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The topological Kondo effect arises when conduction electrons in metallic leads are coupled to a mesoscopic
superconducting island with Majorana fermions. Working with its minimal setup, we study the lead electron local
tunneling density of states in its thermally smeared form motivated by scanning tunneling microscopy, focusing
on the component ρ2kF

oscillating at twice the Fermi wave number. As a function of temperature T and at zero
bias, we find that the amplitude of ρ2kF

is nonmonotonic, whereby with decreasing T an exponential thermal-
length-controlled increase, potentially through an intermediate Kondo logarithm, crosses over to a T 1/3 decay.
The Kondo logarithm is present only for tip-junction distances sufficiently smaller than the Kondo length, thus
providing information on the Kondo screening cloud. The low-temperature decay indicates non-Fermi-liquid
scattering, in particular the complete suppression of single-particle scattering at the topological Kondo fixed
point. For temperatures much below the Kondo temperature, we find that the ρ2kF

amplitude can be described
as a universal scaling function indicative of strong correlations. In a more general context, our considerations
point towards the utility of ρ2kF

in studying quantum impurity systems, including extracting information about
the single-particle scattering matrix.
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I. INTRODUCTION

Realizing Majorana fermions in condensed matter is a
subject of intensive ongoing efforts [1–3], in part motivated
by the potential Majorana fermions present for implementing
schemes for quantum computation [4–8]. Most ongoing stud-
ies focus on effectively one-dimensional settings where Ma-
jorana modes appear as zero-energy end states [8–11]. Exper-
imental candidate systems include semiconducting nanowires
with strong spin-orbit coupling that are in contact with s-wave
superconductors [12–14], nanowires formed by ferromag-
netic atomic chains that are in contact with superconductors
with strong spin-orbit coupling [15,16], and, more recently,
systems based on two-dimensional electron gases [17,18].
The majority of experiments so far [12,14,18–21] focus on
demonstrating the zero-energy end-state nature of Majorana
modes through observing the zero-bias conductance-peak-
related features [19,20,22–26] for Majorana-assisted tunnel-
ing into a superconducting reservoir.

Partly due to the potential alternative explanations behind
the zero-bias peak [27–31] and partly due to its fundamen-
tal importance and relevance to quantum computation, a
key challenge is the demonstration of Majorana nonlocal-
ity [5,32,33]. A promising direction uses a so-called Majorana
island, a Majorana device based on a superconducting island
with large charging energy [34], as in a recent experiment [13]
showing the first (although not yet definitive) signatures of
electron teleportation [34].

A compelling signature would be provided by the so-called
topological Kondo effect [35–49], for which devices could
be constructed with only a moderate increase in complexity
compared to those under current investigation. Specifically,
the minimal configuration consists of a Majorana island

connected to three leads of noninteracting conduction elec-
trons via three Majoranas (Fig. 1, inset). In this setup, Ma-
jorana fermions define a nonlocal topological qubit, playing

FIG. 1. The amplitude ρ̃2kF
of the oscillating component of the

TDOS for zero bias for the minimal topological Kondo setup (inset)
of three Majorana modes (red dots) coupled to conduction-electron
leads. The TDOS may be measured using STM. In the expressions
shown and below, vF is Fermi velocity, TK is Kondo temperature, and
LK = vF /TK (LT = vF /T ) is the Kondo length (thermal length).
The solid, dashed, and dash-dotted lines represent calculations; the
dotted line extrapolates between the regions where our asymptotic
approach is expected to hold. For ρ̃2kF

(|x| � LK ) (solid blue line
and dots), a Kondo logarithmic peak is visible between the T � TK

free-fermion (dash-dotted line) tail and the T � TK power law.
For ρ̃2kF

(|x| � LK ) (solid red line), the logarithmic regime is sup-
pressed. The dashed line is ρ̃2kF

(x = 0).
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the role of a quantum spin-1/2 impurity interacting with the
effective spin-1 of conduction electrons. This system therefore
displays an overscreened single-channel Kondo effect with
non-Fermi-liquid low-energy behavior [35], but with over-
screening that is stable even at low energies, unlike the usual
overscreened multichannel case [50–57].

As in any Kondo system, important characteristics of
strong correlations are revealed by the conduction electrons’
spatial organization (i.e., the Kondo screening cloud [58–64])
and their scattering properties. Here we focus on a quantity
that provides information on both of these: the oscillating (as
a function of position) part of the local electron tunneling
density of states (TDOS), specifically its thermally smeared
form motivated by scanning tunneling microscopy (STM).
(For works focusing on the complementary nonoscillating
part, see Refs. [43,65].) We will see that, unlike for free
fermions, the amplitude of the oscillating TDOS component
does not increase monotonically as temperature is lowered but
follows a form that depends on the position of the tunneling
point relative to the Kondo cloud (see Fig. 1). While the
nonmonotonic temperature dependence is already indicative
of strongly correlated scattering, strikingly, we also find that
at the topological Kondo fixed point, in contrast even to
correlated Fermi liquids [50,66], single-particle scattering be-
comes completely suppressed and that this translates into the
complete suppression of the oscillating part of the TDOS as
the temperature (and bias voltage) tends to zero. Furthermore,
for the minimal three-lead setup that we will focus on, the
features that we predict can be turned off by decoupling
any of the leads other than the one in which the TDOS is
measured, which provides a direct signature of the Majorana
fermion nonlocality.

II. GENERAL CONSIDERATIONS

We now turn to formulating the problem for our TDOS
calculations. There are three terms that contribute to the
Hamiltonian [35,38],

Ĥ = Ĥleads + Ĥc + Ĥtun. (1)

The first term is due to the noninteracting, effectively spinless,
conduction electrons in the three metallic leads (see Fig. 1),

Ĥleads =
3∑

i=1

∫
dk vF k â

†
k,i âk,i , (2)

where vF is the Fermi velocity. (The velocities can be taken to
be the same for all leads without loss of generality [67].) We
are working at sufficiently low energies that we can focus on
the vicinity of Fermi wave number kF where the lead electron
spectrum can be considered linear. The electron operator in
momentum space âk,i can be related to that in position space
ψ̂i (x) through

ψ̂i (x) =
∫

dk âk,iϕk,i (x), (3)

where x � 0 is the spatial coordinate in each lead such that the
Majorana-lead junction is located at x = 0. The eigenfunction
ϕk,i (x) of the ith lead (in the absence of Majorana-lead

coupling) takes the form

ϕk,i (x) = 1√
2π

[
eikF xϕR

k,i (x) + e−ikF xϕL
k,i (x)

]
, (4)

where ϕR
k,i (x) = eikx and ϕL

k,i (x) = rie
−ikx are the right and

left movers, respectively, and ri ≡ eiθi is the reflection ampli-
tude of electrons at the lead end point.

Working at energies much below the induced supercon-
ducting gap, the superconducting island is characterized by
the charging energy Ec through the term

Ĥc = Ec(N̂ − q/e)2, (5)

where N̂ is the number operator of the electrons in the island,
q is the background charge, and −e is the electron charge [68].
The distance between any two Majorana zero modes is as-
sumed to be large enough to ensure that the overlap of their
localized wave functions can be ignored. In this case, the only
tunneling mechanism we consider is when the electron of
lead i tunnels into the island through the Majorana γ̂i with
amplitude ti , which is taken to be positive without loss of
generality. The Hamiltonian for this is

Ĥtun = eiφ̂/2
3∑

i=1

ti γ̂i ψ̂i (0) + H.c., (6)

where e±iφ̂/2 is an operator that changes the number of elec-
trons in the island, N → N ± 1 [34,35].

We will be focusing on energy scales much smaller than
Ec, so that the physics is dominated by virtual transitions
connecting the lowest-energy charge state to the neighboring
ones. Focusing on the middle of the Coulomb blockade valley
for simplicity (i.e., setting q to be an integer multiple of e in
Ĥc), this physics can be described by the effective Hamilto-
nian Ĥeff = Ĥleads + ĤK , where

ĤK =
3∑

α=1

gαÎα ⊗ Ŝα, (7)

with gα = ∑
ij |εαij |2ti tj /Ec, where εijk is the Levi-Civita

matrix [35,37,38]. This is the Kondo coupling mediating the
interaction between the spin-1/2 topological qubit described
by the operators Ŝα ≡ − i

4 (γ̂ × γ̂ )α and the conduction elec-
trons. The three lead species of the latter form an effective
spin-1 density Îα = i

∑
ij εαjiψ̂

†
i (0)ψ̂j (0) [35].

As stated in the Introduction, we focus on the thermally
smeared local TDOS of lead electrons, proportional to the
STM differential conductance [69],

ρi (x, V, T ) ∝
∫ ∞

−∞
dω

∂nF (ω − eV, T )

∂ω
Aii (x, ω, T ), (8)

where nF (ω, T ) = (1 + eω/T )−1 is the Fermi function, V

is the applied voltage between the STM tip and the lead,
T is the temperature, and Aij (x, ω, T ) is the electron
spectral function. The latter can be calculated through
the relation Aij (x, ω, T ) = −2 Im[GR

ij (x, x; ω, T )], where
GR

ij (x, y; ω, T ) is the retarded Green’s function, obtained
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from the Matsubara Green’s function,

Gij (x, y; iωn, T )=−
∫ 1/T

0
dτ eiωnτ 〈Tτ (ψ̂i (x, τ )ψ̂†

j (y, 0))〉,
(9)

with (imaginary) time-ordering operator Tτ , by performing an
analytic continuation from the upper half plane to the real axis,
iωn → ω + iη [69]. Note that at zero temperature, the TDOS
is simply ρi (x, V, 0) ∝ −Aii (x, eV, 0).

It is customary to introduce the so-called Kondo screening
cloud, which is defined as the Kondo contribution to TDOS:
If ρ0,i (x, V, T ) denotes the TDOS of lead electrons when
uncoupled from the Majoranas (which will be called the free
cloud in the rest of the paper), then the Kondo cloud is defined
by ρK,i (x, V, T ) ≡ ρi (x, V, T ) − ρ0,i (x, V, T ).

The retarded Green’s function GR
ij (x, x; ω, T ) can be writ-

ten in terms of the T matrix Tij (ω, T ), which is a key object
encoding Kondo correlations [64,70],

GR
ij (x, x; ω, T ) = GR

0,ij (x, x; ω) +
∑
kl

GR
0,ik (x, 0; ω)

× Tkl (ω, T )GR
0,lj (0, x; ω). (10)

Here GR
0,ij (x, y; ω) is the retarded Green’s function in the

absence of interaction between electrons and Majoranas. This
free Green’s function is obtained by performing the analytic
continuation of Eq. (9), except that the averaging is performed
by using the eigenstates of the noninteracting Hamiltonian
Ĥleads instead [70]. It has the form

GR
0,ij (x, x; ω) = − i

vF

δij − i

vF

δij e
i2Ki (ω,x), (11)

GR
0,ij (x, 0; ω) = − 2i

vF

cos (θi/2)δij e
iKi (ω,x), (12)

where

2Ki (ω, x) ≡ 2kF |x| + 2ω

vF

|x| + θi . (13)

Due to the relation ϕR
k,i (x) = r∗

i ϕL
k,i (−x) we have

GR
0,ij (0, x; ω) = GR

0,ij (x, 0; ω) [70].
A convenient parametrization of the T matrix is

Tij (ω, T )=− ivF

4 cos2 (θi/2)
δij ξi (ω, T ), θi =mπ, (14)

where δij is present because only the diagonal terms survive
the average over the impurity spin inherent in the definition of
the Green’s function. The angle θi = m π (with m odd integer)
is excluded because in this case the electron operator ψ̂i (0) at
the Majorana-lead junction vanishes and therefore so does the
Kondo coupling.

Note that since T enters multiplicatively in Eq. (10), the
spatial features for T = 0 are entirely due to G0 and G2

0.
To look for spatial features providing information on Kondo
correlations we will therefore mostly focus on T > 0 and for
simplicity mostly take V → 0. In this zero-bias regime, the

free cloud has a simple expression,

ρ0,i (x, 0, T )

∝ 2

vF

− 4π

vF

|x|
LT

csch

(
2π

|x|
LT

)
cos (2kF |x| + θi ), (15)

where LT ≡ vF /T is the thermal length.
As exemplified by GR

0,ij and ρ0,i above, all quantities of
interest have two contributions: a nonoscillating component
and a 2kF oscillating component. For the rest of the paper,
we focus only on the latter because it is the piece that
involves both ingoing and outgoing waves and thus encodes
information about the scattering properties. [In contrast, at
least for noninteracting lead electrons, the nonoscillating part
is insensitive to the Kondo coupling, as seen from Eqs. (10)–
(12).] Denoting the oscillating components by the subscript
2kF , we have

GR
2kF ,ij (x, x; ω, T )=− i

vF

δij [1−ξi (ω, T )]ei2Ki (ω,x). (16)

A key step in calculating the TDOS ρi (x, V, T ) is thus the
calculation of ξi (ω, T ). In the following, we will focus on two
complementary regimes: high energies [max (eV, T ) � TK ]
and low energies [max (eV, T ) � TK ], where TK is the
Kondo temperature (see Sec. III), considering mostly the zero-
bias case. These two regimes correspond to the vicinity of
two renormalization group (RG) fixed points around which a
perturbation theory can be developed: the free-electron fixed
point (gα = 0) for high energies and the topological Kondo
fixed point for low energies. In the high-energy regime, the
function ξi (ω, T ) will be obtained using perturbation theory
in the Kondo couplings gα , considering terms up to third order.
For low energies, we will adapt conformal field theory (CFT)
results from Ref. [70] to our model.

III. 2kF TDOS AT HIGH ENERGIES

After performing perturbation theory up to third order in
the Kondo couplings, one finds

ξi (ω, T ) = π2

[̃
λ2

i − 2vF λ1λ2λ3

∫ �

−�

dp
tanh

(
vF p

2T

)
ω − vF p + iη

]
,

(17)

with cutoff � and dimensionless couplings

λi ≡ 2gi

πvF

�j cos (θj /2)

cos (θi/2)
, λ̃2

i ≡
∑

j

λ2
j − λ2

i . (18)

For vF � � ω, T , Eq. (17) can be approximated as [71]

ξi (ω, T ) ≈ π2

[̃
λ2

i + 4λ1λ2λ3 ln

(
vF �√

ω2 + 4T 2

)]
. (19)

To gain some insight into the behavior of ξi , one may con-
veniently recast Eq. (19) using the weak-coupling RG flow
[35–38] dλ1

d(ln E) = −λ2λ3 (and its cyclic permutations). Up to

O(λ4
j ), i.e., to the accuracy of our perturbation expansion,

one finds

ξi (ω, T ) ≈ π 2̃λ2
i (

√
ω2 + 4T 2), (20)
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FIG. 2. The Kondo cloud ρK,2kF
(solid lines) and its amplitude

ρ̃K,2kF
(dashed lines) in the high-energy regime, with θ = π/20,

V = 0, and kF LK = 500, where LK = vF /TK is the Kondo length.
ρ̃K,2kF

decays exponentially along x on the scale of LT . This high-
energy Kondo cloud profile, up to an overall factor, is the same as for
ordinary single-channel Kondo systems represented by the lead-dot
model [see Fig. 4(a)].

where λ̃2
i (E) is as in Eq. (18), but now in terms of the running

couplings λi (E). The latter satisfy λi (E) ∼ [ln(E/TK )]−1,
where TK is the Kondo temperature, the single, emergent
energy scale characterizing the system and separating high
and low energies. To the accuracy of our RG equations, it
is given by [35–38] TK ∼ vF �e−1/λ̄, where λ̄ is the typical
(bare) value of the λj couplings. (We have TK = vF �e−1/λ0

in the isotropic λi ≡ λ0 case.) As the weak-coupling RG
equations are the same as those for the conventional Kondo
effect, it follows that the high-energy expression (19), apart
from an overall factor, is the same as that for ordinary single-
channel Kondo systems [64], which can be represented by the
lead-dot model that will be discussed later [see Fig. 4(a)].

Using our results for ξi (ω, T ), we now discuss the high-
energy form of the Kondo cloud and the oscillating TDOS.
The essential features are already captured by the simplest,
isotropic case, which we focus on henceforth. The Kondo
cloud ρK,2kF

at zero bias is given by

ρK,2kF
∝ 8π3

vF

1

ln2 (2T /TK )

|x|
LT

csch

(
2π

|x|
LT

)
× cos (2kF |x| + θ ) (21)

for T � TK (see the Appendix for details). This is depicted in
Fig. 2 for various temperatures as a function of |x|/LK , where
LK ≡ vF /TK is the Kondo length. Also shown is the ampli-
tude of ρK,2kF

, denoted as ρ̃K,2kF
. (The temperatures used in

Fig. 2 may strictly be somewhat outside the domain where
perturbation theory is accurate [38], but we believe that apart
from overestimating the amplitude, the graph captures well
the behavior.) The exponential suppression of the function
(|x|/LT ) csch (2π |x|/LT ) in the limit LT � |x| is manifested
in two complementary aspects: For fixed T , it shows that
ρ̃K,2kF

decays exponentially with increasing |x| on the scale

of LT , and for fixed x, given that ρ0,2kF
in Eq. (15) contains

the same function, one sees that it governs the exponential
decay of the high-temperature tail of the TDOS amplitude
ρ̃2kF

shown in Fig. 1. [The function 2πz csch(2πz) itself,
describing both the envelope of the Kondo cloud apart from
the logarithmic factor and the envelope of the 2kF free cloud,
is shown as a function of z = |x|/LT in the bottom panel of
Fig. 3 by a dash-dotted line.]

The temperature dependence of ρ̃K,2kF
and ρ̃2kF

is particu-
larly interesting when there is a good scale separation so that
0< |x|�LK . In this case, the high-energy regime LT �LK

displays a crossover upon lowering the temperature, from
the exponential behavior discussed above for LT � |x| to
a |x| � LT � LK regime where ρ̃K,2kF

∼ 1/ln2 (2T /TK ) is
governed by the Kondo logarithm. Extrapolating our results
to T � TK beyond the perturbative regime, we expect this
logarithmlike increase of the Kondo cloud to develop into a
contribution comparable to the free cloud and thus to govern
the behavior of ρ̃2kF

itself. Conversely, for |x| � LK , the
Kondo cloud and ρ̃2kF

remain exponentially suppressed even
for T � TK ; thus, the high-temperature regime crosses over to
the low-temperature one without an intermediate logarithmic
behavior. The temperature dependence of ρ̃2kF

in these two
complementary regimes is shown in Fig. 1. The presence
versus the suppression of the logarithmic contribution may
be used to estimate LK , that is, the extent of the Kondo
screening cloud.

IV. 2kF TDOS AT LOW ENERGIES

Now we turn to energies much below TK . In this regime,
weak gα perturbation theory is inapplicable. Instead, we will
work in the vicinity of the topological Kondo fixed point [35]
and adapt the CFT results of Ref. [70] to obtain ξi . At the
Kondo fixed point, i.e., at zero energy where the RG-irrelevant
perturbations near this fixed point completely decayed,
we have

ξi (ω → 0, T → 0) = 1 − S(1), (22)

where S(1) is the single-particle-to-single-particle scattering
amplitude at the Fermi energy. It is given by

S(1) = S
j
s

/
S

j

0

S0
s

/
S0

0

, (23)

with S
j
s =√

2/(2+k) sin [π (2j+1)(2s + 1)/(2 + k)], where
k is the level of the SU(2)k current algebra, j is the spin
of conduction electrons, and s is the impurity spin [70]. For
our model, s = 1/2, j = 1, and k = 4 [35,38], and therefore,
S(1) = 0. This remarkable result signifies that, in stark contrast
to Fermi-liquid behavior, there is no single-particle scattering
in topological Kondo systems at the Kondo fixed point. In
terms of ρ2kF

, which measures the single-electron interference
of incoming and outgoing waves, the vanishing of S(1) at
the Kondo fixed point translates into ρ2kF

→ 0 as T , V → 0.
The 2kF TDOS thus may be used to directly demonstrate
the absence of single-particle scattering in the topological
Kondo effect.

At low energies, but away from the Kondo fixed point,
RG-irrelevant perturbations have to be taken into account, and
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FIG. 3. Top: The oscillating part of the TDOS ρ2kF
(solid lines)

and its amplitude ρ̃2kF
(dashed lines) in the low-energy regime, with

δλ=−0.093, θ = π/20, V = 0, and kF LK = 1. Bottom: Rescaling
ρ2kF

and the corresponding scaling collapse of ρ̃2kF
, as follows

from ρ̃2kF
∝ (T/TK )1/3h(|x|/LT ). The universal scaling function

h(|x|/LT ) (dashed lines) is also compared to that of free fermions
(dash-dotted line), hfree(|x|/LT ) = vF ρ̃0,2kF

/2. Note that the latter
displays scaling collapse without amplitude rescaling.

these lead to corrections δξi (ω, T ) to the function ξi (ω, T ).
For the neighborhood of an SU(2)k non-Fermi-liquid Kondo
fixed point, considering only the perturbation of the smallest
scaling dimension �s = 1 + 2/(2 + k) (the leading irrele-
vant operator), the CFT calculation of Ref. [70] shows that
δξi (ω, T ) ∝ (T/TK )�s−1p(ω/T , k), where p is an integral
expression. (Note that in contrast to the description in the
high-energy regime, the CFT does not determine TK , but
it rather enters as a microscopic parameter: It is the high-
energy cutoff of the low-energy theory.) For the details of the
calculation and the resulting general form of p we refer the
reader to Ref. [70]; here we use only the result specialized for
the k = 4 case of the three-lead topological Kondo effect [35].
We have

ξi (ω, T ) = 1 − δλ
√

3(2πT/TK )1/3I (ω, T ). (24)

Here δλ is proportional to the dimensionless coupling of the
leading irrelevant operator, and

I (ω, T ) ≡
∫ 1

0
du

[
u−iω/2πT u−1/2(1 − u)1/3F (u)

− �(5/3)

�2(4/3)
u−2/3(1 − u)−4/3

]
, (25)

where � is the gamma function and
F (u) ≡ 2F1(4/3, 4/3; 1; u) is the hypergeometric function.
We emphasize that the power law T �s−1 = T 1/3 in Eq. (24)
directly provides information on the the scaling dimension
�s = 4/3.

For low energies, it is useful to consider two comple-
mentary regimes: when T = 0 but V = 0 and when V = 0
with T � 0. Although, as mentioned earlier, the T = 0 spatial

correlations are due to the free Green’s functions, there is
useful information to be obtained from ξ and the overall
amplitude of ρ2kF

. For ξ we find

ξi (ω, 0) = 1 + δλ′[
√

3 − iε(ω)]|ω/TK |1/3, (26)

where δλ′ ≈ 3.98 δλ and ε(ω) is the sign function. This
expression, first, may be used to specify δλ: While this is a
free parameter for the CFT, the fact that the T matrix is a
universal function [38] of ω/TK implies that δλ also has a
universal value. We can approximately obtain this by using
Eq. (26) to fit to the numerically exact results of Ref. [38];
this gives δλ ≈ −0.093. It also follows that for T → 0, ρ2kF

is a simple expression set by the second term in Eq. (26):

ρ2kF
(x, V, 0) ∝ 2

vF

δλ′|eV /TK |1/3

×{
√

3 cos [2K (eV, x)] + ε(eV ) sin [2K (eV, x)]}. (27)

In the V = 0, T � 0 case, we plot the oscillating compo-
nent of the TDOS of lead electrons for various temperatures
(top panel of Fig. 3). As a function of temperature, ρ2kF

is
gradually suppressed for all x as T decreases. This is in con-
trast to the free cloud which gradually saturates upon lowering
the temperature [see Eq. (15) and Fig. 1]. Note that at low
energies, since LK became the short-distance cutoff (which
follows from TK being the high-energy cutoff), the only length
scale that can set long-distance features is the thermal length
LT . This can be made manifest by noting that the TDOS
amplitude ρ̃2kF

, as shown in the Appendix, admits the scaling
form ρ̃2kF

∝ (T/TK )1/3h(|x|/LT ) with the universal scaling
function h(|x|/LT ) = ρ̃2kF

/ρ̃2kF
(x →0). The corresponding

scaling collapse, illustrated in the bottom panel of Fig. 3,
may serve as a useful characteristic of the spatial organi-
zation of conduction electrons near the topological Kondo
fixed point and as a means to demonstrate the T 1/3 law (and
thus the scaling dimension �s) governing the suppression
of the oscillations as the temperature is lowered (Fig. 1).
[Extracting ρ̃2kF

and thus the scaling function h(|x|/LT ) from
ρ2kF

in practice may be facilitated by oscillation extrema
much denser than LT , including kF LK > 1. The latter is not
inconsistent with LK being the short-distance cutoff of the
CFT since that limits only the spatial resolution for ρ̃2kF

and
not the wavelength of the 2kF oscillations.] We note that
a similar form, ρ̃2kF

= f (T/TK )hfree(|x|/LT ), holds also in
the high-energy regime. The scaling function in that case,
hfree(z = |x|/LT ) = 2πzcsch(2πz), is, however, the same as
for free fermions and thus, unlike h(|x|/LT ) for low energies,
does not provide information on Kondo features. The two
curves are contrasted in the bottom panel of Fig. 3.

V. DISCUSSION AND CONCLUSIONS

A common feature shared by our high- and low-
temperature results is the thermal-length-controlled large-
|x| decay of the amplitude ρ̃2kF

[see Eqs. (15) and (21)
and Fig. 3]. In terms of the temperature dependence of
ρ̃2kF

(T , |x|) (illustrated in Fig. 1), the role of |x| is thus
to control the competition between the thermal and Kondo
lengths LT and LK by setting the low-temperature cutoff
above which LT dominates.
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Considering that our high- and low-energy asymptotics are
expected to be accurate [38] for T � 103TK and T � 10−2TK ,
respectively, one needs slightly exaggerated |x|/LK values
to achieve good scale separation while staying within the
strict domain of validity of our theory. (Figure 1 uses
|x| = 10−5LK for |x| � LK and |x| = 200LK for
|x| � LK .) We, however, believe that the behavior is captured
qualitatively correctly also for less conservative values of T ,
as in Figs. 2 and 3, which allows for scale separation for more
moderate |x|/LK . It would be interesting to compare this
expectation to results from numerical renormalization group
calculations of the T matrix which are also valid between the
asymptotic regimes [72].

To work in the regime dominated by topological Kondo
physics, as we noted in Sec. II, temperature and voltage should
be much smaller than the induced superconducting gap � and
the charging energy Ec. For topological Kondo setups, these
are expected to be comparable to those in recent Al-InAs
nanowire devices [13,73,74] in which Ec ∼ � ∼ 0.1 meV.
These values also provide an estimate for the energy win-
dow within which to set the Kondo temperature TK using
suitable tunnel couplings. For clear 2kF oscillations, low-
disorder leads with mean free path l satisfying kF l � 1 are
advantageous, as in recent ballistic InSb nanowire [75] and
InAs two-dimensional electron-gas-based [76] devices with
l ∼ 1 μm, considering a typical Fermi wavelength [77] of
λF ∼ 20 nm. In terms of the oscillation amplitude itself, as
shown in Fig. 1, these are appreciable: The maximal ampli-
tude (as a function of T ), even for |x| = 200LK , is just an
order of magnitude smaller than that of the saturated (T = 0)
free 2kF TDOS, and it increases with decreasing |x|. Provided
that the free 2kF TDOS is accessible in the device compo-
nents forming the leads, the features we predict should also
be visible.

While in Sec. III we found that the high-energy behavior
of ρ̃2kF

and ρ2kF
is similar to that in more conventional

Kondo systems, there are important differences in the low-
energy regime. It is thus useful to contrast our results with
such more conventional, single- and multichannel Kondo
systems. The simplest single-channel Kondo effect arises
in the lead-dot model shown Fig. 4(a). Here S(1) = −1,
corresponding to a π/2 phase shift in single-particle scat-
tering [66,70]. This system is a local Fermi liquid at
low energies. The low-temperature ρ̃2kF

thus is similar to
the free cloud, increasing upon lowering temperature as
the reduction of thermal smearing allows more and more
single-particle interference.

Our findings are also in contrast to two-channel Kondo
(2CK) systems proposed and later experimentally studied
by Oreg and Goldhaber-Gordon [55,56]. Their system is a
two-lead 2CK model where there is a linear combination of
modes without single-particle scattering at the Fermi energy
[i.e., S(1) = 0 for this linear combination], but there is another
linear combination which still has single-particle scattering,
translating to ρ2kF

= 0 at the 2CK fixed point [78]. It is
interesting to note, however, that one may modify this model
by removing one of the leads while maintaining the coupling
symmetry between the remaining lead and the large dot [lead-
ing to the setup in Fig. 4(b)]. Now there is only the S(1) = 0
mode, which leads to ρ2kF

= 0 at the 2CK fixed point. How-

FIG. 4. (a) The lead-dot model, with a small quantum dot form-
ing a spin-1/2 “impurity” coupled to a lead of spin-1/2 conduction
electrons. (b) The modified Oreg–Goldhaber-Gordon model [55],
where now the small quantum dot is also coupled to a large
quantum dot which acts as a reservoir of spin-1/2 electrons. This
model is a modified version of the one confirmed experimentally
to host the two-channel Kondo effect [56]. (c) The generalized
Oreg–Goldhaber-Gordon model, with a small dot and three large
dots. In order for this model to host the four-channel Kondo
effect, the couplings to the large dots and the lead have to be
symmetric.

ever, as temperature is lowered, the power-law suppression is
different: ρ̃2kF

(x, 0, T ) ∼ T 1/2, as can be shown by adapting
our considerations to this case.

A system for which we do find the same power law (and
SU(2)4 current algebra [79]) as for the topological Kondo
effect is the four-channel Kondo (4CK) model, corresponding
to the generalized Oreg–Goldhaber-Gordon setup with three
large dots [55,80] [Fig. 4(c)]. However, now the conduction
electrons have j = 1/2, which results in S(1) = 1/

√
3 and

thus ρ2kF
= 0 at the 4CK fixed point.

Generalizing our considerations, it is also interesting to
note that one may use ρ2kF

at zero temperature and bias
to measure |S(1)| in a range of Kondo and other quantum
impurity systems, provided there is only one value of kF

to consider (as is the case for single-channel leads). To this
end, one takes the ratio between ρ̃2kF

∝ 2|S(1)|/vF and the
nonoscillating TDOS component ρk=0 ∝ 2/vF . This is useful
since the proportionality factor [originating from Eq. (8)] is
the same in both cases and depends only on the density of
states and physical characteristics of the STM tip [69,81].
Therefore, ρ̃2kF

/ρk=0 = |S(1)|.
To summarize, we have shown that the oscillating com-

ponent ρ2kF
of the TDOS provides valuable novel insights

into the strong correlations in the topological Kondo effect.
At zero bias, the difference in the behavior of the ampli-
tude ρ̃2kF

as a function of temperature for different values
of |x|/LK provides information on the size of the Kondo
length LK and hence the extent of the Kondo screening cloud.
At low temperatures, ρ̃2kF

admits a universal scaling form
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ρ̃2kF
∝ (T/TK )1/3h(|x|/LT ) characterizing the conduction

electrons’ spatial organization near the topological Kondo
fixed point. As temperature and bias tend to zero, ρ2kF

be-
comes completely suppressed, revealing that in the topologi-
cal Kondo effect, single-particle scattering is entirely absent
at the Fermi energy.
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APPENDIX

In this appendix, we study the temperature dependence
of the amplitude of the 2kF TDOS with isotropic couplings
at zero bias in both the high- and low-energy regimes. If
one denotes y ≡ ω/T , in the high-energy regime the spectral
function contribution relevant for the Kondo cloud amplitude
has the form

ÃK,2kF
(|x|/LT , y, T /TK )

= −4π2

vF

1

ln2
(

T
TK

√
y2 + 4

) cos

(
2y

|x|
LT

)
. (A1)

The Kondo cloud can then be obtained from Eq. (8). For
T � TK , its amplitude can be approximated by the integral

ρ̃K,2kF
(|x|/LT , 0, T /TK )

∝ π2

vF

∫ ∞

−∞
dy

sech2 (y/2)

ln2 (2T /TK )
cos

(
2y

|x|
LT

)
= 8π3

vF

1

ln2 (2T /TK )

|x|
LT

csch

(
2π

|x|
LT

)
. (A2)

Since |x|
LT

csch (2π
|x|
LT

) → 2 |x|
LT

e−2π |x|/LT for LT � |x|, this
shows that the amplitude of the Kondo cloud decays expo-
nentially with |x| on the scale LT .

In the low-energy regime, one has

Ã2kF
(|x|/LT , y, T )

= 2

vF

δλ
√

3

(
2π

T

TK

)1/3

Re
[
I (y)ei2y

|x|
LT

]
. (A3)

Therefore, the amplitude of the 2kF TDOS is

ρ̃2kF
(|x|/LT , 0, T ) ∝ − 2

vF

δλ
√

3

(
2π

T

TK

)1/3

h

( |x|
LT

)
(A4)

for some function h. To extract the T → 0 asymptotic
power law, we may take LT � |x| and thus substitute
h(|x|/LT ) ∼ h(0). This gives the T 1/3 decay.
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