
dependent mechanical mode occupancy to be

〈n〉 (t ) = 〈n〉 (t0)e−�(t−t0 ) + neq(1 − e−�(t−t0 ) ), (G2)

where 〈n〉 (t0) is the phonon occupancy at the initial time t0
and neq = (�inth + �pnp)/� is the occupancy of the mechan-
ical mode at times t � �−1, long enough that the mode is able
to equilibrate to an average of the bath occupations, weighted
by their coupling rates. Furthermore, if the connection to
the hot photon-induced bath is severed (i.e., by turning the
laser off), we take �p = 0 such that the mechanical mode

occupation will tend towards equilibrium with the environ-
mental bath at its intrinsic damping rate according to

〈n〉 (t ) = 〈n〉 (t0)e−�i (t−t0 ) + nth(1 − e−�i (t−t0 ) ). (G3)

For the experiment considered in this paper, we measure
the low-temperature damping rate of our mechanical device
using the pump/probe measurement outlined in Appendix A.
This procedure is illustrated by the general two-pulse scheme
depicted in Fig. 10(b), where a pump pulse that turns on at
t = ta and off at t = tb (pulse length t1 = tb − ta) is followed
by a probe pulse that turns on at t = tc and off at t = td
(pulse length t2 = td − tc), with a delay between the two
pulses of toff = tc − tb. For this situation, the occupation of
the mechanical mode during the pump pulse will evolve in
time according to Eq. (G2) as

〈n〉1 (t ) = 〈n〉 (ta )e−�(t−ta ) + neq(1 − e−�(t−ta ) ). (G4)

Once the pump pulse has been turned off, the resonator’s
occupancy will cool towards that of the environmental bath,
as governed by Eq. (G3) to give

〈n〉off (t ) = 〈n〉 (tb )e−�i (t−tb ) + nth(1 − e−�i (t−tb ) ). (G5)

Finally, the occupation of the mechanical mode during the
probe pulse will obey

〈n〉2 (t ) = 〈n〉 (tc )e−�(t−tc ) + neq(1 − e−�(t−tc ) ). (G6)

Assuming the experimentally relevant case of t1 = t2 � �−1,
the final occupancy at the end of either the pump or probe
pulse will be given by 〈n〉 (tb ) = 〈n〉 (td ) = neq, while the
initial occupancy of the mode at the beginning of the probe
pulse can be found as 〈n〉 (tc ) = neqe

−�itoff + nth(1 − e−�itoff ).
Using these two expressions, we can determine the ratio of
the measured occupancy at the beginning of the probe pulse
〈n〉i to the final measured occupancy of either the probe or the
pump pulse 〈n〉f as

〈n〉i
〈n〉f

= 〈n〉 (tc ) + nimp

〈n〉 (tb ) + nimp
= 〈n〉 (tc ) + nimp

〈n〉 (td ) + nimp

= (neq − nth )e−�itoff + nth + nimp

neq + nimp
, (G7)

where we have included the noise due to the imprecision of the
measurement as an apparent phonon occupancy nimp. Using
this equation, thermal ringdown data for each mechanical
mode can be fitted to extract its intrinsic damping rate, as is
done in Fig. 3(b). We conclude on the note that it is often the
case that neq ≈ np � nth, nimp, such that Eq. (G7) simplifies
to

〈n〉i
〈n〉f

≈ e−�itoff + nth + nimp

neq
, (G8)

as can be seen by the fact that 〈n〉i / 〈n〉f ≈ 1 for toff � �−1
i

in Fig. 3(b).
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