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Compression/dilation of condensed matter vis-à-vis an ideal symmetric material
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Both the isothermal Helmholtz energy and the adiabatic internal energy of condensed matter exhibit minima at
zero pressure. As a consequence, the leading term in a density expansion of these two thermodynamic potentials
is quadratic in density displacement. When the quadratic term dominates, the material behaves symmetrically
in response to isotropic compressive and tensile forces. From an atomistic viewpoint, compressing or stretching
atomic bonds to the same degree in a symmetric material increases a corresponding thermodynamic potential
by the same amount. The quadratic term contributes to the pressure as a simple cubic equation of state (EOS).
Among 29 metals and 17 inorganic solids surveyed, only metallic gold satisfies this simple EOS to the highest
measured compressions (>40%). Other solids such as Pt and NaCl also follow this simple EOS to significant
compressions and all materials should follow it at low compressions/dilations. A thermodynamic protocol is
proposed to extract the bulk modulus B0 as well as higher order modulus pressure coefficients,B1, B2, andB3,

from least squares smoothed data without taking derivatives or by appealing to an EOS model. Reliable and
unbiased experimental values of these higher order modulus coefficients have been obtained for 46 solids. These
moduli are strongly correlated and satisfy the relationship B2

0 B3 � −2B0B1B2. This relation obtains exactly from
an adiabatic EOS based on the Mie (m-n) potential and to a high degree of approximation for the well-known
Birch-Murnaghan and Vinet EOS. Truncating the thermodynamic expansion at the fifth order term with only
the pressure coefficient B1 as a parameter, this approximate thermodynamic EOS models experimental values of
B2 and B3 better than either the third order Birch-Murnaghan or Vinet EOS.

DOI: 10.1103/PhysRevB.98.214103

I. INTRODUCTION

A material densifies in response to isotropic compressive
forces according to its compressibility or inversely to its
bulk modulus (B). Compression also increases the modulus,
the isothermal modulus for isothermal compression or the
adiabatic modulus for adiabatic compression. Each type of
compression has an associated thermodynamic potential: the
Helmholtz potential for isothermal compression and the in-
ternal energy for adiabatic compression. The leading term in
the expansion of the associated thermodynamic potential is
quadratic in density displacement, i.e., the potential varies as
(ρ − ρ0)2 where ρ0 is the zero-pressure density. Values of
ρ > ρ0 correspond to compression and ρ < ρ0 correspond
to dilation (negative pressure). For condensed matter, the
thermodynamic potential has a minimum at P = 0 and small
isotropic compressions and dilations to the same degree in-
crease the potential by the same amount. This quadratic term
contributes to the pressure (P) as a simple cubic equation
of state (EOS): P = B0(ρ3

r − ρ2
r ) where ρr = ρ/ρ0 is the

density ratio and B0 is either the zero-pressure isothermal
or adiabatic modulus. An ideal symmetric material (ISM)
is defined as one that satisfies the above cubic EOS at all
compressions.

An ISM is also characterized as one in which the di-
mensionless pressure coefficient of the bulk modulus at zero
pressure, B1 ≡ ∂B/∂P |P=0, equals 5. Soft materials, such as
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organic polymers, are characterized by B1 values of 11 ± 1.5
[1]. As demonstrated herein, for many hard materials, such as
metals and inorganics,B1 = 4.5 ± 1. For mercury, B1 ≈ 9 [2].
Rare gas solids display B1 values of 8 ± 1 [3] and water has
a value of about 6 [4]. In 1940, Slater [5] may have been the
first to notice that some metals possess B1 values around 5.

The first correction to the symmetric potential involves the
third density derivative on the potential; this dimensionless
derivative (f3) can either be positive or negative. It will be
shown that B1 = 5 + f3, which illustrates the pivotal nature
of B1 = 5. A positive value for f3 indicates that isotropic
compression and dilation to the same degree is thermody-
namically more punitive for compression, whereas a negative
f3 indicates dilation is more punitive. The crossover between
these two qualitatively different behaviors occurs at B1 = 5.
Metallic gold is an example of a material that appears to
behave symmetrically to very high compressions (>40%).

Another important property of an EOS is the high-
pressure limit of the modulus pressure coefficient, B∞

1 ≡
∂B/∂P )P→∞. Seismological observations on the Earth’s core
has led to conclusion that B∞

1 = 3.0 ± 0.1 [6], and B∞
1 = 3

for the ISM. Moreover, the ratio B∞
1 /B1 = 3/5 has been

suggested as characteristic of the lower mantle and core of
the Earth [7,8], which is identical to the ISM ratio. Stacey [7]
has tabulated the B∞

1 values for 30+ EOS and only one other
EOS yields B∞

1 = 3.
There are many different EOS in the literature and al-

most all can satisfactorily fit experimental compression data
(pressure-density) by proper adjustment of one or more pa-
rameters. Usually B1 is one of the adjustable parameters and
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may be one reason why reported values of this parameter
often vary by 20%. It is the prediction of higher order pres-
sure coefficients (B2 and B3) that makes a clear distinction
between various EOS. These higher order moduli play an
important role in other arenas, for example, in determining
the pressure dependence of the Grüneisen parameter [9]. A
thermodynamic protocol is proposed to extract these higher
order coefficients from least squares smoothed data without
taking derivatives or by appealing to a specific EOS and
provides unbiased estimates of these important parameters.

II. THERMODYNAMIC EQUATION OF STATE

A. Isothermal and adiabatic compression/dilation

For isothermal compression, the EOS is obtained from the
Helmholtz potential (A):

P = −∂A

∂V

)
T

= ρ2 ∂A

∂ρ

)
T

= ρ0ρ
2
r

∂A

∂ρr

)
T

≡ ρ0ρ
2
r A

′, (1)

where P is the pressure, V is the volume, ρ is the density, ρ0 is
the zero pressure density, and ρr = ρ/ρ0 is the density ratio.
The isothermal bulk modulus is given by

B = ρ
∂P

∂ρ

)
T

= ρ0
(
ρ3

r A
′′ + 2ρ2

r A
′). (2)

At zero pressure A′(0) ≡ A1 = 0 and

B(0) ≡ B0 = ρ0A2 > 0, (3)

where A2 ≡ A′′(0). Since A1 = 0 and A2 > 0, this means that
the Helmholtz potential passes through a minimum at P = 0.
The balance between attractive and repulsive forces in con-
densed matter gives rise to the minimum. Unlike a gas, whose
density approaches zero with decreasing pressure, cohesive
forces enable condensed matter to sustain a nonzero density
not only at zero pressure, but also to negative pressures. As an
example, water is able to sustain negative pressures to at least
−140 MPa at 42 ◦C [10]. In principle, condensed matter can
sustain negative pressures to the spinodal limit where the bulk
modulus vanishes.

Defining a dimensionless thermodynamic potential, f =
A/A2, and expanding the potential around ρr = 1, yields

f = f0 + 1

2!
(ρr − 1)2 + f3

3!
(ρr − 1)3 + · · · , (4)

where the dimensionless thermodynamic coefficients (fn) are
given by

fn ≡ An/A2 = Anρ0/B0, (5)

and An is the nth derivative with respect to ρr on A evaluated
at zero pressure.

From Eqs. (1) and (4) the isothermal thermodynamic EOS
becomes

P = B0
(
ρ3

r − ρ2
r

)[
1 + f3

2!
(ρr − 1) + f4

3!
(ρr − 1)2 + · · ·

]
.

(6)
For adiabatic displacements, the assumption is made that

displacement is quasi-isentropic and the EOS is given by

P = −∂U

∂V

)
S

= ρ2 ∂U

∂ρ

)
S

≡ ρ2U ′, (7)

where U is the internal energy. Notice the functional similarity
between Eqs. (1) and (7). Proceeding as before we arrive at
Eqs. (4) and (6) with A replaced by U, but now the modulus
is the adiabatic bulk modulus. Unless otherwise noted, all
subsequent equations in this paper are applicable to either
isothermal or adiabatic compressions/dilations.

B. Ideal Symmetric Response

The ISM is defined as one in which the thermodynamic
potential is determined completely by the quadratic term
(fn = 0, n � 3):

f − f0 = 1
2 (ρr − 1)2, (8)

which yields the following simple cubic EOS:

P = B0ρ
2
r f

′ = B0
(
ρ3

r − ρ2
r

)
. (9)

The corresponding bulk modulus is

B = ρr

(
∂P

∂ρr

)
= B0

(
3ρ3

r − 2ρ2
r

)
. (10)

Note that the modulus vanishes at ρr = 2/3, at a negative
pressure of −4B0/27. This corresponds to the spinodal limit
and a magnitude upper bound for the predicted “failure” of
the material under isotropic tension. Although a compression
or dilation of |ρr − 1| = 1/3 yields a symmetric response
in the thermodynamic potential, it does not in pressure. A
compressive displacement of 1/3 requires a positive pressure
four times larger in magnitude, 16B0/27.

The pressure coefficient of the modulus for the symmetric
material is given by

∂B

∂P
= ∂ ln B

∂ ln ρ
= 9ρr − 4

3ρr − 2
, (11)

which has the following limiting values at zero and infinite
pressures:

∂B

∂P
=

{
B1 = 5 P = 0 or ρr = 1

B∞
1 = 3 P → ∞ or ρr → ∞ . (12)

It is interesting to note that the ISM ratio B∞
1 /B1 = 3/5

has been estimated for the lower mantle and the core of the
Earth [7,8].

Among 46 metals and inorganics that have been surveyed,
elemental gold best exemplifies ideal symmetric behavior.
Experimental gold compression data from two studies [11,12]
are shown in Fig. 1. The curve through the data is the
symmetric EOS, Eq. (9), with B0 = 167 GPa. This modulus
value compares favorably with previous experimental deter-
minations of gold’s isothermal modulus [13,14].

C. Asymmetric Response

Using Eqs. (1), (2), and (5) yields

P = B0ρ
2
r f

′(ρr ) , (13)

B = ρr

∂P

∂ρr

= B0
(
ρ3

r f
′′ + 2ρ2

r f
′), (14)
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FIG. 1. Experimental gold compression data from two sources;
solid circles, Shim et al. [11] (smoothed data using BM EOS)
and open circles, Akahama et al. [12] (unsmoothed data). The line
through the data is the ISM EOS, P = B0(ρ3

r − ρ2
r ), with B0 =

167.0 GPa.

which implies

f ′(1) ≡ f1 = 0, B(1)/B0 = f ′′(1) ≡ f2 = 1. (15)

From Eq. (14), the pressure dependence of the modulus
depends on the thermodynamic coefficients as

∂B

∂P
= ∂ ln B

∂ ln ρ
= ρ2

r f
′′′ + 5ρrf

′′ + 4f ′

ρrf ′′ + 2f ′ . (16)

At zero pressure this becomes (ρr = 1, f1 = 0, f2 = 1,

f ′′′ → f3):

∂B

∂P

∣∣∣∣
P=0

≡ B1 = 5 + f3. (17)

For the ISM, f3 = 0 and the pivotal nature of B1 = 5 is
immediately recognized. As can be seen from Eq. (4), f3 < 0
indicates that isotropic compression and dilation to the same
degree is thermodynamically more favorable for compression,
whereas f3 > 0 indicates dilation is more favorable than
compression.

Using the recursion relation

B̃n = ∂nB

∂P n
= ρ

B

∂B̃n−1

∂ρ
; B̃n ≡ Bn−1

0 Bn, n � 2, (18)

along with Eq. (16), the higher order pressure derivatives on
the modulus at zero pressure can be obtained:

B0B2 = −(
6 + f3 + f 2

3

) + f4 (19)

and

B2
0B3 = 60 + 24f3 + 9f 2

3 + 3f 3
3 − 6f4 − 4f3f4 + f5.

(20)

Note for the ISM,

f3 = f4 = f5 = 0,

B1 = 5, B0B2 = −6, B2
0B3 = 60.

III. PROTOCOL FOR DETERMINING MODULUS
COEFFICIENTS

It is well known among practitioners that the manner in
which experimental compression data are smoothed can have
a significant effect on the calculated values of modulus coef-
ficients. For example, if a least squares nth degree polynomial
is used, the calculated value of the zero pressure modulus
B0 will generally depend on the value of n as well as other
details such as the data range considered and whether or not
the fit is forced to pass through the origin. But the statistical
problem is even more severe when calculating higher order
modulus coefficients. The alternative has been to fit a model
EOS to the data, such as the Vinet et al. [15,16] EOS, and then
use the model to predict the moduli values. This introduces a
bias because different models can yield significantly different
results. Below a model-independent procedure based on the
thermodynamic EOS is described to determine the higher
order modulus coefficients.

A. Experimental determination of B0, B1, B2, andB3

The thermodynamic EOS, Eq. (6), suggests that a plot of
P/ρ2

r against density displacement, ρr − 1, should initially
be linear with slope B0 and should clearly reveal the values
of the asymmetric coefficients f3, f4, ... at sufficiently large
compressions. To illustrate, a least-squares fifth order polyno-
mial for lithium compression data [17] is

P = 10.4ρ2
r [(ρr − 1) − 0.609(ρr − 1)2 + 0.178(ρr − 1)3].

(21)
By inspection, it is seen that B0 = 10.4 GPa. Comparison

with Eq. (6) yields

f3 = 2! (−0.609) = −1.22,

f4 = 3! (0.178) = 1.07. (22)

From Eqs. (17), (19), and (20), the corresponding modulus
coefficients are then obtained

B1 = 3.8 , B0B2 = −5.2, B2
0B3 = 37. (23)

Solids with B1 values near 5 will exhibit very little curva-
ture in a plot of P/ρ2 versus ρr − 1, as illustrated in Fig. 2 for
Ag (B1 = 5.5). In contrast, solids such as lithium (B1 = 3.8)
with B1 values further removed from the ISM value of 5,
exhibit more curvature.

The proposed protocol is as follows: plot P/ρ2
r versus

ρr − 1 and fit the data with a least-squares quadratic or cubic
polynomial forced through the origin; a cubic polynomial
represents a fifth order fit of pressure to density. If the R-
squared coefficient (or other “goodness of fit” metric) does not
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FIG. 2. Data plot illustrates the asymmetric contributions to the
thermodynamic EOS. The 45-degree line defines ISM behavior
(B1 = 5). A B1 < 5 material such as Li (B1 = 3.8) will exhibit
downward curvature, whereas B1 > 5 materials such as Ag (B1 =
5.5) display upward curvature away from the ISM line. Note that
the horizontal axis is a compressive strain measure:(V0 − V )/V =
ρr − 1. Data from Ref. [17].

improve in going from a quadratic to a cubic polynomial, use
the quadratic polynomial as the “fit equation.” For a quadratic
polynomial f3 is determined and implies f4 = 0. If the best-fit
equation is linear, as occurs for gold, then B1 = 5 and f3 =
f4 = 0. Although the proposed statistical methodology works
well, it is not necessarily the optimum one.

This protocol was followed for all 46 solids (29 metals and
17 inorganics) with the results summarized in Tables I and
II. Also shown in the Tables is the approximation B2

0B3 �
−2B0B1B2. This approximation is consistent with the mod-
ulus coefficients for the Mie (m-n) potential and obtains
exactly for the ISM. In Appendix A the adiabatic coefficients
B1, B2, B3 are calculated for the Mie potential and it is shown
that these four coefficients are not independent:

B2
0B3 = −2B0B1B2. (24)

Although rigorously true for the Mie potential and the ISM,
this result is assumed to be an approximation. A comparison
between calculated and approximated values is illustrated in
Fig. 3, and as can be seen, the correlation appears exceptional.

Two of the most widely used models to regress compres-
sion data are the Vinet et al. [15,16] and the third order
Birch-Murnaghan [21] (BM) EOS models. In terms of the
reduced pressure (P/B0), both are one-parameter models (B1)
and their properties are summarized in Appendix B. The
BM model also yields the above relationship, Eq. (24), for
B1 = 16/3, 14/3, and 4. For other expected values of B1 the
difference is usually much less than 1%. The Vinet EOS
also approximates Eq. (24) to within 1 or 2%. However, the
predicted individual values of B2 and B3 can differ between
models and from those determined experimentally. These
differences are illustrated in Figs. 4 and 5. In general, the Vinet
EOS overestimates while the BM EOS underestimates the
magnitude of both B0B2 and B2

0B3. The better performance of
the BM model for B1 = 5 ± 0.5 values can be attributed to its

TABLE I. Tabulated values of moduli (Bi) and the asymmetric
thermodynamic coefficients (fi) at ambient temperatures. All com-
pression data from Ref. [17] with the exception of Au [11,12] and Pt
[18]. See text on how the thermodynamic coefficients are determined
from experimental compression data.

Metal B0, GPa B1 −B0B2 B2
0 B3 −2B0B1B2 f3 f4

Cd 50.6 5.6 6.9 76 76 0.6 0
Ag 106 5.5 6.7 75 75 0.5 0
Zn 60.9 5.5 6.7 74 74 0.5 0
Tl 35.7 5.4 6.6 71 71 0.4 0
Sn 43.7 5.3 6.3 67 67 0.3 0
In 40.2 5.1 6.1 63 63 0.1 0
Pd 196 5.1 6.1 62 62 0.1 0
Pt 277 5.06 6.1 62 61 0.06 0
Pb 44.5 5.06 6.1 61 61 0.06 0
Au 167 5.0 6.0 60 60 0 0
Cr 191 4.8 5.9 56 57 −0.2 0
Cu 139 4.8 5.8 56 56 −0.2 0
Ni 188 4.75 5.8 55 55 −0.25 0
Co 196 4.4 5.8 48 50 −0.6 0
Al 78.8 4.4 5.8 48 51 −0.6 0
Rb 1.99 4.2 5.4 43 45 −0.8 0.5
Th 52.3 4.1 5.2 42 43 −0.9 0.7
Na 5.90 4.1 5.3 42 43 −0.9 0.6
Mg 34.4 4.1 5.2 41 43 −0.9 0.7
Mo 267 4.0 5.0 41 42 −1.0 0.8
K 29.3 4.0 5.4 41 43 −1.0 0.6
Nb 170 3.9 5.1 39 40 −1.1 1.0
Ta 198 3.8 5.0 38 38 −1.2 1.2
V 158 3.8 4.5 37 34 −1.2 1.7
Li 10.4 3.8 5.2 38 37 −1.2 1.1
Be 119 3.7 5.1 36 37 −1.3 1.4
Ti 972 3.7 5.2 37 39 −1.3 1.1
Zr 94.0 3.2 5.4 31 35 −1.8 2.0
Ca 18.4 3.2 5.6 31 36 −1.8 1.8

better representation around the ISM value B1 = 5. Neither
model reduces to the ISM EOS at B1 = 5, which implies
nonzero, higher-order moduli contributions to the model EOS.
This is clearly seen in the series expansions around ρr = 1 for
B1 = 5:

P/B0 = (ρr − 1) + 2(ρr − 1)2

+

⎧⎪⎨
⎪⎩

17
27 (ρr − 1)3 − 1

3 (ρr − 1)4 + · · · Vinet
55
54 (ρr − 1)3 + 1

72 (ρr − 1)4 + · · · BM

(ρr − 1)3 ISM

. (25)

The BM model nearly generates the correct coefficient of
unity for the cubic term and most closely resembles ISM
behavior for B1 = 5. All materials should satisfy the ISM
EOS at sufficiently low compressions, a condition that the BM
EOS almost satisfies for B1 = 5.

B. Truncated thermodynamic (TrTh) EOS

A reasonably accurate thermodynamic EOS obtains by
truncating the exact series, Eq. (6) at the f4 term and replacing
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TABLE II. Tabulated values of moduli (Bi) and thermodynamic
coefficients (fi) at ambient temperatures. All compression data from
Ref. [17] with the exception of NaCl [19], CsCl [19] and MgO [20].
See text on how the thermodynamic coefficients are determined from
experimental compression data.

Inorganic B0, GPa B1 −B0B2 B2
0 B3 −2B0B1B2 f3 f4

KF 12.0 5.5 6.8 75 75 0.5 0
RbCl 5.93 5.3 6.4 69 69 0.3 0
CsCl 17.4 5.2 6.3 66 66 0.2 0
NaCl 23.8 4.85 5.9 57 57 −0.15 0
RbBr 7.68 4.8 5.8 56 56 −0.2 0
LiF 62.9 4.7 5.8 54 55 −0.3 0
RbF 15.1 4.7 5.8 53 54 −0.3 0
CsI 12.4 4.6 5.8 52 53 −0.4 0
LiBr 21.9 4.5 5.7 51 52 −0.5 0
KI 9.40 4.5 5.5 49 50 −0.5 0.2
RbI 9.48 4.5 5.6 49 50 −0.5 0.2
MgO 157 4.35 5.56 47 48 −0.65 0.2
NaBr 20.9 4.3 5.2 44 44 −0.7 0.6
CsBr 21.8 4.1 4.8 42 43 −0.9 0.6
LiCl 32.8 4.0 4.3 38 35 −1.0 1.7
NaI 20.0 3.9 5.2 40 41 −1.1 0.9
LiI 32.8 2.8 5.4 28 31 −2.2 3.1

f4 by the following approximation:

f4 � f3(f3 − 1)/2 = 1
2 (B1 − 5)(B1 − 6). (26)

This approximation follows by setting f5 = 0 in Eq. (20)
and invoking Eq. (24). The TrTh EOS then becomes

P

B0
= (

ρ3
r − ρ2

r

)[
1 + B1 − 5

2
(ρr − 1)

+ (B1 − 5)(B1 − 6)

12
(ρr − 1)2

]
. (27)

FIG. 3. Test of the correlation B2
0 B3 = −2B0B1B2, which is

obeyed by the ISM. Unbiased experimental values from Tables I and
II were used to construct this figure. Solid circles are metals and open
circles are inorganic solids.

FIG. 4. Predicted values of B0B2 compared with unbiased exper-
imental values tabulated in Tables I and II. Solid circles are metals
and open circles are inorganic solids. See Appendix B for Vinet and
BM formulas used in the calculations. The solid line is Eq. (29). All
three equations for B0B2 are a function of a single parameter, B1.
Both the third order BM and TrTh equations reach a minimum at
7/2, whereas the Vinet equation reaches a minimum at −1. The data
do hint at a minimum near 7/2.

The modulus is
B

B0
= 3ρ3

r − 2ρ2
r + (

ρ3
r − ρ2

r

)
× [f3(2ρr − 1) + f4(ρr − 1)(5ρr − 2)/6]. (28)

The moduli B2 and B3 are obtained immediately from
Eqs. (19) and (20):

B0B2 = −[6 + (B1 − 5)(B1 − 2)/2], (29)

B2
0B3 = B1[12 + (B1 − 5)(B1 − 2)] = −2B0B1B2. (30)

See Figs. 4 and 5 for comparisons with experiment and the
Vinet and BM EOS. In general, the Vinet EOS overestimates
for B1 > 4 while the BM EOS tends to underestimate the
magnitude of B0B2 for B1 < 5.

IV. SUMMARY AND CONCLUSIONS

Applying isotropic compression or tension to a material
raises an associated thermodynamic potential from its mini-
mum, the Helmholtz potential for isothermal and the internal
energy for adiabatic compression/dilations. The identifica-
tion of a minimum allows for a series expansion of the
thermodynamic potential whose leading term is quadratic
in density displacement and the expansion can be used
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FIG. 5. Predicted values of B2
0 B3 compared with unbiased exper-

imental values tabulated in Tables I and II. Solid circles are metals
and open circles are inorganic solids. See Appendix B for Vinet and
BM formulas used in the calculations. The solid line is Eq. (30).

for model-independent data analysis. An important result is
the ability to extract higher order modulus pressure coeffi-
cients (B1, B2, andB3) without taking mathematical deriva-
tives on least squares smoothed data or using an EOS
model. These unbiased higher order moduli are tabulated
in Tables I for 29 metals and in Table II for 17 inorganic
solids.

The strong experimental correlation B2
0B3 � −2B0B1B2

illustrated in Fig. 3, finds theoretical support when the Mie
(m-n) potential is used to describe the energy. As shown
in Appendix A, the Mie potential yields this relationship
exactly and infers these four moduli are not independent.
This relationship also obtains exactly for the ISM and to
a high degree of accuracy for the BM EOS (much less
than 1% deviation) and the Vinet EOS (average deviation of
order 1%).

When B1 = 5, the cubic term in the thermodynamic poten-
tial vanishes. It implies the quadratic term should dominate
the compressive response to larger compressions than for a
material for which B1 	= 5; i.e., the ISM EOS, Eq. (9), should
describe the compressive response to larger compressions. It
is indeed surprising the ISM EOS accurately describes gold
to very high compressions (>40%) as illustrated in Fig. 1.
This suggests, that in addition to f3 = 0, some of the higher
order thermodynamic coefficients (f4, f5, ...) are zero or very
small for gold. From an atomistic viewpoint, B1 = 5 indicates
compressing or stretching atomic bonds to the same degree
results in comparable thermodynamic potential increases to
even larger compressions/dilations than for B1 	= 5 materials.

Since gold has been widely used as a calibration
standard for high-pressure experiments [22,23], it is an

important milestone to establish that gold satisfies a very sim-
ple cubic EOS state to at least 150 GPa and most likely beyond
(see Fig. 1). Gold’s modulus properties mimic those of the
ISM

B1 = 5, B0B2 = −6, B2
0B3 = −2B0B1B2 = 60,

which serve as guideposts for the compression/dilation re-
sponse of other materials. Inspection of Tables I and II indi-
cates positive/negative asymmetric contributions to the above
ISM values are usually less than 50%.

To third order terms, and with B1 set equal to 5, the BM
equation mimics the ISM EOS [cf. Eq. (25)] quite well. In
Appendix B the relationship of the BM EOS with the current
TrTh EOS is explored. An important difference between the
two is that the BM expansion requires a strain measure,
whereas the TrTh EOS does not.

Truncating the thermodynamic expansion, a single param-
eter EOS is derived, a fifth order polynomial in density,
Eq. (27). It compares favorably with the BM EOS, but with
the advantage going to the TrTh EOS. Comparisons of the
Vinet, BM, and the TrTh EOS with unbiased experimental
values of B2 and B3 are illustrated in Figs. 4 and 5. In terms
of predictive performance, TrTh > BM > Vinet.
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APPENDIX A: Mie (m-n) POTENTIAL

The configurational energy contribution to the internal
energy at zero pressure is obtained by the usual replacement
of the interatomic distance by ρ−1/3:

f = f0 + 9

[
ρn/3/n − ρm/3/m

n − m

]
.

The potential is easily generalized as follows: Let the
attractive contribution to the configurational energy vary as
−ρα and the repulsive contribution vary as ρβ where the
exponents α and β are not restricted to integer values. The
only restriction is that β > α > 0 otherwise a condensed
matter state would not exist. Then,

f = f0 + ρβ/β − ρα/α

β − α
,

which yields

f3 = α + β − 3,

f4 = (β − 3)(β − 1) + (α + β − 4)(α − 2),

f5 = (α + β − 5)[(β − 3)(β − 2) + (α − 4)(α − 1)].

Substitution of these fi into Eqs. (17), (19), and (20) yields

B1 = α + β + 2,

B0B2 = −(α + 1)(β + 1),

B2
0B3 = 2(α + β + 2)(α + 1)(β + 1) = −2B0B1B2.
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The ISM requires α + β = 3 and the only integer val-
ues that satisfy this condition are (1,2). Note for (α, β ) =
(1, 2), f3 = f4 = f5 = 0, but in general, for noninteger val-
ues of (α, β ), α + β = 3 does not guarantee f4 = f5 = 0.

APPENDIX B: EOS MODULUS PROPERTIES

Vinet et al. [15,16]

P/B0 = 3ρ1/3
r

(
ρ1/3

r − 1
)

exp
[

3
2 (B1 − 1)

(
1 − ρ−1/3

r

)]
,

B/B0 = 4ρ2/3
r + (3B1 − 5)ρ1/3

r − 3(B1 − 1),

B0B2 = −[(B1 + 1)2/4 − 7/9],

B2
0B3 = −2B0B1B2 + 2

9 (B1 − 1),

third order Birch-Murnaghan (BM) [21]

P/B0 = 3
2ρ5/3

r

(
ρ2/3

r − 1
)[

1 + 3
4 (B1 − 4)

(
ρ2/3

r − 1
)]

,

B/B0 = 1
8ρ5/3

r

[
3B1

(
9ρ2/3

r − 5
)
(ρ2/3

r − 1)

− 4
(
27ρ4/3

r − 49ρ2/3
r + 20

)]
,

B0B2 = −(B1 − 3)(B1 − 4) − 35/9,

B2
0B3 = −2B0B1B2 + 1

9 (3B1 − 16)(3B1 − 14)(B1 − 4).

As mentioned in the text, the BM and TrTh EOS exhibit
some similarities because both involve thermodynamic expan-
sions; for the BM the elastic energy E(ε) is expanded as a
function of compressive strain ε.

E(ε) = E(0) + E2

2!
ε2 + E3

3!
ε3 + . . . En = ∂nE

∂εn

∣∣∣∣
ε=0

.

Strain can be defined in different ways [24] and the BM
approach specifically uses Eulerian strain:

ε = 1
2

(
ρ2/3

r − 1
)
.

The adiabatic contribution of the elastic strain to the pres-
sure is given by

P = −ρ2

(
∂E

∂ρ

)
S

= ρ2
r

V0

(
∂E

∂ε

)(
∂ε

∂ρr

)

= ρ
5/3
r

3V0

[
E2ε + 1

2
E3ε

2 + ...

]
.

The third order BM EOS obtains when the elastic energy
series is truncated at the third order term, which then yields

P

B0
= 3ρ5/3

r

[
ε + 1

2

E3

E2
ε2

]
,

where the zero pressure bulk modulus B0 is identified as E2 =
9B0V0. Using the definitions of the modulus, B = ρ(∂P/∂ρ),
and the pressure coefficient, B ′ = ∂ ln B/∂ ln ρ, it can be
shown that B1 = 4 and E3/E2 = 3(B1 − 4)/2, which when
inserted above yields the BM third order EOS.

The second order BM EOS, which only retains the
quadratic strain term in the energy expansion, is given by

P

B0
= 3ρ5/3

r ε = 3

2
ρ5/3

r

[
ρ2/3

r − 1
]
,

and yields

B1 = 4, B0B2 = −35/9, B2
0B3 = 280/9 = −2B0B1B2,

i.e., the moduli satisfy Eq. (24) in the text.
In the thermodynamic expansion given in the text, Eq. (6),

strain is never defined, but if compressive strain were to be
defined simply as

�V/V = (V0 − V )/V = ρr − 1,

the ISM EOS, Eq. (9), obtains immediately from above the
energy expansion

(E2 = B0V0, En = 0 for all n � 3).
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