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Origin of polar nanoregions and relaxor properties of ferroelectrics
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In spite of more than 60 years of research, hundreds of publications, and dramatic influence on properties, the
driving force of the formation of the polar nanoregion (PNR) in the paraelectric phase of perovskite ferroelectrics
and consequent relaxor properties remains uncertain. We show that these peculiar features follow directly from
the vibronic, pseudo-Jahn-Teller (PJT) theory of ferroelectricity. Due to the higher disorder (and entropy) in the
paraelectric phase (created by the local PJT dynamics), as compared with the polarized phase (where the PJT
dynamics is partially quenched), a small PNR of the latter with n unit cells is formed in a dipole-alignment
self-assembly process. It emerges encapsulated by a border layer with intermedium ordering that produces
“surface tension” and limits its size. The thermodynamic equilibrium between the PNR and the bulk cubic
phase at temperatures Tn, well above the phase transition TC, is reached by compensation of the excessive
entropy contribution Tn�S with ordering energy and the work against this surface tension. The calculations
based on the vibronic theory, including the PJT induced local dipolar dynamics and intercell interactions, yield
the size of PNR as a function of the temperature increments Tn − TC and some crystal parameters. In accordance
with experimental data, the size of the emerging PNR decreases with temperature, n ∼ (Tn − TC)−3, becoming
undetectable at the Burns temperature TB. At temperatures Tf , nearer to the phase transition, the sizes of PNRs
grow rapidly, and their interaction leads to the formation of the nonergodic (glasslike) phase.
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I. INTRODUCTION

Polar nanoregions (PNRs) or “polarized microdomains”
in the nonpolarized, paraelectric phases are observed prac-
tically in all perovskite ferroelectrics. They are presently
well studied experimentally, as they strongly influence all
the properties of these systems (see [1–3], and references
therein). The basic facts are as follows: In the paraelectric
phases of ferroelectrics, above the Curie temperature TC,
where the bulk crystal is cubic and no polarization is expected,
small islands (nanoregions) with a limited number n of unit
cells are spontaneously formed, their size decreasing with
increasing temperature Tn − TC. Above the temperature TB,
called the Burns temperature, the PNRs disappear, and the
crystal becomes regular and paraelectric. In addition, PNRs
disappear under external, sufficiently strong electric fields
that make the crystal regularly polarized. At this stage the
paraelectric phase remains ergodic. With cooling, PNRs grow
in size [4], and at a temperature Tf (closer to TC, TC < Tf <

TB) relaxor properties change again to a nonergodic, glasslike
state [5–8], which then, at a somewhat smeared (diffuse)
temperature around TC, undergo the phase transition to the
tetragonal polarized state. Again, distinguished from dipole
glasses, this nonergodic state of the crystal can be irreversibly
transformed into a regular polarized state by strong enough
external electric fields. These are relaxor ferroelectrics.

There are no conclusive explanations of the origin of
PNR and consequent relaxor properties, although several
suggestions were discussed in the literature (see [1–3,9–12]).
The majority of them, referring to the most studied mixed
perovskites, rely (in different forms) on the assumption of

basic structural disorder or “random fields.” However, random
fields or other “raisins-in-the-cake” crystal imperfections do
not explain the origin of temperature-dependent size effects,
in particular, the disappearance of PNR above TB, or under
polarizing electric fields. Notably, PNRs are present also in
pure ferroelectric perovskites ABO3 crystals [13–16]. Again,
the considerations above do not answer the question why
PNRs occur in ferroelectrics only, and do not show up in
very similar nonferroelectric crystals with structural phase
transitions.

So far, attempts to explain the origin of PNRs are based
on the so-called “displacive” theories of ferroelectricity, in
which the basic idea is that the ferroelectric distortion of
the crystal occurs as a result of the compensation of the
local repulsions (resisting dipolar displacements) by long-
range dipole-dipole attractions. The theories based on these
classical ideas are in essence phenomenological: They do not
explain the origin and properties of ferroelectrics based on
their chemical composition and structure, and they fail to
explain the origin of dozens of experimental observations of
peculiar properties of perovskite ferroelectrics (see below).
Obviously, due to their microscopic size, several nanometers,
the PNRs and their polarization are of local origin; long-range
theories cannot explain nucleation of local polarization from
zero to the nanosize and their further growth with cooling.

On the other hand, the vibronic (pseudo-Jahn-Teller) the-
ory provides for a direct microscopic description of the ori-
gin of ferroelectricity in perovskite-type crystals based on
first principles (see [17–23] including the review [18], and
references therein). Starting with the high-symmetry (cubic)
configuration, the vibronic coupling, by mixing the ground
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state with appropriate excited electronic states, under limiting
conditions makes this configuration unstable with respect to
polar distortions. In its turn, this triggers the spontaneous
polarization of the crystal, realized by intercell interactions.
It is important that the pseudo-Jahn-Teller effect (PJTE) is in-
duced by the off-diagonal matrix elements of the Hamiltonian
derivatives, which are significantly nonzero for near-neighbor
atomic wave functions’ overlaps only [see below, Eq. (2)].
Therefore the PJTE in crystals is of local origin [17–20,24]; it
does not contribute to long-range interactions. For this reason,
the vibronic PJTE theory of ferroelectricity starts with the
operator of vibronic coupling applied to the local ferroelectric
centers (e.g., the B center in ABO3 perovskites; similar treat-
ment is possible for active A centers), but includes the influ-
ence of the whole crystal via its electronic and phonon bands.
This treatment has been realized by means of the Green’s
functions approach [20]. Also, exclusively, the vibronic theory
revealed the role of spin in the spontaneous polarization [19]
and the origin of multiferroics in function of the electronic
dn configuration of the B ion, as well as the origin of giant
perturbation effects [22,23], including giant flexoelectricity,
permittivity, and electrostriction (for the flexoelectricity effect
see, e.g., [25]).

One of the important results of the vibronic theory is the
order-disorder nature of the ferroelectric phase transitions.
Predicted in 1966 [17], the picture of the (induced by the
PJTE) four phases in ferroelectric perovskites, one ordered,
two partially disordered, and one fully disordered (paraelec-
tric), and the order-disorder phase transition between them,
was first observed experimentally in 1968 in BaTiO3 and
KNbO3 by means of diffuse x-ray scattering [26]. In the years
that followed, a huge variety of direct and indirect experimen-
tal observations (some of which presented unsurmountable
difficulties for the displacive theories to explain their origin)
were shown to follow directly from the vibronic (PJTE)
theory of ferroelectricity (see the review paper [18]). Among
them, we emphasize here the instant trigonal displacement
of the B ion of the ferroelectric ABO3 perovskite, notably
BaTiO3, in all its four phases, ferroelectric and paraelectric,
in strong disagreement with displacive theories, in which
the metal off-center displacement occurs as a result of the
phase transition to the polarized phase. This fundamental
property of perovskite ferroelectrics is confirmed by a variety
of experimental data, actually by any observation that includes
the B displacement, notably the extended x-ray absorption
fine structure experiments [27] (see also [18,28–31]). Not
only is the B ion displaced along the [111]-type direction
in the paraelectric phase, where the averaged symmetry is
cubic, but it is as well displaced in this trigonal direction
in the tetragonal phase, where the crystal symmetry and
the macroscopic polarization are tetragonal [29]. The most
striking example is the off-center displacement of the Ti atom
in barium titanate observed in the paraelectric phase way
above the Curie temperature of the tetragonal-to-cubic phase
transition. As accurate measurements indicate [27], the Ti ion
remains displaced closely along [111] directions throughout
all the four BaTiO3 phases, and the magnitude of the off-
center displacement decreases monotonically by only 13%
when heating from 35 to 590 K, showing no steps at the phase
transitions.

In this paper we consider nucleation and temperature-
dependent growth of nanosize polarization islands (PNRs)
in a cubic perovskite single crystal in its high-temperature
paraelectric phase. PNRs are shown to occur as an intrinsic
and physically quite transparent property of perovskite fer-
roelectrics, a natural consequence of the disorder produced
by the local PJTE. In Sec. II we begin with a very brief
description of the PJT approach and some of the results
of this theory [17–20] employed in this paper. In Sec. III
the formation of PNRs is shown to emerge as a result of a
self-assembly process of alignment of the local PJT induced
dipolar distortions, leading to relaxor properties. In Sec. IV
and in the Conclusions section, a more detailed discussion
of the results in their comparison with experimental data and
with general theories of this kind, like “classical nucleation
theory,” are given.

II. DYNAMIC POLAR DISTORTIONS IN THE
PARAELECTRIC PHASE

As mentioned above, the vibronic coupling is of local
origin; it does not include long-range interactions. Therefore,
in perovskite crystals ABO3, in a reasonable approximation,
the local polar instability can be treated as off-center dis-
placement of the B ion from its on-center position in the
elementary cell (Fig. 1). If the atom A is active as well, or
even more than the B ion, the problem can be handled in a
similar way. As a rule, B4+ is an ion of a transition metal,
its electronic properties being defined by its relatively small-
radius d electrons coupled to the near-neighbor atoms only.
In other words, in dielectric perovskite crystals, the local PJT
instability of the B4+ ion can be revealed by considering the
closed-shell configuration of the octahedral cluster [BO6]8−.
In the adiabatic approximation, the ground electronic state
of this cluster is a function of polar coordinates, denoted
by X, Y, Z, which are components of the local T1u mode.
They describe off-center displacement R (X, Y, Z) of B4+

FIG. 1. The octahedral fragment of the perovskite crystal struc-
ture ABO3 with the transition-metal atom B at the center (red) and
six oxygen atoms at the apexes of the octahedron (numbered, blue).
The letters a–h denote the eight equivalent off-center positions,
induced by the PJTE, of the atom B in the eight wells of the APES.
(Reprinted with permission from Ref. [20]. Copyright 2015 Elsevier
Publishing.)
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toward oxygen atoms and a counterphase displacement of the
near-neighbor oxygen octahedron. The vibronic PJT coupling
between the ground electronic state [the highest occupied
molecular orbitals, (HOMOs), formed by mostly oxygen
2p electrons] with the excited state [the lowest unoccupied
molecular orbitals (LUMOs), mostly the transition-metal 3d

electrons) via the nuclear T1u displacements determines the
adiabatic potential energy surface (APES), U (X, Y, Z). The
problem for the high-symmetry [BO6]8− cluster with its
closed-shell electronic structure, reduced to a matrix 9 × 9,
yields its APES in the analytic form, already obtained in the
previous paper about the PJTE theory [17] (see also [18,20])
as follows:

U (R) = 1
2K0R

2 − 2[
√

�2 + 2F 2(R2 − X2)

+
√

�2 + 2F 2(R2 − Y 2) +
√

�2 + 2F 2(R2 −Z2)],

(1)

where R2 = X2 + Y 2 + Z2, 2� is the (band adapted [20])
energy gap between the PJT active ground and excited elec-
tronic states, 1/2K0R [2] is the added elastic energy with
respect to these displacements, K0 is the respective primary
(nonvibronic) force constant, characterizing the crystal stiff-
ness without the vibronic coupling (presented as a crystalline
multimode sum with the expansion of R over the correspond-
ing crystal vibrations [20]), and F is the vibronic coupling
constant; for BaTiO3,

F = 〈2py (O)|
(

∂H

∂X

)
0

|3dxy (Ti)〉. (2)

Here H is the electron-vibrational Hamiltonian of the
cluster [TiO6]8−, |2py (O)〉 is the atomic 2py orbital of oxygen
in the mentioned above HOMO, |3dxy (Ti)〉 is the 3dxy atomic
orbital of the titanium ion in the LUMO, and (∂H/∂X)0

is the corresponding component of the operator of vibronic
coupling. Shown in Fig. 2 projected on a sphere, the APES of
Eq. (1) is very special for transition-metal perovskites. Under

FIG. 2. Contour map of the ground-state APES U (X, Y, Z) of
the octahedral cluster [TiO6]8− after Eq. (1). Points of the radius-R
sphere correspond to actual displacements of Ti4+ (R ≈ 0.24 Å).
Equipotential level curves are labeled with the corresponding values
of U (X, Y, Z) in meV, same as in Table I, measured from the zero
value at R = 0. Solid triangles represent trigonal (rhombohedral)
minima, the black square is a tetragonal extremum, and orthorhombic
saddle points are at the level curve’s intersections.

TABLE I. Numeric estimates of the PJTE parameters of the
APES, including the Ti ion displacement along Q and PJTE stabi-
lization energies EJT at the minima and saddle points [20].

K0 6.82 meV/Å
2

F 0.42 meV/Å
|X| = |Y | = |Z| 0.14 Å
|X| = |Y | = q0, |Z| = 0 q0 = 0.16 Å
U (0, 0, 0) 0 meV
EJT[100] 109 meV
EJT[110] 140 meV
EJT[111] 155 meV

the condition

� <
8F 2

K0
, (3)

U (R) has a maximum with the B ion in the center, eight
equivalent minima situated along the eight trigonal directions
toward the cubic vertices; 12 equivalent saddle points along
the six second-order symmetry axes C2 (in two directions
from the center), each of them forming an energy barrier be-
tween two near-neighbor equivalent minima; and six equiva-
lent, higher-in-energy saddle points along the three tetragonal
C4 axes (in two directions), each of them forming a higher
barrier between the groups of four near-neighbor equivalent
minima. Numerical values of the parameters of this APES for
BaTiO3, obtained involving empirical data on the forbidden
gap 2� = 2.8 eV and DFT calculated h̄ω = 23.9 meV, are
shown in Table I.

With the APES (1), the picture of all four phases of
BaTiO3 and the order-disorder phase transitions between
them, as well as the variety of specific properties of such
perovskite ferroelectrics, gets a full explanation, the main
predictions of the theory being confirmed after their publica-
tion (for references see [18,20]). In barium titanate the totally
symmetric configuration at X = Y = Z = 0 is very high in
energy, �U = EJT[100] ≈ 109 meV = 1270 K, as compared
with the Curie temperature TC ≈ 360 K. This means that the
paraelectric phase is reached not by population of the states
at the maximum of the free energy, but by the averaging of
the arbitrary oriented dipoles via their overcoming the much
lower orthorhombic and tetragonal barriers. A more rigorous
theoretical treatment of this problem yielding a reasonably
good agreement with the experimental values of the Curie
temperatures was obtained recently in the mean field approxi-
mation [21]. The basic parameter of the theory is the averaged
polarization per unit cell [BO3]8−, p̄ = p̄nucl + p̄el, induced
by the PJTE. Here p̄nucl is the average ionic contribution,
and p̄el is the average electronic dipole moment that emerges
due to the polarization of the electronic shell. Because of the
vibronic coupling these two contributions are proportional to
one another, p̄el = const. · p̄nucl. Therefore p̄ = p̄nucl + p̄el =
p̄nucl + const. · p̄nucl = (1 + const.)p̄nucl [21]. The factor 1 +
const. can be rationalized by substituting the real charge of
the central ion by the so-called Born effective charge ZB. The
localization of the nuclear motion at the extremum points of
the APES produces an average dipole moment p̄ = eZBR̄,
where R = |R| = √

X2 + Y 2 + Z2 is the PJTE displacement
of the ion B from the center of the octahedron.
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By comparison, we can see that these R values are almost
the same at different extrema points of the APES, U (X, Y, Z)
of Eq. (1). Indeed, according to the data in Table I, in
the trigonal minima R[111] ≈ (0.14 Å)

√
3 ≈ 0.24 Å, while at

the orthorhombic points R[110] ≈ (0.16 Å)
√

2 ≈ 0.23 Å, and
along the shortest way between two near-neighbor trigonal
minima via the orthorhombic saddle points (see Fig. 1) the
potential energy does not change significantly: EJT[111] ≈
155 meV, and EJT[110] ≈ 140 meV. This means that the bot-
tom of the APES for BaTiO3 Eq. (1) is a warped through,
and the warping is relatively small. In other words, the mo-
tion of the Ti ion in the cluster [BO6]8− can be reduced
to reorientations of the electrical dipole moment p via tun-
neling or hopping, its absolute value remaining unchanged:
|p| = p̄ = eZBR̄. In this respect, the ferroelectric properties
of cubic perovskites in the paraelectric phase are similar to
polar liquids, or to systems with easily reorienting magnetic
moments.

It follows that in a reasonable approximation such per-
ovskite ferroelectrics can be treated as an electric analog of
the Heisenberg model for coupled dipoles: [21,32],

H = −1

2

∑
m �=n

J (m − n)pm · pn, (4)

where pm is the dipole moment of the center m, and J (k) is
the parameter of the intercenter interaction.

In brief, the picture of the ferroelectric phase transitions
looks as follows [17,18,21]. Both the local dynamic off-
center displacement and the mean field of the environment
are interdependent in a self-consistent way. Lowering the
temperature results in several consecutive phase transitions.
In what follows we consider two phases: the high-temperature
cubic paraelectric phase and tetragonal ferroelectric phase
that occurs below the Curie temperature TC. At T > TC, the
mean field E = 0, the eight possible off-center positions of
the ion B are equivalent (see the red line in Fig. 3). The local
dipole moments are (macroscopically) averaged over all eight
trigonal wells, along all eight crystal directions [Fig. 4(b)] the
average dipole moment and hence the polarization equal zero,
and the crystal is in the completely disordered paraelectric
phase.

At lower temperatures, T < TC, a nonzero mean field
occurs [21], E �= 0, and the different dipole orientations

FIG. 3. Schematic cross section of the APES U (X, Y, Z) along
the path of steepest descent from the orthorhombic saddle points
to the trigonal minima. At T > TC, in the cubic phase the mean
field equals zero, E = 0, and all the eight trigonal minima have the
same depth (rose curve). At T < TC (green curve) the mean field is
oriented along one of the tetragonal axes (here along [001]) lowering
the energy of four minima 1, 2, 3, and 4 (a–d in Fig. 1) and elevating
the energy of the other four minima. The numeration of the minima
is the same as in Fig. 4.

FIG. 4. Orientation of the local dipole moments in the eight
minima of the cluster [BO6]8− (the oxygens are not shown): (a)
In the tetragonal phase at T < TC, the dipole moments at different
centers occupy (with equal probability) one of the four minima
around the same axis C4, resulting in an average nonzero polarization
in the direction of this axis (shown by red dashed arrow). (b) In the
paraelectric phase, at T > TC, all eight trigonal minima are equally
populated; the averaged dipole moment and the polarization equal
zero.

become nonequivalent due to the mean field of the environ-
ment induced by the instant off-center positions of the B

ions in the near-neighbor cells. In this phase the mean field
E is oriented along one of the fourth-order axes, say, [001]
[Fig. 4(a)].

It lowers the energies of four adjusted minima, simul-
taneously elevating the energies of the remaining four (see
the green curve in Fig. 3). Accordingly, the temperature
controlled population of the first four minima increases, while
decreasing in the other four, the majority of dipoles thus
becoming oriented along the corresponding tetragonal axis
[Fig. 4(a)]. Driven to the minimum of free energy, the crystal
becomes ordered along the z axis, but remains disordered

along its two other symmetry axes x and y. Macroscopically,
this type of ordering is seen as the tetragonal phase. Still,
lowered by the mean field, these four potential wells are
separated from the other four by tetragonal potential barriers
that are higher in energy.

III. FORMATION OF POLAR NANOREGIONS AND THEIR
“SURFACE TENSION”

As mentioned above, tetragonal PNRs occur in the cu-
bic paraelectric phase of the ferroelectric crystal (Fig. 5)
at temperatures well above the Curie temperature, T > TC ,
where the condition of thermodynamic equilibrium for the
Helmholtz free energy, �cub = �tetr , does not hold. They
decrease in size with increasing temperature and disappear
above the Burns temperature TB. The vibronic (PJTE) origin
of perovskite ferroelectricity and order-disorder phase tran-
sitions between its different phases, briefly outlined above,
reveals directly the driving force in the formation of PNRs
and its main features. Like in all the other applications (e. g.,
the origin of giant flexoelectricity, [22] permittivity [22,23],
and electrostriction [22]), the point is in the local dynamics
of the dipolar distortions at the B centers, which are fully
disordered (uncorrelated) in the paraelectric phase and par-
tially ordered (correlated) in the ferroelectric phases. In bulk,
at temperatures above TC, the Helmholtz free energy of the
cubic phase �cub is lower than its value in the tetragonal
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FIG. 5. Polarized nanoregion of spherical form (central circle)
with the border layer (outlined) inside the bulk cubic perovskite
at temperatures T above the Curie temperature TC, but below the
Burns temperature TB; TC < T < TB. Arrows indicate the direction
of the local averaged dipole moments, which are tetragonally ordered
inside the PNR and fully disordered in the cubic phase. For the role
of the PNR surface layer, see the text.

phase �tetr . Accordingly, as � = U − T S, in the temperature
interval TC < T < TB we have

T (Scub − Stetr ) > Ucub − Utetr. (5)

Here Ucub and Scub are, respectively, the potential energy
and entropy per unit cell in the high-temperature paraelectric
phase, whereas Utetr and Stetr are their respective values in the
tertragonal phase. In other words, in bulk, lowering potential
energy from (average) cubic to (average) tetragonal does not
provide enough energy gain, �U = Ucub − Utetr , to compen-
sate the corresponding entropy loss T (Scub − Stetr ) at T > TC.

Yet, local polarized isles (polar nanoregions, PNRs, Fig. 5)
with a limited, relatively small number n of centers may still
be formed. As shown below, at Tn > TC the inequality (5) is
compensated by the transformation of a part of the tetragonal
potential energy �Utetr of the PNRs into work of formation
of its surface Wn. Indeed, the gain of energy in the formation
of the n-center PNR �Un = U (cub)

n − U (tetr)
n consists of two

contributions: �U (in)
n , the energy of the internal centers, i.e.,

the energy of the ordering the dipoles inside the PNRs [all ori-
ented, in average, along the polarization direction, Fig. 4(a)],
and �U (surf )

n , the energy of the centers in the surface layer,
that are influenced by the neighbor disordered centers of the
cubic phase (Fig. 5).

Consider �U (in)
n in the mean field approximation, briefly

outlined above. The energy of the ordered (correlated) dipoles
can be accounted for by the Hamiltonian (4), with pm =
〈pm〉 + �pm, where 〈pm〉 is the average dipole moment of
the center m, and �pm = pm − 〈pm〉 is its related fluctua-
tion. Substituting �pm = pm − 〈pm〉, and keeping only terms
linear in �pm, we come to the additive Hamiltonian H =∑

m Hm, where

Hm = −pm ·
∑
n �=m

J (m − n)〈pn〉 = −pm · Em. (6)

FIG. 6. Mean field E directions (shown by arrows) for the inner
and border centers of the PNR. Within the tetragonally ordered bulk
to the right of the border surface (shown in blue) each center is
positioned in the mean field of six near-neighbor centers with the
same direction of the field, whereas for each center on the border
(e.g., the one in the center of the fragment shown by white arrow)
only five near-neighbor centers contribute to its mean field.

Here Em = ∑
n �=m J (m − n)〈pn〉 is the vector of the mean

field at the center m. In the tetragonal phase all the dipoles
are formed by the B4+ ions at the four minima 1, 2, 3, 4 of
the APES [Fig. 4(a)], where they have the same average value
|p| = p̄ = eZBR̄, and are directed at an acute angle of 54.7°
with respect to the average field direction. Then from Eq. (6)
we get the gain of energy per center by ordering as follows:
�U

(in)
0 ≈ Ep̄ cos(54.7◦) = Ep̄√

3
. Similarly, the dipoles in the

remaining four trigonal minima 5, 6, 7, 8 are oriented along
an obtuse angle of 125.3° with respect to the mean field, and
their energy is elevated by the same amount (Fig. 3, the green
line).

The parameter J (m − n) stands for the intercenter inter-
action. In the main part of the dipole-dipole interaction it
descends rapidly with the intercenter distance, J (m − n) ∼
|m − n|−3. Therefore, approximately, for the internal centers
the gain in energy from ordering in the PNRs is the same as
in the bulk tetragonal phase. Per one center it is �U

(in)
0 =

Ucub − Utetr = �U0 [cf. Eq. (5)]. In H = ∑
m Hm the sum is

over the number of fully ordered centers in the PNRs, n − n′,
where n′ is the number of centers in the surface layer (in what
follows, the surface layer is assumed to be about one lattice
constant thick, but actually more centers may be affected).
Accordingly, the energy gain in the formation of the PNR due
to the tetragonal ordering is �U (in)

n = (n − n′)�U0.
The mean field for the n′ centers of the surface layer is

different from that in the bulk of the tetragonal PNR. Indeed,
in the cubic perovskite crystal each dipolar B center has six
near-neighbor B centers, all of which contribute to the mean
field in the polarized phase, but only five of them contribute
to the mean field acting upon the surface center (Fig. 6).
The sixth near-neighbor center belongs to the fully disordered
cubic phase where the mean field is zero. Therefore, for a
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FIG. 7. For the centers on the surface of the PNR the tetragonal
mean field (E, E′||[001]) is weaker, |E′| < |E|, and the lowest
minima 1–4 on the APES (shown by purple curve) are shallower by
g than the ones for the inside centers (green curve); cf. Fig. 3.

plane wall, the tetragonal mean field in the wall is weaker than
inside the PNR, E′ ≈ 5

6E (in fact the wall is not planar, so the
E′ value may be lower). Accordingly, on the surface of the
PNR trigonal wells of the APES are shallower than inside
the PNR, U

(in)
tetr < U

(surf )
tetr , as shown in Fig. 7. Per one cen-

ter, introducing g = U
(surf )
tetr − U

(in)
tetr , we get �U

(surf )
0 = Ucub −

U
(surf )
tetr = Ucub − U

(in)
tetr − g = �U

(in)
0 − g = �U0 − g. For n′

surface centers �U (surf )
n = n′(�U0 − g); hence

�Un = �U (in)
n + �U (surf )

n = (n − n′)�U0 + n′(�U0 − g)

= n�U0 − n′g. (7)

The potential energy of the PNR is thus U (tetr)
n = U (cub)

n −
n�U0 + n′g, or, by taking U (cub)

n = 0 as the energy read-off,
we get

U (tetr)
n = −n�U0 + n′g. (8)

To avoid misunderstanding, we emphasize here that, as
it follows from the detailed consideration above, the border
layer of the PNR separates two different phases, one para-
electric and the other one ferroelectric, coexisting in the same
crystal at the same temperature, and as such, it is essentially
different from domain walls.

Consider, for example, the PNR of spherical form (which
seems to be dominant) with the radius r . In the cubic crystal
with the unit cell dimension a, the number of centers in a
spherical PNR equals the ratio of their volumes:

n = Volume of the sphere

Volume of one unit cell
=

4
3πr3

a3
= 4π

3

( r

a

)3
. (9)

Hence,

r

a
= 3

√
3n

4π
= 3

√
3

4π
n1/3 ≈ 0.62n1/3, or

r = a
3

√
3

4π
n1/3 ≈ 0.62an1/3, (10)

while the number of cells on the surface equals

n′ =
4
3πr3 − 4

3π (r − a)3

a3
≈ 4π

( r

a

)2

= 3
√

36πn2/3 ≈ 4.8n2/3. (11)

Substituting Eqs. (9) and (11) into (8), we get

U (tetr)
n = −4π

3

( r

a

)3
�U0 + 4π

( r

a

)2
g

= −4πr3

3a3
�U0 + 4πr2α, (12)

where α = g

a2 .

The Physical meaning of this result follows from the
presentation in terms of radial force,

f = −∂U

∂r
= − ∂

∂r

(
−4πr3

3a3
�U0 + 4πr2α

)

= 4πr2 �U0

a3
− 8πrα. (13)

The first, positive term describes the internal “pressure” in
the radial direction tending to enlarge the PNR,

P = Radial force

Surface area of the sphere
= 4πr2(�U0/a

3)

4πr2
= �U0

a3
.

(14)
It reflects the tendency to gain internal energy PV with

V = (4/3)πr3 by increasing the number of ordered dipoles.
Noteworthy, the pressure P = �U0/a

3 = const. is size in-
dependent. Hence, growth of the PNR is an “isobaric” pro-
cess. The second term, originating from the surface layer, is
negative; it compresses the sphere, quite similar to “surface
tension.” Neither “pressure” nor “surface tension” used here
has anything to do with real pressure and surface tension in
actual gases, liquids, and/or other macroscopic interfaces. The
terms “pressure” and “surface tension” (in quotation marks!)
are introduced here for the sake of simplicity, appealing to and
providing for a formal analogy with the well-known formulas
of surface tension in physics of condensed matter [33]. The
algebraic similarity is the only reason for introducing the
constant α = g/a2. In our case it plays the role of the coef-
ficient of “surface tension.” As follows from (12) and (13),
the additional “pressure” created by the “surface tension,” is

�Pst ≈ −8πRα

4πr2
= −2α

r
. (15)

Notably, the negative sign in Eq. (15) means that it acts as
an “external” force, and the last term in Eq. (13) describes the
work, W = 4πR2α, performed on the PNR by the force of
“surface tension.”

For the system in a thermostat under consideration, ex-
change of energy with the environment may take place
without free energy conservation, �i �= �f , the total energy
balance being preserved by compensation of the heat trans-
fer, Q = T (Sf − Si ) = T �S, with internal energy change
�U and mechanical work of internal forces, Wintern. Similar
to other processes with heat (entropy) transfer, formation
of PNRs is a nonequilibrium thermodynamic process, de-
scribed by Gibbs free energy change, �G = �H − T �S,
where �H is the change of enthalpy H . With the grow-
ing size of the PNRs, their Gibbs free energy decreases
and reaches a minimum value when n satisfies the condi-
tion of thermodynamic equilibrium with the environment, at
which point the shape-restoring force, −dG/dr , is close to
zero, while according to the first law of thermodynamics,
�U = Q − Wintern. In our case, in the process of the n-
center PNR formation the system changes from the initial
cubic disordered phase to the final partially ordered tetragonal
one, for which Q = T (Sf − Si ) = Tn(S (tetr)

n − S (cub)
n ), �U =

Uf − Ui = U (tetr)
n − U (cub)

n = n�U0, and Wintern = 4πr2α ≈
4.8gn2/3. Note that the work of internal forces is positive,
Wintern > 0, whereas the heat transfer is negative, Q < 0,
meaning heat is transferred to the environment. Accordingly,
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FIG. 8. Temperature dependence of the PNR size shown by the
number of centers n (×103, left scale), and the diameter of its
spherical form D (in nm, right-side scale), as a function of the crystal
parameter A.

the first law of thermodynamics in this case acquires the
following form:

Tn

(
S (cub)

n − S (tetr)
n

) = n�U0 + Wintern = n�U0 + 4.8gn2/3.

(16)
Introduced above in Eq. (7), g = U

(surf )
tetr − U

(in)
tetr is the

energy disadvantage (per one unit cell) of the dipoles on
the surface of the PNR compared with the ones inside it.
Using the equation of the macroscopic phase transition at the
Curie temperature, TC(S (cub)

0 − S
(tetr)
0 ) = �U0, and substitut-

ing S (cub)
n = nS

(cub)
0 and S (tetr)

n = nS
(tetr)
0 , we get the relation

between the temperature increment �Tn = Tn − TC and the
size n of the PNR, illustrated in Fig. 8:

�Tn = TC
4.8g

�U0
n−1/3, (17)

or, equivalently,

Tn

TC
= 1 + 4.8g

�U0
n−1/3, Tn = TC

(
1 + 4.8g

�U0
n−1/3

)
.

IV. DISCUSSION OF THE RESULTS: NUMERIC
ESTIMATES

Referring to formation of the PNR that follows from the
above treatment of the problem, we see that the growth of the
spherical PNR is subject to the larger “pressure” from inside
the sphere, tending to align the local dipolar displacements, as
compared with the compressing force of the “surface tension.”
It follows from Eq. (13) that the force of the inner pres-
sure is proportional to r2 (to the border surface area 4πr2),
whereas the compressing force 4πrα is proportional to r .
This means that, since r > a and n = 4π

3 ( r
a

)3, at n � 4 the
force increasing the PNR size is dominant. Although the ther-
modynamic considerations employed in the treatment of this
process are not applicable to very small numbers of centers,
this conclusion shows the tendency in a qualitative manner.
It means that in the fully disordered paraelectric phase, any
small fluctuation that aligns the averaged dipole moments of
—three to four centers [their mean field; see Fig. 4(a)] triggers
further ordering, causing the growth of the PNR. Like in a
process of self-assembly, the local ordering continues until the
energy gain due to the progressive loss of entropy, (−T �S), is

exhausted by covering the loss in potential energy n�U0 and
the work against the compressing effect of “surface tension.”

The entropy part is transferred to the environment (dis-
sipated) in the form of heat, Qn = T �Sn. Obviously, this
process cannot be reversed: the probability of a heat (or
entropy) transfer from the bulk back to the given PNR is
negligible. This provides stability to the PNR in the disordered
environment. Once grown to its equilibrium size (to the mini-
mum of the above-noted Gibbs free energy), the PNR cannot
be destroyed by thermal fluctuations unless the temperature is
increased or an external electric field is applied [34]. These
estimates show also that an initial trigger (fluctuation), albeit
small, is needed to start the growth of a PNR. It explains
the role of crystal imperfections or structural irregularities
(particularly, in mixed perovskites) in the formation of a PNR.

From Eq. (17) we get the temperature dependence of
the number of centers in the thermodynamically equilibrated
PNR:

n = A

(
Tn

TC
− 1

)−3

= A

(�T /TC)3 , (18)

where A = 36π ( g

�U0
)3 is a crystal parameter. With the de-

pendence of the number of centers n on the radius r of the
spherical PNR [Eq. (9)], we obtain also its diameter D as a
function of temperature,

D = 2r ≈ 1.24a
3
√

A

(
Tn

TC
− 1

)−1

= 1.24a
3
√

A

�T /TC
. (19)

With regard to the crystal parameter A, the above estimate
g ≈ 1

6�U0 [see Fig. 5 and the text before Eq. (7)] is based on
the assumption that the PNR surface wall is planar, meaning
r → ∞, and only one lattice-constant layer is affected by
the reduced-to-zero mean field of the outside fully disordered
cubic phase. In fact, PNRs are small with small r values, and
for rounded walls the restraining contribution of the outside
centers is significantly larger, meaning the mean field in the
surface layer is much weaker. In addition, the outside zero
mean field may reduce the effective mean field and tetragonal
ordering in more than one lattice layer, thus significantly
increasing the g value. Since A ∼ g3, a reasonable estimate
yields 1 < A < 10.

For instance, for BaTiO3, TC = 360 K, TB ≈ 600 K, and
for A = 5, we get n ≈ 17 at the Burns temperature, which for
a spherical PNR means D = 2r ≈ 1.3 nm, while for A = 10,
n ≈ 34 and D = ≈1.7 nm. This is the size of the PNR, which
is assumed to become undetectable in BaTiO3 at the Burns
temperature. On the other hand, the dependence of the PNR
size on temperature is much stronger. For instance, for BaTiO3

at T ∼ 400 K, �T/TC ≈ 0.1, and at A = 5, n ∼ 103–104 and
D ∼ 9 nm (at A = 10, D ∼ 11 nm). Roughly, the PNR size
in BaTiO3 changes from ∼1 nm at the Burns temperature
to ∼10 nm in the nonergodic state in the region near TC.
The temperature dependence of n(T ) and D(T ) for different
values of the crystal parameter A are shown in Fig. 8.

Subject to the power “−3” in Eq. (18) (see also Fig. 8), the
increase of the size of the PNR with decrease of temperature is
very fast, especially at smaller increments �Tn/TC ≈ 0.1–0.2.
If, for instance, the temperature decreases linearly with time t ,
T = Tinit–mt , where Tinit > TC, and m = const. > 0, then the

214102-7



VICTOR POLINGER AND ISAAC B. BERSUKER PHYSICAL REVIEW B 98, 214102 (2018)

rate of PNR growth is

dn

dt
= 3mA

TC

(
T

TC
− 1

)−4

= 3AmT 3
C

�T 4
, (20)

where �T = T − TC. For BaTiO3 in the above condi-
tions, Tinit ≈ TB ≈ 600 K and A = 5, even slow cooling
with the rate m = 0.1 K/s yields a very fast increase of
(7 × 107)�T −4 centers per second. At the time when the tem-
perature difference �T = T − TC decreases to the order of
10 K, randomly polarized and arbitrarily located PNRs would
cover the whole crystal sample, while their reorientation and
ordering require much more time. As a result, at certain
temperatures Tf , TC < Tf < TB, a nonergodic “glassy” polar
phase occurs (like in dipolar glasses). It follows that two
conditions are necessary for the occurrence of the nonergodic
phase in relaxor ferroelectrics: (1) a high concentration of
PNRs, and (2) relatively fast cooling. The first of these
conditions is related also to structural inhomogeneity cre-
ated by crystal imperfections and impurities; they favor the
above-mentioned local fluctuations, which trigger the PNR
formation. This explains why PNRs are best seen in mixed
perovskite crystals. In sufficiently strong electric fields all the
PNRs are repolarized in the same direction, so the glassy state
disappears irreversibly, distinguished from polar glasses, but
in full accordance with experimental data.

V. CONCLUSIONS

In this paper, relaxor properties of perovskite ferroelectrics
and the nature of PNRs emerge from the first-principles mi-
croscopic theory of ferroelectricity, in which the spontaneous
polarization of the crystal is triggered by the local dynamic-
dipolar instability induced by the PJTE. In the framework of
displacive approaches to the theory of ferroelectricity, which
are based on the intrinsic assumption that only long-range
interactions may produce the polarization, the formation of
small (nanosize) polarized isles in the paraelectric phase is
hardly possible. Created by lattice imperfections and irregu-
larities, local inhomogeneity and “random fields” do lead to
some local formations, but they are not temperature depen-
dent, they do not grow when the crystal cools down below
TB, and do not disappear above TB or under the influence of
polarizing electric fields, and they cannot initiate formation of
the “glassy” phase with cooling.

The occurrence of PNRs at T > TC in the disordered phase
with dynamically oriented local dipolar displacements may
be seen as an example of self-assembly. Centered somewhere
about a crystal imperfection, it starts with a fluctuation in

the intercell dipolar alignments. If the newly created precur-
sor exceeds the critical size of ncrit ≈ 3–5, its spontaneous
growth continues until the energy gain due to ordering is
sufficient enough to cover both the progressive loss of en-
tropy, T �S, and the work against the compressing effect of
“surface tension.” The spherical shape of PNRs with relatively
large numbers of centers n follows from the condition of
minimum “surface” energy (see also the spherical random-
bond–random-field model [35], where the spherical shape
was postulated), although at smaller n other shapes may be
seen [36].

As a whole, the formation of the n-center PNR takes place
in a nonequilibrium thermodynamic process, described by
Gibbs free energy G, which reaches its minimum value at
a certain size n, at which point −dG/dr is close to zero.
It means also that at this equilibrium size the amplitude
of breathing vibrations of the PNR becomes noticeably big
[37,38], which is seen in the low-frequency resonance dielec-
tric spectra [39], and in the electro-optic effects [40].

We show that all the main properties of relaxor ferro-
electrics follow directly from local polar dynamics induced
by the PJT effect in the B center of the perovskite structure
ABO3 (A centers can be treated similarly): (i) With increasing
temperature PNRs decrease in size, (ii) PNRs disappear above
the Burns temperature and/or at any temperature in polarizing
electric fields, and (iii) with fast cooling, it may lead to
formation of the nonergodic “glassy” polar phase at T = Tf ,
approximately, at (Tf − TC)/TC ∼ 0.1–0.2. Numerical esti-
mates are obtained for BaTiO3, for which the parameters of
the PJT effect were estimated earlier in the vibronic (PJT)
theory.

In many details (the trigger role of fluctuations, the role
of internal “pressure,” the “surface tension,” etc.) the forma-
tion of PNRs, described in this paper, follows the classical
nucleation theory [41–43]. However, there are also significant
differences: Stable PNRs grow not in a metastable phase, but
at temperatures well above TC when the paraelectric phase is
in thermodynamic equilibrium. This phenomenon is possible
exclusively due to the PJTE: The off-center instability of
the B ion results in its local polar displacements, which are
randomly and relatively easy reorienting in the disordered
cubic phase. In this respect, a ferroelectric perovskite crystal
is akin to a polar liquid [44]. Accordingly, the “glassy state”
is similar to a suddenly frozen polar liquid with its randomly
oriented dipoles, but with an essential difference that the
ferroelectric glassy state can be irreversibly eliminated in
sufficiently strong electric fields.
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