
PHYSICAL REVIEW B 98, 205421 (2018)

Partial positive refraction in asymmetric Veselago lenses of uniaxially strained graphene
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Asymmetric Veselago lenses (AVLs) can be created from ballistic p-n and n-p-n homojunctions of uniaxially
strained graphene. This atypical converging electron flow emerges by applying uniaxial tension out of the
device’s symmetry axes. Part of the electron flow needs to be positively refracted to focus on an asymmetric
spot, whose location is tunable with the strain. In AVLs, Klein tunneling is angularly shifted with regard to the
normal incidence. This perfect transmission occurs in the straight line that connects the point source and focus,
which is unaffected by variation of the Fermi level and voltage gate. Moreover, the mirror symmetry breaking
by the strain also causes the asymmetry in Fabry-Pérot interference. The novel electron optical laws allow us
to evidence that reflected and refracted electrons in AVLs lie on the same straight line with opposite group
velocities and pseudospins. Unlike isotropic graphene, electrons under normal incidence present backscattering,
angles of reflection, and refraction different from zero. The average particle transmission is higher (lower) than
the isotropic case when the tensile strain is increased near (far away from) the normal direction. These results
may be useful for designing strain-bendable probing tips in scanning tunneling microscopes.
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I. INTRODUCTION

Electron optics offers the opportunity to manipulate the
trajectories of electrons for concrete applications in nanoelec-
tronics [1–19]. Ballistic charge carriers crossing an interface,
which separates regions with different doping levels, can
simulate refraction phenomena such as the light across in-
homogeneous media [1,2]. Recently, graphene bipolar n-p-n
junctions have served as a platform for the realization of
outstanding optical-like phenomena in condensed matter, such
as Klein tunneling (KT) and Fabry-Pérot (FP) oscillations
[20–28]. Negative refraction of massless Dirac fermions was
predicted and tested without and in the presence of a uniform
magnetic field [28–32]. The pseudorelativistic nature of
electrons makes it more feasible to realize electron optics in
Dirac materials than conventional semiconductors [30]. These
recent and special features in electron optics pave the way
for the use of superlenses to manipulate electron flow such
as the light in metamaterials [3,33–36]. On the other hand,
strain engineering in graphene has opened a wide range of
possibilities to control the electronic and transport properties
[37–40]. Currently, the study of strain effects on the electronic
band structure in graphene is considered in order to modulate
physical properties [40,41]. A tentative merging of these
research topics may provide a broad perspective to investigate
novel and unusual transport effects in graphene and other
Dirac materials.

Many contributions in strained graphene are dedicated
to the control of valley spin polarization, where the main
motivation is to use the valley degree of freedom as a con-
veyor of quantum information [13,42,43]. This proposal arises
due to the valley dependence of refraction when electrons
tunnel from unstrained to strained graphene regions [44–48].
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However, obtaining well-defined isotropic and anisotropic
graphene regions is difficult in practice. While p-n and n-p-n
homojunctions of uniaxially strained graphene (USG) are
more feasible for testing transport phenomena, they have
been scarcely addressed due to the valley independence in
the electron transport. Nevertheless, unusual optical-like phe-
nomena emerge considering fully strained graphene sheets.
In this work we show that in-plane deformation out of the
symmetry axes of a graphene p-n junction creates asymmetric
Veselago lenses (AVLs). Different from those perfect lenses
in metamaterials and isotropic graphene, which focus the
particle flow towards a symmetric spot [3], strained graphene
homojunctions can bend the converged electron flow. Thus,
part of the electron flow is positively refracted to focus on
an asymmetric spot. In these systems, reflected and refracted
electrons have inverted pseudospins and move in opposite
directions. Further, the KT is angularly shifted and occurs
at the straight line that links the point source and focus. The
particle transmission efficiency in AVLs is higher (lower) than
in the unstrained case when the tensile strain is increased near
(far away from) the normal direction. Since the FP interfer-
ence of n-p-n homojunctions do not have mirror symmetry,
resonant tunneling under normal incidence appears. Such
results may be useful for designing an improved scanning
tunneling microscope with a bendable probing tip.

This paper is organized as follows: in Sec. II the tight-
binding (TB) approach to nearest neighbors for an anisotropic
graphene sheet is used. In this calculation the uniaxial strain
modifies the electronic band structure changing the rotation
and shape of the Dirac cones. An effective TB Hamiltonian is
obtained through Taylor expansion around the Dirac points up
to first order in the wave vector. Thus, the complex velocity
parameters of the Weyl-like Hamiltonian are expressed in
terms of uniaxial strain components. Section III establishes
the reflection and refraction laws of electrons impinging the
interface of homojunctions. The application of these novel
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electron optics laws in Sec. IV evidences how partial positive
refraction of a particle flow favors the creation of AVLs. Sec-
tion IV also shows the angular deviation of KT and average
particle transmission efficiency. The shifting of FP fringes of
USG bipolar n-p-n homojunctions are discussed in Sec. V.
Conclusions and final remarks are made in Sec. VI.

II. COMPLEX VELOCITIES AND THE EFFECTIVE TB
WEYL-LIKE HAMILTONIAN OF UNIAXIALLY STRAINED

GRAPHENE

USG is constituted by two deformed triangular Bravais
sublattices which are labeled A and B [see Fig. 1(a)]. This de-
formed crystal possesses a unit cell having two carbon atoms
with decoupled pz and σ orbitals. The atomic sites are dis-
placed by applying the tension T in the direction ζ . The Carte-
sian system is set with the x axis along the ZZ bond in the
unstrained configuration [39]. The positions of nearest neigh-
bors are denoted by �δ1, �δ2, and �δ3 on the underlying sublattice
A. The lattice vectors �a1 and �a2 and reciprocal ones �b1 =
(2π/|�a1 × �a2|)�a2 × ẑ and �b2 = (2π/|�a1 × �a2|)ẑ × �a1 build
the whole positions in the deformed hexagonal lattices, where
x̂, ŷ, and ẑ are unit vectors of the Cartesian system. The first
Brillouin zone corresponds to a distorted hexagon with two
nonequivalent high-symmetry points, K and K ′.

From elasticity theory [39,49–51], the uniaxial strain ten-
sor is written as

u = (pI + qS)ε, (1)

where the constants p and q are defined by p = (1 − ν)/2
and q = (1 + ν)/2, with ν being the Poisson ratio of graphene
[40,51]. The identity matrix I has dimensions 2 × 2 as well
as S, which is expressed in terms of the Pauli matrices
S = σz cos 2ζ + σx sin 2ζ . The tensile strain ε in graphene is
proportional to the magnitude of tension T [39]. Thus, ε is
defined for quantifying the percentage of deformation along
the ζ direction, as shown in Fig. 1(a). The perpendicular
direction is contracted by a quantity of −νε. The predicted
failure strain occurs for a value of approximately 28% [51,52].
Since u is a homogeneous strain tensor, the atomic position
in the current configuration is given by �r = (I + u)�r0, where
�r0 indicates the sites on the unstrained system. Hence, the
deformed lattice vectors

�a1 =
√

3a[x̂(1 + pε + qε cos 2ζ ) + ŷqε sin 2ζ ],

�a2 =
√

3

2
a{x̂[1 + pε + 2qε cos(2ζ − π/3)]

+ ŷ[
√

3(1 + pε) + 2qε sin(2ζ − π/3)]} (2)

are related to the uniaxial strain parameters, where a is
the bond length in pristine graphene [53]. Thus, the rela-
tive nearest-neighbor sites for USG �δ1 = 2�a1/3 − �a2/3, �δ2 =
2�a2/3 − �a1/3, and �δ3 = −�δ1 − �δ2 are also obtained.

In order to calculate the energy band structure from the TB
approach we need to establish the relation of hopping parame-
ters to the uniaxial strain tensor. These TB parameters are the

FIG. 1. (a) Schematic representation of uniaxially strained
graphene. Red and blue circles correspond to the sites of triangular
sublattices A and B, respectively. The x axis matches the zigzag bond
in the unstrained case. The uniaxial tension �T is applied along the
ζ direction. The strained configuration has three different nearest-
neighbor hopping parameters tj and bond lengths δj . The lattice
vectors are denoted by �a1 and �a2. (b) Contour energy density near
the first Brillouin zone for the conduction band obtained from the TB
approach to nearest neighbors using the set of strain values ε = 23%
and ζ = 45◦.

probability amplitudes that an electron in sublattice A hops
to neighboring sites. The hoppings can be modeled with the
exponential decay rule tj = texp[−β(δj /a − 1)], where β is
the Grüneisen constant, t is the hopping in pristine graphene,
and δj are the deformed bond lengths [39,41,53,54]. Thus, the
complete relation of tj as a function of strain parameters is
given by

δj = a

√[
1 + pε + qε cos

(
2ζ + 2j − 1

3
π

)]2

+ ε2q2 sin2

(
2ζ + 2j − 1

3
π

)
. (3)
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Since the overlap terms and the next-nearest-neighbor hop-
ping have a negligible contribution in graphene [55], the TB
Hamiltonian is considered only up to nearest neighbors,

HT B =
3∑

j=1

[
0 tj e

i�k·�δj

tj e
−i�k·�δj 0

]
. (4)

Therefore, the electronic band structure of USG is obtained
from the eigenvalues of the TB Hamiltonian (4),

E± = s

√√√√ 3∑
i=1

t2
i + 2

3∑
i<j

ti tj cos[�k · (�δi − �δj )], (5)

where the band index s = sgn(E) indicates the valence (s =
−1) and conduction (s = 1) energy bands. The corresponding
eigenstates of the Hamiltonian (4) are expressed as |�(�k)〉 =

1√
2
(1, seiφ(�k) ), where

φ = − arctan

( ∑
j tj sin(�k · �δj )∑
j tj cos(�k · �δj )

)
(6)

is the pseudospin angle. The anisotropy induced by the appli-
cation of uniaxial strain causes the distortion of energy bands,
as shown in Fig. 1(b). Contour curves around Dirac points
evolve from an elliptical to nontrivial shape when the energy
is increased. If TB Hamiltonian (4) is expanded around the
Dirac point performing �k = �q + �KD , where the Dirac point
position �KD satisfies

∑
j tj exp(−i �KD · �δj ) = 0, the effective

Weyl-like Hamiltonian

HW =
[

0 wc∗
x px + wc∗

y py

wc
xpx + wc

ypy 0

]
(7)

is expressed in terms of complex velocities �wc. These veloci-
ties are defined as

�wc = (
wc

x,w
c
y

) = i

3∑
j=1

�δj

h̄
tj e

−i �KD ·�δj , (8)

which establishes a relation to the strain parameters through
the lattice vectors and hopping parameters. The Hamiltonian
(7) can be changed to the standard form HW = vijσipj if the
complex velocity components wc

x and wc
y are written as wc

x =
wxe

−iαx and wc
y = wye

iαy , where αx and αy are the velocity
phases. Useful identities of complex velocities with hopping
parameters and lattice vectors are shown in Appendix A.
On the other hand, a similar form of the Hamiltonian (7)
is obtained from the other nonequivalent Dirac point − �KD .
Thus, it is possible to construct a 4 × 4 block-diagonal matrix
representation H = τz ⊗ HW , where τz is the z component
Pauli matrix acting on pseudospin space and discriminating
the contribution of the pseudospin valleys [55].

III. OPTICAL LAWS OF MASSLESS DIRAC FERMIONS IN
ANISOTROPIC MEDIA

Optical-like phenomena can be simulated from ballistic
p-n homojunctions of USG, as shown in Fig. 2(a). The
external split-gate structure V and V ′ creates an abrupt step
potential between regions I and II which guarantees the

FIG. 2. Geometrical optics convention of angles and kinemat-
ical construction in the p-n homojunction of uniaxially strained
graphene. (a) An incoming electron beam with angle of incidence
θ and pseudospin angle φ scatters at the interface (dark blue line)
at x = 0. Outgoing electron rays with angles of pseudospin φ (φ′)
and reflection θ (refraction θ ′) obey atypical reflection (refraction)
laws (10) and (17) [(11) and (19)], respectively. (b) Kinematical
construction shows the scattering of electrons in the reciprocal space.
The ellipses correspond to the energy contour at the Fermi level
E = V0/2 for both regions. The dashed red line (green semiarcs)
represents the conservation of linear momentum py (probability
current density jx). Refraction index ρ (ρ ′) is the vertical half width
of the ellipse in region I (II). The black and gold arrows denote the
direction of group velocity and pseudospin angles, respectively.

transmission by propagation modes. The necessary conditions
for obtaining electron optics require us to lead the system
to a ballistic regime [6,18,56]. Such special conditions were
recently achieved in the experimental observation of negative
refraction of electrons [29,30]. In this device, the linear inter-
face separates two regions with different charge densities (see
Fig. 2). Thus, electrons tunnel on the interface, changing their
group velocity and pseudospin. This is essentially important
for controlling electron flow through the tuning of strain
parameters and Fermi level. The point source VS in Fig. 2(a)
injects electrons in a wide angular sector. In order to avoid
unwanted interference by multiple reflections at the borders,
an extended bias VD voltage drains the output electrons. When
particles impinge on the interface, the optical laws describe
the redirection of reflected and refracted flow as well as the
scattering probability. The conservation of energy E, linear
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momentum py , and probability current density jx are useful
for establishing these electron optics laws in USG, which are
schematically represented by the kinematical construction in
Fig. 2(b).

The refraction index ρ has a direct geometrical meaning
and corresponds to the vertical half width of the elliptical
energy contour at the Fermi level [see Fig. 2(b)]. The primed
quantities denote region II. It is possible to establish an
auxiliary Snell’s law through the conservation of py given
by ρ sin χ = ρ ′ sin χ ′, where χ and χ ′ are effective angles.
Although these quantities differ in the genuine angles of
scattering θ and θ ′, which are given by the group velocity
direction, the angles χ are useful for simplifying the opti-
cal laws. Using the dispersion relation of Hamiltonian (7),
the components of linear momentum can be expressed as
px = ±(wy/wx )ρ sin(αx + αy ∓ sχ ) and py = ρ sin χ (see
Appendix B). The minus in px indicates reflection for region
I. From geometrical arguments, it is shown that the refraction
index is ρ = |E − V |/[wy sin(αx + αy )]. Thus, the definition
of pseudospin angle and conservation of py allow us to derive
the following relations (see Appendix B):

φ = sχ − αx, φ = sχ + αx, φ′ = s ′χ ′ − αx, (9)

where the geometrical optics convention for angles is used.
The overline denotes the reflected quantities. In standard
form, the reflection law of pseudospin for anisotropic massless
Dirac fermions is written as

φ = φ + 2αx. (10)

It is worth noting that reflected electron beams do not
obey the conventional reflection law φ = φ. This is because
uniaxial strain along the ζ direction converts the circular
Dirac cone to a rotated elliptical one. The regular expression
of this law is restored straining along ζ = 0◦ or 90◦, where
nonrotated elliptical Dirac cones are obtained. On the other
hand, Snell’s law of pseudospin

sρ sin(φ + αx ) = s ′ρ ′ sin(φ′ + αx ) (11)

is also reduced to the conventional form when αx = 0. An
important consequence of this novel refraction law reveals that
the conservation of pseudospin occurs for φ = φ′ = −αx re-
gardless of the Fermi level. Since the group velocity and pseu-
dospin of electrons have different directions in anisotropic
systems, perfect transmission emerges in a preferred direction
which is not necessarily the normal incidence. In order to
confirm this fact the Fresnel-like coefficient is derived using
the wave function

|�I 〉 = 1√
2

(
1

seiφ

)
eixpx/h̄ + 1√

2
r

(
1

−se−iφ

)
e−ixpx/h̄ (12)

in region I, where the coefficient r is the probability amplitude
for the reflected beam. The state |�I 〉 takes into account the
novel refraction law of pseudospin (10). However, in region
II, the transmitted wave function is given by

|�II 〉 = 1√
2
t ′
(

1

s ′eiφ′

)
eixp′

x/h̄, (13)

where the amplitude for the transmitted beam is denoted by t ′.
The probability amplitudes are calculated from the continuity

FIG. 3. Angular deviation of Klein tunneling as a function of
the strain parameters ε and ζ . The dashed curves correspond to the
negative values of ζ = −15◦ (blue), −30◦ (brown), −45◦ (yellow),
−60◦ (black), and −75◦ (green).

condition for the wave functions (12) and (13) at x = 0.
Solving the equation system for r and t ′ and substituting the
relations (9), the transmission probability

Tpn(χ, χ ′) = cos χ cos χ ′

cos2
[

1
2 (s ′χ ′ + sχ )

] (14)

straightforwardly confirms that φ = φ′ leads to T (0) = 1,
where χ = χ ′ = 0. In order to show that the KT of anisotropic
massless Dirac fermions in p-n homojunctions of USG is an-
gularly shifted when ζ 
= 0◦ and 90◦, the angles of scattering
must be related in terms of the effective angles. Thus, the
Fresnel-like coefficient of electrons T (χ, χ ′) can be expressed
as a function of θ and θ ′. The calculation of group velocity
serves for finding the angle of incidence θ with χ (see
Appendix B)

tan θ = ±wy cos[χ ∓ s(αx + αy )]

wx cos χ
. (15)

Again the minus sign is for the angle of reflection θ . The rela-
tion between the angle of refraction θ ′ and χ ′ can be obtained
by choosing the plus sign and performing the substitutions
θ → θ ′, χ → χ ′, and s → s ′. Since χ = χ ′ = 0 in Eq. (14)
leads to the prediction of a perfect transmission, the angular
shifting of KT

θKT = θ ′
KT = arctan

[
wy

wx

cos(αx + αy )

]
(16)

is found by setting χ = 0 or χ ′ = 0 in Eq. (15). It is worth
noting that the present result is independent of Fermi level
and potential profile. The deviation θKT can be tuned only
by the strain parameters ε and ζ , as shown in Fig. 3. For
tensile strains along ζ = 0◦ and 90◦, electrons have perfect
transmission under normal incidence. However, the applica-
tion of tension out of the normal axis deviates the KT path.
With values of strain up to 10%, it is possible to observe an
angular shifting of the perfect transmission around 10◦ for a ζ

range from approximately 30◦ to 60o. The direction of tension
determines the sign of θKT . Figure 3 shows that θKT (−ζ ) =
−θKT (ζ ), in accordance with the mirror symmetry operation
y → −y.
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FIG. 4. Partial positive refraction and angular shifting of Klein tunneling in an asymmetric Veselago lens. (a) The special lens can be
obtained by applying the tensile strain ε = 23% along the direction ζ = 45◦. When the point source at (x0, 0) with x0 < 0 spreads electrons
towards the interface, the refracted flow meets at the spot (−x0, y

′
0 ) for E = 50 meV, V = 0, and V ′ = V0 = 100 meV. The blue rays indicate

the beams with positive refraction. The yellow straight line, which links the point source and focus, is the Klein tunneling path with deviation
angle θKT = −23.7◦ given by Eq. (16). (b) Kinematical construction reveals how the positive refraction, atypical reflection, and deviation of
Klein tunneling emerge. Black (red and gold) arrows correspond to group velocities (pseudospins). Horizontal lines denote the conservation of
py . The pseudospin and group velocity are conserved for py = 0 (red line). The turquoise horizontal lines show the positive refraction of group
velocity. (c) Angle of refraction θ ′ as a function of θ for the set of values ε = 23% and ζ = 45◦ (red curve), 15◦ (dashed orange), 0◦ (dashed
black), −15◦ (dashed green), and −45◦ (blue). White and blue regions indicate negative and positive refraction, respectively. (d) Transmission
probability as a function of θ for the same set of parameters as in (c). The corresponding T (θ ) for the dashed orange and green curves in
(c) are not shown for the sake of clarity.

Another way to write the reflection and refraction laws of
electrons in p-n homojunctions of USG is given by

tan θ = tan θ − 2 tan θKT , (17)

tan θ ′ = ss ′ tan θ + (1 − ss ′) tan θKT , (18)

where the last expression for the refraction law is obtained
from the geometrical condition ρ = ρ ′, which corresponds to
the special case of elliptical energy contours with the same
vertical half width at the Fermi level (see Appendix B). It is
interesting to note that electrons impinging under normal inci-
dence have nonzero angles of reflection and refraction. Since
elliptical Dirac cones are rotated on both sides of the junction
the outgoing electron beam has a vy component different
from zero, as shown in Figs. 2(b) and 4(b). The scattering of
electrons in p-n homojunctions of USG is discussed in the
following section.

IV. ELECTRON TUNNELING IN ASYMMETRIC
VESELAGO LENSES

The p-n homojunction of USG satisfying the focusing
condition leads to the appearance of an AVL, as shown in
Fig. 4(a). If tensile strain is applied along the ζ 
= 0◦ and
90◦ direction, the Dirac cones rotate. This rotation makes the
converged electron flow asymmetric. Therefore, the focus is
moved out of the normal axis [see Fig. 4(a)]. Thus, a divergent
flow emitted at (x0, 0) with x0 < 0 in region I is focused on
the spot (x ′

0, y
′
0). The geometrical relation between θ and θ ′

of AVLs can be obtained from the ray equations yI = (x −
x0) tan θ and yII = x tan θ ′ − x0 tan θ for regions I and II,
respectively. The specific relationship tan θ ′ = x0

x ′
0

tan θ − y ′
0

x0
is

identical to Snell’s law in Eq. (18). In this way, the position of
focus x ′

0 = −x0 and y ′
0 = −2x0 tan θKT is a function of the

strain parameters.
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FIG. 5. Spherical-like aberration of asymmetric Veselago lenses.
Distorted caustics with a common cusp are formed when the focusing
condition is lifted. The cusp is located on the Klein tunneling path.

It is important to note that perfect tunneling occurs when
electrons fly on the straight line which links the point source
to the focus. Although the pseudospin and group velocity have
different directions, the angles φ = −αx and θ = θKT remain
in the KT, as shown in Figs. 4(a), 4(b) and 4(d). Moreover,
one part of the incoming particle flow has a positive refraction
within the incidence range 0 � |θ | � | arctan(2 tan θKT )| [see
Figs. 4(a), 4(b) and 4(c)]. Such positive refraction is caused by
the rotation of the Dirac cones. This atypical result contrasts
with the total negative refraction of conventional Veselago
lenses [3,29,35]. The symmetrical case is recovered by ap-
plying uniaxial strain along the ζ = 0◦ or 90◦ direction, as
shown in Fig. 4(c). Another effect is the obtention of reflected
electron beams staying on the same straight line as refracted
electrons [see Figs. 4(a) and 4(b)]. From the optical laws (10),
(11), (17), and (18) it can be verified that the propagation and
pseudospin orientation of reflected and refracted electrons are
opposite, namely, φ′ = −φ and θ ′ = −θ .

Asymmetrical charge densities on both sides of the ho-
mojunctions do not modify the angular deviation of KT, as
shown in Fig. 5. In such situations it is known that caustics
and cusps appear in VLs when the focusing condition lifts [3].
Likewise, finite temperature still causes a similar spherical-
like aberration in superlenses for the symmetric step potential
condition [3,36]. In the present work, these cases can be
treated in the same way considering the most general Snell’s
law (see Appendix B)

tan θ ′ = ss ′ρ(tan θ − tan θKT )

ρ ′
√

1 + (
1 − ρ2

ρ ′2
)(

wx (tan θ−tan θKT )
wy sin(αx+αy )

)2
+ tan θKT ,

(19)

where the reflection law (17) remains unchanged. As ex-
pected, the symmetric case (18) is recovered under the focus-
ing condition ρ = ρ ′. Snell’s law (19) allows us to evidence
that a small deviation in the focusing condition leads to the
formation of a pair of asymmetric caustics with a common
cusp (see Fig. 5). These curves are obtained by applying the
singularity condition ∂θyII = 0 to the ray equation in region
II. Thus, the caustics are given by

ycaus(x) = (x − x0) tan θKT

± wy

wx

sin(αx + αy )

√
ρ2

(
x2/3 − x

′2/3
c

)3

ρ ′2 − ρ2
, (20)

where the cusp is located at the point x ′
c = ss ′ρ ′x0/ρ and

y ′
c = (x ′

c − x0) tan θKT on the same straight line as the KT,
as shown in Fig. 5. The relative refraction index ρ ′/ρ does not
depend on the strain for USG homojunctions. Therefore, the
position of the cusp is affected only by the angular deviation
of KT and lifting of the focusing condition. The sharpness of
electron focusing in AVLs is decreased by finite temperature
like in the unstrained case.

Since specific strain values in AVLs can improve the par-
ticle transmission [see Fig. 4(d)], the average of Fresnel-like
coefficient (14) with regard to the angle of incidence θ

〈Tpn〉 = wy sin(αx + αy )
[
w3

x + wxw
2
y cos(2αx + 2αy ) + wy

(
w2

y − w2
x

)
sin(αx + αy )

]
w4

x + w4
y + 2w2

xw
2
y cos(2αx + 2αy )

(21)

is obtained (see Appendix C). Thus, Fig. 6 shows the particle
transmission efficiency as a function of strain parameters. In
the range −30◦ � ζ � 30◦, the particle tunneling is higher
than in the unstrained case when the tensile strain is increased.
However, for strain values in the interval ε > 15% and 45◦ <

ζ < 75◦ a decrease in the particle transmission efficiency is
observed. This behavior is because the pseudospin is rotated
by the strain, as seen in Fig. 4(b). Thus, a strong change in
the pseudospin orientation causes the increasing of reflection
probability.

V. FABRY-PÉROT OSCILLATIONS IN HOMOJUNCTIONS
OF UNIAXIALLY STRAINED GRAPHENE

The scattering of anisotropic massless Dirac fermions in
n-p-n homojunctions of USG is considered [see Fig. 7(a)]. In

this system, regions I and III have the same negative doping
level, and region II of width D is positively doped, where back
gate VB and top gate VT control the Fermi level and potential
barrier, respectively. The coherence length and mean free
path must be larger than the device dimensions to guarantee
ballistic transport [6,18,56]. Since the three regions are iden-
tically deformed, the Dirac cones have the same position in
the reciprocal space. This feature leads to valley-independent
refraction. In order to address the particle scattering problem
the same wave function (12) is used. For region III, the wave
function (13) is identically written by deleting the prime on
the parameters. The wave function in region II is given by

|�II 〉 = 1√
2
t ′
(

1
s ′eiφ′

)
eixp′

x/h̄ + 1√
2
r ′

(
1

−s ′e−iφ
′

)
e−ixp′

x/h̄,

(22)
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FIG. 6. Average transmission probability of the asymmetric
Veselago lens as a function of uniaxial strain parameters ε and
ζ . High transmission efficiency is found at the range 15% � ε �
28% and −30◦ � ζ � 30◦. In contrast, low transmission probability
occurs in the same range of ε and angular sector 45◦ � ζ � 75◦.

where r ′ and t ′ are the amplitudes of the wave function within
the potential barrier. Applying the matching conditions at

x = 0 and x = D and taking into account the novel electron
optics laws of pseudospin (10) and (11), the transmission
probability is

Tnpn(χ, χ ′)

= cos2 χ cos2 χ ′

cos2 χ cos2 χ ′ cos2 γ + (1 − ss ′ sin χ sin χ ′)2 sin2 γ
,

(23)

where γ = (wyρ
′D/h̄wx ) cos χ ′ shows the dependence of

the resonant condition γ = nπ on the strain. This allows us to
exhibit non-negligible changes in the interference pattern with
regard to unstrained graphene transistors. In Figs. 7(b) and
7(c), the intraband (s = s ′ = −1) and interband (s = −s ′ =
1) tunneling regimes match perfectly due to the gapless band
structure. This feature in the particle transmission density is
due to the geometry of Dirac cones regardless of the pseu-
dospin nature [19,57]. In this system, uniaxial tension along
ζ 
= 0◦ or 90◦ angularly shifts the KT and breaks the mirror
symmetry of FP resonances, as shown in Figs. 7(b) and 7(c). It
is possible to observe that anisotropic massless Dirac fermions
have nonresonant tunneling when the angle of incidence is
θ = θKT . In contrast, electrons impinging the barrier under
normal incidence have nonzero backscattering probability

FIG. 7. Description of the particle scattering across an n-p-n homojunction of uniaxially strained graphene. (a) Schematic representation
of the potential barrier and Dirac cone structure. Solid area represents the occupied states, and the horizontal dashed line shows the Fermi level.
(b) Transmission probability as a function of θ and E for uniaxial strain values ε = 23% and ζ = 45◦. The barrier height is V0 = 100 meV
and width is D = 100 nm. (c) Transmission probability as a function of θ and D using the same set of strain values in (b) with E = 50 meV.
The shifted Klein tunneling at θKT = −23.7◦ remains unaffected against variations of E, D, and V0. (d) Fabry-Pérot oscillations as a function
of V0 and E considering collimated electron beams under normal incidence and barrier width D = 100 nm. Total backscattering is observed
for a specific range of E and V0.
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[see Fig. 7(d)]. This point shows a drastic difference with
regard to the unstrained case. In graphene bipolar n-p-n
junctions, incoming electron beams near normal incidence can
cross the smooth potential barrier and present FP oscillations
[20]. If sharp interface potentials are considered, electron
beams with θ = 0 perfectly cross the barrier without resonant
tunneling regardless of the values of back gate VB and top
gate VT [22]. In a USG transistor [see Fig. 7(d)], electrons
impinging an abrupt potential barrier have FP oscillations
when the Fermi level and height potential are tuned through
the external gates VB and VT . The independence of E, V0,
and D in the perfect transmission is observed only for the
deviated angle of incidence θ = θKT . Total backscattering
of electrons under normal incidence emerges for a range of
values of E and V0 in Fig. 7(d). This occurs because the angle
of normal incidence is greater than the critical angles,

tan θ±
c = tan θKT ± wy sin(αx + αy )

wx

√
ρ2/ρ ′2 − 1

, (24)

which are calculated from the refraction law (19). The gap
transport appears in the range c+V0 < E < c−V0, where
c± = 1/[1 ± cos(αx + αy )].

On the other hand, inhomogeneous strain features can
modify the FP oscillations in graphene-extended n-p-n junc-
tions. It is known that the effect of a position-dependent
strain leads to the generation of pseudomagnetic fields [58].
However, the misalignment of Dirac cones causes the valley
dependence in the refraction of electrons [44]. In graphene
nanoribbon transistors, homogeneous strain effects on the
FP resonances can be distinguishable from inhomogeneous
strain patterns [58]. Both features may be mixed in extended
transistor systems by the absence of gap transport. However, if
collimated electron beams normally impinge on the potential
barrier for values of EF in the range c+V0 < E < c−V0 where
total backscattering is predicted [see Fig. 7(d)], the influence
of strain inhomogeneity on FP oscillations might be recogniz-
able. On the one hand, the increasing of tensile strain makes
the barrier for tension angles ζ near the normal direction trans-
parent. This is because the pseudospin has a slow variation in
θ . Thus, the deviated KT persists because the conservation
of pseudospin is slightly affected for a wide incidence sector.
The opposite case is observed for tension angles far away
the normal axis. Again, electrons with θ = θKT perfectly
tunnel without deflecting their trajectory and regardless of
the tunneling regime. However, the high angular variation
rate of the pseudospin reduces the angular robustness of
perfect transmission. Such observations in n-p-n homojunc-
tions are similar to the behavior of the average transmission
efficiency of AVLs through the tuning of strain parameters in
Fig. 6.

VI. CONCLUSIONS AND FINAL REMARKS

In summary, partial positive refraction in asymmetri-
cal Veselago lenses has been shown in uniaxially strained
graphene homojunctions. The effective TB Weyl-like Hamil-
tonian was put forward to study the scattering of anisotropic
massless Dirac fermions. These particles obey the atypical
Fresnel-like coefficient and reflection and refraction laws
which lead novel optical-like phenomena. Thus, electron rays

under normal incidence have reflected and refracted beams
different from zero. For uniaxial strains breaking the mirror
symmetry with regard to the normal direction, Klein tun-
neling is angularly deviated. When the focusing condition
is satisfied, the trajectory of perfect transmission occurs in
the straight line that connects the point source and focus.
Lifting this condition through the Fermi level modulation,
the conservation of pseudospin guarantees the appearance of
Klein tunneling. This effect persists in an n-p-n homojunction
while varying the doping level, barrier width, and height.
Fabry-Pérot interference shows asymmetrical resonant tunnel-
ing. In contrast to isotropic graphene, electrons under normal
incidence can be backscattered. Further, uniaxial strain near
the normal axis improves the particle transmission efficiency.
This result could be used to avoid losses from draining in elec-
tron optics devices. Therefore, uniaxially strained graphene
and related materials are good candidates for the realization of
elliptical Dirac optics. The decrease in transmission efficiency
by high tensile strains and tension angles far away from the
normal axis could lead to the implementation of quantum
confinement. Asymmetric Veselago lenses may be useful for
the design of enhanced scanning tunneling microscopes with
strain-bendable probing tips.
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APPENDIX A: COMPLEX VELOCITIES IN TERMS OF
LATTICE VECTORS AND HOPPING PARAMETERS

In this Appendix we show the derivation of complex veloc-
ities in terms of lattice vectors and hopping parameters, which
are obtained through a TB calculation to nearest neighbors.
Using the definition of complex velocities in Eq. (8) and
nearest-neighbor positions in terms of lattice vectors �a1 and
�a2, we find that

wc
x = i

h̄

(
a1xt1e

−i �KD ·�δ1 + a2xt2e
−i �KD ·�δ2

)
, (A1)

where wc
y has an identical expression replacing x → y. Tak-

ing into account the relation

cos[ �KD · (�δ1 − �δ2)] = t2
3 − t2

2 − t2
1

2t1t2
, (A2)

which is obtained from the Dirac point equation∑3
j tj e

−i �KD ·�δj = 0, it is possible to prove that the square
module of wc

x given by

w2
x = 1

h̄2

[
a2

1xt
2
1 + a2

2xt
2
2 + a1xa2x

(
t2
3 − t2

1 − t2
2

)]
(A3)

can be related to the strain parameters. Calculating
Im{wc∗

x wc
y}, where the operations Im{·} and * are the imag-

inary part and complex conjugate, respectively, a useful
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identity of complex velocities and their phases

w2
xw

2
y sin2(αx + αy )

= 1

4h̄4 |�a1 × �a2|2(t1 + t2 + t3)

× (−t1 + t2 + t3)(t1 − t2 + t3)(t1 + t2 − t3) (A4)

is obtained. Such expressions serve to establish the bridge
between complex velocities and uniaxial strain parameters
from the relations (2) and (3) and exponential decay rule of
tj . In this way, the electron optics behavior in homojunctions
of uniaxially strained graphene can be described.

APPENDIX B: DERIVATION OF ELECTRON OPTICAL
LAWS IN ROTATED DIRAC CONE SYSTEMS

In order to obtain the electron optical laws in systems
presenting rotated Dirac cones in their band structure, the
conservation of E, py , and jx must be applied. The definition
of the pseudospin angle in the Weyl-like Hamiltonian (7) can
be written in terms of linear momentum as

tan φ = −wxpx sin αx + wypy sin αy

wxpx cos αx + wypy cos αy

. (B1)

Using the dispersion relation

|E − V | =
√

w2
xp

2
x + w2

yp
2
y + 2wxwypxpy cos(αx + αy )

(B2)

and the effective Snell’s law py = ρ sin χ = ρ ′ sin χ ′, the x

component in the linear momentum is given by

px = ±wy

wx

ρ sin(αx + αy ∓ sχ ), (B3)

where ρ = |E − V |/[wy sin(αx + αy )] is the effective refrac-
tion index. Substituting the linear momentum components in
Eq. (B1), the relations of φ in Eq. (9) as a function of χ are
found.

The optical laws of electron propagation are derived by
determining the group velocity

vx = ∂px
E = 1

s|E − V |
[
w2

xpx + wxwypy cos(αx + αy )
]
,

(B4)

where the dispersion relation (B2) of effective Weyl-like
Hamiltonian (7) is considered. An identical expression for
vy is found, replacing x → y and y → x. The direction of
the electron beam in Eq. (15) is calculated by performing

the ratio vy/vx and substituting the components of linear
momentum in terms of χ for the cases of incidence, reflection,
and refraction. It is possible to delete the dependence of χ in
the reflection law (17) when the angles θ and θ are related. In
the electron refraction law for the AVLs (18) and (19), the χ

dependence is removed using (15) to obtain θ ′ in terms of χ ′,

tan θ ′ = s ′ wy

wx

sin(αx + αy ) tan χ ′ + tan θKT . (B5)

Then, the effective Snell’s law allows us to substitute χ ′
with χ . Applying inverse trigonometric properties yields

tan θ ′ = s ′wyρ sin(αx + αy ) sin χ

ρ ′wx

√
1 − ρ2

ρ ′2 sin2 χ

+ tan θKT . (B6)

From Eq. (15), the relation of θ and χ is given by

χ = arctan

(
swx (tan θ − tan θKT )

wy sin(αx + αy )

)
. (B7)

Therefore, the substitution of this last expression in Eq. (B6)
leads to the general electron refraction law (19) and, using
ρ = ρ ′, to the Snell’s law of AVLs (18).

APPENDIX C: AVERAGE FRESNEL-LIKE COEFFICIENT
IN ASYMMETRIC VESELAGO LENSES

Since the transmission probability in AVLs is Tpn(χ ) =
cos2 χ , the average of this quantity with regard to the angle
of incidence θ is written as

〈Tpn〉 = 1

π

∫ π
2

− π
2

cos2 χdθ. (C1)

To integrate in χ it is necessary to use

dθ

dχ
= wxwy sin(αx + αy )

w2
x cos2 χ + w2

y cos2(χ − αx − αy )
, (C2)

which is derived from expression (15). Using the defined
integral [59]∫ π

2

− π
2

cos2 χdχ

a cos2 χ + 2b sin χ cos χ + c sin2 χ

= π

4b2 + (a − c)2

[
a − c + 2b2 − (a − c)c√

ac − b2

]
, (C3)

with parameters a = w2
x + w2

y cos2(αx + αy ), b =
w2

y sin(αx + αy ) cos(αx + αy ), and c = w2
y sin2(αx + αy ), the

expression for the average Fresnel-like coefficient in Eq. (21)
is obtained, substituting the integral value in Eq. (C1).
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