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We consider periodically driven Anderson insulators. The short-time behavior for weak, monochromatic,
uniform electric fields is given by linear response theory and was famously derived by Mott. We go beyond this to
consider both long times—which is the physics of Floquet late time states—and strong electric fields. This results
in a “phase diagram” in the frequency-field strength plane, in which we identify four distinct regimes. These are
a linear response regime dominated by preexisting Mott resonances, which exists provided Floquet saturation is
not reached within a period; a nonlinear perturbative regime, which exhibits multiphoton-absorption in response
to the field; a near-adiabatic regime, which exhibits a primarily reactive response spread over the entire sample
and is insensitive to preexisting resonances; and finally an enhanced dissipative regime.
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I. INTRODUCTION

Many-body localization (MBL) generalizes Anderson lo-
calization and entails a breakdown of local thermalization in
disordered, interacting systems [1–6]. Localized systems have
been a subject of intense study over the past decade, following
a body of work which greatly advanced the case for the
existence of MBL using perturbative arguments [2], numerical
studies [3–5], and rigorous proofs [6]. MBL systems display a
rich complex of properties [7,8] including an emergent set of
local integrals of motion [9,10] leading to a variety of unusual
dynamical properties [5,11–13]. Further stimulus to this study
has come from advances in cold atomic systems [14–19]
which, unlike solids containing delocalized phonons, realize
isolated systems in which all degrees of freedom are localized,
thus allowing the simplest theory, already quite complicated,
to confront experiments directly.

The present paper is inspired by this harmonic conver-
gence, although it addresses noninteracting or Anderson lo-
calized systems for reasons of tractability. Specifically we ask
about the response of an isolated one-dimensional Anderson
insulator composed of a single set of charges, which we take
to be electrons, initially in its ground state, when it is placed
in a uniform electric field oscillating at a frequency ω and
amplitude E0. The textbook answer to this problem is that the
system will exhibit a linear response of the celebrated Mott
form for the ac conductivity [20–23] at small ω:

σ (ω) ∼ ω2 lnd+1 (1/ω). (1)

In this work, we go beyond this answer in two ways. First, we
ask what happens when the field is kept on for a long time.
Here the linear response calculation, which predicts a linear
absorption of energy with time, will break down. Instead
we find that the energy absorbed saturates and the system
exhibits a Floquet late time state (FLTS). Second, we ask what
happens if the field is too large for the linear response formula

to hold even at short times. By definition this also involves
a breakdown of linear response theory due to the inherent
nonlinearity of the response. In exploring these regimes we
will embed the Mott result in a larger “phase diagram” in
the (ω,E0) plane. This phase diagram [Fig. 1 (middle)]
exhibits three regions (aside from linear response) which we
characterize as exhibiting perturbative nonlinear response,
adiabatic nonlinear response, and enhanced dissipation. One
central message of our analysis is that the even the limit of
asymptotically small ω and E0 in a localized system depends
sensitively on the relative magnitudes of the two quantities.

At this point it is useful to distinguish our results from a
more standard understanding of the limits of linear response
in a more conventional solid state setting. In the latter setting
one finds the same linear response, but the long-time and
large amplitude response will involve coupling to delocalized
phonons in an essential manner. By contrast our results are
intrinsic to the electronic system and probe the physics of
Anderson localization alone, even outside the linear response
regime.

In the main text we organize our discussion as follows.
In Sec. II we offer an overview of our results and introduce
three length scales which organize the physics of linear and
nonlinear response. Section III is the technical heart of the
paper wherein we analyze the (ω,E0) phase diagram using
a combination of perturbation theory, Rabi oscillation theory,
Landau-Zener tunneling ideas, and Floquet theory. In Sec. IV
we present detailed numerical studies that bear out the ideas
developed earlier. We close with a recapitulation of our main
themes and results in Sec. V. In Appendixes A and B we
discuss the case of a single-site drive which has some useful
pedagogical features.

Before presenting an overview of our results, we note that
this work synthesizes and builds on many themes in recent
work. Most narrowly it builds on the identification of the
surprising, nonlocal, adiabatic response of localized insulators
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FIG. 1. (left) Schematic illustration of the characteristic microscopic response to an oscillating electric field in the four different regimes.
Sketches represent physical processes dominating in the four regimes of response. From bottom to top: Mott resonances, corresponding to the
linear response regime; multiphoton absorption, corresponding to the perturbative nonlinear response regime; adiabatic avoided level crossings,
corresponding to the adiabatic nonlinear response regime; and level crossings intermediate between adiabatic and diabatic, corresponding to the
enhanced dissipation regime. (middle) “Phase diagram” showing four regimes of response for an Anderson insulator driven by an oscillating
electric field, as a function of scaled field strength E and scaled frequency �, where these are defined in relation to E0 and ω in Eqs. (2) and
(3). See main text for distinctions between regimes. (right) Schematic plot showing the length scales rMott, rL, and rc that characterize the
response of a pair of localized states in an Anderson insulator to a periodic drive, and their dependence on drive strength E . Linear response
is mainly from resonant pairs with separation rMott indicated by a horizontal band. Other aspects of response depend on the separation r of the
localization centers of the pair of states compared to rL and rc. For r � rL the effect of the drive is perturbative in E . For r � rL the pair of
states undergoes two avoided level crossings during the drive cycle, which are adiabatic if r � rc and diabatic if r � rc. The shaded region
with hatching indicates the crossings which dominate the dynamics of the adiabatic nonlinear regime.

to a local perturbation in Ref. [12]. More broadly it builds
on work establishing the existence of Floquet many body
localized systems [24–26] which exhibit partially universal
states at long times [27,28]. In these many-body systems,
the FLTS exhibits a reduction to the “diagonal ensemble” in
which all observables vary periodically with the period of
the drive and are said to synchronize with it [29]. For our
noninteracting system global observables do synchronize, but
local ones do not. When we study global energy absorption
upon driving the system starting from a general state, there is
a transient regime before a FLTS is reached. For weak driving
and an initial equilibrium/ground state, this transient regime is

the regime described by linear response theory. In our phase
diagram, the transient response lasts less than one period of
the drive except in the linear response regime; in all other
regimes we will be discussing properties of the FLTS.

We note that an early version of these results was presented
by one of the present authors [30] and has also appeared
in the D.Phil. thesis of another [31]. Recently there have
been a few separate papers discussing response and regimes
of energy absorption in driven MBL systems [26,32–34]. In
particular, our analysis shares many qualitative features with
the discussion in Ref. [32], although we consider heating
starting from a low-temperature initial state of the undriven
Hamiltonian while Ref. [32] works near infinite temperature.
Despite qualitative similarities with the MBL case, the nonin-
teracting problem offers a high degree of tractability which
allows us to propose analytically and verify numerically
several different independent signatures of the four differ-
ent dynamical regimes suggested by our phenomenological

analysis. While this is of interest in its own right, it also
helps bolster the analogous analyses in MBL systems where
numerics are limited to much smaller sizes and times. A key
difference between the two cases is that the long-time limit in
interacting systems exhibits heating to infinite temperature for
frequencies below a threshold set by local energetics [24–26].
By contrast, in our disordered noninteracting system in one
dimension, the energy absorption always saturates below the
maximum possible value and the system enters a nonthermal
late time state.

We also note related studies of noninteracting driven
systems. Dynamics of energy absorption and excitations in
driven, disordered systems have been considered in the kicked
quantum rotor using the language of one-dimensional Ander-
son insulators [35] and also including a Landau-Zener mech-
anism for heating [36]. We also flag studies of tight-binding
models which examine the effect of periodically driving a
disordered one-dimensional system on localization length
[37–39], conductance [40,41], spectral statistics [42], and lo-
calization properties of Floquet operator eigenstates [43]. Ref-
erence [43] also studied dissipative nonlinear charge response
(but not heating) of Anderson insulators, but the authors
worked primarily in the strong drive limit E0 � ω. Studies
using random matrices as models for disordered physical sys-
tems have also asked questions related to our themes. Work on
these models demonstrates the saturation of energy absorption
in the presence of a drive when the Floquet eigenstates are
localized [44] and examines the relationship between energy
absorption and drive amplitude and frequency, depending on
the class of random matrix [45–47]. Additionally, Ref. [48]
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studies the breakdown of linear response in a random matrix
Hamiltonian under periodic driving. Separately, within linear
response, the Mott law has been reproduced in numerical
studies of a disordered one-dimensional tight-binding model
[49].

II. OVERVIEW

In this section we outline a physical picture for the dif-
ferent regimes of behavior that arise in a periodically driven
Anderson insulator, as the drive amplitude and frequency are
varied. We focus on one-dimensional systems and consider
frequencies low enough that the energy of a drive photon is
much less than the spacing between electron energy levels in
a region of size equal to the localization length ξ . The regimes
of behavior are set partly by the relative sizes of three key
length scales, which we introduce in the following and denote
(in units of ξ ) by rMott, rL, and rc.

Linear response can by definition be described in terms of
transitions between eigenstates of the undriven Hamiltonian,
and the dominant contribution in the Anderson insulator at
low frequency is from Mott resonances: hybridized pairs of
localized states with an energy splitting that matches the drive
photon energy [20]. These pairs have a frequency-dependent
characteristic spatial separation known as the Mott length,
rMott. This is the first of our three length scales. Within linear
response theory, energy is absorbed by the sample from the
drive at a constant rate. At finite but weak drive amplitude,
response saturates on a timescale much longer than the drive
period. The saturation can be understood by examining Rabi
oscillations of the Mott resonances. The timescale to reach
saturation decreases with increasing drive amplitude and a
boundary to the regime of linear initial response is set by
the amplitude at which the saturation time matches the drive
period.

Other physical processes make contributions to the re-
sponse that compete with Mott resonances as drive ampli-
tude is increased. We discuss these processes by considering
the eigenstates of the instantaneous Hamiltonian and their
parametric variation over the drive period, taking the driving
electric field to be represented using a scalar potential. A
sufficient (but unnecessarily restrictive) condition for linear
response theory to be valid at short times is that the variation
of instantaneous energy levels over a period is much less
than the level spacing. This is the case in a small system at
weak drive. For a large system, however, there exist pairs of
levels having energies that are close in the undriven system
and are swept past each other by a finite amplitude drive.
The drive amplitude determines a minimum spatial separation
rL for the localization centers of such levels, which is the
second of our key length scales. It is natural to consider these
crossings using Landau-Zener theory. The quantum evolution
during such a crossing depends on the strength of coupling
between the levels and on the drive frequency, and can be
characterized by our third length scale, rc. Crossings between
localized states with spatial separation much larger than rc are
deep in the diabatic limit, while crossings between states with
separation much smaller than rc are deep in the adiabatic limit.

This distinction determines the contribution to the response
of an Anderson insulator arising from the level crossing of a

state occupied by an electron with another one that is initially
empty. A strictly diabatic level crossing makes a vanishing
contribution because the electron does not move in space.
Conversely, a strictly adiabatic crossing makes a contribution
that is large and reactive, since the electron jumps between
the localization centers of the two states involved, but jumps
back later in the drive cycle when the two levels cross in the
opposite sense. A dissipative response arises just from those
crossings that are intermediate between diabatic and adiabatic,
involving localized states with spatial separation of order rc

[12,26,32].
We provide estimates of these three length scales and their

dependence on drive amplitude E in Sec. III. A schematic
view of the results is given in Fig. 1. At weak drive the
inequality rL � rc � rMott holds. In this first case, the only
transitions that lie outside linear response theory (those be-
tween localized states with separation greater than rL) are
strictly diabatic and so unimportant. Above a critical drive
strength the inequality is reversed, so that rMott � rc � rL.
In this second case Mott resonances are unimportant for
response, because under drive they are traversed diabatically.
Instead there is a reactive contribution to response, from pairs
of localized states with spatial separation in the range between
rL and rc, and a dissipative contribution, from pairs with
separation of order rc.

As illustrated in Fig. 1, we identify from this discussion
four regimes of response for a one-dimensional Anderson
insulator driven by a low-frequency oscillating electric field.
Smooth crossovers between these regimes are traversed suc-
cessively with increasing drive strength E at any fixed fre-
quency �. At the weakest drive strengths (the linear response
regime), linear response of Mott resonances dominates until
a saturation time that is much longer that the drive period,
and response after the saturation time is from Rabi oscilla-
tions of Mott resonances. The saturation time decreases with
increasing drive strength, reaching the drive period at the
upper boundary of the linear response regime. At higher drive
strengths (the perturbative nonlinear response regime) there is
no distinct period of initial response, and multiphoton transi-
tions make a significant contribution to energy absorption. In
both the linear response and perturbative nonlinear response
regimes, the ordering of length scales is rL � rc � rMott.
This is reversed on entering the adiabatic nonlinear response
regime, above a second threshold for drive strength: here there
is a large reactive response from pairs of localized states
with separation r in the range rL � r � rc. In addition, at
the highest drive strengths (the enhanced dissipation regime)
there is a large dissipative response from pairs with r ∼ rc.

III. DETAILED ANALYSIS

We study a one-dimensional or quasi-one-dimensional An-
derson insulator with density of states ρ per unit length and
energy, driven by an oscillating electric field of strength E0

and frequency ω. Let e denote the electron charge. We use
the inverse level spacing ξρ in a system of size equal to
the localization length, ξ , to define the dimensionless field
strength

E ≡ eE0ξ
2ρ (2)
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and the dimensionless frequency

� ≡ h̄ωξρ. (3)

We are concerned with the response to weak fields (E � 1) at
low frequencies (� � 1) for a zero-temperature initial state
in which the energy band of localized states in partially filled.
We start by discussing the dependence on E and � of the
characteristic lengths rMott, rL, and rc introduced above.

Consider single-particle eigenstates in an Anderson insula-
tor. Following Mott’s picture of frequency-dependent conduc-
tivity, most eigenstates have a well-defined localization center,
but a few form resonant pairs with other distant localized
states. Energy absorption is due to transition within these
resonant pairs. The minimum energy difference between the
two states in a pair depends on their spatial separation x,
because it is limited by level repulsion and this is controlled by
spatial overlap between tails of wave functions. An estimate
of this minimum energy difference is (ρξ )−1 exp(−x/ξ ), and
the Mott length is obtained by equating it to the energy h̄ω of a
drive photon. Introducing dimensionless lengths r ≡ x/ξ , the
Mott length is therefore

rMott = ln(1/�). (4)

Pairs of states may be driven through a resonance by
an electric field of finite strength. Representing the electric
field using a scalar potential, the field modulates the relative
energies of two states by an amount proportional to their
spatial separation. The dimensionless length rL is defined
by equating this energy modulation to the minimum energy
separation of the pair. From xeE0 = (ρξ )−1 exp(−x/ξ ) we
obtain at leading order for small E

rL ≈ ln(1/E ). (5)

Next we examine the dynamics of such an avoided cross-
ing induced by an oscillating electric field. In general, time
evolution of a pair of states |m〉 and |n〉 with the Hamiltonian
H(t ) and instantaneous energies εn and εm is adiabatic if

h̄|〈m|∂tH(t )|n〉|
(εm − εn)2

� 1. (6)

For states with separation x we set |〈m|∂tH(t )|n〉| ∼ eE0xω

and take |εm − εn| ∼ (ρξ )−1 exp(−x/ξ ). In this way the
boundary between adiabatic and diabatic avoided crossings
is located to be at E� = r−1

c exp(−2rc ). For E, � � 1, this
yields to leading order

rc ≈ 1

2
ln

(
1

E�

)
. (7)

As illustrated in Fig. 1, at E = � the lengths satisfy rMott ≈
rL ≈ rc. For E � � they have the ordering rL > rc > rMott

and the effects of the electric field are perturbative. For E � �

both inequalities are reversed, and some effects of the electric
field are nonperturbative.

A. Linear response

In outline, a derivation of Mott’s result for the frequency-
dependent conductivity in an Anderson insulator is as follows.
We equate the macroscopic expression for the rate of energy
absorption per unit length, in terms of the conductivity σ (ω),

to a microscopic expression in terms of transitions between
initial and final states |i〉 and |f 〉, with energies εi and εf =
εi + h̄ω. Using the Fermi golden rule and denoting the density
of final states by ρF, this gives

1

2
E2

0σ (ω) = h̄ω
∑

i

ρν(εi )[1 − ν(εf )]
2π

h̄
|〈i|eE0x|f 〉|2ρF,

where ν(ε) is the occupation probability of a state at energy ε.
The central assumption is that the matrix element appearing
here is small unless the initial and final states form one of the
resonant pairs discussed above, in which case |〈i|eE0x|f 〉| ∼
eE0xMott. For the energy splitting of a pair to match the
photon energy, the spatial separation of the pair should be
within O(ξ ) of xMott, and so in d dimensions ρF ∼ ρxd−1

Mottξ .
In consequence at zero temperature

σ (ω) ∼ h̄e2ρ2ξω2xd+1
Mott. (8)

In combination with the logarithmic dependence of xMott on
ω [Eq. (4)], this yields the expected result: Eq. (1).

B. Rabi oscillations

It is straightforward to treat long-time saturation of re-
sponse at weak drive in terms of Rabi oscillations of resonant
pairs. An effective Hamiltonian for one pair has the form

H(t ) =
(

εf 0
0 εi

)
+

(
0 γ

γ 0

)
sin ωt, (9)

where the coupling is γ ∼ eE0xMott. At finite drive strength
one should take account of levels that are not exactly res-
onant. Denoting the detuning by δ = εf − εi − ω, the Rabi
frequency is ωR =

√
δ2 + γ 2 and the transition probability is

Pi→f = γ 2

δ2 + γ 2
sin2(ωRt/2). (10)

We compute energy absorbed by summing h̄ωPi→f over
initial states i with a spatial density ρh̄ω, and averaging over
εf with energy density ρF. For a sample of length L this
calculation gives the energy �E(t ) absorbed at time t as

�E(t ) ∼
{

1
2LE2

0σ (ω)t ∼ L
ρξ 2 E2� ln2(1/�)ωt, t < tsat,

1
2LE2

0σ (ω)tsat ∼ L
ρξ 2 E�2 ln(1/�), t > tsat,

(11)

where σ (ω) is in accord with Eq. (4) and tsat ∼ h̄/γ .
Rabi oscillations of isolated Mott resonances are vividly

illustrated in numerical calculations of �E(t ) vs t for multiple
disorder realizations in moderately sized samples, as shown in
Fig. 2 [see Sec. IV for details of model and methods]. �E(t )
in an individual realization exhibits Rabi oscillations. These
vary widely in amplitude and period between realizations,
with much larger energy absorption and longer period in
resonant realizations than in typical ones.

C. Perturbative nonlinear response

The boundary to the linear response regime is at ωtsat ∼ 1,
which can be reexpressed in terms of the dimensionless field
strength and frequency as E ∼ �/ln(1/�). In the limit � � 1
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FIG. 2. �E(t ) vs t for multiple disorder realizations. (inset) His-
togram over disorder realizations of energy absorbed in the long-time
limit. Electric field strength, frequency, disorder strength, system
size, and number of disorder realizations are, respectively, φ0ω =
2.5 × 10−4, ω = 0.25, W = 5, L = 100, and Nr = 7.5 × 104.

of interest, there is a wide interval

�/ln(1/�) � E � � (12)

between the electric field strength at the boundary to the
linear response regime and the field strength at which the
characteristic length scales rMott, rL, and rc cross. In this
interval, the ordering of these lengths is rMott � rc � rL. As a
consequence, level crossings induced by the drive are strictly
diabatic, and the leading correction to linear response theory
arises from multiphoton absorption that can be treated using
time-dependent perturbation theory at the appropriate order.
This is the perturbative nonlinear regime shown in Fig. 1.

D. Strong field response

At higher field strengths (E � �) the system enters a new
regime, in which avoided level crossings of the instantaneous
Hamiltonian play a significant part in response. We argue in
the following that time evolution in this regime can be under-
stood in terms of a sequence of distinct two-level crossings.

As a first step, consider the avoided crossings involving
a given level over a single period of the drive. We will esti-
mate the average number Nint that are intermediate between
diabatic and adiabatic, and the average number Nad that are
adiabatic. From the discussion leading to Eq. (7), intermediate
crossings occur between levels that have a spatial separation
of their localization centers given by ξrc to an accuracy O(ξ ).
The relative energies of two regions of the system with spatial
separation ξrc are modulated by eE0ξrc over a drive cycle.
We therefore estimate

Nint ∼ eE0ξ
2ρrc = Erc ∼ E ln(1/E�). (13)

Adiabatic avoided crossings occur between states with a
spatial separation that lies between ξrL and ξrc. Hence by a

similar argument

Nad ∼
∫ ξrc

ξrL

eE0xρ dx ≈ Er2
c ∼ E[ln(1/E�)]2. (14)

To understand whether it is sufficient to consider only
pairwise avoided level crossings, we estimate the fractions
Fint and Fad of the drive cycle occupied for a given level,
by intermediate and adiabatic avoided crossings respectively.
Taking the minimum energy spacing at an avoided crossing
of levels with spatial separation x to be (ρξ )−1 exp(−x/ξ ),
noting that the modulation in relative energy of two levels over
a drive cycle is eE0x, and setting x = ξrc, we have

Fint ∼ Nint
(ρξ )−1 exp(−x/ξ )

eE0ξrc

≈ e−rc . (15)

A similar calculation gives

Fad ∼
∫ ξrc

ξrL

ξ−1 exp(−x/ξ )dx ≈ E . (16)

Since Fint + Fad � 1 for E,� � 1, the avoided crossings
involving a given level are mostly well separated from each
other.

The regime of adiabatic nonlinear response indicated in
Fig. 1 is the one in which Nad > 0 but Nint � 1, implying
� � E � [ln(1/�)]−1, while the regime of enhanced dissi-
pation is one with Nint � 1, which requires [ln(1/�)]−1 � E .
We show below that in these two regimes there are charac-
teristic contributions to energy absorption from intermediate
crossings, and to the reactive response from adiabatic cross-
ings. Rather surprisingly, we find that the dependence of these
contributions on E and � does not change on crossing the
boundary at Nint ∼ 1 between the two regimes.

1. Adiabatic nonlinear response

In the interval

� � E � [ln(1/�)]−1 (17)

only rare levels undergo intermediate avoided crossings. In
this regime energy absorption does not arise from Mott reso-
nances, because they give rise to avoided crossing that in this
range of drive strengths are traversed diabatically. Their place
is taken by intermediate avoided crossings between levels
with spatial separation ξrL � xMott. Such an avoided crossing
gives rise to energy absorption of order eE0ξrL if it lies within
eE0ξrL of the Fermi energy. The spatial density of levels
inside this energy window is NinteE0ξrLρ, and so the total
energy absorbed at long times is

�E(∞) ≈ LNint (eE0ξrL)2ρ ≈ (L/ρξ 2)E3 ln3(1/�). (18)

Note that this matches Eq. (11) if it is evaluated at the
boundary to the linear response regime.

2. Enhanced dissipation

The strongest range of drive strengths we consider is

[ln(1/�)]−1 � E . (19)

In this regime Nint � 1, so that levels of the instantaneous
Hamiltonian typically have many avoided crossings within a
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drive cycle that are intermediate between diabatic and adia-
batic. Since Fint � 1, these crossings occupy a small fraction
of the drive cycle, and so it is appropriate to consider them in a
pairwise fashion. We estimate the energy gain over a cycle by
assuming that an electron in an eigenstate of the instantaneous
Hamiltonian does a random walk in energy, consisting of Nint

steps, each of characteristic size E0ξrc. Occupation is then
spread over an energy window δE and gives energy absorption
�E ∼ ρL(δE)2. We expect δE ∼ eE0ξrc

√
Nint, leading to

the conclusion that Eq. (18) applies in this region as well.

E. Reactive response

At all field strengths there is a reactive component to
response, with contributions to �E(t ) that oscillate over the
drive cycle. The nonlinear aspects of the reactive response are
particularly interesting as they reflect the adiabatic transitions
discussed above. A convenient way to compute the reactive
component of �E(t ), which we denote �E(t )reac, is via
the polarization P (t ) of the sample in the presence of an
electric field E0 sin ωt , since the current flowing is I (t ) =
∂tP (t ), which in turn is related to �E(t )reac by ∂t�E(t )reac =
I (t )E0 sin ωt .

1. Linear response

In linear response, one has P (t ) = χE0 sin ωt , where χ is
the polarizability, and so

�E(t )reac = 1
2χE2

0 sin2 ωt. (20)

The low-frequency polarizability is well approximated by its
static value, given in terms of single particle eigenstates |m〉
and energies εm for a system with chemical potential μ by

χ = e2
∑

εm<μ<εn

|〈n|x|m〉|2
εn − εm

. (21)

We estimate the value of this expression by taking |〈n|x|m〉| ∼
ξ if the two states are localized in a region of size ξ and lie
within an energy window of width (ξρ)−1, and zero otherwise.
This gives χ ∼ e2ρξ 2L for a one-dimensional system of size
L. (The relation between this result and Mott’s law via the
Kramers-Kronig relations is discussed in Ref. [50].) Hence

�E(t )reac ∼ (L/ρξ 2)E2 sin2 ωt. (22)

2. Adiabatic nonlinear response

In the field range

� � E � [ln(1/�)]−2 (23)

Nad � 1 so that adiabatic levels crossings are rare and an
individual level is involved in at most a single crossing. We
estimate I (t ) under these conditions as follows. Electrons
which make adiabatic transitions at unit rate between states
separated by distance x contribute current ex. For an electron
at energy ε below the Fermi energy to make a transition to an
empty state, the possible spatial separation range, x, is x �
xmin ≡ ε/(eE0 sin ωt ) to ensure the final state is unoccupied,
and x � ξrc for the transition to be adiabatic. The rate at
which states at distance x pass through avoided crossings with
a given initial state is ρeE0|x|ω cos ωt . Accounting for all

possible initial states, for the first quarter of the drive cycle
we have

∂t�E(t )reac

= Lρ2(eE0)2ω sin ωt cos ωt

∫ εmax

0
dε

∫ ξrc

xmin

x2dx

= ω

4
(rcξeE0)3Lρ2rcξ sin2 (ωt ) cos (ωt ), (24)

where εmax ≡ ξrceE0 sin ωt .
Accounting for the entire drive cycle and integrating over

time, we find a reactive contribution to energy absorption at
intermediate field strengths given by

�E(t )reac ∼
(

L

ρξ 2

)
E3 ln4

(
1

�

)
| sin3 (ωt )|. (25)

3. Reactive response in the enhanced dissipative regime

For the largest field strengths,

[ln(1/�)]−2 � E, (26)

Nad � 1 and so individual levels are typically involved in
many adiabatic crossings over a drive cycle. One might expect
this to lead to a modification of Eq. (25), but surprisingly it
does not, as we now show.

To capture the fact that there are many adiabatic crossings
per level, we consider occupation n(ε, t ) of levels as a func-
tion of energy ε and time t within a cycle. The generalization
of Eq. (24) above is

∂t�E(t )reac = Lρ2(eE0)2ω sin ωt cos ωt × K (27)

with

K =
∫ ∞

−∞
dε

∫ ξrc

−ξrc

n(ε, t )[1 − n(ε + eE0x sin ωt, t )]|x|x dx

=
∫ ∞

−∞
ds

∫ 1

−1
ν(s, t )[1 − ν(s + �, t )]|�|� d�. (28)

Here we have substituted ε = srcξeE0 sin ωt , x = rcξ�, and
ν(s, t ) ≡ n(srcξeE0 sin ωt, t ). We can recover Eq. (25) by
taking ν(s, t ) = �(−s).

In general, ν(s, t ) should be a monotonic function that
varies from ν(s, t ) = 1 at large, negative s to ν(s, t ) = 0 for
large, positive s, with a step of width w. The integral K is
O(1) independently of w, and so the reactive contribution to
response is given by Eq. (25) throughout the range of field
strengths � � E .

F. Evolution operator

To illustrate directly the consequences of our Landau-
Zener picture for time evolution, we turn to a discussion of the
evolution operator in the basis of instantaneous eigenstates.
Let {|ϕk (t )〉} be eigenstates of H(t ). We define

Sjk (t, n) = 〈ϕj (t )|Tt exp

[
−i

∫ nT +t

0
H(t ′)dt ′

]
|ϕk (0)〉,

(29)

where Tt denotes time ordering.
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For the discussion that follows, the relative ordering of the
labels j and k for instantaneous eigenstates of H(t ′) at times
t ′ = 0 and t ′ = nT + t is central. While we have chosen to
present our discussion of time evolution in terms of avoided
level crossings for a system with an electric field represented
using a scalar potential, the most revealing ordering of j and k

is by the instantaneous eigenvalues of H(t ) with electric field
represented using a time-dependent vector potential, because
this preserves the real-spacing ordering of 〈ϕj (t )|x|ϕj (t )〉
and 〈ϕk (t )|x|ϕk (t )〉 in a transition that is diabatic. For a
sample without periodic boundary conditions, either gauge
choice is of course permissible and equivalent to the other
provided time evolution is computed exactly. However the
standard condition [Eq. (6)] for an avoided level crossing to
be adiabatic is gauge dependent and needs to be used with a
scalar potential which ensures that a timeindependent field is
represented by a time-independent Hamiltonian as assumed
in the derivation. Finally, although a vector potential must
be used to represent an oscillating electric field in a sample
with periodic boundary conditions, sensitivity to boundary
conditions is small provided L � ξ .

If all level crossings are perfectly diabatic, Sjk (t, n) is a
diagonal unitary matrix for all t, n. If the level crossings are a
mixture of perfectly diabatic and perfectly adiabatic, Sjk (t, n)
is the product of a permutation matrix and a diagonal unitary
matrix. Furthermore, in the latter case, the permutation returns
to the identity at t = T/2. Deviations from this behavior
arise from intermediate level crossings, which are rare in the
adiabatic nonlinear regime. We will use Sjk (t, n) to identify
the adiabatic nonlinear regime in numerical simulations.

In particular, we introduce the quantities

f (t ) ≡ L−1
∑

k

〈|Skk (t, n)|2〉 (30)

and

g(t ) ≡ L−1
∑

k

〈max
j

|Sjk (t, n)|2〉 (31)

for a system of L states, averaged over disorder and n. We
expect 1 − g(t ) ∼ O(Nint ) and 1 − f (0) ≈ 1 − f (T/2) ∼
O(Nint ). At t = 0, T /2, 1 − f (t ) is a measure of the fraction
of levels that have undergone adiabatic crossings. If Nad � 1,
we expect f (t ) � 1 unless t is near an integer multiple of
T/2.

IV. NUMERICAL SIMULATIONS

In this section we present results from numerical sim-
ulations of a site-disordered, one-dimensional tight-binding
model for spinless fermions driven globally by an electric
field.

We start from the Hamiltonian

H0 = −
∑

i

(λc
†
i ci+1 + H.c.) +

∑
i

wic
†
i ci , (32)

where the site potentials wi are independent random variables
uniformly distributed in [−W,W ]. Representing the electric
field using a time-dependent vector potential introduced via

the Peierls substitution, the model with global drive is

HGD(t ) = −
∑

i

(λ̃(t )c†i ci+1 + H.c.) +
∑

i

wic
†
i ci , (33)

where λ̃(t ) = λ exp (−iφ0 cos (ωt )). The product of charge
and electric field strength is then eE(t ) = φ0ω sin ωt .

Taking λ = 1 to set energy scales, we focus on strong
disorder, with W = 2, 5, 10, and 20. For W = 2, ξ ≈ 6 lattice
spacings and for W = 5, 10, and 20, we have that ξ � 1
lattice spacing [51]. We consider frequencies in the range
2.5 × 10−4 � ω � 0.5 and drive strengths, φ0ω, in the range
from 10−5 to 1. These correspond to dimensionless field
strength and frequency in the ranges 10−6 � E � 10−2 and
10−5 � � � 10−1, respectively. We use as an initial state the
ground state of a system with the Hamiltonian evaluated at
t = 0 and zero chemical potential. We consider systems with
periodic boundary conditions and L = 100 sites except where
otherwise noted. Most results are averaged over Nr disorder
realizations, with 104 � Nr � 5 × 105.

To compute time evolution numerically, we construct the
time-evolution operator U (t, 0) from a piecewise-constant,
discretized version of H (t ), using Nδ time steps in a period.
Typically Nδ ∼ 2 × 102 is adequate, but for small frequencies
values as large as Nδ = 2 × 105 are necessary; for further
discussion, see Ref. [31].

In the following, we present results for range of quantities
that characterize behavior. We consider energy absorption,
changes in fermion occupation of eigenstates of the initial
Hamiltonian and of lattice sites, and fluctuations of these
quantities. Additionally, we study some of the observables
discussed in Sec. III: we investigate the dependence on elec-
tric field strength of different harmonics of the reactive and
dissipative contributions to energy absorption within the drive
cycle; and we compute the overlap matrix within the drive
cycle, as defined in Eq. (29). We focus on systems with
global drive, but reference results for a local drive where the
comparison is illuminating. Data for systems with a single-site
drive are given in Appendix B.

A. Energy absorption

An overall characterization of the response of a system to
a periodic drive is given by the normalized energy absorption

�E(t ) ≡ 〈ψ (t )|H (t )|ψ (t )〉 − E0

E∞ − E0
(34)

at integer multiples of the drive period. Here E∞ is the energy
at infinite temperature and E0 is the energy at t = 0.

We start with a demonstration of the expected behavior
in the linear response regime. Specifically we show that (a)
�E(t ) is initially proportional to t over an interval that
extends to times much larger than the period T when the
drive amplitude is weak; (b) the energy absorption rate in this
interval is quadratic in the drive amplitude; (c) the frequency
dependence of this rate (proportional to the conductivity) is
consistent with predictions of variable-range hopping; and
(d) the timescale t∗ at which energy absorption saturates,
and the energy �E(∞) absorbed at long times, both have a
dependence on drive amplitude and frequency consistent with
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FIG. 3. (left) Absorbed energy vs time at weak drive, showing �E(t ) ∝ t over many drive periods T . Parameter values: φ0 = 10−4. Dashed
lines are linear fits: points are data measured every two periods (left and middle). (middle) �E(t )/φ2

0 vs t for a range of drive strengths,
demonstrating a short-time regime characterized by a conductivity that is independent of drive strength, and saturation at long times. Lines
are guides to the eye. Parameter values: ω = 0.25. (right) Comparison of frequency dependence of conductivity with Mott’s law: σ/ω2 vs
ω. Points: data analysed using Eq. (35); dashed curve: fit to Mott’s law, Eq. (36), with A ≈ 0.016, ω0 ≈ 3.3. (all) Other parameters values:
W = 5 and Nr ∼ 1– 5×105.

predictions from our treatment of Rabi oscillations of driven
Mott resonances.

Evidence is provided for (a) in Fig. 3 (left) and for (b) in
Fig. 3 (middle). To examine (c) we extract from the weak-
field, short-time behavior

�E(t ) = σ 2π (φ0ω)2t (35)

the coefficient σ . As shown in Fig. 3 (right), its dependence
on frequency matches well the Mott law expectation

σ = Aω2 ln2(ω/ω0). (36)

It is interesting to contrast this Mott law behavior for a global
drive with the corresponding result for a single-site drive,
where from Appendix A one expects σ = Bω2 without the
characteristic ln2(ω/ω0) factor. This difference is apparent in
a comparison of Fig. 3 with Fig. 9.

At long times, energy absorption saturates. It is clear from
Fig. 3 (middle) that the timescale for saturation varies with
drive strength. To quantify this dependence we define the
saturation time t∗ to be the time at which �E(t ), extrapolated
linearly from its short-time behavior, reaches �E(∞). From
the theory of Rabi oscillations presented in Sec. III B, we
expect

t∗

T
= 1

2πφ0ξ ln(2W/ωξ )
(37)

and

�E(∞) = Lξ 2

4W 2
φ0ω

3 ln(2W/ωξ ). (38)

Evidence in support of Eq. (37) is provided by the collapse of
data to the dashed line in Fig. 4. Similarly, the data collapse
shown in the inset of Fig. 4 is consistent with Eq. (38).

It is again interesting to contrast these results for global
drive with the different functional forms for t∗ and �E(∞) in
the case of single-site drive. Results from the theory of Rabi
oscillations in that case are given in Eqs. (B1) and (B2), while
data are shown in Fig. 9.

We note finally that the boundary of the linear response
regime, as discussed in Sec. II and sketched in Figs. 1 (middle)
and 8, is set by t∗ ∼ T . Since simulations for both single-site

and global drive give results for t∗ that are consistent with
theoretical expectations, so is the location of this boundary.

B. Energy distribution of excitations

In order to expose the microscopic physics behind energy
absorption, it is interesting to examine how the occupation
of eigenstates of H (0) changes during time evolution. Let
n(ε, t ) be the fermion occupation number of an eigenstate
with energy ε at time t . From our choice of initial state, we
have n(ε, 0) = �(−ε). We write the change in occupation,
relative to t = 0, as

δn(ε, t ) ≡
{

1 − n(ε, t ), ε < 0,

n(ε, t ), ε > 0.
(39)

FIG. 4. Dependence of saturation time on drive strength and
frequency: t �/T vs φ0 ln(2W/ω) on log-log scales. Points: data;
dashed line: fit with slope −1. Parameter values: W = 5 and Nr ∼
2 × 105. (inset) Dependence of �E(∞) on ω and drive strength,
ωφ0. Ratios of �E(∞) to predicted -dependence [Eq. (38)] vs ω

on log-log scales. Points: data; lines: guides to the eye. Parameter
values: W = 5, Nr ∼ 1×104 – 1×105.
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FIG. 5. (left) Changes in eigenstate occupation induced by weak drive: δn(ε, t ) vs ε at t = 20T . Excitations are present only inside the
energy window |ε| < ω. Parameter values: φ0 = 10−4. (middle) Changes in eigenstate occupation induced by intermediate and strong drive:
δn(ε, t ) vs ε at t = ∞. Parameter values: ω = 0.35. (right) Dependence of R [see Eq. (40)] on drive amplitude φ0ω with log-log scales. Points:
data. Line: R ∝ √

φ0ω, as expected at strong drive. (all) Other parameter values: W = 5, Nr ∼ 1×104 – 5×105.

In the linear response regime, energy absorption is ex-
pected to arise from resonant pairs of states. These states
are separated by energy ω. Due to Pauli exclusion, only
occupied states within ω of the Fermi energy can be excited.
We therefore expect a depletion in the occupation of states
with −ω < ε < 0 and an excess occupation of states with
0 < ε < ω, but no change in occupation for |ε| > ω, so that
δn(ε) is positive for |ε| < ω and zero otherwise. Figure 5
(left) displays exactly this behavior at weak drive. Figure 5
(middle) illustrates behavior as drive strength is increased: at
intermediate drive strength (φ0 = 0.1) multiphoton absorption
is apparent, while at higher drive strengths (φ0 � 1) no struc-
ture is visible in the energy dependence of δn(ε,∞).

C. Spatial distribution of excitations

A second way to illustrate the physics of Mott resonances
at weak drive, and to investigate new features at strong drive,
is to examine the spatial distribution of particle excitations.
Let n(x, t ) be the expectation value of the fermion number
operator at site x and time t in a given realization of the driven
system, and let δn(x) = n(x,∞) − n(x, 0). We compute

R = 〈[δn(x)]2〉
〈[δn(x)]4〉1/2

, (40)

where the averages are over sites x and disorder realizations.
This ratio characterizes the fraction of the system that has
significant change in occupation. For example, if [δn(x)]2 = 1
on a fraction f of sites and is zero elsewhere, then R = f 1/2.
At weak drive, we expect only resonant pairs are active so
that R is small. For strong drive, the system is more uniformly
active and so R increases towards 1. Figure 5 (right) illustrates
just this behavior. From the arguments of Sec. III D we expect
at sufficiently strong drive R ∝ √

Nad ∼ √
E , and the data are

consistent with this.

D. Harmonics of reactive and dissipative response

As discussed in Secs. III D and III E, we expect different
dependence on E of the reactive and dissipative contributions
to response as field strength is varied. To examine these
differences we consider a Fourier decomposition of the energy

absorption at long times within a drive cycle

�E(t ) =
∑

n

cne
inωt . (41)

The amplitude of the dissipative response is c0. From
Sec. III we expect c0 ∝ E at weak field and c0 ∝ E3 at strong
field. Figure 6 (left) shows this crossover. It occurs at an elec-
tric field strength that increases with frequency; in addition,
c0 is strongly dependent on frequency in the linear response
regime, but much less so in the strong driving regime. These
features are agreement with the predictions of Eqs. (11), (17),
and (18).

The values of |c2| and |c4| characterize the reactive re-
sponse. The amplitude of polarization oscillations induced
at the fundamental frequency by the drive field is given by
|c2|. These oscillations arise in linear response and so one
expects |c2| ∝ E2. This behavior is seen in Fig. 6 (middle).
Higher harmonics of the reactive response arise at strong
field. From Landau-Zener theory of the evolution operator,
we expect |c4| ∝ E3, as found in Fig. 6 (right). [52] Note that,
with our choice of phase for the driving field, the odd Fourier
components of �E(t ) are zero.

E. Evolution operator at strong drive

Next we present the results of calculations designed to test
the theory of the evolution operator at strong drive, developed
in Sec. III D 1 using a picture of Landau Zener crossings
of pairs of localized eigenstates of the instantaneous Hamil-
tonian. Specifically, we study the quantities f (t ) and g(t ),
introduced in Eq. (30), over a Floquet period at long times.
In the adiabatic nonlinear regime, we expect that f (t ) � 1
except when t is near an integer multiple of T/2 and that
g(t ) ∼ 1 − O(Nint ) ≈ 1 throughout the drive period. Numer-
ical constraints make the regime in which Nad � 1 difficult
to access. Nonetheless, in Fig. 7 the expected behavior is
apparent.

An additional test of the application of Landau-Zener the-
ory to the evolution operator is provided by the dependence of
the amplitude of the oscillations in f (t ) on drive strength. The
difference g(T/4) − f (T/4) is expected to be proportional to
Nad − Nint and vary as E for strong drive. Evidence for this
behavior is provided in the inset of Fig. 7.
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FIG. 6. (Global drive) Fourier coefficients c0, |c2|, |c4| of �E(t ) vs drive strength on log-log scales Points: data; lines: expected power
laws (see main text). Parameter values: L = 26–48, Nr ∼ 5×104 – 1.5×105.

Note that the data shown in Figs. 6 and 7 are intended
to probe behavior deep in the adiabatic non-linear regime.
Access to this regime required higher disorder strength, lower
frequency, and finer discretization of the time-evolution oper-
ator (Nδ ∼ 105) than data shown in other figures. This in turn
required smaller system sizes.

FIG. 7. Variation with t of functions f (t ) (solid) and g(t )
(dashed) over one drive period at long times [see Eq. (30) for
definitions]. Adiabatic level crossings lead to a reduction in the
value of f (t ) when t = T/2. Values of g(t ) less than 1 arise from
level crossings that are intermediate between adiabatic and diabatic.
Parameter values: ω = 2.5 × 10−4, L = 26, W = 20, Nr ∼ 1.5 ×
105. (inset) Variation of g(T/4) − f (T/4) with E on log-log scale
in the strong drive regime. Points: data; line: linear dependence from
Landau-Zener theory omitting log corrections. Parameter values:
ω = 2.5 × 10−4, L = 26, W = 20, Nr ∼ 1.5 × 105.

V. DISCUSSION

To recapitulate, we have studied periodically driven An-
derson insulators with both local and global monochromatic
driving starting from the ground state. Our results extend
beyond the linear response regime studied by Mott to in-
clude both long times and strong driving. We have discussed
these results in the setting of a “phase diagram” in the
frequency and amplitude plane with four distinct regimes.
One of these is the traditional linear response regime and the
other three—the perturbative nonlinear regime, the adiabatic
nonlinear regime, and the (nonlinear) enhanced dissipation
regime—exhibit FLTS with interesting properties. We have
presented a framework involving preexisting Mott resonances,
field induced Landau-Zener crossings, and considerations of
adiabaticity and lack thereof to identify these regimes. We
have presented several diagnostic quantities that are able
to tease these regimes apart. The time dependence of the
energy absorbed distinguishes linear response from all the
others, the change of single-particle occupations distinguishes
linear response and perturbative nonlinear response from each
other and from the remaining two regimes, and the structure
of the evolution operator allows us to tell apart the adia-
batic nonlinear regime from the enhanced dissipation regime.
Finally, the spatial inhomogeneity of the excitations decreases
monotonically as we go away from the linear response regime.

We have provided results from numerical simulations to
illustrate the breakdown of linear response and characterize
the Floquet regimes. In particular, we have identified the
boundary of the linear response regime from numerics. We
have shown that the main contributions to beyond linear
response no longer come from resonant pairs, but instead
from multiphoton processes and Landau-Zener avoided en-
ergy level crossings. In the simulations we have seen that
systems heat up in an active manner when driven beyond
linear response, and a significant fraction of avoided energy
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level crossings are traversed nearly adiabatically. We have also
seen that the dissipative and reactive contributions to predicted
by theory match the data from simulations well in terms of the
dependence on field strength.

In closing we note that the defining characteristic of “plain
vanilla” Anderson insulators, and localized insulators more
generally, is a vanishing linear dc conductivity. That by itself
does not tell us very much about the state and indeed cannot
be distinguished from the conductivity of a band or Mott
insulator. To probe deeper into the state it is necessary to move
away from this limit. Mott’s classic work showed the linear
finite frequency response was a probe of two site resonances
in the spectrum of the system. In the present paper we have
shown that investigating the long-time and nonlinear response
teases out more information about the system. In particular
the nonlinear response probes the creation of resonances as
the system is made by the application of an electric field
to move along a set of nongeneric potential configurations
starting from a generic disorder configuration. Altogether the
full frequency and amplitude response yields a much wider
window on the dynamics of the Anderson insulator, and
we look forward to experiments that will take advantage of
this possibility. Examining these questions in quasiperiodic
single-particle [53] and many-body localized [54,55] systems
with quite different resonance structures is also an interesting
direction for future work.
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APPENDIX A: SINGLE-SITE DRIVE

It is also interesting to consider a system driven by a
local oscillating potential, rather than an electric field that
acts globally. A broadly similar treatment applies to the one
presented in Sec. III, but with some characteristic differences.
It is reassuring that our general approach is useful in a
second setting. It is also helpful that some differences arise, as
correct capture of these provides a test for simulations. In the
following we outline the parallels and differences between the
two types of drive, considering specifically the tight binding
model with Hamiltonian given by

H0 = −
∑

i

(λc
†
i ci+1 + h.c.) +

∑
i

wic
†
i ci , (A1)

where the site potentials wi are independent random variables
uniformly distributed in [−W,W ]. The model with single-site
drive is

HSSD(t ) = H0 + v sin (ωt )c†dcd . (A2)

We focus on strong disorder: in this case the density of states
in energy per site is ρ ∼ 1/W and the localization length is
ξ ∼ 1/ ln(W/λ) in units of the lattice spacing.

Suitable dimensionless measures of the drive frequency
and strength in this instance are

� = h̄ω/W and V = v/W. (A3)

The minimum energy difference between two eigenstates with
spatial separation x between their localization centers is of
order W (λ/W )x ≡ W exp(−x/ξ ). Equating this to the photon
energy h̄ω, the Mott length in units of ξ is again rMott =
ln(1/�). Equating the same energy difference to the drive am-
plitude gives rL = ln(1/V ), and a treatment of the condition
for adiabaticity following Eq. (6) gives rc = 1

2 ln(1/�V ).
Adapting the discussion of Rabi oscillations of Mott res-

onances given in Sec. III B, a crucial difference for the case
of single-site drive is that the matrix element γ does not in-
volve xMott; instead we have simply γ ∼ v. The consequence
of this in one dimension is that the linear-response energy
absorption rate is proportional to ω2, without the ln2 ω factor
that is present in the electrical conductivity. This difference
is apparent in our simulations (compare Figs. 3 and 9). For
single-site drive we obtain

�E(t ) ∼
{
h̄v2ρ2ξω2t, ωt < �/V,

v(ρh̄ω)2ξ, ωt > �/V .
(A4)

The boundary to the linear response regime, defined as
the drive strength at which energy absorption saturates on
the timescale of the drive period, is V ∼ �. On the weak-
drive side of this boundary, the characteristic length scales
have the ordering rMott < rc < rL and only Mott resonances
contribute to response. On the strong-drive side, the order is
reversed and rL < rc < rMott. This is a second difference from
the case of global drive (compare with Sec. III D).

Adiabatic NLR

Linear Response

FIG. 8. Schematic illustration of regimes of response for an An-
derson insulator driven by an oscillating site potential, as a function
of the amplitude V or potential oscillations and frequency �. See
main text for distinctions between regimes.
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FIG. 9. (left) �E(t )/v2 vs t for a range of drive strengths, demonstrating a short-time regime with a constant absorption rate, and saturation
at long times. The linear response coefficient [the value of the “conductivity” �E(t )/(v2t ) at short time] characterizing the absorption rate
is independent of drive strength. Points are data measured every five periods, lines are guides to the eye. Parameter values: ω = 0.2 and
Nr ∼ 2.5 × 105. (middle) Frequency dependence of the initial energy absorption rate for weak single-site drive: σ/ω vs ω. As expected from
the theory of locally driven Mott resonances, rate ∝ ω2. Parameter values: v = 10−4 and W = 2, 5. (right) Dependence of saturation time t �

on drive strength and frequency: t∗/T vs v/ω on log-log scale. Points: data; dashed line: fit with slope −1. (inset) Dependence of �E(∞) on
ω and drive strength, v. Ratios of �E(∞) to predicted ω dependence [Eq. (B2)] vs ω on log-log scales. Points: data; lines: guides to the eye.
(all) Other parameter values: W = 2, Nr ∼ 5×104 – 5×105.

Consider the evolution of eigenstates of the instantaneous
Hamiltonian over the course of the drive cycle. An eigenstate
that is localized near the drive site may have avoided crossings
with other eigenstates that are adiabatic, intermediate, or
diabatic, according to the spatial separation between the two
states compared with ξrc. The average numbers of adiabatic
and intermediate crossings are Nad ∼ Vξrc and Nint ∼ Vξ

respectively. In the regime we are considering (V, ξ � 1)
Nint is always small, but there is a change in response at the
boundary at which Nad ∼ 1, implying

V ∼ 1

ξ ln(1/�)
. (A5)

Above this boundary the system has a large nonlinear re-
sponse, which is principally reactive. Since Nint is always
small, this model differs from the one with global drive in
that it does not have a regime with enhanced dissipation. The
regimes of response for the single-site drive are illustrated in
Fig. 8.

APPENDIX B: SINGLE-SITE DRIVE
NUMERICAL SIMULATIONS

In this appendix we present results from numerical sim-
ulations of a site-disordered, one-dimensional tight-binding

model for spinless fermions, driven locally by an oscillating
potential at a single site.

We start from the Hamiltonian of Eq. (A2). The disorder
strengths, drive strengths, and drive frequencies are in the
same range as in the main text for the global drive. All other
considerations (e.g., initial state, boundary conditions, and
system size) are as in the main text as well. An overview of
the dependence of energy absorbed on time and drive strength
is given in Fig. 9 (left). The variation of the energy absorption
rate σ with frequency is shown in Fig. 9 (middle).

It matches the theory of Mott resonances with single-site
drive and differs from the Mott law for a global drive by
a factor of ln2 ω. Further distinctions between the cases of
single-site and global drive are in the dependence of the
saturation time t∗ and saturation energy �E(∞) on frequency
and drive strength. In detail, the results of Appendix A give

t∗

T
= ω

2πv
(B1)

and

�E(∞) = ξω2v

(2W )2
. (B2)

Comparisons consistent with Eq. (B1) are shown in Fig. 9
(right), and with Eq. (B2) in the inset of Fig. 9 (right).
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