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Charger-mediated energy transfer in exactly solvable models for quantum batteries
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We present a systematic analysis and classification of several models of quantum batteries involving different
combinations of two-level systems and quantum harmonic oscillators. In particular, we study energy-transfer
processes from a given quantum system, termed a “charger,” to another one, i.e., the proper “battery.” In this
setting, we analyze different figures of merit, including the charging time, the maximum energy transfer, and the
average charging power. The role of coupling Hamiltonians which do not preserve the number of local excitations
in the charger-battery system is clarified by properly accounting for them in the global energy balance of the
model.
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I. INTRODUCTION

Currently there is worldwide interest in exploiting quan-
tum phenomena such as superposition, quantum coher-
ence, and entanglement for future technologies [1,2] in
the realms of communication, computation, simulation, and
sensing/metrology. On a seemingly disconnected path, the
possibility to use quantum resources to achieve superior
performance in the manipulation of energy is currently being
intensively studied [3–10].

In this context, a number of researchers has been working
on “quantum batteries” [11–17], i.e., quantum mechanical
systems for storing energy where genuine quantum effects can
be used to obtain more efficient and faster charging processes
with respect to classical analog systems. From an abstract
point of view, the fact that quantum coherent processes can be
faster than classical operations is a known fact emerging from
quantum information theory and, specifically, from the con-
cept of quantum speed limits [18–20]. The idea of exploiting
quantum coherence for efficiently charging (or discharging)
quantum batteries has been studied in a fully abstract fashion
[11–14], and, more recently, by exploiting concrete models
that can be implemented in laboratories [15,16].

In this paper, we follow the same research line but, differ-
ently from previous attempts [15,16], we focus only on mini-
mal models of quantum batteries, which can be solved exactly.
The simplicity of our toy models allows us, on the one hand,
to avoid all subtle approximations and formal technicalities
needed to handle more sophisticated models such as those
studied in Refs. [15,16], and, on the other hand, to identify
general features, which are independent of the details of the
specific experimental implementation.

To this end, we model a quantum battery as either a
two-level system (TLS) or a quantum harmonic oscillator
(QHO), the same simplified picture being also used for the
charging system—see Figs. 1(a) and 1(b). The basic idea
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here is that TLSs and QHOs can be viewed as elementary
building blocks of more complex quantum batteries. Also, the
models considered in this paper can be experimentally im-
plemented. Indeed, TLSs and QHOs are ubiquitous in atomic
and condensed matter physics. They are elementary building
blocks of cavity QED architectures [21,22] and in systems
of trapped ions [23,24], ultracold atoms [25,26], supercon-
ducting circuits [27–30], and semiconductor quantum dots
[31–38].

For the three charger-battery combinations illustrated in
Fig. 1(b) and by means of a unitary Hamiltonian interaction,
we study energy transfer processes from the charger initialized
in an arbitrary state to the quantum battery initialized in the
ground state. We are particularly interested in understanding
the relevance of quantum coherence for improving the effi-
ciency of the charging process and in clarifying the role of
coupling terms that do not commute with the local Hamil-
tonians of the model. Among the main results of this paper,
we emphasize the following ones: (i) When a TLS-based
quantum battery is charged via a QHO, it is convenient to
prepare the charger in a Fock state which, for sufficiently large
energies, can be safely replaced by a coherent state giving ap-
proximately equal performances; (ii) in the previous situation,
we observe that the charging time is inversely proportional to
the square root of the charger energy.

In our treatment, we focus on average energies (i.e.,
Hamiltonian expectation values) without taking into account
statistical fluctuations. For this reason, the presented approach
is applicable also in contexts other than that of quantum
batteries, such as that of heat transport processes [39].

Our paper is organized as follows. A general theory of
energy transfer and different models of quantum batteries are
presented in Sec. II for the special case where the coupling
Hamiltonian between the charger and the battery preserves
the local energy of the system. This analysis is then extended
to noncommuting Hamiltonians (i.e., going beyond energy-
preserving protocols) in Sec. III. A brief summary and our
main conclusions are finally reported in Sec. IV. Useful
technical details can be found in the Appendix.

2469-9950/2018/98(20)/205423(11) 205423-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.205423&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevB.98.205423


GIAN MARCELLO ANDOLINA et al. PHYSICAL REVIEW B 98, 205423 (2018)

tτ0

H1

HBHAHBHA HBHA

(a)

g
A

ω0

g

g
A

ω0

B

ω0

B

ω0

A

ω0

B

ω0

(b)

(1)

(2)

(3)

FIG. 1. (a) shows the time-dependent interaction protocol that
allows energy flow between the charger, described by the Hamil-
tonian HA, and the battery, described by the Hamiltonian HB. At
time t < τ the two systems A and B do not interact and cannot
exchange energy, their dynamics being governed by the Hamiltonian
H0 = HA + HB. In the time interval 0 < t < τ the Hamiltonian H1

is switched on and the two systems interact. Finally, the interaction is
switched off at time τ , and the energy EB(τ ) stored in the battery B
is a conserved quantity. (b) illustrates cartoons of the three charger-
battery toy models introduced and studied in this paper. Subpanel
(1): Energy transfer is studied between two qubits. Subpanel (2):
Energy transfer is studied between a quantum harmonic oscillator
and a qubit. Subpanel (3): Energy transfer is studied between two
quantum harmonic oscillators.

II. ENERGY TRANSFER IN THE CHARGER–QUANTUM
BATTERY SETUP

In this section we introduce a general theoretical frame-
work to address the charging process of a quantum battery
schematically represented in Fig. 1. We consider two quantum
systems, A and B, where A is the “charger,” initially con-
taining some input energy, while B is the proper “quantum
battery,” initially prepared in the ground state. We denote by
ρA(t ) and ρB(t ) the density matrices representing their respec-
tive quantum states and with HA and HB the corresponding
time-independent local Hamiltonians. We can therefore iden-
tify with EA(t ) = tr[HAρA(t )] the energy of the charger and
with EB(t ) = tr[HBρB(t )] the energy of the quantum battery.
We assume that at time t = 0 the charger is initialized in an
arbitrary state while the battery is in its ground state, i.e.,

ρAB(0) = ρA(0) ⊗ |0〉〈0|B, (1)

such that EA(0) > 0 and EB(0) = 0. We model the charging
process as the physical operation of letting A and B interact
for a finite amount of time τ , as in Fig. 1(a). More precisely,
we assume the following global Hamiltonian,

H(t ) = H0 + λ(t )H1, (2)

where H0 = HA + HB, H1 is some given interaction Hamil-
tonian, and λ(t ) is a dimensionless coupling constant, equal
to 1 for t ∈ [0, τ ] and 0 elsewhere. Physically, the “on/off”
coupling constant λ(t ) is the only classical parameter which
can be externally controlled. (This can be implemented using
a quantum clock; see, e.g., Ref. [40].) This implies that the
total energy E(t ) = tr[H(t )ρAB(t )] is constant at all times
with the exception of the switching times, i.e., t = 0 and t =
τ , where some nonzero energy can be exchanged, representing
the thermodynamic work cost of switching the interaction on
and off. Such a cost can be quantified as the total energy
change at both switching points, i.e.,

δEsw(τ ) ≡ [E(τ+) − E(τ−)] + [E(0+) − E(0−)]

= tr{H1[ρAB(0) − ρAB(τ )]}, (3)

where ρAB(τ ) = e−i(H0+H1 )τ ρAB(0)ei(H0+H1 )τ (h̄ = 1
throughout this paper).

We first consider the case in which the interaction Hamil-
tonian commutes with the sum of the local terms,

[H0,H1] = 0, (4)

ensuring δEsw(τ ) = 0 for every initial state. From a physical
point of view, this choice corresponds to energy-preserving
protocols in which all the energy stored in the quantum battery
B at the end of the charging process originates, without any
thermodynamic ambiguity, from the charger A. In this case,
the performances of the charger-battery setup can be studied
in terms of the (mean) energy stored in the battery and the
corresponding average storing power, defined respectively as

Es(τ ) ≡ EB(τ ) = tr[HBρB(τ )], (5)

Ps(τ ) ≡ Es(τ )/τ. (6)

Upon optimization with respect to the charging time τ , we can
extract from these functionals a collection of figures of merit
which quantify the “quality” of a given charging protocol from
different perspectives. Specifically, we define the maximum
(mean) energy that can be stored in the quantum battery,

Es ≡ max
τ

[Es(τ )] ≡ E(τ ), (7)

the maximum power,

P̃s ≡ max
τ

[Ps(τ )], (8)

and their corresponding optimal charging times,

τ ≡ min
E(τ )=Es

(τ ), τ̃ ≡ min
P (τ̃ )=P̃s

(τ ). (9)

Finally, we also introduce the charging power at maximum
energy,

P s ≡ Es/τ = Es(τ )/τ , (10)
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which, due to the fact that τ and τ̃ may not necessarily
coincide, will in general be smaller than P̃s.

For noncommuting interactions [H0,H1] �= 0, more cau-
tion should be used when defining the figures of merit for a
given charging protocol. Indeed, in this case, the final energy
of the quantum battery will not only come from the charger
A but also from the classical modulation of the coupling
constant λ(t ) and, for this reason, the “quality” of the protocol
has some degree of arbitrariness depending on which of the
two energy fluxes is actually desired. The analysis of this
particular situation is postponed to Sec. III. In the next section,
instead, we study Es(τ ) and Ps(τ ) for three alternative models
of the charger-battery setting that fulfill the commutativity
identity (4) and admit a full analytical treatment, looking
for the presence of advantages associated with the quantum
structure of the system dynamics. As a useful tool for this
analysis, we compare the optimal charging times (9) to the
quantum speed limit (QSL) time τQSL [18–20,41] that defines
the minimum temporal interval needed to allow a quantum
system to evolve between two orthogonal states under the
action of its (time-independent) Hamiltonian H, i.e.,

τQSL = π

2

1

min{〈H〉 , 〈δH〉} , (11)

with 〈H〉 indicating the gap between the mean value and the
ground-state energy of H, evaluated on the system input state,
and 〈δH〉 instead being the corresponding square root of the
variance of H.

A. Energy transfer between two TLSs

We begin by studying the simplest, yet nontrivial, case of
a charger-battery setting which we will use as a reference for
the following study. Here, the charger and quantum battery
are two resonant TLSs (also called qubits throughout this pa-
per), coupled via an energy-preserving interaction that merely
shifts excitation quanta between the two qubits. Accordingly,
we write the system Hamiltonian (2) in terms of the following
components,

HA = ω0

2

(
σ (A)

z + 1
)
,

HB = ω0

2

(
σ (B)

z + 1
)
,

H1 = g(σ (A)
− σ

(B)
+ + σ

(A)
+ σ

(B)
− ), (12)

where ω0 is the level spacing of each TLS, σ (S)
z are Pauli

matrices acting on the S = A, B subspaces, σ
(S)
+ , σ

(S)
− are spin

ladder operators acting on the same subspaces, and g is the
coupling strength. In this case, energy transfer is occurring
through the well-known Rabi oscillations (see Fig. 2). Indeed,
exploiting the fact that Eq. (4) holds, one can easily show
that, assuming the charger A to be initialized in the excited
state |1〉A and the qubit B in the ground state |0〉B, the evolved
system can be expressed as

|�(t )〉AB = e−iω0t [cos(gt ) |1〉A |0〉B − i sin(gt ) |0〉A |1〉B],

(13)
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FIG. 2. (a) displays the stored energy Es(τ ) (in units of ω0) as
a function of gτ , for the case of two coupled qubits. (b) shows the
average charging power Ps(τ ) (in units of gω0) as a function of gτ .
We clearly see that the quantum battery is charged by the charging
qubit via Rabi oscillations.

yielding

Es(τ ) = ω0 sin2(gτ ), Ps(τ ) = ω0
sin2(gτ )

τ
, (14)

for the quantities (5) and (6). The maximum energy is hence
provided by Es = ω0 and is achieved at time τ̄ = π/(2g)
[the corresponding power at maximum energy transfer (10)
being P s = 2gω0/π ]. The maximum power instead is P̃s ≈
0.72gω0 and is achieved at time τ̃ ≈ 1.16/g [result obtained
by simple numerical inspection of the function y = sin2(x)/x,
which has maximum value ỹ ≈ 0.72 at x̃ ≈ 1.16].

B. Energy transfer between a QHO and a TLS battery

We now focus on the case in which the charger A is
described by a QHO while the quantum battery B is still
described by a TLS. The relevant Hamiltonians are

HA = ω0a
†a,

HB = ω0

2

(
σ (B )

z + 1
)
,

H1 = g(a†σ (B )
− + aσ

(B )
+ ), (15)

where a† (a) is the creation (destruction) bosonic operator
acting on A, and where again ω0 and g are respectively the
characteristic frequency of both systems and the coupling
strength parameter of the model. The model described by
the total Hamiltonian H = HA + HB + H1 is the so-called
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Jaynes-Cummings model [42], which can be seen as the
building block of much more complicated many-body models
such as the Tavis-Cummings [43,44] and Dicke models [45].

We now note that from the commutativity relation (4)
the operator K = a†a + σz/2, which counts the total number
of excitations, commutes with the full Hamiltonian H and
is therefore a constant of the motion. We can hence solve
the dynamics by restricting the analysis to subspaces with
a given number n of excitations spanned by the vectors
|n〉A |0〉B and |n − 1〉A |1〉B, where Hamiltonian simplifies to
the one described in the previous section—see Eq. (12)—with
appropriate renormalized parameters. Here, the eigenvectors
of H are |±, n〉 = (|n〉A |0〉B ± |n − 1〉A |1〉B)/

√
2 and the

corresponding eigenvalues are ω±,n = nω0 ± √
ng. Therefore

if we start from the initial quantum state |n〉A |0〉B, its temporal
evolution is given by

|�n(t )〉AB = e−inω0t [cos(
√

ngt ) |n〉A |0〉B

− i sin(
√

ngt ) |n − 1〉A |1〉B]. (16)

Consider next the case of a generic input of the form (1) where
we fix the initial energy to the value EA(0) = Ein and hence
the average number of excitations to K = Ein/ω0. Expanding
ρAB(0) on the Fock basis |n〉A |0〉B, from Eq. (16) we can
calculate the mean stored energy and the average charging
power,

Es(τ ) = ω0

∑
n

p(K )
n sin2(

√
ngτ ), (17)

and

Ps(τ ) = ω0
∑

n p(K )
n sin2(

√
ngτ )

τ
, (18)

where p(K )
n is the diagonal part of ρA(0) in the Fock basis,

subject to the constraint of yielding the selected initial energy,
i.e.,

∑
n np(K )

n = K .
Let us first study the case of an initial state of the Fock

type. In this case, p
(K )
K = 1 and p

(K )
n�=K = 0, and Eqs. (17) and

(18) become

EF
s (τ ) = ω0 sin2(

√
Kgτ ), (19)

P F
s (τ ) = ω0

sin2(
√

Kgτ )

τ
, (20)

where “F” denotes that the initial state of the charger is a

Fock state. The maximum of Eq. (19) is E
F
s = ω0 and is

achieved for the first time at

τ̄ = π/(2
√

Kg). (21)

At this special time the battery gets completely charged,
resulting in a final state of the AB system that exactly factor-
izes, i.e., |K − 1〉A|1〉B. Due to the properties of the function
sin2 (x)/x—Sec. II A—the maximum value of the power (20)
is instead provided by P̃ F

s ≈ 0.72gω0

√
K and is achieved at

time

τ̃ ≈ 1.16/(
√

Kg), (22)

which, apart from a multiplicative constant, exhibits the same
1/

√
K scaling of Eq. (21). Compared with the two-qubit

model of the previous section, Eq. (14), in the present case
there is still a transfer of only one quantum of energy from A
to B but in a time window that is reduced by a factor 1/

√
K .

Thus we can say that, from the initial number K of excitations
in the system, only one is eventually transferred from the
charger to the quantum battery, with the other K − 1 ones
acting as a catalytic resource that increases the speed of the
process. This cooperative effect is the one that ultimately leads
to the 1/

√
K improvement reported in Eq. (21) which, despite

the lack of collective behavior stemming from the mutual
interactions between K qubit batteries coupled to a single
common photonic mode, mimics a similar scaling observed
in Ref. [15]. Such an advantage can also be connected with
the QSL bound (11) confirming an argument of Ref. [14].
Indeed, by direct evaluation, we have 〈H〉 = Kω0 and 〈δH〉 =√

〈δHA〉2 + Kg2 �
√

Kg, which, for K big enough, gives
τQSL 
 π/(2

√
Kg) reproducing the scaling of Eq. (21).

Consider next the case where A is initialized in a generic
(not necessarily Fock) input state. From a close inspection of
Eqs. (17) and (18) it turns out that, for fixed K , the values of

E
F
s and P̃ F

s are bigger than the corresponding quantities one
can obtain with any other input state of A having the same
expectation value of the input energy of the selected Fock

state. Indeed, from Eq. (17) we have Es(τ ) � ω0 = E
F
s , while

from Eq. (18) we obtain

Ps(τ ) = ω0g
∑

n

√
np(K )

n

[
sin2(g

√
nτ )

g
√

nτ

]

� ω0g max
x

[
sin2(x)

x

] ∑
n

√
np(K )

n

� ω0g
√

K max
x

[
sin2(x)

x

]
= P̃ F

s , (23)

where in the second inequality we used the concavity of the
function

√
x to write

∑
n p(K )

n

√
n �

√
K . These relations are

also evident in Fig. 3 where we plot the stored energy EF
s (τ )

and the average charging power P F
s (τ ) of the Fock input

case, together with the corresponding values of Es(τ ) and
Ps(τ ) obtained for different choices of the input state of A
(namely, the case of a coherent input and the one of a thermal
distribution, characterized by a Poissonian distribution pn =
e−KK/n! and a Gibbs distribution pn = [K/(K + 1)]n/(K +
1), respectively).

According to the above analysis, for fixed input mean
energy of the charger A, Fock states provide optimal per-
formances with respect to all our figures of merit. A Fock
state, however, is not always easy to be prepared experimen-
tally [46] for an arbitrary number of photons K . One may
therefore be interested in replacing it with a more afford-
able coherent state |√K〉 having the same energy. Luckily,
from our previous formulas (see also Fig. 3) it is evident
that for K � 1, a coherent state and a Fock state produce
almost indistinguishable results. More generally, this fact is
valid for every initial state with a sufficiently peaked energy
distribution {p(K )

n }
n
, i.e., a state such that 〈(a†a)2〉 � 〈a†a〉.

Such weak dependence on the specific initial state is clearly
crucial for the purpose of validating experimentally the 1/

√
K
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FIG. 3. (a) displays the stored energy Es(τ ) (in units of ω0) as a function of
√

Kgτ , for the case of a qubit charged by a QHO. The initial
number of excitation is K = 3. Different curves refer to results obtained for three different choices of the initial state of the charger: Fock state
(blue solid line), coherent state (red dashed line), and Gibbs state (dashed-dotted green line). (b) shows the average charging power Ps(τ ) (in
units of

√
Kgω0) as a function of

√
Kgτ . The initial number of excitation is K = 3. Color coding as in (a). (c) Same as in (a) but for K = 20.

The black dotted line represents the energy of a Gibbs state of the qubit, with temperature equal to that of the initial Gibbs state of the QHO.
Note that, for long times (not shown), the system has revivals, due the unitarity of the time evolution. (d) shows the average charging power
corresponding to (c). This figure clearly shows the “optimality” of the Fock state, which is the best choice for maximizing the energy and
power. Note that, for K � 1 as in (c) and (d), the coherent state well approximates the quantities Es(τ ) and Ps(τ ) calculated for an initial Fock
state.

scaling of the optimal charging times reported in Eqs. (21)
and (22).

Finally, we note that the role of quantum coherence is not
crucial in the charging step of a quantum battery. Indeed,
Fock states, which provide optimal performances, have no
coherence in the basis of the eigenstates of the Hamiltonian
of the charger. Furthermore, because of Eq. (23), any coherent
combination of Fock states is not optimal. The role of entan-
glement is more much subtle and is thoroughly discussed in
Ref. [47].

C. Energy transfer between two QHOs

We now study the case in which both A and B are QHOs
with a quadratic Hamiltonian H characterized by the follow-
ing terms,

HA = ω0a
†a, HB = ω0b

†b, H1 = g(a†b + ab†). (24)

The operator HA + HB + H1 can be diagonalized in terms of
the “normal” bosonic operators, γ± = (a ± b)/

√
2, with asso-

ciated normal frequencies ω± = ω0 ± g which, to guarantee
overall stability, are taken positive by assuming |g| � ω0.

As usual, we fix the initial mean energy of the charger
A [EA(0) = Ein] and define the average number of excita-
tions, K = Ein/ω0. In order to calculate the stored energy

(5), we find it then useful to adopt the Heisenberg repre-
sentation, writing Es(τ ) = tr[ρAB(0)HB(τ )], with HB(τ ) ≡
eiHτHBe−iHτ . Expressing hence a and b as functions of the
normal operators γ± and using that the latter evolve simply as
γ±(t ) = e−iω±t γ±, we obtain

HB(τ ) = ω0

2

{
a†a + b†b

−
[
e−i2gτ

2
(a†a − b†b + b†a − a†b) + H.c.

]}
.

(25)

This considerably simplifies the calculation of Es(τ ) since
the initial state contains no excitations on B, yielding

Es(τ ) = Kω0 sin2(gτ ), (26)

Ps(τ ) = Kω0 sin2(gτ )

τ
, (27)

the formulas applying irrespectively from the details of the
initial state (a direct consequence of the quadratic form of
the Hamiltonian, for which the dynamics of the first and
second moments—e.g., 〈a〉 , 〈b〉 , 〈a†a〉, etc.—is independent
of higher-order ones).
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Equations (26) and (27) have exactly the same dependence
on time of Eq. (14) for the case of the two TLS model.
Hence, the optimal charging times of the two models coincide,
i.e., τ̄ = π/(2g) and τ̃ ≈ 1.16/g, and exhibit no speedup in
K . Nonetheless, due to the higher storing capability of the
QHO battery which now has an unbounded energy spectrum,
in the present case the values for the associated maximal
stored energy and maximal power (i.e., Es = Kω0 and P̃s ≈
0.72gKω0) show a linear increase in K that was absent in
the model of Sec. II A. It is also worth stressing that the K

improvement for P̃s reported here has a completely different
origin with respect to the

√
K power improvement observed in

Sec. II B. Indeed, due to the absence of an unbounded energy
spectrum for the battery of the QHO-TLS model, the

√
K

improvement of the previous section is just a consequence
of the speedup in the charging time (22) which, as already
noticed, is instead absent in the present model. The value
of τ̄ = π/(2g) obtained here can finally be compared with
the QSL time of Eq. (11). An analogous calculation of Sec.
II B gives τQSL 
 π/(2

√
Kg) in the large K limit, revealing

that, at variance with the QHO-TLS case, the observed τ̄

does not saturate the QSL bound. This is due to the fact that,
before reaching a state of maximal charging for B, the system
has to travel between a finite number of orthogonal states.
While the bound can be applied for each of this transition,
we should take into account that we have to travel through
many orthogonal states. This simple example shows that the
predictions of a quantum advantage based on a speed limit
argument [14] are not always correct independently of the
specific model.

III. THEORY OF ENERGY TRANSFER IN THE
NONCOMMUTING CASE

In this section we discuss how the process of energy ex-
change between a charger and a quantum battery is modified
when the condition [H0,H1] = 0 is not fulfilled. In this case
δEsw(τ ) �= 0, meaning that the protocol described by Eq. (2)
does not simply enable energy transfer from A to B, since
some energy is externally injected into or extracted from
the whole system, via the sudden quench of the interaction
Hamiltonian. To characterize the performances of these spe-
cial charger-battery models we are hence forced to introduce a
new functional Et (τ ) which, at variance with Eq. (6), accounts
only for the process of energy transfer from A to B, while
properly neglecting the extra energy contributions induced by
the external switching of H1.

Clearly, there is a certain degree of arbitrariness in giving
such definition. In this paper, we offer the following opera-
tional definition of Et (τ ):

(1) If δEsw(τ ) < 0, some energy is extracted from the
system A + B, which has a “credit” towards the external
world. We can therefore safely state that all the energy stored
in B comes from A setting Et (τ ) = Es(τ ).

(2) If δEsw(τ ) > 0, some energy is injected into the sys-
tem, which has a “debit” towards the external world. If the
energy EA(τ ) in A is sufficient to compensate this energy
debit, i.e., if EA(τ ) � δEsw(τ ), we state that the remaining
energy in B is a transferred energy, Et (τ ) = Es(τ ). Otherwise,
if the energy EA(τ ) in A is not sufficient, we subtract from

the energy in B the remaining amount needed to pay the
debit. Therefore, the transferred energy is given by Et (τ ) =
Es(τ ) − [δEsw(τ ) − EA(τ )].

Summarizing, our definition of Et (τ ) can then be ex-
pressed as

Et (τ ) = Es(τ ) − max{0, δEsw(τ ) − EA(τ )}. (28)

With the help of the above quantity, in the remaining part
of this section we study the efficiency of the two specific
cases of charger-battery models with noncommuting H0 and
H1. In the first case—Sec. III A—we relax the hypothesis
that the two subsystems A and B are in resonance. In this
case the charging protocol does not act on the system by
controlling the coupling strength g between A and B. Rather,
control occurs on the frequency of the subsystem A, which
can be brought in resonance with B or tuned away from it.
In the second case—Sec. III B—we explicitly include into
the Hamiltonian terms that do not simply transfer excitations
of H0 between the two subsystems. These terms can be
neglected when the coupling constant is small, invoking the
so-called “rotating wave approximation” (RWA) [48]. Hence,
this beyond-RWA regime better describes the case in which
the two subsystems A and B are strongly coupled. In what
follows we present a simple model having a critical point in
the spectrum and we show that, near the critical point, both
battery and charger are externally charged via quenches and
their energy increases as a power law in time. Although strong
coupling can be thought of being an obvious choice to reduce
the charging time, since in this case τ̃ ∼ 1/g, below we show
that this regime is not optimal in the sense that it does not fit
the ideal scenario of pure energy exchange between A and B.

For the sake of simplicity, both Secs. III A and III B deal
with the case of two QHOs.

A. Detuning protocol

So far we have analyzed a charging protocol in which
the coupling between the two subsystems A and B is turned
on and off. However, this protocol may be experimentally
challenging. A more practical way to control energy exchange
between the two subsystems A and B consists in manipulating
the frequency of the charger A, an experimentally viable route
with the technology described in Ref. [46]. The new protocol
goes as follows. The two subsystems A and B are initially
largely detuned and energy transfer is therefore strongly sup-
pressed. In a time window τ , the detuning is set to zero and
the two subsystems interact. Finally, the subsystem A is again
largely detuned from B and energy flow is again blocked.
Formally, the system under study consists of two QHOs with
a time-dependent Hamiltonian (2) with components

H0 = [ω0 + δω]a†a + ω0b
†b + g(a†b + ab†),

H1 = −δωa†a. (29)

The quantities ω0 and g and the operators a and b have the
same meaning as in Eq. (24) and δω is the detuning between
the two subsystems. The latter is assumed to not have a
definite sign but to be large in modulus with respect to the
coupling, namely, |δω/g| � 1.

We remind the reader that according to the definition of the
switching parameter λ(t ) of Eq. (2), H0 dictates the evolution
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at times t∗ �∈ [0, τ ], while H = H0 + H1 generates the evo-
lution at time t ∈ [0, τ ]. Accordingly, at time t∗ �∈ [0, τ ], the
two subsystems are largely detuned, and energy exchange is
suppressed. Using the well-known Schrieffer-Wolff transfor-
mation [48], in this time window we can effectively rewrite
H0 as

Heff
0 = [ω + δω + g2/δω]a†a + [ω − g2/δω]b†b, (30)

up to corrections on the order of g3/δω2. This effective
Hamiltonian, which is valid at all times t∗ �∈ [0, τ ] provided
|δω/g| � 1, shows that the interaction between A and B is
effectively quenched and exchange of quanta between the two
subsystems is strongly suppressed. Owing to this effective
decoupling, we can define two effective local Hamiltonians
acting on A and B, i.e.,

Heff
A = [ω + δω + g2/δω]a†a,

Heff
B = [ω − g2/δω]b†b, (31)

which are approximate constants of the motion. Once local
Hamiltonians on A and B are defined, we can apply the
general analysis described in Sec. II to calculate all relevant
quantities. For simplicity, we set K = 1.

At times t ∈ [0, τ ], the coupling parameter λ(t ) is equal to
one, and due to the presence of H1, the two subsystems are in
resonance. In this time interval, H = H0 + H1 is identical to
that reported in Eq. (24) and, as long as we consider a density
matrix of the form (1) as the input state for the system, the
dynamical evolution can be described as in Sec. II C. Hence,
it is straightforward to calculate the stored energy, the average
charging power, and δEsw(τ ),

Es(τ ) =
[
ω − g2

δω

]
sin2(gτ ),

Ps(τ ) =
[
ω − g2

δω

]
sin2(gτ )

τ
,

δEsw(τ ) = −δω sin2(gτ ). (32)

In the case δω > 0 we have δEsw(τ ) < 0 and net energy is
extracted from the system. According to Eq. (28), Et (τ ) =
Es(τ ). In the case δω > 0 net energy is injected from the
outside world. In this case the transferred energy should be
calculated according to the definition in Eq. (28) and no
simplifications occur. Our main results are illustrated in Fig. 4.

B. Beyond the RWA

We now study the case of two QHOs with counter-rotating
terms included in the interaction Hamiltonian, i.e.,

HA = ω0a
†a, HB = ω0b

†b, H1 = g(a + a†)(b + b†).

(33)

In the limit g � ω0, counter-rotating terms, i.e., terms of
the form a†b† and ab, can be safely neglected [48] and one
recovers Eq. (24).

The full Hamiltonian H = HA + HB + H1, which dictates
the dynamical evolution, has eigenvalues ω± =

√
ω2

0 ± 2gω0.
We therefore assume |g|/ω0 � 1/2 in order to guarantee
stability of the spectrum.

0 π/2 π 3π/2 2π

gτ

−1/2

0

1/2

1(a)

0 π/2 π 3π/2 2π

gτ

0

1/2

1(b)

FIG. 4. Figures of merit for the detuning protocol described in
Sec. III A. (a) shows the stored energy Es(τ ) (blue solid line) and
the switching energy δEsw(τ ) (red dashed line), in units of Kω0,
and as functions of gτ . Results in this panel have been obtained
by setting δω = ω0/2 and g = ω0/10. Since δω > 0, there is no
difference between the stored energy and the transferred energy,
i.e., Et (τ ) = Es(τ ). (b) shows the stored energy Es(τ ) (blue solid
line), the transferred energy Et (τ ) (black dashed-dotted line), and
the switching energy δEsw(τ ) (red dashed line). Results in this panel
have been obtained by setting δω = −ω0/2 and g = ω0/10. Since
δω < 0, some energy is injected into the system and Et (τ ) � Es(τ ).

In order to compute the figures of merit for this beyond-
RWA case, it is again useful to use the Heisenberg repre-
sentation which in this case yields the following temporal
evolutions for the field operators,

a(t ) = Raa (t )a + Rab(t )b + Raa† (t )a† + Rab† (t )b†,

b(t ) = Rba (t )a + Rbb(t )b + Rba† (t )a† + Rbb† (t )b†, (34)

where the quantities Rij (t ) are calculated in the Appendix. By
the same token, the local Hamiltonian for B gets transformed
into

HB(t ) = ω0[R∗
ba (t )a† + R∗

bb(t )b† + R∗
ba† (t )a + R∗

bb† (t )b]

× [Rba (t )a + Rbb(t )b + Rba† (t )a† + Rbb† (t )b†],

(35)

leading to the following expression for the stored energy,

Es(τ )

ω0
= [|Rba† (τ )|2 + |Rbb† (τ )|2]

+ 〈a†a〉A [|Rba† (τ )|2 + |Rba (τ )|2]

+ [〈aa〉A R∗
ba† (τ )Rba (τ ) + H.c.], (36)
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where for the sake of simplicity we have denoted the average
of an operator O evaluated on the initial state of the charger
as 〈O〉A = trA[OρA(0)]. We notice that 〈a†a〉A = K is the
mean value of excitations in the charger at the beginning of
the protocol and is proportional to the initial energy, so the
first two lines in Eq. (36) do not depend on the details of
the initial state. On the contrary, for a coherent state as the
initial state of A, we have 〈aa〉A = α2, while for both Fock

and thermal states of A, 〈aa〉A = 0. Hence, the third line in
Eq. (36) is different from zero only in the case of a coherent
state, while this quantity does not distinguish between a Fock
and a thermal state.

The switching energy δEsw(τ ) can be calculated as fol-
lows. We first note that E1(0) = 0. We therefore need to
calculate only the interaction energy at time τ , i.e., δEsw(τ ) =
−E1(τ ). With analogous steps to what described just above,

0 π/2 π 3π/2 2π

gτ

0

1/2

1

3/2

E
s(

τ
)/

(K
ω

0
)

(a)

0 π 2π 3π 4π
ω+τ

0

5

10

15

E
s(

τ
)/

(K
ω

0
)

(b)

0 π/2 π 3π/2 2π

gτ

−1/2

0

1/2

1

δE
sw

(τ
)/

(K
ω

0
)

(c)

0 π 2π 3π 4π
ω−τ

0

15

30
δE

sw
(τ

)/
(K

ω
0
)

(d)

0 π/2 π 3π/2 2π

gτ

0

1/2

1

E
t(

τ
)/

(K
ω

0
)

(e)

0 π/2 π 3π/2 2π
ω−τ

0

1/2

1

E
t(

τ
)/

(K
ω

0
)

(f)

FIG. 5. (a) displays the stored energy Es(τ ) (in units of Kω0) as a function of gτ , for the case of two coupled QHOs, evaluated by setting
g = 0.35 ω0. Different curves refer to results obtained for three different choices of the initial state of the charger: Stored energy for an initial
Fock or a thermal state evaluated by setting K = 3 (blue solid line); stored energy for an initial Fock or a thermal state evaluated by setting
K = 100 (dark blue solid line); stored energy for an initial coherent state evaluated by setting K = 3 (red dashed-dotted line); stored energy
for an initial coherent state evaluated by setting K = 100 (dark red dashed-dotted line). The same color code is used for all other panels. The
stored energy shows oscillations similar to the RWA case (see Fig. 2), with counter-rotating terms causing only quantitative corrections. (c)
displays the switching energy δEsw(τ ) (in units of Kω0) as a function of gτ , evaluated for g = 0.35 ω0. (e) displays the transferred energy
Et (τ ) (in units of Kω0) as a function of gτ , evaluated for g = 0.35ω0. (b) displays the stored energy Es(τ ) (in units of Kω0) as a function of
ω+τ and evaluated for g → ω0/2. Due to the vicinity to the critical point, the stored energy increases as a power law. (d) displays the switching
energy δEsw(τ ) (in units of Kω0) as a function of ω−τ , evaluated for g → ω0/2. This quantity measures the energy that is externally injected.
The power-law increase of this quantity is clear. (f) displays the transferred energy Et (τ ) (in units of Kω0) as a function of ω−τ , evaluated for
g → ω0/2. Only a small amount of the corresponding stored energy seen in (b) can be counted as transferred energy, while the majority of the
energy is externally injected.
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we find

δEsw(τ )

g
= −{[Rab(τ ) + R∗

ab† (τ )][Rbb† (τ ) + R∗
bb(τ )] + c.c.}

− 〈a†a〉A {[Raa (τ ) + R∗
aa† (τ )]

× [Rba† (τ ) + R∗
ba (τ )] + c.c.}

− {〈aa〉A [Raa (τ ) + R∗
aa† (τ )]

× [Rba (τ ) + R∗
ba† (τ )] + H.c.}. (37)

The above considerations for Eq. (36) still hold and also
Eq. (37) can distinguish only between the coherent state and
the other two choices of initial states of the charger. It is useful
to make a distinction between three situations. In the weak-
coupling |g|/ω0 � 1/2 regime we can invoke the RWA and
apply the analysis described in Sec. II C. The second situation,
i.e., the strong-coupling regime, occurs when |g|/ω0 � 1/2.
In this case the counter-rotating terms give quantitative cor-
rections [see Figs. 5(a), 5(c) and 5(e)], while the oscillating
behavior of Es(τ ) is still present. Finally, the case |g|/ω0 →
1/2 can be interpreted as a “critical point” and the stored
energy increases as a power law [see Figs. 5(b), 5(d) and 5(f)].
This behavior is due to the fact that one of the two eigenmodes
has zero frequency. Indeed, all the observables are functions
of the matrix elements Rij (t ), which contains the function
sin(ω±t )/ω±. When ω± → 0, we have sin(ω±t )/ω± → t ,
which explains the power-law behavior.

A comment on the strong-coupling and critical regimes is
now in order. In the weak-coupling regime, counter-rotating
terms can be neglected and rotating terms in H1 of the form
ab† + a†b are the “best interaction Hamiltonian” from the
point of view of energy transfer, since, by definition, they
just transfer excitations from A to B and vice versa. On the
other hand, in the strong-coupling and critical regimes, the
counter-rotating terms in H1 of the form a†b† + ab cannot
be neglected and they create/destroy a pair of excitations in
the two systems A and B. Now, the impact of these terms is
detrimental from the point of view of energy transfer. This
is particularly clear in the critical regime, where the both
Es(τ )—Fig. 5(b)—and the energy of the charger increase as
power laws. This growing energy is externally injected in the
system via the time-dependent modulation of the coupling
constant λ(t ) and only a small amount is exchanged between
A and B. In summary, in the strong-coupling and critical
limits our results cannot be interpreted in terms of pure
energy exchange between the two subsystems. The simplest
interpretation is, in contrast, in terms of two coupled systems
that are externally charged.

IV. CONCLUSIONS

In this paper, we presented a systematic classification and
analysis of several simplified models of energy transfer for
quantum batteries and of their associated charging processes.
Our approach, based only on different combinations of two-
level systems and harmonic oscillators, allowed us to de-
rive exact results without the necessity of introducing any
particular assumption or approximation. The set of models
considered in this paper covers many paradigmatic situations

including the nontrivial one when the interaction does not
preserve the total number of excitations.

Some of the results obtained in this paper for toy models
of quantum batteries are expected to hold in general. For ex-
ample, the scaling of the charging time with an inverse power
law of the charger energy is expected to be general—see also
Ref. [15]. Moreover, we believe that the fact that quantum
coherences in the basis of the eigenstates of the charger
Hamiltonian are not a necessary ingredient in order to achieve
optimal figures of merit is a general result, provided that no
counter-rotating terms are at play. Finally, the fact that the
strong-coupling regime is not suitable for studying the ideal
scenario of pure energy exchange between charger and battery
is also expected to hold true in more complicated models.

Possible future outlooks and applications of our work could
be theoretical or experimental implementations of our models
in specific systems and real devices, the development of a
more detailed analysis taking into account also the presence
of energy fluctuations, the extension of the considered models
to systems of arbitrary dimension, the presence of loss or
other noisy mechanisms, and charging of the battery via an
external classical field [49]. Since it would be highly desirable
for our quantum battery to store energy for a relatively long
time, a thorough study of the role of dissipative effects during
the storage step should also be carried out and is left for
future work.

Within the general context of quantum enhanced technolo-
gies, we hope that the simple yet exactly solvable models of
quantum batteries considered in this paper could represent
a solid starting point, stimulating different ideas and further
research lines.
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APPENDIX: DETAILS ON THE CALCULATION OF EQ. (34)

In this Appendix we show the details of the calculation of
Eq. (34). First of all, in order to find the time evolution of the
ladder operator, it is useful to diagonalize the problem. We
define as A the vector made by the ladder operators involved
in the problem,

A =

⎛
⎜⎝

a
b
a†

b†

⎞
⎟⎠. (A1)

In a similar way we denote as γ the vector of made by the
operators that diagonalize the Hamiltonian, i.e.,

γ =

⎛
⎜⎜⎝

γ−
γ+
γ
†
−

γ
†
+

⎞
⎟⎟⎠. (A2)

Diagonalization of the Hamiltonian consists in finding the
transformation A = Mγ , where M is a 4 × 4 matrix. Finding
M is a straightforward textbook task [48]. In the Heisenberg
representation the vector evolved at time t , γ (t ), is related via
a diagonal matrix D to the vector eingenmodes at the initial
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time γ (t ) = Dγ ,

D =

⎛
⎜⎜⎝

e−iω−t 0 0 0
0 e−iω+t 0 0
0 0 eiω−t 0
0 0 0 eiω+t

⎞
⎟⎟⎠. (A3)

Our goal is to find A(t ) = R(t )A, where R(t ) is the matrix in
Eq. (34). In order to find such a transformation, we express
A in terms of the eigenmodes γ , we evolve the eigenmodes,
and then we express the eingemodes in terms of the initial
ladder operators, using the inverse transformation M−1, i.e.,
A(t ) = [M D(t ) M−1]A. Hence we find

Raa (t ) = 1

2
[cos(ω−t ) + cos(ω+t )] − i

2

[(
ω2

0 + ω2
−

2ω0

)
sin(ω−t )

ω−
+

(
ω2

0 + ω2
+

2ω0

)
sin(ω+t )

ω+

]
,

Rab(t ) = 1

2
[− cos(ω−t ) + cos(ω+t )] − i

2

[
−

(
ω2

0 + ω2
−

2ω0

)
sin(ω−t )

ω−
+

(
ω2

0 + ω2
+

2ω0

)
sin(ω+t )

ω+

]
,

Raa† (t ) = ig

2

[
sin(ω−t )

ω−
− sin(ω+t )

ω+

]
, Rab† (t ) = − ig

2

[
sin(ω−t )

ω−
+ sin(ω+t )

ω+

]
. (A4)

From the fact that the Hamiltonian is symmetric with respect to the exchange a ↔ b, we have

Rba (t ) = Rab(t ), Rbb(t ) = Raa (t ),

Rba† (t ) = Rab† (t ), Rbb† (t ) = Raa† (t ). (A5)
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