
PHYSICAL REVIEW B 98, 214114 (2018)

Negative refraction of Lamb modes: A theoretical study
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This paper provides a theoretical investigation of negative refraction and focusing of elastic guided waves
in a freestanding plate with a steplike thickness change. Under certain conditions, a positive phase velocity
(forward) Lamb mode can be converted into a negative phase velocity (backward) mode at such interface, giving
rise to negative refraction. A semianalytical model is developed to study the influence of various parameters
such as the material Poisson’s coefficient, the steplike thickness, the frequency, and the incidence angle. To this
end, all the Lamb and shear horizontal propagating modes and also a large number of their inhomogeneous
and evanescent counterparts are taken into account. The boundary conditions applied to the stress-displacement
fields at the thickness step yields an equation system. Its inversion provides the transmission and reflection
coefficients between each mode at the interface. The steplike thickness and Poisson’s ratio are shown to be key
parameters to optimize the negative refraction process. In terms of material, Duralumin is found to be optimal as
it leads to a nearly perfect conversion between forward and backward modes over broad frequency and angular
ranges. An excellent focusing ability is thus predicted for a flat lens made of two symmetric thickness steps.
A laser ultrasonic experiment quantitatively confirms those theoretical predictions. This study paves the way
toward the optimization of elastic devices based on negative refraction, in particular for cloaking or superfocusing
purposes.
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I. INTRODUCTION

Negative refraction (NR) has drawn considerable attention
for the last 20 years, whether it be for wave focusing [1], lens-
ing [2], imaging [3], or cloaking [4] purposes. In a negative
index material, the energy flow as dictated by the Poynting
vector is in the opposite direction to the wave vector [2]. This
peculiar property implies that, at an interface between positive
and negative index material, waves are bent the unusual way
relative to the normal. Any negative refracting slab thus forms
a flat lens which does not suffer from any spherical aberration
[1]. Negative refraction has also given rise to the notion of
complementary media and the ability to cancel the propaga-
tion of waves by adjoining two mirror regions of opposite
refractive indices [5].

Most experiments on negative refraction of elastic waves
have been achieved either using phononic crystals [6–9] or
metamaterials [10], an arrangement of tailored subwavelength
building blocks from which the material gains unusual macro-
scopic properties. Nevertheless, these man-made materials
often rely on resonating structures, a feature that induces
strong energy dissipation losses. More recently, an alternative
way has been explored for elastic guided waves. An elastic
plate actually supports an ensemble of modes, the so-called
Lamb waves, which exhibit complex dispersion properties.
Interestingly, some Lamb modes, often referred to as back-
ward modes, display a negative phase velocity [11–14]. This
particularity comes from the repulsion between two dispersion
branches with close cut-off frequencies, corresponding to a
longitudinal and a transverse thickness mode of the same
symmetry. The lowest branch exhibits a minimum corre-
sponding to a zero-group velocity (ZGV) point [11,15,16].

This backward mode was the object of several studies. For
example, it was shown to be responsible for the backscattering
enhancement by shells [17] or negative reflection at a plate
edge [18–20]. Then it was taken advantage of to achieve NR
at a steplike discontinuity through mode conversion between
forward and backward propagating modes (or vice versa)
[21,22].

In this paper, we investigate theoretically the conversion
of propagating modes at a thickness step to optimize the
NR effect. This problem has already been studied for normal
[23,24] and oblique incidence [25] at frequencies that only
imply low-order modes and do not involve any backward
mode. Following the approach of a recent study on negative
reflection of Lamb waves at a free plate edge [18], we develop
a semianalytical model to calculate the reflection and trans-
mission coefficients between Lamb modes at a symmetric
step discontinuity. The optimal parameters (Poisson’s ratio,
material, thickness ratio) to reach an efficient NR over a
broad angular range and a wide frequency bandwidth are
then determined using this model. Theoretical results are ulti-
mately confirmed by means of an ultrasound laser experiment
performed on a plate of optimal design.

II. DETERMINATION OF THE PLATES MODES

To derive the guided mode equations in the right-handed
system (x1, x2, x3), we consider a plate limited by the planes
(x2 = −h) and (x2 = h) and a wave propagation along the x1

axis. The displacement field u = (u1, u2, u3)T and the stress
tensor σ = [σij ] obeys the elasticity equations given by

−ρω2u = ∇ · σ , (1)
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where ρ is the density of the material and ω is the pulsation.
The boundary conditions correspond to the cancellation of the
stress tensor on the plate surfaces, σ · n = 0, where n is the
normal to the surface boundary. Solutions are in the form

{ui (x1, x2), σij (x1, x2)} = {ui (x2), σij (x2)} · e(ikx1 ),

where k is the wave number. Two sets of solutions sat-
isfy these equations: shear horizontal (SH) modes that are
polarized orthogonally to the propagation plane (u1 = u2 =
0) and Lamb modes, polarized in the propagation plane
(u3 = 0). Both families are composed of an infinite number
of modes, called propagating, evanescent, or inhomogeneous
for a real, pure imaginary, or complex wave number k, re-
spectively. Both Lamb and SH modes can be separated in
two independent families of symmetrical and antisymmetrical
modes. Symmetric/antisymmetric SH modes correspond to
an even/odd u3(x2) polarization along the plate thickness.
Symmetric/antisymmetric Lamb modes have an even/odd in-
plane component u1(x2) combined with an odd/even trans-
verse component u2(x2). We now briefly recall the equations
for SH and Lamb modes that are fully described in various
textbooks [26,27].

A. SH modes

The well-known SH mode dispersion relation is

ω2

c2
T

− k2 =
(

nπ

2h

)2

, (2)

with cT the shear wave velocity and n = 0, 1, 2.... The corre-
sponding displacement field is

u3(x2) = cos

(
nπ

2h
(x2 + h)

)
.

The stress field is then expressed from the displacement field
using Eq. (1).

B. Lamb modes

Symmetrical Lamb modes are solutions of the following
dispersion relation, often referred to as the Rayleigh-Lamb
equation [26,28]:

ω4

c4
T

= 4k2q2

{
1 − p

q

tan(ph)

tan(qh)

}
, (3)

with ω the pulsation, p2 = ω2/c2
L − k2, q2 = ω2/c2

T − k2, cL

the longitudinal wave velocity, cT the shear wave velocity.
At a fixed pulsation ω, a discrete set of wave numbers kn

satisfy Eq. (3), and only a finite number of propagating modes
are supported by the plate, whereas it exists an infinite number
of evanescent or inhomogeneous modes. The components of
the displacement field for each mode can be expressed as
follows [26]:

u
(n)
1 (x2) = −[kn cos(pnx2) − Rnqn cos(qnx2)],

u
(n)
2 (x2) = i[pn sin(pnx2) + Rnkn sin(qnx2)],

with

Rn =
(
k2
n − q2

n

)
cos(pnh)

2knqn cos(qnh)
.

The stress field can be deduced from u using Eq. (1).

C. Dispersion curves

In the following, we consider a thickness step that is
symmetrical with respect to the x2 = 0 plane. Therefore, the
reflection/transmission at the step preserves the modes sym-
metries. As a consequence, a symmetrical Lamb mode is re-
flected and transmitted into symmetrical Lamb and SH modes.
In the following, we only consider symmetrical modes.
Figure 1 displays the dispersion curves of the SH and Lamb
modes deduced from Eqs. (2) and (3) for a duralumin plate
(ρ = 2790 kg/m3, cL = 6.4 mm/μs, cT = 3.1 mm/μs). The
symmetric zero-order Lamb mode S0 is the extensional mode
of the plate. It exhibits free propagation to zero frequency,
whereas the higher order modes admit a cutoff frequency.
In particular, the S1 and S2 modes have cutoff frequencies
at f = cT /d and f = cL/2d, corresponding to shear and
longitudinal thickness resonances, respectively. One peculiar
property of Lamb waves is the existence of branches for
which phase velocity ω/k and group velocity ∂ω/∂k are of
opposite sign. The corresponding modes, often referred to as
backward modes, naturally display a negative phase velocity.
They originate from the repulsion between two dispersion
branches having close cutoff frequencies, corresponding to
a longitudinal and a transverse thickness mode of the same
symmetry. This is the case for S1 and S2 modes displayed in
Fig. 1 in the case of a Duralumin plate. The lowest branch (S1)
exhibits a minimum corresponding to a ZGV point [15,16].
Above this resonance, there is a coexistence of a negative
phase velocity (backward) S2b mode and a positive phase
velocity (forward) S1 mode.

III. PROBLEM’S GEOMETRY AND EQUATION SYSTEM

As shown in previous studies [21,22], NR of Lamb waves
can be achieved by conversion of a forward mode into a
backward mode at a thickness step. Here we consider the
conversion between the forward and backward modes S2 and
S2b at a symmetric step [Fig. 2(a)]. Such a geometry is actually
optimal for symmetric modes.

To study the interaction of a mode of oblique incidence,
a second right-handed system (x ′

1, x2, x
′
3) is introduced [see

Fig. 2(a)]. The axis x ′
3 is oriented along the step interface

while the axis x ′
1 is normal to this step. The thickness is

denoted as d1 = 2h1 for x ′
1 < 0 and d2 = 2h2 for x ′

1 > 0 with
h1 > h2. We then consider an incident wave coming from the
thick part.

Figure 2(b) displays the dispersion curves of the Lamb
and SH modes in each part of the plate. Right-going (respec-
tively, left-going) propagating modes correspond to a posi-
tive (respectively, negative) group velocity ∂ω/∂k, whereas
the evanescent and inhomogeneous right-going (respectively,
left-going) modes correspond to wave numbers with strictly
positive (respectively, negative) imaginary parts. Because the
dispersion curves scale with the plate thickness [Eqs. (2) and
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FIG. 1. Dispersion curves of elastic guided modes in a 1-mm thick Duraluminium plate computed from Eqs. (2)–(3): propagating and
evanescent SH modes (red), propagating and evanescent Lamb modes (blue), and inhomogeneous Lamb modes (green).

(3)], the forward propagating mode S2 in the thick part (x ′
1 <

0) crosses the backward-propagating mode S2b in the thin
part of the plate. As already observed experimentally [21,22],
this crossing point gives rise to NR through an efficient
conversion between these two modes at the thickness step.
This conversion is now investigated in detail.

Let us consider an incident right-going S2 mode, of wave
number kI , carrying a unit energy flux toward the step with an
angle of incidence θI , with respect to the axis (x ′

1), as depicted
in Fig. 2(a). The corresponding stress displacement field is
denoted as {u′I , σ ′I }. To satisfy the stress-free condition at
the interface, this incident Lamb mode is reflected/transmitted
into an infinite combination of left-going/right-going Lamb
and SH modes of wave numbers kr,n and kt,n, respectively.
It is necessary to consider not only the propagating modes
but also the different evanescent and inhomogeneous Lamb
and SH modes [29]. For a given mode n, the reflection
and transmission angles, θr,n and θt,n, are determined by
the conservation of the wave vector component along x ′

3,
kI sin(θI ) = kr,n sin(θr,n) = kt,n sin(θt,n). The displacement-
stress fields, {ũ′(n)

i , σ̃
′(n)} and {u′(n), σ

′(n)}, of respectively
reflected and transmitted modes expressed in the coordinate
system (x ′

1, x2, x
′
3), can be obtained from the displacement-

stress fields {u(n), σ (n)} expressed in the coordinate system

(x1, x2, x3) using the following equations:

u
′ (n) = R(θn) · u(n),

σ
′ (n) = R(θn) · σ (n) · R(θn)T ,

where R(θ ) is the rotation matrix,

R(θ ) =

⎡
⎢⎣

cos(θ ) 0 − sin(θ )

0 1 0

sin(θ ) 0 cos(θ )

⎤
⎥⎦.

To define transmission and reflection coefficients, it is
necessary to normalize each mode so that it carries unit energy
flow through the interface:

u(n) = u(n)

Cn

and σ (n) = σ (n)

Cn

,

Cn being the normalization coefficient. To determine this
coefficient, we use the biorthogonality relation established
by Auld [28], Fraser [30], and generalized by Gunawan and
Hirose [31] that involves the biorthogonality coefficient Pmn:

Pmn = iω

4

∫ +h

−h

[
u

′(m)
j

(
σ

′(n)
1j

)∗ − (
u

′(n)
j

)∗
σ

′(m)
1j

]
dx2.
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For propagating modes, the coefficient Pmn is nonzero only
when m = n. The real part of this coefficient corresponds to
the energy flow passing through the interface. The coefficient
Cn for each propagating mode is thus given by

Cn = Re{Pn}. (4)

For a nonpropagating mode m, the normalization coeffi-
cient cannot be expressed using Eq. (4), because the energy
flow of this mode is by definition zero through the interface
(Re{Pmm} = 0). However, following Auld’s work [28], it ex-
ists for each nonpropagating mode m with a wave number
km a conjugate nonpropagating mode p, associated with a
wave number kp = k∗

m. The combination of these modes gives
rise to an energy flow given by the real part of Pmp. Each
nonpropagating mode m can be normalized by the coefficient

Cm = Re{Pmp},
In the following, u and σ will be written as u and σ to lighten
the expressions.

The boundary conditions at the interface are the stress
cancellation on the risers and the displacement and stress
continuity on the central part. They can be written as

u
(I )
j +

∞∑
n1=1

r(I |n1 )ũ
(n1 )
j =

∞∑
n2=1

t(I |n2 )u
(n2 )
j , |x2| < h2, (5)

σ
(I )
1j +

∞∑
n1=1

r(I |n1 )σ̃
(n1 )
1j

=
⎧⎨
⎩

0, h2 < |x2| < h1
∞∑

n2=1
t(I |n2 )σ

(n2 )
1j , |x2| < h2

, (6)

with j = 1, 2, 3. r(I |n) and t(I |n) represent the reflection and
transmission coefficients of the incident mode in the nth
mode in the corresponding part of the plate. This system of
equations cannot be solved analytically and it is necessary to
truncate the series and discretize the displacement and stress
fields.

IV. INVERSION OF THE PROBLEM

To solve numerically Eqs. (5)–(6), the stress and displace-
ment fields need to be discretized along the normal to the plate
with a thickness sampling pitch �x2. A maximum number of
considered modes is then set by the following spatial Shannon
criterion indicating that it is necessary to have at least two
points by period:

kx2 <
2π

�x2
,

with kx2 =
√

(ω/cT )2 − k2. The number N of selected modes
is lower than the number of discrete points along the thick-
ness. This discretization of stress and displacement fields
allows us to write Eqs. (5)–(6) in a matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1

...

ri

...

rN1

t1

...

ti

...

tN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ũ
(1)
1 −ũ

(n)
1 −ũ

(N1 )
1 u

(1)
1 u

(n)
1 u

(N2 )
1

−ũ
(1)
2 −ũ

(n)
2 −ũ

(N1 )
2 u

(1)
2 u

(n)
2 u

(N2 )
2

−ũ
(1)
3 −ũ

(n)
3 −ũ

(N1 )
3 u

(1)
3 u

(n)
3 u

(N2 )
3

· · · · · · · · · · · ·
−σ̃

(1)
11 −σ̃

(n)
11 −σ̃

(N1 )
11 σ

(1)
11 σ

(n)
11 σ

(N2 )
11

−σ̃
(1)
12 −σ̃

(n)
12 −σ̃

(N1 )
12 σ

(1)
12 σ

(n)
12 σ

(2,N2 )
12

−σ̃
(1)
13 −σ̃

(n)
13 −σ̃

(N1 )
13 σ

(1)
13 σ

(n)
13 σ

(N2 )
13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
(I )
1

u
(I )
2

u
(I )
3

σ
(I )
11

σ
(I )
12

σ
(I )
13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Y

. (7)

C is the vector of the reflection and transmission coeffi-
cients, M is the matrix containing the displacement-stress
field of each mode, and Y is the displacement-stress field
of the incident mode. The rectangular matrix M is inverted
using a Moore-Penrose pseudoinversion. The chosen sam-
pling interval �x2 = 2 · 10−4 mm implies the consideration
of NL = 241 Lamb modes and NSH = 120 SH modes in each
part of the plate. This choice is made to fulfill the energy
conservation condition with a reasonable precision such that
1 − ∑N

i=1(|ri |2 + |ti |2) < 10−3.

V. OPTIMIZATION OF THE NEGATIVE
REFRACTION PHENOMENON

This semianalytical model is first used to determine the
thickness ratio that maximizes the conversion between the for-
ward mode S2 and the backward one S2b at normal incidence.

Figure 3(a) displays the transmission coefficient |tS2→S2b|
at normal incidence for various materials as a function of
the thickness ratio d2/d1. For each thickness ratio, the ampli-
tude transmission coefficient is calculated at the crossing fre-
quency, intersection of S2 mode in the thick part and S2b mode
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FIG. 2. (a) Geometry of the problem that shows the interaction
of a Lamb mode with a step interface. To satisfy the continuity
equations at the interface, the incident wave is transmitted and
reflected into an infinite combination of Lamb and SH modes.
(b) Lamb and SH propagating mode dispersion curves in both
parts of the plate (green for d1 = 1 mm and red for d2 = 0.9 mm).
The forward propagating mode S2 in the thick part intersects the
backward propagating mode S2b in the thin part.

in the thin part [see Fig. 2(b)]. Interestingly, the amplitude
transmission coefficient can be close to unity for materials
such as Duralumin or copper. This can be explained by the
close displacement profiles of the two modes at the crossing
frequency [see Fig. 4(b)]. However, for each material, the
amplitude transmission coefficient strongly decreases when
the thickness ratio tends towards unity. In that asymptotic
case, the crossing frequency approaches the cutoff frequencies
where the S2 mode tends to be purely longitudinal while
the S2b mode becomes purely shear. An important mode
mismatch is thus found when d2/d1 → 1 [see Fig. 4(a)].
Figure 3(b) displays |tS2→S2b| and the optimum thickness ratio
as a function of the Poisson’s ratio ν. Interestingly, when ν

tends to the value 1/3, the amplitude transmission coefficient
reaches unity with an optimum thickness ratio of 1. This
critical value of ν indeed implies the coincidence of S2 and
S2b cutoff frequencies. S2 and S2b modes are thus strictly
identical in that case, which means a full mode overlap and
a perfect conversion between them [see Fig. 4(c)]. Such case
has been recently investigated by Stobbe and Murray [32] as

FIG. 3. Transmission of the S2 mode at normal incidence: (a)
Transmission coefficient |tS2→S2b

| as a function of the thickness ratio
d2/d1 for different materials. (b) Amplitude transmission coefficient
(continuous line) and the associated best thickness ratio (dotted line)
as a function of the Poisson’s ratio. The coefficient reaches 1 for
ν = 1/3, that is to say when S2 and S2b share the same cutoff
frequency. (c) Evolution of the crossing wavelength as a function of
the Poisson’s ratio.

it also gives rise to a Dirac cone in the dispersion curves.
This means that the group velocity remains finite while the
wave number tends to zero. However, in the present case, an
infinite wavelength limits the experimental interest for this
ideal case. A compromise thus has to be found between the
transmission coefficient and the mode wavelength and, in
that respect, the choice of Duralumin appears to be optimal:
The transmission coefficient reaches |tS2→S2b| = 0.94 for a
thickness ratio d2/d1 of 0.92 and a reasonable wavelength λ =
13.3d1. Moreover, Duralumin has a much lower absorption
coefficient than copper (∼1 dB/m for Duralumin and in that
respect, ∼20 dB/m for copper [33]).

214114-5



LEGRAND, GÉRARDIN, LAURENT, PRADA, AND AUBRY PHYSICAL REVIEW B 98, 214114 (2018)

FIG. 4. Displacement u3 (continuous line) and u1 (dotted line) of
S2 (black) and S2b (red) in a 1-mm thick Duralumin plate (a) at the
cutoff frequency, (b) at the crossing point, and (c) at the coincidence
when ν = 1/3.

Now that the Duralumin has been chosen, we investigate
the bandwidth over which the conversion between S2 and S2b

remains efficient. The frequency dependence of |tS2→S2b| is
displayed in Fig. 5(a). The NR of Lamb waves appears to
be broadband: for d1 = 1mm, the transmission coefficient is
above 0.9 over a frequency bandwidth �f ∼ 0.15 MHz. The
NR phenomenon can thus be observed in the time domain for
wave packets of length �t ∼ 1/�f ∼ 6 μs. This important
feature will be confirmed experimentally in the next section.

The angular dependence of the NR phenomenon is also
particularly important for the implementation of a flat lens.
Figure 5(b) displays the reflection and transmission coeffi-
cients for the various propagating modes supported by each
part of the plate for an incident S2 mode. It appears that
|tS2−>S2b| remains above 0.8 over an angular range of 45◦.
Note that, for large angles of incidence, the S2 mode is mainly
reflected into itself and the SH2 mode. As we will see now,
this angular robustness of the S2 → S2b conversion ensures a
large aperture angle for the NR flat lens.

VI. NEGATIVE REFRACTION LENS

The NR flat lens is now experimentally and theoretically
investigated. It consists of a plate with two symmetrical steps.

FIG. 5. (a) Variation of the amplitude transmission coefficient
at the optimum thickness ratio as a function of frequency. (b)
Reflection and transmission coefficients as a function of the S2-mode
incident angle at frequency f = 3.33 MHz. (The S2 to SH0 reflection
coefficient and the transmission ones to S0 and SH0 are not shown
here because smaller than 10−3).

For the experiment, we engraved a 1-mm-thick Duralumin
plate by chemical erosion using iron chloride to obtain a
0.9-mm thick thin part of length d = 50 mm [see Fig. 6 (a)].
The plate dimensions (200 × 200 mm) are chosen to limit
reflections at the edges during the recording. To measure the
wave field induced by an axisymmetric source in the flat lens,
one can use a transducer as a source, and measure the normal
displacement at every point using an heterodyne interferom-
eter. However, because the optical reflectivity in the eroded
part is low, the normal displacement is underestimated by the
interferometer. To overcome this issue, we take advantage of
spatial reciprocity and use a laser source while measuring the
normal displacement with the transducer. The excitation of the
plate is then achieved over a grid of points that maps 150 ×
50 mm2 of the plate surface [see Fig. 6(a)] with a 1-mm pitch
using a 1064-nm pulsed Nd:YAG laser (Centurion, Quantel).
The out-of-plane displacement is measured with a 10-mm-
diameter transducer (Olympus V183-RM) glued with phenyl
salicylate on the thick part and placed at a distance D =
25 mm from the first step [see Fig. 6(a)]. Signals detected
by the transducer are fed into a high-speed usb oscilloscope
(TiePie HS5) and transferred to a computer. A spatiotemporal
discrete Fourier transform (DFT) of the recorded wave fronts
is then performed from 3.22 to 3.52 MHz and for spatial
frequencies k/(2π ) ranging from −0.15 to 0.15 mm−1. To
avoid reflections on the free edges of the plates, the DFT is
calculated for adapted time windows in each part of the lens:
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FIG. 6. Wave-field associated with the S2 and S2b modes sup-
ported by the NR lens made of a Duralumin plate with a thickness
ratio d2/d1 of 0.9. (a) Experimental setup, D = 25 mm. (b) Ex-
perimental result obtained with the laser source. (c) Semianalytical
result. (d) Transverse focusing in the thin part of the plate: Measured
normal displacement (red disks) are compared to semi-analytical
predictions (continuous blue line).

0 − 20 μs for the first thick part, 10 − 70 μs for the thin part
and 40 − 100 μs for the second thick part.

Figure 6(b) shows the normal displacement field measured
on the plate at the frequency f = 3.33 MHz. As predicted the-
oretically [Fig. 5(b)], the NR lens shows remarkable focusing
capabilities with a large angular aperture. The behavior of the
plate lens can also be observed in the time domain [22]. Due to
the spectral robustness of the S2 → S2b conversion [Fig. 5(a)],
the plate lens also operates for wave packets of finite duration
(6 μs). The result is displayed in the Supplemental movie [34].

To go beyond a qualitative analysis, we now quantitatively
compare experiment and theory. To that aim, the semianalyti-
cal model is used to calculate the wave field induced by an ax-
isymmetric source in the NR lens (see Supplemental Material
for the detailed method [34]). To mimic the experiment and
to account for the duration of the recording, only angles up
to 60◦ have been considered. The obtained displacement field

is displayed in Figure 6(c). It displays an excellent qualitative
agreement with the experiment [Fig. 6(b)].

For a quantitative comparison, two relevant observables
are evaluated. The first is the ratio between the maximum
displacement on the focal spot in the third and second part
of the plate. This ratio is of 0.84, experimentally, while it
is of 0.87 using the semianalytical model. The second is
the full width at half maximum (FWHM) of the focal spot
in the thin part of the plate along the x3 direction. The
corresponding experimental and theoretical focal spots are
compared in Fig. 6(d). Experimentally, a FWHM of 7.9 mm
is found, while theory predicts a FWHM of 7.8 mm. Those
observables show a remarkable quantitative agreement. The
residual discrepancy can be explained by small experimental
imperfections. First, the step is not perfectly abrupt. Second,
the thickness of the thin part of the plate shows some small
variation (between 0.88 mm and 0.92 mm), leading to shifting
the crossing point between S2 and S2b. At last, albeit weak, the
attenuation of Lamb modes is also increased by the leakage in
the air (<1dB/m).

VII. CONCLUSION

A semianalytical model to study the interaction of Lamb
waves with a steplike thickness was presented. The conversion
between forward and backward Lamb modes associated with
NR was analyzed. The semianalytical model allows us to in-
vestigate this phenomenon by computing the transmission and
reflection coefficient as a function of Poisson’s ratio, thickness
ratio, angle of incidence, and frequency. Thus an optimal
design to achieve negative refraction is found. This semian-
alytical model evaluates the frequency and angular robustness
of the NR process. It shows that a Duraluminium plate, as
used in previous works [15,22], displays adequate mechan-
ical properties to observe NR. Relying on these results, we
have designed and tested a NR lens effective in the time
domain. The wave field recorded by means of laser ultrasonic
techniques is in quantitative agreement with our theoretical
prediction. The perspective of this paper was to investigate
NR-related phenomena such as the notion of complementary
media [35] and the ability to cancel the propagation of waves
by adjoining two mirror regions of opposite refractive indices.
Beyond NR, the proposed theoretical model is much more
general and can be applied to other types of discontinuity and
Lamb modes. Another perspective could be the consideration
of evanescent or inhomogeneous Lamb modes in the model to
implement a superlens for Lamb waves.
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