
PHYSICAL REVIEW B 98, 214203 (2018)

Signatures of long-range-correlated disorder in the magnetotransport
of ultrathin topological insulators
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In an ultrathin topological insulator (TI) film, a hybridization gap opens in the TI surface states, and the system
is expected to become either a trivial insulator or a quantum spin Hall insulator when the chemical potential is
within the hybridization gap. Here we show, however, that these insulating states are destroyed by the presence
of a large and long-range-correlated disorder potential, which converts the expected insulator into a metal. We
perform transport measurements in ultrathin dual-gated topological insulator films as a function of temperature,
gate voltage, and magnetic field, and we observe a metalliclike nonquantized conductivity, which exhibits a
weak antilocalizationlike cusp at low magnetic fields and gives way to a nonsaturating linear magnetoresistance
at large fields. We explain these results by considering the disordered network of electron- and hole-type puddles
induced by charged impurities. We argue theoretically that such disorder can produce an insulator-to-metal
transition as a function of increasing disorder strength, and we derive a condition on the band gap and the
impurity concentration necessary to observe the insulating state. We also explain the linear magnetoresistance in
terms of strong spatial fluctuations of the local conductivity using both numerical simulations and a theoretical
scaling argument.
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I. INTRODUCTION

Three-dimensional (3D) topological insulators (TIs) are an
exotic state of matter in which gapless electronic excitations
exist at the surface of a bulk system with gapped conduction
and valence bands [1]. These surface states exhibit a number
of interesting phenomena associated with their linear dis-
persion and spin-momentum locking [2], including magnetic
monopole responses to an applied electric field [3] and a
strong magnetoelectric effect [4]. Angle-resolved photoemis-
sion spectroscopy (ARPES) measurements have identified
gapless Dirac surface states in several materials, including
Bi1−xSbx, Bi2Se3, Sb2Te3, and Bi2Te3 [2].

When a TI crystal is made very thin, however, the nature
of the surface states undergoes a significant change. In such
ultrathin TI films, electrons have a finite amplitude for quan-
tum tunneling between the top and bottom surfaces, resulting
in a hybridization gap for the surface states whose magnitude
depends on the film thickness d [5,6]. For appropriate values
of the film thickness and for a sufficiently clean system,
this gap can stabilize the quantum spin Hall state, which is
characterized by one-dimensional helical edge states around
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the border of the TI surface {as has been observed in mag-
netically doped TI films [7] and in the two-dimensional (2D)
TI HgTe/CdTe [8,9]}.

One can therefore expect a basic dichotomy of possibilities
for an undoped ultrathin TI film. Either the system becomes
a trivial insulator with a vanishing conductivity in the limit
of zero temperature, or it becomes a quantum spin Hall
insulator with a quantized conductance. The fate of the TI
film, vis-à-vie these two possibilities, is predicted to depend
in a nontrivial way on the value of the thickness d with the
system oscillating between a quantum spin Hall and a trivial
insulating state as a function of thickness [6].

In this paper, however, we find evidence for a third possi-
bility outside of this dichotomy in which a hybridization gap
exists, but the insulating state is destroyed by the presence
of long-range-correlated disorder. We measure the resistivity
of ultrathin films of pristine (BixSb1−x )2Te3 with x = 0.2 as
a function of temperature, chemical potential, and magnetic
field, and we find a number of features that suggest that a
dominant role is played by long-range-correlated disorder,
which arises inevitably due to charged impurities in the film
and in the substrate. Our films are four quintuple layers (QLs)
thick, which is predicted to produce a quantum spin Hall
insulator [6], but we find instead a finite nonquantized value
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of the resistance in the limit of zero temperature. We provide
an explanation for this observation in terms of an insulator-to-
metal transition produced by increasing long-ranged disorder.
We also observe a prominent weak antilocalization correction
and a large linear magnetoresistance at high magnetic fields,
which we explain in terms of strong spatial fluctuations of the
local conductivity.

The remainder of this paper is organized as follows. In
Sec. II, we briefly describe our sample preparation and mea-
surement setup. Section III describes our zero-field mea-
surements and presents theoretical arguments to explain a
resistivity that is both finite and nonquantized in the limit of
zero temperature. Section IV presents results for the resistivity
as a function of magnetic field and gate voltage along with
a theoretical discussion of both the weak antilocalization
corrections and the linear magnetoresistance that we observe.

II. SAMPLE PREPARATION AND MEASUREMENT SETUP

Our TI films are made from four QLs of (Bi0.2Sb0.8)2Te3

grown on a SrTiO3(111) substrate using molecular-beam epi-
taxy in an ultrahigh vacuum. Each QL layer is ∼1-nm thick.
The Bi, Sb, and Te effusion cells as well as the SrTiO3(111)
substrate are held at high temperatures in order to ensure
precise control of surface stoichiometry. The crystallinity
of the films is monitored by reflection high-energy electron
diffraction pattern. More detailed characterization of these
films is presented in Refs. [10,11].

To prevent oxidation in ambient conditions, 2 nm of
amorphous tellurium and 2 nm of alumina capping layer is
deposited on top of the films. The samples tend to degrade
at high temperatures, and hence all the processing was per-
formed at no higher than 100 ◦C. Contacts were made using
electron-beam lithography. In the dual-gated devices, the top-
gate dielectric was made from 20 nm of HfO2 grown by
atomic layer deposition [12]. Magnetotransport measurements
are performed in a dilution refrigerator with an 8-T magnet
and using standard low-frequency lock-in techniques. Results
in this paper are taken from five Hall bar devices, which we
denote as H1, H2, H3, H4, and H5.

III. TRANSPORT AT ZERO MAGNETIC FIELD

As mentioned in the Introduction, hybridization between
the two parallel TI surfaces leads to a gap opening at the
Dirac point of the surface dispersion relation (as illustrated
in Fig. 1). The size � of this gap is generally expected to
be between 5 and 50 meV; this range encompasses estimates
from density functional theory and tight-binding models for
the gaps in four-QL-thick Bi2Se3 and Bi2Te3 [6]. For situa-
tions where the chemical potential resides in the middle of
the gap and there is no band bending, one would expect the
TI surface to become an insulator with an activation energy
�/2 for the conductivity. Such a state would have either zero
conductivity in the limit of zero temperature (if the system is
a trivial insulator) or a quantized conductance 2e2/h (if the
system forms a quantum spin Hall state).

Using a dual-gated field-effect transistor setup, we shift the
chemical potential for both the top and the bottom surfaces
of our samples across a wide range in order to search for
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FIG. 1. Schematic of the dispersion of the Dirac surface states
(red lines). Hybridization between top and bottom surfaces opens
a small gap � at the � point. The bulk conduction- and valence-
band states are denoted by the upper and lower blue shaded areas,
respectively.

these insulating states. At high negative voltages, the chemical
potential resides far below the energy of the Dirac point,
whereas at large positive voltages the chemical potential is
high above. When the two gate voltages are chosen such
that both surfaces are at the charge-neutral point (CNP), the
system assumes its maximally insulating state. This behavior
is shown in Fig. 2 for five different samples as a function of the
back-gate voltage. (The behavior as a function of both back-
and top-gate voltages is discussed in Appendix B)

Contrary to the expectation for a clean system, our mea-
surements reveal a conductivity that is neither insulatinglike
nor quantized. Indeed, Fig. 2 shows that the resistance takes a
value of order h/e2 at the CNP, but this value varies from one
sample to the next. As shown in Fig. 3, the resistivity depends
very weakly on temperature, even though the temperature is
far below �/kB � 50 K. Using the traditional description of

FIG. 2. Sheet resistivity of five different Hall bar devices—
denoted H1 (blue curve), H2 (brown), H3 (green), H4 (yellow) and H5

(purple)—as a function of back-gate voltage. The top-gate voltage is
held fixed at Vtg = 0. The measurement temperature was ∼30 mK.
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FIG. 3. (a) The longitudinal resistivity ρxx of device H1 as a
function of back-gate voltage for different values of the temperature.
(b) The maximal resistivity (corresponding to the CNP) of device
H1 is plotted as a function of temperature, showing only a weak,
logarithmic dependence on temperature.

an undoped semiconductor, one would predict an activated
dependence ρxx ∝ exp[�/(2kBT )].

Taken together, these two observations suggest that the
system is not well described by either the clean band insu-
lator or quantum spin Hall insulator states. The most trivial
explanation for our results would be that the surface bands
simply do not have a band gap. For example, in four-QL-
thick films of Bi2Te3 the Dirac point lies within a deep local
minimum of the valence band [13], and consequently there
is no finite window of energy with zero density of states. In
Sb2Te3, tunneling experiments have shown that films of the
same thickness have a thermodynamic gap that is no larger
than a few meV [14]. Still, it is worth considering whether
there is another more interesting explanation for the lack of
insulating behavior, especially since similar results have been
recorded for transport in thin films of Bi2Se3 [15], despite a
Dirac point that lies well outside the bulk valence-band states
and a gap � on the order of tens of meV [6,16]. For bulk
samples of (Bi1−xTex )2Te3, the location of the Dirac point
shifts within the bulk gap as a function of the composition

FIG. 4. (a) Schematic of the disorder potential landscape.
Charged impurities produce a slowly varying Coulomb potential
that locally creates puddles of electrons (red) and holes (blue). The
typical correlation length of the potential, rs is labeled, and thin
black lines show contours of constant potential. White regions denote
tunnel barriers between electron and hole puddles, which exist at
large enough band-gap �. (b) A schematic of band bending, showing
the energy along some particular direction on the surface. The surface
band-gap � is labeled along with the typical magnitude � of the
disorder potential and the width xt of the tunnel barrier between
electron and hole puddles.

x so that at not-too-small values of x its position is similar to
what is shown in Fig. 1 (see, e.g., Ref. [17] for a discussion).

The apparent breakdown of the clean insulator picture
can be rationalized by considering the effects of long-ranged
disorder induced by Coulomb impurities, which exist both in
the TI film and in the substrate. Such impurities are known
to provide long-wavelength fluctuations of the local Fermi
energy, which provide a finite density of states at zero energy
due to band bending [18]. (A similar picture of fluctuating
Fermi energy in the presence of an insulating gap has been
used to describe, for example, graphene nanoribbons [19] and
dual-gated bilayer graphene [20].) This random band-bending
effect is illustrated in Fig. 4. When the surface gap � is
sufficiently large, the fluctuations of the Fermi energy lead to
the formation of isolated electron and hole puddles [red and
blue regions of Fig. 4(a), respectively], separated by insulating
tunnel barriers (white regions). When the chemical potential
μ is precisely in the middle of the band gap (which we
define as μ = 0), electron and hole puddles appear in equal
numbers. One can estimate the condition for maintaining a
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good insulating state at μ = 0 by demanding that the typical
tunneling action S for electron tunneling across such a barrier
satisfy S � h̄.

To estimate the action S, we first assume that the typical
magnitude � of the disorder potential is sufficiently large that
� � �. We also assume that the typical correlation length
rs of the potential is much larger than the film thickness.
Both of these assumptions are validated below. Under these
assumptions one can use numerical estimates for � and rs

based on a gapless TI surface [21,22]. These estimates give

� �
(

π3α2
s

2

)1/6

h̄vN
1/3
i , (1)

and

rs � N
−1/3
i

(2αs )4/3
, (2)

where Ni is the (three-dimensional) concentration of impu-
rities in the TI film and substrate, h̄ is the reduced Planck
constant, v is the Dirac velocity, and αs = e2/(4πε0εh̄v) is
the effective fine-structure constant with ε as the effective
dielectric constant and ε0 as the vacuum permittivity. If one
assumes an impurity concentration of order 1019 cm−3 (as is
typical for antisite defects and vacancies in TI crystals [23]),
a Dirac velocity v of order 5 × 105 m/s, and an effective
dielectric constant ε as large as several hundred (due to the
close proximity of the highly polarizable SrTiO3 substrate),
then αs is of order 0.1, the disorder potential � is of order
20 meV, and rs ∼ 40 nm. It is worth noting that at chemical
potentials far from the CNP, both rs and � will generally be
smaller than their μ = 0 values. At small �, the dependence
of the disorder potential amplitude � on the gap � is weak,
so that one can use the result of Eq. (1), which corresponds
to � = 0. The dependence of � on the gap � is discussed in
more detail in Ref. [18].

In order to estimate the width xt of the typical spatial
separation between electron and hole puddles, one can note
that the typical in-plane electric field is F ∼ �/(ers ) so that
xt is given by eFxt ∼ �. Solving for xt and substituting
Eqs. (1) and (2) gives xt ∼ 4πε0ε�/(α2/3

s e2N
2/3
i ). The typi-

cal tunneling action between electron and hole puddles can be
estimated as the product of the height ∼� of the tunnel barrier
and the time ∼xt/v needed to traverse it. So S ∼ �xt/v ∼
h̄�2/[α5/3

s (h̄vN
1/3
i )2]. For the system to be insulating, one

must have S � h̄, which is equivalent to

� � α5/6
s h̄vN

1/3
i . (3)

Equation (3) can be viewed as a generic requirement for the
existence of an insulating state in a gapped 2D system on a
substrate with charged impurities. That is, either the gap �

must be large enough or the impurity concentration Ni must
be small enough that Eq. (3) is satisfied.

In our samples, the right-hand side of Eq. (3) is of order
10 meV. For much smaller values of the gap, one can say
that electron and hole puddles are well connected by quantum
tunneling, and there is no meaningful “insulating barrier”
between them. Our samples apparently correspond to such a
situation where Eq. (3) is violated so that one can think of
the surface as effectively ungapped even though � is finite.
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FIG. 5. Longitudinal resistance Rxx of device H5 as a function
of back-gate voltage Vbg and magnetic-field B. The measurement
temperature T = 50 mK. Rxy is everywhere much smaller than Rxx .
The vertical dashed lines demarcate the three regimes of voltage
depicted in Figs. 6(a)–6(c).

Producing a well-insulating TI thin film apparently requires
either a larger hybridization gap � or a much smaller impurity
concentration Ni. For the remainder of this paper we set
� = 0 when discussing transport.

The zero-field dc resistivity is given by ρ = (h/e2)/(kF�),
where kF is the typical Fermi wave vector and � is the
electron mean free path. For the puddled scenario depicted
in Fig. 4, the typical value of kF at zero chemical potential is
∼α

1/3
s N

1/3
i , whereas the mean free path is on the same order

as rs . Thus, the resistivity at zero chemical potential is given
by [21]

ρmax � h

e2
αs ln(1/αs ). (4)

For our samples, this expression gives a value of order
≈0.3h/e2.

Our picture of conduction through a spatially disordered
landscape is also consistent with measurements of the super-
conducting proximity effect, which we present in Appendix C.

IV. MAGNETOTRANSPORT

We also study the electron transport under the application
of a perpendicular magnetic field. The measured longitudinal
resistance Rxx is plotted in Fig. 5 for device H5 as a function of
the field strength B and the back-gate voltage Vbg. For a given
magnetic field, the resistance is maximized near the CNP,
which for this device corresponds to Vbg ≈ 16 V. The resis-
tance also increases monotonically as a function of B. In gen-
eral, we observe an asymmetry between positive and negative
voltages relative to the CNP with negative voltages generally
corresponding to smaller resistance. This asymmetry suggests
that negative values of the chemical potential correspond to
a larger density of states than positive values of the chemical
potential, which may arise either because of curvature of the
Dirac band or because of proximity of the Dirac point to the
bulk valence-band states (as depicted in Fig. 1). In our mea-
surement conditions, the Hall resistance Rxy is everywhere
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FIG. 6. (a)–(c) The measured WAL correction to the conductiv-
ity of device H5 as a function of magnetic field for different ranges of
the back-gate voltage Vbg (the range of Vbg is indicated in the title of
each plot and is equivalent to the three ranges demarcated in Fig. 5).
For each plot, the different curves correspond to different values of
Vbg. (d) The value of the constant α extracted from a fit to Eq. (5)
as a function of Vbg. (e) The extracted phase coherence length as a
function of Vbg. The measurement temperature is T = 50 mK.

much smaller than the longitudinal resistance Rxx ; this is
shown explicitly in Appendix A. Thus we can approximate the
conductivity σ � (L/w)/Rxx , where L/w ≈ 2 is the aspect
ratio of the sample H5. The leading-order correction to this
expression is of order (Rxy/Rxx )2, which is smaller than 5%
throughout the regime of our measurements.

Our data show two notable features as a function of the
magnetic field. For any given gate voltage there is a sharp cusp
in Rxx (B ) near B = 0, which previous experimental studies
have attributed to weak antilocalization (WAL) [15,24–27].
The correction �σWAL to the conductivity associated with
WAL is described by the theory of Hikami et al. [28],

�σWAL = α

π

e2

h

[
ψ

(
1

2
+ h̄

4eBL2
φ

)
− ln

(
h̄

4eBL2
φ

)]
. (5)

Here ψ (z) is the Digamma function, Lφ is the phase co-
herence length, and α is a numerical coefficient defined so
that α < 0 indicates WAL and α > 0 corresponds to weak
localization. The quantity 2|α| is usually associated with the
number of parallel conduction channels.

In Fig. 6, we plot �σWAL = σ (B ) − σ (0) as a function
of magnetic field for different values of the back-gate volt-
age. The sharp logarithmic cusp of �σWAL(B ) is consistent
with Eq. (5), and we can perform good fits in the range of
−2 T < B < 2 T in order to extract the parameters α and
Lφ . Interestingly, for low enough voltages that the chemical
potential is far below the CNP, we find that all measured
curves �σWAL(B ) are identical, irrespective of the gate volt-
age [Fig. 6(a)]. Similarly, all measured values of �σWAL(B )
for voltages far above the CNP also collapse onto a single
curve [Fig. 6(c)], although this curve is distinct from the one
corresponding to low voltages. In the intermediate voltage
range of 9 V � Vbg � 23.4 V (between the two dashed ver-
tical lines in Fig. 6), the behavior of �σWAL(B ) transitions
smoothly from one limiting curve to the other [Fig. 6(b)].
We interpret these two limiting curves as corresponding to
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FIG. 7. (a)–(c) The resistance Rxx of Hall bar device H5 as
a function of magnetic field is shown for different values of the
back-gate voltage, whose value for each plot is indicated by the
arrow pointing downward. The thick black line in each plot shows
the experimental data, and the thin red line is a straight-line guide to
the eye that indicates the linear slope of Rxx versus |B|. (d) The value
of the slope dRxx/dB of device H5 at large B is plotted as a function
of back-gate voltage Vbg. VCNP ≈ 16 V indicates the voltage at the
charge neutral point.

chemical potentials either far below or far above the Dirac
point. In the latter case, the current is carried only by the
linear Dirac surface states above the gap. In the opposite
limit of small Vbg, the current moves through an admixture of
Dirac surface states and valence-band states. For intermediate
voltages, the disorder potential mixes these two behaviors
spatially by random band bending.

By fitting our data to Eq. (5), we are able to extract
estimates for the constant α and the phase-coherence length
Lφ as a function of the back-gate voltage. These results
are shown in Figs. 6(d) and 6(e), respectively. It is worth
remarking that the inferred value of α is everywhere close
to −1 as one might expect for a conduction process with
two parallel channels (arising from the two parallel surfaces).
The estimated phase-coherence length is on the order of
several hundred nanometers, consistent with previous studies
at low temperatures [24,26]. Our interpretation of WAL is also
consistent with the logarithmic temperature dependence of the
resistivity observed at zero field and low temperatures [shown
in Fig. 3(b)], since increased temperature leads to a shorter
phase-coherence length Lφ , which enters the conductivity in
the argument of a logarithm.

At larger magnetic fields, the WAL correction gives way
to a resistance that increases linearly with magnetic-field
strength with no evidence of saturation. As shown in Fig. 7,
this linear magnetoresistance (LMR) effect is most prominent
near the CNP. As the chemical potential is moved away from
the CNP in either direction, the slope of the LMR is reduced.

Multiple explanations have been proposed during the past
few decades for nonsaturating LMR in 2D electron systems.
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For example, Wang and Lei have proposed a mechanism for
LMR on a TI surface based on Zeeman splitting [29]. How-
ever, the magnitude of the LMR associated with this mech-
anism is much smaller than the value we observe. Indeed,
to explain our largest observed LMR slope with the Zeeman
splitting mechanism would apparently require an electron
g factor of several hundred, which seems inconsistent with
transport experiments in a tilted magnetic field [30]. Other
authors have explored more generic semiclassical explana-
tions for LMR and have shown how it can arise from either
persistent gradients of electron density [31] or mesoscopic
spatial fluctuations of the mobility [32,33]. Such fluctuations
are commonly treated using either resistor network models
[32] or effective medium approaches [34,35], which give
largely equivalent results [36].

Similar to these latter approaches, we suggest a way to
understand our results based on a simple model in which the
system is described by a local Drude-like conductivity tensor
that varies as a function of position due to spatial fluctuations
in the electron density. In particular, we suppose that one can
define local longitudinal and Hall conductivities σxx (r) and
σxy (r), respectively, which vary as a function of position r.
Such a description is generally valid so long as variations in
the electron density occur over a length scale rs that is much
longer than the mean free path � or the Fermi wavelength
∼k−1

F .
In the Drude model, the ratio σxy/σxx = ωcτ , where ωc is

the cyclotron frequency and τ is the transport scattering time.
For a gapless Dirac system,

ωcτ = eB�

h̄kF
, (6)

where kF is the local value of the Fermi momentum and � =
vτ is the local mean free path. (As declared above, we are
again ignoring the effects of any small band-gap �.) Note that
the ratio σxy/σxx becomes large when B is sufficiently large.
The value of the local Fermi momentum can be described by
the Thomas-Fermi equation,

EF[kF(r)] − eφ(r) = μ, (7)

where EF = h̄vkF × sgn(μ + eφ) is the Fermi energy relative
to the Dirac point and φ(r) is the electrostatic potential. The
variation of kF with position implies that the value of ωcτ also
varies as a function of position and should not, in general, be
considered as a global constant. We also note that, although
our description of the system involves both electron-type and
hole-type puddles, a given region of space is presumed to
contain only one or the other carrier type. In this sense the
model that we consider is distinct from “two-carrier models”
(see, e.g., Ref. [37]) in which both electron- and hole-type
carriers are assumed to coexist at all regions of space due to
overlapping bands.

In order to understand the appearance of LMR within this
model, consider first the case when the system is close enough
to the CNP that electron and hole puddles exist in almost
equal number |μ| � �. This is the regime where the LMR
is observed to be most prominent experimentally, and one
can understand its appearance using the following scaling
arguments. Near the CNP, electron and hole puddles are nearly
equally abundant, and the local conductivity at the boundary

between puddles is small because of the locally vanishing
value of the electron density. Consequently, the current across
the system is forced to pass through narrow “pinch points”
of the random potential where the electric potential is close
to zero and adjacent electron- or hole-type puddles are nar-
rowly separated. These pinch points provide the bottleneck for
conduction, and they become more prominent with increasing
magnetic field [38]. (See Appendix D for simulated images
of current flow.) One can think that an order unity number of
such pinch points exist per square area ∼r2

s and, consequently,
if G is the typical conductance of the pinch point, then the
longitudinal resistivity of the system is ρxx ∼ 1/G.

To estimate the typical conductance G of the pinch point,
one can exploit the result for the (two-terminal) conductance
of a square with nonzero Hall conductivity [39–41]: G� =√

σ 2
xx + σ 2

xy . If the magnetic-field B is large enough, then

|σxy | � σxx at the pinch point, and we arrive at the relation
ρxx ∼ 1/|σ (0)

xy |, where σ (0)
xy represents the Hall conductivity

at the pinch point. At ωcτ � 1, the Hall conductivity σxy �
en/B = ±ek2

F/(2πB ), and so our result for the longitudinal
resistivity is equivalent to

ρxx ∼ h

e2

eB

h̄
[
k

(0)
F

]2 , (8)

where k
(0)
F represents the typical Fermi momentum at the

pinch point.
In general, pinch points are locations where the random

potential is close to zero. Thus, if the chemical potential is
not too close to zero, then Eq. (7) implies k

(0)
F = |μ|/(h̄v).

As the chemical potential is shifted away from the CNP, the
corresponding value of k

(0)
F increases, and the slope of the

magnetoresistance declines. This is consistent with the exper-
imental result in Fig. 7. On the other hand, as one approaches
the CNP very closely, both the typical spatial size of the pinch
point and its typical Fermi momentum are reduced, and the
resistance increases. Although the relation k

(0)
F = |μ|/(h̄v)

implies a divergence of the resistance at μ → 0, such a
divergence may be truncated by the finite mean free path. In
other words, since the local conductivity is not well defined
at scales shorter than the mean free path �, one can think that
the minimal size of the pinch point is ∼� and, consequently,
that the minimal value of k

(0)
F is ∼ kF�/rs , where kF is the

typical value of kF near the center of an electron or hole
puddle. Using the estimates for kF and � presented below and
inserting the expression for k

(0)
F into Eq. (8), gives a maximum

magnetoresistance slope of order ρxx ∼ 0.03(h/e2) per Tesla
of field. This is consistent in order of magnitude with our
measured result.

In order to test our scaling arguments quantitatively, we
implemented numeric finite-element simulations of current
flow through a Hall bar geometry with a correlated disorder
potential and a Drude-like conductivity tensor having a local
value of kF(r) given by Eq. (7). For simplicity, our simulations
assume a transport scattering time τ that is independent of
energy or position. Although there is no reason a priori
to expect this assumption to be accurate quantitatively, the
scaling argument leading to Eq. (8) suggests that the longitu-
dinal resistivity ρxx becomes independent of τ at sufficiently
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FIG. 8. Magnetoresistance for a simulated Hall bar with random
disorder. (a) Two example curves are plotted for ρxx as a function
of the dimensionless magnetic-field B∗ = B�2/(h̄e). Both curves
correspond to kF� = 6, where kF is the root-mean-square deviation
of the Fermi momentum from its mean value and � is the mean free
path, which is taken to be a constant. The curves are labeled by their
corresponding value of the chemical potential μ, normalized to the
root-mean-square amplitude � of the disorder potential. (b) shows a
fit to the experimental data (thick blue curve, corresponding to device
H5) for ρxx (B ) at the charge-neutral point (μ = 0). The simulation
data (black line with error bars) correspond to kF = 0.88 nm−1 and
kF� = 6.5. (c) The magnetoresistance slope dρxx/dB∗ is plotted as a
function of chemical potential μ, normalized to the disorder potential
amplitude �. The slope is calculated by a linear fit to simulation data
in the interval 0.2 < B∗ < 1, and, in this example, kF� = 6 is held
constant.

large fields. As shown in Fig. 8, the simulation consistently
reproduces the LMR trend as well as the decline in the
LMR slope with increasing chemical potential. Details of
the simulation method are provided in Appendix D (along
with results for ρxy , which are consistent with experiment).
Within the assumption of a constant scattering time, one can
fit the experimental data at the CNP quantitatively by set-
ting the root-mean-square Fermi momentum kF = 0.88 nm−1

and the mean free path � = 7.4 nm. More details about the
fitting are provided in Appendix D.

V. CONCLUSION

In this paper, we have presented experimental results for
the resistivity of thin TI films as a function of temperature,
chemical potential, and magnetic field. In the absence of
disorder, these systems are predicted to form a quantum spin
Hall state. We find, however, that the transport in our system
is dominated by long-range fluctuations of the disorder po-
tential, presumably induced by charged impurities in the film
and in the substrate. In particular, such long-ranged disorder
creates a random landscape of p- and n-type regions, and
this landscape destroys the insulating state. Our theoretical

arguments suggest that one may reach an insulating state only
when the gap is large enough and the impurity concentration
is low enough that Eq. (3) is satisfied.

The magnetotransport shows signs of both weak antilo-
calization and a nonsaturating linear magnetoresistance. The
WAL correction �σWAL(B ) is described well by the usual
Hikami-Larkin-Nagaoka theory, Eq. (5), with two parallel
conduction channels (α ≈ −1). We also find that �σWAL(B )
collapses onto one of two curves when the chemical potential
is far from the CNP. We have shown that the linear magnetore-
sistance can be interpreted as the result of spatial fluctuations
in the local conductivity arising from strong disorder fluctua-
tions. Our estimate of the linear MR slope and its dependence
on chemical potential are both consistent with observations.

Taken together, our results provide new understanding of
electron transport in ultrathin topological insulators and may
bring us closer to realizing ideal quantum spin Hall insulators.
More broadly, our improved understanding of the disorder-
induced insulator-to-metal transition and LMR may be impor-
tant for a wide class of disordered 2D electron systems.
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APPENDIX A: HALL MEASUREMENTS

In the main text, we focused on the longitudinal resistance
Rxx and ignored the transverse Hall resistance Rxy . Here, we
present results for Rxy , and we show that it is everywhere
much smaller than Rxx . In Fig. 9, we plot Rxx and Rxy

for device H3 as a function of back-gate voltage Vbg and
magnetic-field strength B.

From the Rxy data, we calculate the inverse Hall coefficient
1/RH as shown in Fig. 10(a). The strong asymmetry in RH on
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FIG. 9. (a) Longitudinal resistance Rxx and (b) transverse Hall
resistance Rxy for Hall bar device H3. (c) An optical image of
device H3, which comprises the central region (labeled) of the
fabricated sample. The other regions in the image are not used for this
paper.

different sides of the CNP reflects an asymmetry in the band
structure of the TI films. The sharp peaks in 1/RH near the
CNP reflect a vanishing of the Hall resistance due to equal
concentrations of electron and hole puddles, and they are
not an indication of any singular behavior in the carrier con-
centration. The minimum value of |1/RH | ∼ 3 × 1012 cm−2

suggests a typical carrier density of electron and hole puddles.
Similar results for RH were seen in Ref. [42].

FIG. 10. (a) Inverse Hall coefficient as a function of back-gate
voltage. (b) Ratio of (ρxy/ρxx )2 plotted as a function of magnetic-
field and back-gate voltages. Data correspond to device H3, which
has an aspect ratio of L/w ≈ 1.

In the presence of a perpendicular magnetic field, the
conductivity is given, in general, by

σxx = ρxx(
ρ2

xx + ρ2
xy

)
= 1

ρxx

(
1 + ρ2

xy/ρ
2
xx

) . (A1)

Figure 10(b) shows that for all relevant magnetic-field and
back-gate voltages, the quantity (ρxy/ρxx )2 � 1. Hence, the
global conductivity can be well approximated by σxx ≈
1/ρxx .

APPENDIX B: DUAL-GATING

In some of our samples, both a back gate and a top gate
were fabricated, allowing the chemical potential to be modu-
lated by two independent gate voltages. In Fig. 11, we present
the low-temperature longitudinal resistance Rxx for sample
H4 as a function of the top- and back-gate voltages Vtg and
Vbg, respectively. For this sample, the longitudinal resistance
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FIG. 11. Dependence of the longitudinal resistance Rxx on top-
and back-gate voltages for device H4.

exhibits a maximum of ≈0.5h/e2 at the CNP, and there is no
sign of an insulating state with large resistance. The somewhat
weaker variation of the resistance with Vtg as compared to its
variation with Vbg is consistent with the top-gate capacitance
being smaller than the back-gate capacitance.

APPENDIX C: SUPERCONDUCTING PROXIMITY EFFECT

Coupling superconductivity to TI surface states is pre-
dicted to create a px + ipy superconductor with Majorana
bound states [43,43–45]. Such Majorana states may enable
topologically protected qubits for quantum computation [46],
and consequently, there has been an intensive search for
Majorana modes in exfoliated 3D TIs [47–49]. Achieving
Josephson coupling is an important step towards engineering
topological superconductivity.

We investigated superconducting Josephson coupling me-
diated by the TI thin film as depicted schematically in
Fig. 12(a). An important consideration for achieving Joseph-
son coupling is a transparent superconducting contact with
minimum contact resistance. To make transparent contacts,
we etched the tellurium capping layer covering our topo-
logical insulator film (Bi, Sb)2Te3 and in situ evaporated Ti
(5 nm)/Nb (2.5 nm)/ NbN (50 nm) without breaking vacuum
in the evaporation chamber. The device dimensions were
6 × 0.1 μm2, as shown in Fig. 12(b).

The interference pattern of the critical current Ic(B ) of
the Josephson junction under perpendicular magnetic-field
B gives valuable information about the Josephson current
density Jc(x) along the junction width. In the case of a
spatially uniform Josephson current density, the interference
pattern corresponds to a single-slit Fraunhofer pattern where
the lobes of Ic decays with 1/B. On the other hand, for
TIs in which conduction occurs dominantly at the edges of
the system, the interference pattern is expected to resemble
the double-slit-like diffraction pattern of a dc SQUID with
nondecaying lobes. In this case the critical current Ic(B ) is

FIG. 12. (a) Optical image and (b) Fraunhoffer pattern of de-
vice JJ1.

given by

Ic(B ) = Ic

∣∣∣∣cos

(
πAB

φ0

)∣∣∣∣, (C1)

where φ0 is the magnetic flux quantum and A is the area
of the junction. Similar analyses of the interference pattern
of Josephson junctions has shown edge dominant conduc-
tion in a HgTe/HgCdTe 2D topological insulator [50] and
Bi1.5Sb0.5Te1.7Se1.3 3D TIs [51]. In our devices, the normal
junction resistance RN ≈ 60 � and the maximum Josephson
current Ic ≈ 7 μA at the temperature of 50 mK give IcRN ≈
420 μeV, which corresponds to about �sc/6e, where �sc is
the superconducting gap. The Josephson junction displays an
interference pattern as shown in Fig. 12(b), that cannot be
explained by a uniform Josephson current distribution. The
extracted period of the quasiperiodic oscillation of Ic is about
35 G, which matches well with the expected value of φ0/A =
34 G. Imperfect constructive and destructive interferences
visible in the pattern are indicative of the effect of random dis-
order in the junction. Proximity-induced Josephson coupling
and the similar interference pattern were also observed by us
in Josephson junctions made of Ti (5 nm)/Al (50 nm).

APPENDIX D: NUMERIC SIMULATIONS OF
CURRENT FLOW

In the main text, we presented results for the magnetoresis-
tance based on a model where the local conductivity tensor
σ̂ (r) varies with the position r due to spatial variations in
the electron/hole concentration. Here we present more details
about our numeric simulations of the resistivity.
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FIG. 13. Example numeric solutions for the electrochemical potential V and the current jx in the x direction for a given realization of the
random potential P (x, y ). (a) and (b) correspond to zero magnetic fields, and (c) and (d) correspond to the same random potential with a field
of B∗ = 2. (b) and (d) have the same color scale. All images correspond to zero chemical potential μ = 0.

Within the Drude model, the conductivity tensor has the
form

σ̂ (r) =
(

σxx (r) −σxy (r)
σxy (r) σxx (r)

)
, (D1)

where the values of σxx (r) and σxy (r) are related to the value
of the local electrostatic potential by

σxx (r) = e2

h
kF(r)�

1

1 + [ωc(r)τ ]2
,

σxy (r) = e2

h
kF(r)�

ωc(r)τ

1 + [ωc(r)τ ]2
, (D2)

where kF(r) is the local value of the Fermi momentum, ωc(r)
is the local value of the cyclotron frequency, τ is the transport
scattering time, and � = vτ is the mean free path. In principle,
both � and τ may have a dependency on the local Fermi
energy and therefore on position. However, for simplicity in
our numeric simulations, we take � and τ to be constants
with no spatial variation. The local Fermi momentum kF(r)
is related to the disorder potential φ(r) by the Thomas-Fermi
equation, Eq. (7) of the main text.

In order to address the problem computationally, we define
the following dimensionless units. First, we define a normal-
ized electrochemical potential:

P (r) = eφ(r) + μ√
〈(eφ)2〉r

, (D3)

so that P (r) has a standard deviation of unity. Here, μ is
the chemical potential and

√
〈(eφ)2〉r ≡ � is the root-mean-

square value of the disorder potential. The local value of the

Fermi momentum is then given by

kF(r) = kF|P (r)|, (D4)

where kF = �/(h̄v) represents the root-mean-square value of
the Fermi momentum at zero chemical potential.

We also define a dimensionless magnetic-field strength,

B∗ ≡ eB�2

h̄
=

(
�

�B

)2

, (D5)

where �B = √
h̄/(eB ) is the magnetic length. With these

definitions, ωcτ = (kF�)−1B∗/P (r), and we can rewrite the
elements of the conductivity tensor in dimensionless form as

σxx (r)

e2/h
= kF�|P (r)|

1 + (
1

kF�

)2[ B∗
P (r)

]2 ,

σxy (r)

e2/h
= B∗sgn{P (r)}

1 + (
1

kF�

)2[ B∗
P (r)

]2 . (D6)

Written in this form, the system is characterized by three
dimensionless parameters: B∗, μ/�, and kF�. For a given
choice of these parameters and for a given realization of the
random potential P (r), one can solve for the current density
j(r) through the system by solving the continuity equation,

∇ · j = 0, (D7)

where j = −σ̂∇V (r) and V (r) is the local deviation of the
electrochemical potential away from equilibrium. Below we
present results based on a finite-element solution to Eq. (D7).
For definiteness, we choose our simulated system to be a Hall
bar with length L = 8ξ and width w = 4ξ , where ξ is the
correlation length of the potential (equivalent to rs in the main
text). Applying a unit voltage across the long end of the bar
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gives the boundary conditions V (x = 0) = 1, V (x = L) =
0, and jy (y = 0) = jy (y = w) = 0. The finite-element mesh
size was ξ/20.

The random potential was taken to be a Fourier series with
random coefficients whose magnitude decreases at high wave
vectors. Specifically, we write

P (x, y) = Re

{ ∞∑
m,n=−∞

cm,ne
i(kmx+kny)

}
+ μ

�
, (D8)

where cm,n are random coefficients and

km = πm

L
, kn = πn

w
. (D9)

The coefficients cm,n are chosen to have a random phase in the
complex plane and a random magnitude bounded by

|cm,n|2 � e
−
(
k2
m+k2

n

)
ξ 2/2

. (D10)

The normalization of the potential is such that c0,0 = 0 and
1
2

∑
m,n |cm,n|2 = 1.

Figure 13 shows a typical numerical solution for the poten-
tial V (x, y) and the current jx in the x direction at μ = 0.
Figures 13(a) and 13(b) show the potential and current at
zero-field B∗ = 0, whereas Figs. 13(c) and 13(d) show the
same system at large-field B∗ = 2. One can see from these
images the strong effect of pinch points in the random poten-
tial where the current is concentrated at narrow constrictions
between puddles. This focusing of the current becomes more
exaggerated at large magnetic fields, and correspondingly, the
electrochemical potential V (r) drops abruptly at pinch points
and becomes relatively constant far from the boundaries be-
tween n- and p-type regions.

For a given realization of the random potential, the lon-
gitudinal resistivity can be defined from the simulation as
ρxx = �V/(L〈jx〉), where 〈jx〉 is the area-averaged current
density in the z direction and �V ≡ 1 is the voltage drop
across the system. One can estimate the dependence of ρxx

on magnetic-field B∗ by averaging the simulated resistivity
ρxx over many realizations of the random potential for a
given value of B∗. Our numerical results, including those
shown in Fig. 8 of the main text, are averaged over 100 such
realizations. One can also define the Hall resistivity ρxy by
numerically extracting the transverse voltage VH across the
Hall bar at the midpoint x = 4ξ for a given realization. The
Hall resistivity is defined by ρxy = VH/(w〈jx〉).

In Fig. 14, we show the values of ρxx and ρxy as produced
by our simulation for a range of magnetic-fields B∗ and μ/�.
As in the experimental data (see Fig. 9), ρxy is much smaller
than ρxy throughout the range of interest.

In order to fit the experimental data at μ = 0 to the nu-
merical simulation, we calculate numerically the resistivity

FIG. 14. Simulated values of the (a) longitudinal and (b) Hall
resistivities as a function of magnetic field and chemical potential.
The vertical axis corresponds to the dimensionless magnetic-field
B∗, whereas the horizontal axis corresponds to the chemical potential
μ in units of the root-mean-square disorder potential �. In this
example, kF� = 6 everywhere. Compare to Fig. 9, and note that the
scale of ρxy is much smaller than ρxx .

ρxx/(h/e2) as a function of B∗ using discrete points B∗ =
0, 0.1, 0.2, . . . , 2 for � = 5–7. Linear interpolation allows us
to estimate the value of ρxx for generic values of kF� between
5 and 7 and B∗ between 0 and 2. The resulting curves can be
translated into real units by inserting the corresponding values
of kF and �, which allows us to fit the data shown in Fig. 7(b)
of the main text. The result of this fitting is shown in Fig. 8(b)
of the main text and corresponds to kF� = 6.5 and kF =
0.88 nm−1. This value of kF implies a typical electron/hole

density 2πkF
2 = 1.2 × 1013 cm−2, which is consistent in or-

der of magnitude with both our theoretical estimates and our
measurements of the Hall constant.

We extracted the dependence of the linear magnetoresis-
tance slope d[ρxx/(h/e2)]/dB∗ on the chemical potential by
numerically evaluating the curve ρxx (B∗) for different values
of μ/� and then fitting each curve to a line over the range
0.2 < B∗ < 1.
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