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Acoustic Weyl points in a square lattice
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We show that acoustic double Weyl points are observed in a square lattice by breaking inversion symmetry.
We also show that the double Weyl points are protected by the C4 rotation symmetry but are unaffected by
translation symmetry along the z direction. When C4 rotation symmetry is broken, the double Weyl point will
split into two single Weyl points in the x-y plane. Gapless surface states and backscattering immune properties
are demonstrated in double and single Weyl systems. The topologically protected one-way propagation of sound
waves is demonstrated experimentally. The acoustic Weyl points obtained in the easily fabricated square lattice
structure will provide a platform to study the topological properties and lead to potential applications in acoustic
devices.
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I. INTRODUCTION

Recently, Weyl semimetals of classical wave systems have
attracted a lot of attention [1–21]. A Weyl point can be viewed
as a topological singular point which is a source or sink of the
Berry curvature flux in momentum space [22]. Crucially, such
a Weyl point is characterized by an integer-valued topological
charge. This topological charge describes the singularity in the
eigenstates near the crossing point corresponding to the chiral-
ity of the Weyl fermion [2,7]. A Weyl point, which is a doubly
degenerate point with linear dispersions along all directions,
can also be viewed as a three-dimensional (3D) extension of
a two-dimensional (2D) Dirac point [2]. However, differing
from the unstable Dirac points, Weyl points are topologically
stable against perturbation and virtually indestructible, unless
two Weyl points of opposite topological charges annihilate
each other [7]. Their robustness to perturbations is attributed
to the exhausted degrees of freedom in the Weyl Hamiltonian,
so that perturbations respecting the translational symmetry
cannot lift the degeneracy but can only shift the position of the
Weyl points [2]. Nevertheless, the existence of topologically
protected Weyl points does not require a particular symmetry.
It is just known that the existence of Weyl points requires
the absence of time-reversal symmetry or space-inversion
symmetry (or both of them). Because inversion symmetry
requires a Weyl point located at point k on the Brillouin zone
(BZ) to have a partner of opposite charge at –k. Time-reversal
symmetry requires a Weyl point located at k to have a partner
of the same charge at –k, which implies that for a system with
both time-reversal and space-inversion symmetries, the topo-
logical charge must be zero [2,6]. All these limitations make
acoustic systems that exhibit Weyl points more challenging.

Differing from the electronic or optical systems, it is
difficult to break time-reversal symmetry in acoustic systems
[22]. Therefore, in order to realize acoustic Weyl semimetals,
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it is necessary to design a geometric structure without space-
inversion symmetry [6]. In the last few years, Weyl points
have been found in classical wave systems such as photonic
and acoustic systems [2,5,7,9,11,16,18–22]. The Weyl points
beyond nature have been firstly reported in photonic crystals
based on double-gyroid structures [16] and the topologically
nontrivial surface states have been demonstrated experimen-
tally [13,16]. However, for classical waves, the gyroid struc-
ture is very complicated to fabricate. Besides the gyroid struc-
tures’ crystals, Weyl points can also be fabricated using pla-
nar fabrication technology based on a layer-stacking strategy
[2,7,8]. More recently, photonic crystals with multiple Weyl
points have been fabricated and the robustness of these surface
states against kz-preserving scatting has been experimentally
observed [2]. Inspired by the developments of photonic crys-
tals, some achievements of Weyl points have been made
in phononic crystals. Weyl points are closely related to the
synthetic gauge flux in the three-dimensional band structures
[5]. The surface states have been demonstrated in a chiral
phononic crystal system with Weyl points [22]. Very recently,
Weyl points have been observed in these very easily fabricated
woodpile crystals [7,20,21]. These woodpile crystals with
multiple Weyl points have been firstly observed in optical sys-
tems [7]. Soon after, negative refraction of topological surface
waves [20] and topologically protected one-way propagation
of acoustic waves [21] have been demonstrated experimen-
tally in phononic crystals, respectively. These easily fabricated
woodpile crystals suggest that it may be possible to obtain
Weyl points in a square lattice.

To date, the researchers have made a great effort to obtain
Weyl points in acoustic systems, but most of the phononic
crystals with Weyl points are proposed in grapheme-based
structures in a honeycomb lattice [5,19–22]. Although the
honeycomb lattice has been proved to be a very successful
platform for designing acoustic Weyl semimetal materials, the
nonhoneycomb systems with Weyl points [9] need to be ex-
plored further. Generally, phononic crystals with complicated
gyroid structures or single grapheme-based structures in a
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FIG. 1. Illustrations of the unit cell of the acoustic system. (a) The unit cell contains four layers of rotated rods. (b) Top view of unit cell
(dashed square). (c) The first BZ of the acoustic system. The system at kz = 0 has a 2D band structure in the reduced BZ [light gray plane in
(c)]. The yellow spheres represent the double Weyl points with topological charges +2, and the M and X nodes are high-symmetry points.

honeycomb lattice are not convenient for the study of acoustic
Weyl semimetals. Therefore, it is necessary to design easily
fabricated square lattice structures carrying Weyl points in
acoustic systems to study the topological properties. Notably,
the double Weyl points, whose dispersion is quadratic along
the kx and ky directions and linear along the kz direction with
topological charges of ±2, are protected by C4 or C6 symme-
tries [23–25]. Double Weyl points with time-reversal and C3

rotational symmetry have been very recently experimentally
implemented in photonic crystals [2]. When the symmetries
are broken, the double Weyl point will split into two single
Weyl points [2,24,26,27]. This fact suggests that it may be
possible to obtain Weyl points by splitting double Weyl points.

In this paper, we design an acoustic Weyl semimetal in a
square lattice by breaking inversion symmetry. The acoustic
Weyl semimetal is combined with stacked rods which can be
easily fabricated. Firstly, we observe an acoustic double Weyl
point in a square lattice. Secondly, we discuss the effects of
the reduced symmetries on double Weyl points. Finally, we
experimentally demonstrate the topologically protected one-
way propagation of sound waves in acoustic Weyl semimetal
materials.

II. SYMMETRY ANALYSIS OF WEYL POINTS

Near the Weyl points, the band structures are described by
the Hamiltonian

H (k) =
∑

ij

�kivijσj (i, j = x, y or z), (1)

where �ki = ki − k0 is the wave vector relative to the position
k0 of the Weyl point, vij is an invertible effective velocity
matrix describing the band crossing at the first order in
�ki , and σj indicates the Pauli matrices. Especially, Weyl
points and the associated topological charge enable the Weyl
semimetals to exhibit a variety of unusual properties, such as
robust surface states and one-way propagation [2,8,21,22].

Weyl points are more stable than Dirac points but are
more elusive entities. It is difficult to obtain Weyl points
in a particular symmetry directly. Notably, the existence of

Weyl points requires the absence of time-reversal symmetry or
space-inversion symmetry. Hence, we design a chiral acoustic
system without inversion symmetry. The unit cell consists of
four layers of rods with width b and height b. Each layer is
rotated 45° anticlockwise from the layer below as shown in
Fig. 1(a). The total height of the unit cell is h = 4 × b. All the
four layers are twisted up along the z direction while forming
a square lattice in the x-y plane. The top view of the unit cell
(dashed square with length a) is shown in Fig. 1(b). The first
BZ of the unit cell is shown in Fig. 1(c). For any 3D system,
kz can be viewed as a parameter characterizing the topological
characteristics in a 2D system, so the light gray plane can be
seen as a 2D BZ at kz = 0. The yellow spheres represent the
distribution of double Weyl points with topological charges
+2, and the M and X nodes are high-symmetry points that we
care about in this paper.

Obviously, this acoustic system is invariant under a four-
fold rotation operator and a simultaneous partial transla-
tion of the h/2 operator along the z direction, as the sys-
tem is preserved by screw symmetry expressed as C4,2 =
C4Th/2. Hence, after applying the screw symmetry opera-
tor four times, we can obtain C4

4,2 = (Th/2)4 = T2h. Due to
the periodicity, the Bloch wave function satisfies φ(−→r ) =
u(−→r )e−i

−→
k

−→
r ; thus

C4
4,2φ(−→r ) = T2hφ(−→r ) = φ(−→r )e−i2kzh. (2)

Therefore, the eigenvalue of the operator of C4
4,2 is in the

form Jm = eimπ/2e−ikzh/2, where m = 0, 1, 2, 3. Due to the
periodicity, at the kz zone boundaries where kz = ±π , we can
obtain

J0(kzh/2) = J2(kzh/2 + π ),
J2(kzh/2) = J0(kzh/2 + π ), (3)

J1(kzh/2) = J3(kzh/2 + π ),
J3(kzh/2) = J1(kzh/2 + π ). (4)

The eigenvalues J0 and J2 (or J1 and J3) for different
representations of screw symmetry should connect at the zone
boundaries in the extended BZ. For a general dispersion of
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FIG. 2. The band structures of the lowest two bands. The band structures of the unit cell along the XM direction in the kx-ky plane at kz = 0
(a) and kz = 0.5π/h (b). A doubly degenerate point is found at the M node. (c) Three-dimensional band structures of the unit cell around the
M node in the kx-ky plane (left), the kx-kz plane (middle), and the ky-kz plane (right), respectively.

three bands along the XM direction in the extended zone
scheme, the bands can fold back to the first BZ to form two
unavoidable crossing points. However, when the time-reversal
symmetry is preserved, the Hamiltonian satisfies

T H (0, 0, kz)T −1 = H (0, 0,−kz), (5)

and due to the screw symmetry and bands folding, the Hamil-
tonian also satisfies

C4,2H (k)C−1
4,2 = H (R4k), (6)

where C4,2 is the fourfold rotation and translation operator and
R4 is the rotation matrix defining the 3D fourfold rotation. The
constraints on Eqs. (5) and (6) require that the bands should
be symmetric about kz = 0 along the z direction. After band
folding to the first BZ, the crossing points should locate at
kz = 0 or kz boundaries.

In order to obtain the topological charge of a double Weyl
point, we calculated the topological charge by analyzing the
rotational eigenvalues of the two touching bands [23]. If we
choose the eigenfunctions of C4,2 as the basis, at the M node,
the matrix representation of C4,2 is given by

C4,2 = ei[(m1+m2 )/2]πei[(m1−m2 )/2]πσze−ikzp/2, (7)

where m1 and m2 are the eigenvalues of C4,2; they are also
the eigenvalues of the first and the second bands. Near this
two-band crossing point (M node), we can obtain the effective

Hamiltonian as

Heff (k) = f (�k)σ+ + f ∗(�k)σ− + g(�k)σz. (8)

In the above equation, �k is the wave vector deviation of
the M node, f is a complex function, g is a real function,
and σ± = σx ± iσy . The transform of Heff (k) under C4,2 is
given by

C4,2Heff (k)C−1
4,2 = f (�k)ei[(m1−m2 )/2]πσ+

+ f ∗(�k)e−i[(m1−m2 )/2]πσ− + g(�k)σz

(9)

Meanwhile, R4k is given by

R4(k+, k−) = (k+eiπ/2, k−eiπ/2), (10)

where k± = kx ± iky . By substituting Eqs. (9) and (10) into
Eq. (7), we obtain

e−i[(m1−m2 )/2]πf (�k+,�k−)

= f (�k+eiπ/2,�k−eiπ/2)g(�k+,�k−)

= g(�k+eiπ/2,�k−eiπ/2). (11)

This is the general constraint on f and g by C4,2 symmetry.
We can expand the f (�k+,�k−) near the M node as follows:

f (�k+,�k−) =
∑

n1n2

An1n2�k
n1+ �k

n2− , (12)
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FIG. 3. The bulk band structures and surface states. (a) The bulk
band structures of the supercell in the kx-ky plane at kz = 0.5π/h

along the kx direction. Surface band (red band) exists in the nontrivial
gap. (b,c) Eigenpressure fields of surface modes at kx = 0.8π/a

(marked by blue dot) and kx = 1.2π/a (marked by blue star).
(d,e) One-way propagation along the U-type boundary at the same
frequency in different directions with different signs of kz. The red
star is the sound source. The direction of propagation is illustrated by
the red arrows. The blue arrows indicate that the sound waves could
leak out at the air boundary.

where An1n2 is an arbitrary complex coefficient. Equation (11)
requires that

An1n2 = 0 if n2 − n1 �= m1 − m2 mod 4. (13)

Then we take the smallest n1 + n2 and nonzero An1n2 to
obtain the last column of Table I in Ref. [23]. The results

indicate the crossing point at the M node should carry topo-
logical charges of +2.

III. REALIZATION OF WEYL POINTS

To show that acoustic Weyl points can exist in a square
lattice, we design a unit cell whose parameters are, respec-
tively, a = 40 mm, b = 10 mm, and h = 40 mm. The 3D band
structures of the unit cell are calculated as shown in Figs. 2(a)
and 2(b). According to the symmetry analysis of Weyl points,
the band crossing points must be at the kz = 0 or at the kz zone
boundaries when the time-reversal symmetry is preserved. In
this acoustic system, when we set kz = 0, the lowest two
bands form a degenerate point in 3D momentum space at
the M node as shown in Fig. 2(a). When kz is increased, the
degenerate point opens up and then a band gap appears. The
gap reaches maximum as shown in Fig. 2(b) when kz is around
0.5π/h. To verify that the doubly degenerate point is a double
Weyl point, we further calculate the topological charge and
the 3D band structures in Fig. 2(c). It clearly shows that bands
around the M node are quadratic along the kx and ky directions
but linear along the kz direction. The topological charges are
+2, so the degenerate point is definitely a double Weyl point
which can be seen as the superposition of two single Weyl
points.

In the electronic or optical systems, the nonzero values of
the gap Chern number induce topologically protected surface
states [18,28]. To investigate the gapless surface states of
double Weyl points, we construct a supercell consisting of a
row of unit cells along the y direction that is periodic along
the x and z directions. The hard boundaries are applied at two
ends of this supercell as a topologically trivial system, and
then we can obtain the corresponding bulk band structures as
shown in Fig. 3(a). For kz = 0.5π/h, we find that the gapless
surface band (red band) exists in a topologically nontrivial
gap. Obviously, the bulk band structures are symmetrical on
kx = π/a. We take the two gapless surface modes in the topo-
logically nontrivial gap at kx = 0.8π/a (marked by blue dot)
and kx = 1.2π/a (marked by blue star) respectively. The two
surface modes are located at the bottom and top boundaries,

FIG. 4. The band structures of the lowest two bands after the height of the unit cell changed. The band structures of the unit cell along the
XM direction in the kx-ky plane at kz = 0 (a) and kz = 0.5π/h (b).
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FIG. 5. The double Weyl point splits into two single Weyl points due to C4 symmetry breaking. (a) Top view of the unit cell (dashed
rectangle) of the acoustic system. (b) The first BZ of the acoustic system. The system at kz = 0 has a 2D band structure in the reduced BZ
([ight gray plane in (b)]. The red spheres represent the single Weyl points with topological charge +1, and the M and X nodes are high-symmetry
points. (c,d) the band structures of the unit cell along the XM direction in the kx-ky plane at kz = 0 and kz = 0.5π/h, respectively. The double
Weyl point split into two single Weyl points illustrated by red dots in (c). (e) Three-dimensional band structures of the unit cell around the left
red dot at ky = 0.574π/c in the kx-ky plane (left), the kx-kz plane (middle), and the ky-kz plane (right).

respectively, as shown in Figs. 3(b) and 3(c). Especially, the
surface states located at the bottom and top boundaries propa-
gate along the +x and −x directions, respectively. Therefore,
the propagation of sound waves is efficiently prevented by the
bulk gap, and the surface states will induce a topologically
protected one-way propagation.

In order to investigate the robustness of surface states
against backscattering when kz is preserved, we construct a
square acoustic system consisting of 10 × 10 unit cells whose
top, right, and bottom boundaries are rigid. The left boundary
is set as a scattering boundary so that the sound waves can
perfectly leak out. The periodic condition is applied along

the z direction in this acoustic system. To demonstrate the
robustness of the surface states, we remove several unit cells
from the top boundary to form the U-type boundary as shown
in Fig. 3(d). Then we place a sound source (red star) in the
middle of the right boundary and set kz = 0.5π/h. Mean-
while, we set f = 4524.1 Hz, which is the excited frequency
of the nontrivial gap. The sound waves robustly propagate in
an anticlockwise direction along the boundary of the acoustic
system, immunizing against corners and the U-type boundary
without backscattering. When we remove several unit cells
from the bottom boundary to form the U-type boundary and
set kz = −0.5π/h at the same frequency, f = 4524.1 Hz, the
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sound waves robustly propagate in a clockwise direction along
the boundary of the acoustic system without backscattering as
shown in Fig. 3(e).

IV. EFFECTS OF SYMMETRY ON DOUBLE WEYL POINTS

Note that double Weyl points are protected by the screw
symmetry and they are not topologically stable [23–25]. If the
symmetry is reduced, the double Weyl point will split into two
single Weyl points and move away from the high-symmetry
line. In this section, we explore the effects of reducing the
point symmetry on double Weyl points. The screw rotation
operations can be viewed as composite operations of transla-
tion and rotation, namely, C4,2 = C4Th/2. Firstly, we change
the translation symmetry by changing the height of the unit
cell. The height of the unit cell is closely related to the height
of the stacked rods. We only change the height of the rods
from b = 10 mm to b = 14 mm along the z direction. The
corresponding band structures at kz = 0 and kz = 0.5π/h are
plotted in Figs. 4(a) and 4(b), respectively. Compared with
Fig. 2(a), the doubly degenerate point still exists at kz = 0, so
the change of the translation symmetry has no effect on double
Weyl points. Secondly, we reduce the rotation symmetry by
changing the length or width of the unit cell in the x-y plane.

We construct a new unit cell with stacked rods whose height
and width are b = 10 mm. The first and third layers are rotated
60° anticlockwise but the second and the fourth layers are
rotated 30° anticlockwise from the layer below. The top view
of the new unit cell (dashed rectangle with length a and width
c) is shown in Fig. 5(a), where a = 40 mm and c = 23.10 mm.
The first BZ of the new unit cell is shown in Fig. 5(b).
The light gray plane can be seen as a 2D BZ at kz = 0.
The red spheres represent the distribution of single Weyl
points with topological charge +1, and the M and X nodes
are high-symmetry points. The band structures are plotted in
Figs. 5(c) and 5(d) at kz = 0 and kz = 0.5π/h, respectively.
Compared with the Fig. 2(a), the double Weyl point splits
into two degenerate points, respectively, at kz = 0 as shown
in Fig. 5(c). To verify that the degenerate point is a single
Weyl point at ky = 0.574π/c (or ky = 1.426π/c), we further
calculate the 3D band structures as shown in Fig. 5(e). It can
be clearly seen from Fig. 5(e) that bands around the M node
are linear along all directions. The topological charge is +1,
so the degenerate point is definitely a single Weyl point.

To investigate the gapless surface states and transmission
property of single Weyl points, we also construct a supercell,
which consists of a row of unit cells along the y direction and
is periodic along the x and z directions. The hard boundaries

FIG. 6. The bulk band structures and surface states. (a) The bulk band structures of the supercell in the kx-ky plane at kz = 0.5π/h along
the kx direction. Surface band (red band) exists in the nontrivial gap. (b,c) Eigenpressure fields of surface modes found at kx = 0.94π/a

(marked by blue dot) and kx = 1.06π/a (marked by blue star). (d,e) One-way propagation along the U-type boundary in different directions
with different signs of kz. The red star is the sound source. The direction of propagation is illustrated by the red arrows. The blue arrows
indicate that the sound waves can leak out at the air boundary.

214110-6



ACOUSTIC WEYL POINTS IN A SQUARE LATTICE PHYSICAL REVIEW B 98, 214110 (2018)

are applied at two ends of this supercell as a topologically
trivial system; thus we can obtain the corresponding bulk band
structures. For kz = 0.5π/h, we find that the gapless surface
band (red band) exists in the topologically nontrivial gap as
shown in Fig. 6(a). Obviously, the bulk band structures are
symmetric on kx = π/a. We take the two gapless surface
modes in the topologically nontrivial gap marked by the blue
dot and star at kx = 0.94π/a (marked by the blue dot) and
kx = 1.06π/a (marked by the blue star), respectively. The two
surface modes are located at the bottom and top boundaries as
shown in Figs. 6(b) and 6(c), respectively. As we know, the
surface states located at the bottom and top boundaries propa-
gate along the +x and −x directions, respectively. Therefore,
the propagation of sound waves is efficiently prevented by the
bulk gap, and the surface states will induce a topologically
protected one-way propagation.

In order to investigate the robustness of surface states
against backscattering when kz is preserved, we construct a
rectangular acoustic system consisting of 10 × 10 unit cells
whose top, right, and bottom boundaries are rigid as shown in
Fig. 6(d). The left boundary is set as a scattering boundary so
that the sound waves can perfectly leak out. The periodic con-
dition is applied along the z direction in this acoustic system.
In order to demonstrate the robustness of the surface states,
we remove several unit cells from the top boundary to form
the U-type boundary. We place a sound source (red star) in
the middle of the right boundary and set kz = 0.5π/h. Mean-
while, we set f = 4665.9 Hz, which is the excited frequency
of the nontrivial gap. The sound waves robustly propagate in
an anticlockwise direction along the boundary of the acoustic
system, immunizing against corners and the U-type boundary
without backscattering. On the contrary,when we remove
several unit cells from the bottom boundary to form the U-type
boundary and set kz = −0.5π/h at the same frequency, f =
4665.9 Hz, the sound waves robustly propagate in a clockwise
direction along the boundary of the acoustic system without
backscattering as shown in Fig. 6(e). However, the nontrivial
gap in the changed unit cell is relatively small, the surface
states are more difficult to excite due to the disturbance of
other bands.

V. EXPERIMENTS

In order to demonstate the topologically protected one-way
propagation of sound waves in experiment, we construct a
cubic acoustic system with stacked and rotated rodconsisting
of 10 × 10 × 10 unit cells as shown in Fig. 7(a). To excite
the surface states with kz = 0.5π/h, we place two sequential
point sources in the first and second layer marked by a red
and a yellow star. The two point sources are with identical
frequencies, f = 4552.5 Hz, but phases increasing by π/2
from the first layer (marked by a red star). The loudspeakers
connected with narrow tubes can be regard as the pointlike
sources in the experiment. All the boundaries of this cubic
acoustic system are set as hard boundaries, except the top
boundary is set as a scattering boundary. The measured field
distributions of acoustic pressure, as shown in Fig. 7(c), are
scanned point by point through a microphone inserted into the
sample. The experimental results in Fig. 7(c) are roughly con-
sistent with the theoretical prediction in Fig. 7(b). The white

FIG. 7. Topologically protected one-way propagation of sound
waves in the experiment. (a) The diagram of the acoustic system. The
red and yellow stars represent the position of sound sources but with
different phases in the experiment. (b) Theoretical predicted field
distribution of acoustic pressure at kz = 0.5π/h and f = 4552.5 Hz.
(c) Measured field distribution of acoustic pressure. The labels 1 and
2 represent planes 1 and 2 in (b). (d–i) Transient field distributions
of acoustic pressure at different times. The sound wave propagates
along the boundary of the cubic acoustic system in an anticlockwise
direction.

arrows in both figures indicate the direction of sound wave
propagation. The larger propagation angle is caused by the
pointlike sources being placed not parallel but at a certain an-
gle in the experiment. The another propagation route of sound
waves in plane 2 is caused by the scattering of the bottom
which cannot be neglected even in the theoretical prediction.
Considering the decay of energy during the propagation due
to the absorption in air, we only show the propagation of
sound waves in planes 1 and 2 ([abeled in Figs. 7(b) and 7(c)].
The transient field distributions of sound wave propragation
at different times in this acoustic system are displayed in
Figs. 7(d)–7(i). To demonstrate such topologically protected
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one-way propagation clearer, the field distributions of acoustic
presssure in this set of figures [Figs. 7(d)–7(i)] are measured
in unequal time intervals. The measured results in this set
of figures show that the sound waves can propagate only in
an anticlockwise manner along the boundary without obvious
reflection or backscattering.

VI. CONCLUSION

We have designed an acoustic Weyl semimetal with double
Weyl points by breaking inversion symmetry. Meanwhile, we
have explored the effect of reducing symmetry on double
Weyl points. We find that the translation symmetry along the z

direction has no effect on double Weyl points but C4 rotation
symmetry does. The double Weyl point cannot split into two
single Weyl points unless we break the C4 rotation symmetry.
The effect of symmetry on double Weyl points indicates that

Weyl points can be obtained by breaking rotation symmetry
of a double Weyl point. Furthermore, we demonstrate gapless
surface states and backscattering immune properties in double
and single Weyl systems. We also experimentally demonstrate
topologically protected one-way propagation of sound waves
in the cubic acoustic system. Moreover, obtaining Weyl points
in an acoustic system with easily fabricated square lattice
structures will provide a platform to study the topological
properties and lead to potential applications in acoustic de-
vices.
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