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Transport in a thin topological insulator with potential and magnetic barriers
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We study transport across either a potential or a magnetic barrier which is placed on the top surface of a
three-dimensional thin topological insulator (TI). For such thin TIs, the top and bottom surfaces interact via
a coupling λ which influences the transport properties of junctions constructed out of them. We find that for
junctions hosting a potential barrier, the differential conductance oscillates with the barrier strength. The period
of these oscillations doubles as the coupling λ changes from small values to a value close to the energy of
the incident electrons. In contrast, for junctions with a magnetic barrier, the conductance approaches a nonzero
constant as the barrier strength is increased. This feature is in contrast to the case of transport across a single TI
surface where the conductance approaches zero as the strength of a magnetic barrier is increased. We also study
the spin currents for these two kinds of barriers; in both cases, the spin current is found to have opposite signs on
the top and bottom surfaces. Thus this system can be used to split applied charge currents to spin currents with
opposite spin orientations which can be collected by applying opposite spin-polarized leads to the two surfaces.
We show that several of these features of transport across finite width barriers can be understood analytically by
studying the δ-function barrier limit. We discuss experiments which may test our theory.
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I. INTRODUCTION

Three-dimensional topological insulators have been exten-
sively studied for the last several years both theoretically [1–6]
and experimentally [7–12]. A topological insulator (TI) is a
material which is gapped in the bulk and has gapless states
at all the surfaces which have a Dirac-type linear energy-
momentum dispersion and are protected by time-reversal
symmetry. Examples of such materials include Bi2Se3 and
Bi2Te3. The bulk topological aspects of these TIs can be char-
acterized by four integers ν0 and ν1,2,3 [3]. The first integer
ν0 classifies these TIs as strong (ν0 = 1) or weak (ν0 = 0),
while the others, ν1,2,3, characterize the time-reversal invariant
momenta at which the bulk Kramer pair bands cross: �L0 =
(ν1 �b1, ν2 �b2, ν3 �b3)/2, where �b1,2,3 are the reciprocal lattice
vectors. The strong topological insulators are robust against
the presence of time-reversal invariant perturbations such
as nonmagnetic disorder or lattice imperfections. It is well
known that [3,5,6] the surface of a strong TI has an odd
number of Dirac cones. The positions of these cones are
determined by the projection of �L0 onto the surface Brillouin
zone. The number of these cones depends on the nature of
the surface; for example, for materials such as HgTe and
Bi2Se3, surfaces with a single Dirac cone at the center of the
two-dimensional Brillouin zone have been found [5,9,10].

The effective Dirac Hamiltonians governing the surface
states can be derived starting from the bulk continuum Hamil-
tonian [13–15]. The surface states are known to exhibit spin-
momentum locking in which the directions of spin angu-
lar momentum and linear momentum lie in the same plane
and are perpendicular to each other [16]. Several interest-
ing properties of these surface Dirac electrons have been
studied. These include proximity effects between an s-wave

superconductor and the surface states and the consequent
appearance of Majorana states [17]. Various properties of
junctions between different surfaces of TIs have been studied
in Refs. [18–24]. Junctions of surfaces of a TI with normal
metals, magnetic materials, and superconductors have also
been studied [25–27]. The effects of potential, magnetic, and
superconducting barriers on the surface of a TI have been
studied in Refs. [28] and [29]. Spin-charge coupled transport
on the surface of a TI has been studied in Ref. [30], leading
to interesting magnetoresistance effects. Magnetic textures,
such as domain walls and vortices, in a ferromagnetic thin
film deposited on the surface of a TI have been examined
in Ref. [31]. The dynamics of magnetization coupled to the
surface Dirac fermions has been investigated theoretically in
Ref. [32]. There have also been studies of transport in TI
p-n junctions in the presence of a magnetic field [33,34],
magnetotransport in patterned TI nanostructures [35], and the
effects of disorder on transport [36].

More recently, several theoretical studies have been carried
out for thin films of a TI where the hybridization of the
states on the opposite surfaces of the system [37] gives rise
to interesting phenomena. These phenomena include quan-
tum phase transitions in the presence of a parallel magnetic
field [38] and the appearance of a number of topological and
nontopological phases [39]. It has been shown that a Coulomb
interaction between the opposite surfaces can give rise to a
topological exciton condensate [40], and a Zeeman field and a
proximate superconductor can then give rise to Majorana edge
modes [41]. A number of other effects of finite width have
been studied in Refs. [42–47]. However, the transport proper-
ties of such thin TIs in the presence of potential or magnetic
barriers have not been studied before. Motivated by the above
studies, we will consider in this paper a simple model of a
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TI with a coupling, characterized by a strength λ, between the
top and the bottom surfaces; we will study the various features
of electronic transport in such a system when a potential or
magnetic barrier is applied on one of the surfaces.

The main results that arise out of our study can be sum-
marized as follows. First, we show that for junctions with a
potential barrier on the top surface, the tunneling conductance
G of the junctions oscillates with the barrier strength. The
period of these oscillations can be tuned by changing λ;
it doubles as λ is increased from zero to a value close to
the incident energy of the Dirac electrons on the surface.
Second, for a magnetic barrier, we find that the tunneling
conductance reaches a nonzero and λ-dependent value as the
barrier strength is increased. This is in sharp contrast to the
behavior of G for a single TI surface where it approaches
zero with increasing magnetic barrier strength. Third, for both
potential and magnetic barriers, we compute the spin current
for the top and the bottom surfaces and demonstrate that
they always have opposite signs which implies opposite spin
polarizations. The origin of this can be traced to the opposite
helicities of the Dirac electrons on these two surfaces. Our
results thus indicate that these junctions may be used to split
an applied charge current into two spin currents with opposite
directions of spins. These spin currents may be collected, for
example, by connecting spin-polarized leads to the top and the
bottom surfaces.

The plan of this paper is as follows. In Sec. II, we discuss
a model of the top and bottom surfaces of a TI such as
Bi2Se3, with a coupling λ between the two surfaces. We will
then present the form of the Hamiltonian when a potential
or magnetic barrier of finite width is applied on the top
surface. Next, in Sec. III, we will discuss the forms of the
wave functions in the two regions where there are no barriers
and the matching conditions at the interfaces between these
regions and the middle region where there is a barrier. We will
introduce a basis in which the transmitted charge currents can
be calculated most easily, and we will present expressions for
the transmitted charge and spin currents. This will be followed
by Sec. IV where we will discuss the case of δ-function barri-
ers. Such barriers induce discontinuities in the wave functions.
This problem turns out to be easier to study than the case
of finite width barriers since the matching conditions involve
four equations instead of eight equations. We obtain analytical
expressions for the reflection and transmission amplitudes in
some special cases. Next, in Sec. V, we will study the case of
a potential barrier with a finite width and present numerical
results as a function of various parameters such as λ, the
angle of incidence θ , and the barrier strength V0. We point
out certain symmetries of the transmission probabilities under
θ → π − θ . We also study the transmitted charge and spin
currents at the top and bottom surfaces separately. This is
followed by Sec. VI, where we will present numerical results
for the case of a magnetic barrier with a finite width. Finally,
in Sec. VII, we will summarize our main results, suggest
possible experiments which can test our theory, and conclude.

II. MODEL OF TOP AND BOTTOM SURFACES

As mentioned above, a three-dimensional TI has gapless
surface states on all its surfaces and the eigenstates of the

Hamiltonian at the top and bottom surfaces exhibit spin-
momentum locking. Namely, on a given surface, the directions
of the linear and spin angular momentum are perpendicular to
each other, and the relation between the two is opposite on the
top and bottom surfaces. To show this, we begin with the bulk
Hamiltonian of the system near the � point. This is known to
have the form [6]

H�k = mτz + h̄vzτ
ykz + h̄vτ x (σxky − σykx ). (1)

In Bi2Se3, which is a well-known TI, the parameters in
Eq. (1) have the values m = 0.28 eV, h̄vz = 0.226 eV nm,
and h̄v = 0.333 eV nm. (We will henceforth set h̄ = 1 unless
explicitly mentioned). The energy-momentum dispersion is
found by solving the equation Hψ = Eψ , where ψ is a
four-component wave function given by

ψ = ei(kxx+kyy+kzz−Et )

⎛
⎜⎝

φ1

φ2

φ3

φ4

⎞
⎟⎠, (2)

where two of the components represent wave functions of
electrons localized on different orbitals (for example, Bi and
Se in the material Bi2Se3) and the other two components
represent the spin degrees of freedom (up and down). The
matrices τ a act on the pseudospin components and the ma-
trices σa act on the spin components. [We will work in a
basis in which τ z and σ z are diagonal matrices; the diagonal
entries of the two matrices are given by τ z = (1, 1,−1,−1)
and σ z = (1,−1, 1,−1)]. Since the four matrices appearing
in Eq. (1), τ z, τ y, τ xσ x , and τ xσ y anticommute with each
other, the Hamiltonian has the form of an anisotropic Dirac
equation in three dimensions; the dispersion is given by

E = ±
√

m2 + v2
z k

2
z + v2

(
k2
x + k2

y

)
. (3)

At the � point, there is a gap equal to 2m between the positive
and negative energy bands.

To derive the Hamiltonian on the surface from the bulk
Hamiltonian [14,15], we consider the top surface to be at z =
0 with the region with z < 0 being the TI and z > 0 being the
vacuum. Further, we will assume m in Eq. (1) to be a function
of z; in the vacuum, we take m to be large and negative, while
in the interior of the TI (with z < 0), m is a positive constant
(0.28 eV in Bi2Se3). Since the momentum along z is not a
good quantum number, we replace kz → −i∂/∂z. Writing the
bulk Hamiltonian as a sum, H�k = H0 + Hs with

H0 = mτz − ivzτ
y ∂

∂z
,

Hs = vτx (σxky − σykx ), (4)

acting on the wave function ψ (x, y, z) = eikxx+ikyy f (z) φ,

where φ is a four-component column. (For convenience, we
will not write the time-dependent factor e−iEt any longer). For
�k = 0, we know that H0 has a zero energy eigenstate local-
ized near the surface, namely, H0ψ = 0, where f (z) has the
form

f (z) = e
1
vz

∫ z

0 dz′m(z′ )
. (5)

This gives the condition (τ z − iτ y )ψ = 0. This implies
that (τ z + iτ y )(τ z − iτ y )ψ = 0 giving τ xψ = ψ . Since Hs
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commutes with τ x and Hsψ = Eψ , we find from the above
that v(kyσ

x − kxσ
y )ψ = Eψ with E = ±

√
v2(k2

x + k2
y ).

Thus the Hamiltonian on the top surface is

Htop = v(σxky − σykx ). (6)

Similarly on the bottom surface, we get

Hbottom = −v(σxky − σykx ), (7)

again with E = ±v
√

k2
x + k2

y . We note that the Hamiltonians

in Eqs. (6) and (7) have opposite signs. This leads to opposite
forms of spin-momentum locking on the two surfaces; an
electron with positive energy and moving in the k̂ direction
on the top (bottom) surface has a spin pointing in the −ẑ × k̂

(ẑ × k̂) direction, respectively.
If the separation between the two surfaces is not much

larger than the decay length of the surface states [Eq. (5)
implies that this length is about vz/m], there will be
some hybridization between the two surfaces states. We can
parametrize this by a tunneling coupling λ which has dimen-
sions of energy. The total Hamiltonian for the two surfaces
then becomes [37]

H0 =
(

Htop λI2

λI2 Hbottom

)
, (8)

where I2 denotes the two-dimensional identity matrix. The
value of λ can be estimated as follows. If w is the width of
the material in the ẑ direction, so that the top and bottom
surfaces lie at z = 0 and z = −w, respectively, the tunneling
λ between the two surfaces can be shown to be proportional
to me−mw/vz . Note that for such a finite width sample, the
momentum kz of the bulk states will be quantized in units of
π/w. However, Eq. (3) shows that the bulk states will continue
to have a gap equal to 2m. Hence, they will not affect our
results since we are only interested in the contributions of the
surface states which lie within the bulk gap.

We will study the effects of two kinds of barriers on the
top surface. In Sec. V, we will study what happens if the
top surface has a potential barrier which is independent of
the y coordinate and has the form V (x) = V0 in a region of
width L. (A schematic picture of this is shown in Fig. 1.) The
Hamiltonian of this system is given by

H0 =
(

Htop + V0I2 λI2

λI2 Hbottom

)
(9)

for −L/2 < x < L/2 and by Eq. (8) for x < −L/2 and
x > L/2. In Sec. VI, we will study what happens if the
top surface has a magnetic barrier of strength V0 in a re-
gion of width L. As explained below, we will choose the
direction of the magnetization in the barrier in such a way
that the Hamiltonian in the region −L/2 < x < L/2 has the
form

H0 =
(

Htop + V0σ
x λI2

λI2 Hbottom

)
. (10)

(In Fig. 1, this corresponds to having a barrier with strength
V0σ

x in region II ). In both cases, our aim will be to study the
transmitted charge and spin currents and their dependences on
the various parameters of the system, namely, the energy E,

FIG. 1. Schematic picture of the system showing the top and
bottom surfaces of a TI, a potential barrier with strength V0 and width
L on the top surface (region II ), and a wave coming in from region
I with an angle of incidence θ .

the coupling between the two surfaces λ, and the width and
height of the potential barrier L and V0.

In this paper, we are assuming that the TI is in the form of
a thin film whose top and bottom surfaces cover a large area in
the x-y plane and whose thickness in the z direction is small.
In this situation, which is common for experimental measure-
ments of transport, the contributions of the side surfaces are
much smaller than those of the top and bottom surfaces and
can therefore be ignored.

III. BARRIER-FREE REGIONS

In the barrier-free regions denoted as I and III , the
Hamiltonian is

H0 =

⎛
⎜⎜⎝

0 vkeiθ λ 0
vke−iθ 0 0 λ

λ 0 0 −vkeiθ

0 λ −vke−iθ 0

⎞
⎟⎟⎠, (11)

where keiθ = ky + ikx . Thus k =
√

k2
x + k2

y and θ =
tan−1(kx/ky ). Defining E = √

v2k2 + λ2, the eigenvalues of
the Hamiltonian in Eq. (11) are

e1 = e2 = − e3 = − e4 = E, (12)

with corresponding eigenstates

|e1〉 = 1

2E

⎛
⎜⎜⎝

√
v2k2 + λ2

λ + vke−iθ

λ − vkeiθ

−√
v2k2 + λ2

⎞
⎟⎟⎠,

|e2〉 = 1

2E

⎛
⎜⎜⎝

√
v2k2 + λ2

−λ + vke−iθ

λ + vkeiθ√
v2k2 + λ2

⎞
⎟⎟⎠,
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|e3〉 = 1

2E

⎛
⎜⎜⎝

−√
v2k2 + λ2

λ − vke−iθ

λ − vkeiθ√
v2k2 + λ2

⎞
⎟⎟⎠,

|e4〉 = 1

2E

⎛
⎜⎜⎝

√
v2k2 + λ2

λ + vke−iθ

−λ − vkeiθ√
v2k2 + λ2

⎞
⎟⎟⎠. (13)

A. Wave functions and boundary conditions

In the presence of a potential or a magnetic barrier on the
top surface, the reflection and transmission amplitudes can
be calculated as follows. On the top surface, we have three
regions: the incident region, the potential region of width L,
and the transmitted region. Since the Hamiltonian has the
Dirac form (i.e., first order in the spatial derivatives), we
must match the wave functions (but not their derivatives) at
the boundaries between the incident region I and the barrier
region (labeled as II ) and between the barrier region II

and the transmitted region III . Let these boundaries be at
x = −L/2 and x = L/2. We then have the following wave
functions in the three regions.

In the incident region I , we consider an incident wave with
positive energy, E = √

v2k2 + λ2, and one of the eigenstates,
say, |e3〉. There will then be two possible reflected wave
functions with the same energy E and amplitudes r1 and r2.
The incident and reflected waves are given by

|ψin〉 = |e3〉ei(kxx+kyy),

|ψref〉 = (r1|e−3〉 + r2|e−4〉) ei(−kxx+kyy), (14)

where |e3〉 and |e4〉 have been defined earlier, and |e−3〉 and
|e−4〉 can be obtained from those by changing kx → −kx since
these are reflected wave functions. The total wave function in
this region is |ψI 〉 = |ψin〉 + |ψref〉.

In the transmitted region III , we have two possible wave
functions, with amplitudes t1 and t2. Thus

|ψIII 〉 = (t1|e3〉 + t2|e4〉) ei(kxx+kyy). (15)

We now turn to the barrier region II . Since the barrier
is independent of the y coordinate, the momentum in the ŷ

direction ky , and, of course, the energy E will be the same
in all the regions. However, the momentum in the x̂ direction
will generally be different in region II as compared to regions
I and III . In region II , therefore, we will have four different
eigenstates having amplitudes C1, C2, C3, and C4. Namely,
we have

|ψII 〉 = C1|e′
1〉ei(k′

x1x+kyy) + C2|e′
2〉ei(k′

x2x+kyy)

+ C3|e′
3〉ei(k′

x3x+kyy) + C4|e′
4〉ei(k′

x4x+kyy), (16)

where k′
xi denotes the four possible values of the momentum

in region II ; these four values and the corresponding wave
functions |e′

i〉 depend on the nature of the barrier (potential
and magnetic), and we will present them in Secs. V and VI.

Applying the matching conditions at the boundaries, we
obtain

|ψI 〉 = |ψII 〉 at x = −L/2,

|ψII 〉 = |ψIII 〉 at x = L/2. (17)

There are thus eight unknowns, r1, r2, t1, t2, C1, C2, C3, C4,
and we have eight equations from matching the four-
component wave functions at x = ±L/2. We can there-
fore solve for the unknowns by writing the eight-
dimensional columns A = (r1, r2, t1, t2, C1, C2, C3, C4)T and
B = (ψin, 0, 0, 0, 0)T which are related by a matrix M such
that MA = B; the elements of M are obtained by writing the
amplitudes from the various equations above. We can then find
the unknowns numerically.

B. Basis of eigenstates of τ xσ z

Once we obtain the transmission amplitudes t1 and t2 after
solving for the column A, the transmitted current and its
properties can be studied. This calculation becomes simpler
if we make a change of basis as follows. We observe that
the Hamiltonian in the barrier-free regions I and III can be
written as

H0 = vτ z(σxky − σykx ) + λτx. (18)

We note that τ xσ z commutes with H0. Next, we see that

τ xσ z =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠ (19)

has eigenvalues ±1 (both doubly degenerate) and correspond-
ing eigenstates of the form

|1〉 =

⎛
⎜⎝

a

b

a

−b

⎞
⎟⎠ and |−1〉 =

⎛
⎜⎝

a′
b′

−a′
b′

⎞
⎟⎠. (20)

Since we can find simultaneous eigenstates of τ xσ z and H0 in
regions I and III , we look for eigenstates of H0 which have
the forms given in Eq. (20) and which satisfy

H0|1〉 = E|1〉,
H0|−1〉 = E|−1〉, (21)

with energy E = √
v2k2 + λ2. We find that the eigenstates for

the incident waves have the form

|1in〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E + λ√

E − λe−iθ√
E + λ

−√
E − λe−iθ

⎞
⎟⎟⎠,

|−1in〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E − λ√

E + λe−iθ

−√
E − λ√

E + λe−iθ

⎞
⎟⎟⎠. (22)

We can see that in the λ → 0 limit, there are two linear combi-
nations of the above wave functions which have components
only at the top and bottom surfaces, respectively.
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To obtain the reflected waves, we change kx → −kx , i.e.,
θ → −θ . This gives

|1ref〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E + λ√

E − λeiθ√
E + λ

−√
E − λeiθ

⎞
⎟⎟⎠,

|−1ref〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E − λ√

E + λeiθ

−√
E − λ√

E + λeiθ

⎞
⎟⎟⎠. (23)

Choosing |1in〉 to be the incident wave, we have

|ψI 〉 = |1in〉ei(kxx+ky )

+ (r1|1ref〉 + r2|−1ref〉) ei(−kxx+kyy) (24)

in region I and

|ψIII 〉 = (t1|1in〉 + t2|−1in〉) ei(kxx+kyy) (25)

in region III .
The advantage of working in the basis of eigenstates of

τ xσ z is that the charge current, when calculated in regions
I and III , will not have any cross terms involving r1, r2

and t1, t2. To see this, we note that for the Hamiltonian H0,
the current operators can be found using the equation of
continuity and are given by

Jx = −vτ zσ y =

⎛
⎜⎝

0 iv 0 0
−iv 0 0 0

0 0 0 −iv

0 0 iv 0

⎞
⎟⎠,

Jy = vτ zσ x =

⎛
⎜⎝

0 v 0 0
v 0 0 0
0 0 0 −v

0 0 −v 0

⎞
⎟⎠. (26)

We see that both Jx and Jy commute with the operator τ xσ z.
We will only study Jx below. We now note that

〈1|Jx |−1〉 = 〈1|Jx (τ xσ z)2|−1〉
= 〈1|τ xσ zJxτ

xσ z|−1〉
= − 〈1|Jx |−1〉. (27)

This implies that 〈1|Jx |−1〉 = 0; hence there will be no cross
terms when we calculate the expectation value of Jx in regions
I and III .

C. Conservation of charge current in the x̂ direction

Given the wave functions and the form of Jx , we can
calculate 〈Jx〉 in regions I and III and check for conservation
of the charge current. In region I , we have

Jx |ψI 〉 = Jx[|1in〉ei(kxx+ky )

+ (r1|1ref〉 + r2|−1ref〉)ei(−kxx+kyy)]. (28)

Since

〈ψI | = 〈1in|e−i(kxx+ky )

+ (r∗
1 〈1ref | + r∗

2 〈−1ref |)e−i(−kxx+kyy), (29)

we find that

〈ψI |Jx |ψI 〉 = v
√

E2 − λ2

E
sin θ (1 − |r1|2 − |r2|2). (30)

Using the relation E2 = v2k2 + λ2, we can simplify this to
obtain

〈Jx〉I = v2k

E
sin θ (1 − |r1|2 − |r2|2). (31)

In region III , we calculate 〈ψIII |Jx |ψIII 〉 and find that

〈Jx〉III = v2k

E
sin θ (|t1|2 + |t2|2). (32)

Equating the expressions in Eqs. (31) and (32), we find that

1 − |r1|2 − |r2|2 = |t1|2 + |t2|2 (33)

in the basis of eigenstates of τ xσ z. We have checked numer-
ically that the computed values of the various probabilities
satisfy Eq. (33).

We will also calculate the spin current of �σ in the x̂ direc-
tion by taking the expectation of the operator Jxσ

i . Choosing
the τ xσ z basis as before, we find that

〈Jxσ
y〉III = −v2k

E
[(t∗1 t2 + t1t

∗
2 )]. (34)

We note that

Jxσ
y = −vτ z. (35)

We therefore anticipate that the expectation values of Jxσ
y

will have opposite signs on the two surfaces (which corre-
spond to τ z = ±1); this is a consequence of opposite helicities
of the Dirac electrons on these surfaces. We will see that this
is borne out by the numerical results presented below.

D. Differential conductance

Having chosen the incident waves in the basis of eigen-
states of τ xσ z, we can calculate the transmission probabilities
|ti |2 and transmitted currents 〈Jx〉. We can then calculate the
differential conductance G as follows [18]. If the system has
a large width in the ŷ direction given by W , the net current
going from the left of the barrier to the right is given by

I = qW

∫∫
dkxdky

(2π )2
〈Jx〉, (36)

where q is the charge of the electrons. We now change

variables from kx, ky to the energy E = h̄v
√

k2
x + k2

y and the

angle of incidence θ = tan−1(kx/ky ) which goes from 0 to
π . If μL and μR denote the chemical potentials of the left
and right leads which are attached to the system, then E goes
from μR to μL in the integral in Eq. (36); we are assuming
here that μL > μR . The voltage applied in a lead is related
to its chemical potential as μ = qV . In the zero-bias limit,
μL, μR → μ, the differential conductance is given by

G = dI

dV
= q2Wμ

(2πvh̄)2

∫ π

0
dθ 〈Jx〉. (37)

It is convenient to define a quantity G0 which is the maximum
possible value of G that arises when the transmission proba-
bilities have the maximum possible values, |t1|2 = |t2|2 = 1.
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Equation (32) then gives 〈Jx〉 = 2v
√

1 − λ2/μ2 sin θ , where
we have used the relations E = μ and vk = √

E2 − λ2. The
conductance in this case is given by

G0 = q2W

v(πh̄)2

√
μ2 − λ2. (38)

In the figures presented below, we will plot the dimensionless
ratio G/G0 whose maximum possible value is 1. In the plots,
the conductance will be calculated at a value of the incident
electron energy E which is equal to μ. We will always choose
E to lie in the range λ < E < m, so that the energy lies in the
upper (positive energy) band of the surface states but in the
gap of the bulk states; hence the bulk states will not contribute
to the conductance.

IV. δ-FUNCTION BARRIER

Before studying the more realistic case of barriers with
finite widths, it turns out to be instructive to study the simpler
problem of a δ-function barrier. This can be thought of as the
limit of a finite width barrier in which the barrier height V0 →
∞ and barrier width L → 0, keeping the product V0L = c

fixed. We will discover later that many of the results obtained
for barriers with finite widths can be understood qualitatively
by considering the problem of δ-function barriers.

A. δ-function potential barrier: Single surface

We first consider the case of a single surface of a TI with a
potential barrier of the form V0δ(x). For a single surface, the
wave function is a two-component object. Due to the Dirac
nature of the Hamiltonian, we find that a δ-function barrier
produces a discontinuity in the wave function. To show this,
we consider

H = v(−iσ x∂y + iσ y∂x ) + c δ(x),

Hψ = Eψ. (39)

Following a procedure similar to the one used to study the
effect of a δ-function barrier in a Schrödinger equation, we
integrate the second equation in Eq. (39) through the δ func-
tion at x = 0. This gives a matching condition at x = 0 of the
form

ψx→0+ = ei(c/v)σy

ψx→0− . (40)

For x < 0, the wave function has an incident part with ampli-
tude 1 and a reflected part with amplitude r; for x > 0, the
wave function has a transmitted part with amplitude t . We
therefore have

ψx→0− =
(

1
e−iθ

)
+ r

(
1
eiθ

)
,

ψx→0+ = t

(
1

e−iθ

)
. (41)

Equation (40) then gives

t

(
1

e−iθ

)
=

(
cos(c/v) sin(c/v)

− sin(c/v) cos(c/v)

)

×
[(

1
e−iθ

)
+ r

(
1
eiθ

)]
. (42)

The above equation gives two equations involving two vari-
ables r and t . Solving them we obtain

r = sin(c/v) (1 + e−i2θ )

2 [i cos(c/v) sin θ − sin(c/v)]
,

t = i sin θ

i cos(c/v) sin θ − sin(c/v)
. (43)

It can be verified that |r|2 + |t |2 = 1. For c/v = 2nπ , we find
that t = 1 and r = 0, while for c/v = (2n + 1)π , we get t =
−1 and r = 0.

B. δ-function potential barrier: Two surfaces

Next we consider the case where we have top and bottom
surfaces of a TI with a coupling λ between them. We apply
a δ-function potential barrier V0δ(x) to only the top surface.
The wave function ψ now has four components with the first
two corresponding to the top surface and the last two to the
bottom. The boundary condition at x = 0 on the top surface
remains the same as in the previous section. Using the wave
vectors obtained in Eq. (22) and Eq. (23) in order to obtain the
condition from Eq. (40), we get

t1|1in〉 + t2|−1in〉 = �0 [|1in〉 + r1|1ref〉 + r2|−1ref〉],
(44)

where the matrix �0 is given by

�0 =

⎛
⎜⎝

cos(c/v) sin(c/v) 0 0
− sin(c/v) cos(c/v) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠, (45)

r1 and t1 are the reflection and transmission amplitudes for
|1in〉, r2 and t2 are the reflection and transmission amplitudes
for |−1in〉, and the incident wave vector has been chosen to be
|1in〉.

Solving the four-component equation in Eq. (44), we get,
for c/v = 2nπ ,

r1 = 0, r2 = 0, t1 = 1, and t2 = 0. (46)

If we choose the incident wave vector to be |−1in〉, we get

r1 = 0, r2 = 0, t1 = 0, and t2 = 1. (47)

For c/v = (2n + 1)π , we obtain from Eq. (44)

r2 = 0, t1 = 0,

r1 = λe−iθ

iE sin θ − λ cos θ
,

t2 = − i sin θ
√

E2 − λ2

iE sin θ − λ cos θ
. (48)

In contrast to the case of a single surface with c/v equal to an
odd multiple of π , we see that the reflection amplitude does
not vanish completely. In Eq. (48), we see that as λ → 0, r1 →
0 and t2 → −1. As λ → E, t2 → 0 and r1 → −1. Similarly
for |−1in〉 as the incident wave vector, we obtain

r1 = 0, t2 = 0,

r2 = − λe−iθ

iE sin θ + λ cos θ
,

t1 = − i sin θ
√

E2 − λ2

iE sin θ + λ cos θ
. (49)
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FIG. 2. Conductance as a function of c/v for different couplings
λ, when both incident waves are present, and E = 2.

In Figs. 2 and 3, we show the differential conductance
and spin currents as a function of c/v for certain values of
λ; in both cases, we assume that both incident waves |1in〉
and |−1in〉 are present, and we integrate over the angle of
incidence θ . Figure 2 shows that the oscillation period of the
conductance as a function of c/v changes from π to 2π as
λ increases; the amplitude of the oscillations increases as λ

increases from 0 to E. These observations agree with our
analytic results for a single surface and two coupled surfaces.
In Fig. 3 we show the transmitted spin currents integrated over
θ at the top and bottom surfaces as a function of c/v. As
mentioned above, the spin current at the top (bottom) surface
is negative (positive) although the sum of the two is positive.
The oscillation period at both surfaces is 2π . (In Figs. 2–5, the
values of E and λ are in units of 0.01 eV, c/v is in units of h̄,
and 〈Jxσ

y〉 is in units of v).
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FIG. 3. Transmitted spin currents (in units of v) as a function of
c/v when both incident waves are present, E = 2 and λ = 1.
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FIG. 4. Conductance as a function of c/v for different values of
λ, when both incident waves are present, and E = 2.

C. δ-function magnetic barrier: Single surface

Now we consider a δ-function magnetic barrier of the form
V0δ(x)σx on the surface of a TI. We have

H = v(−iσ x∂y + iσ y∂x ) + c δ(x) σx,

Hψ = Eψ. (50)

Integrating over the δ function at x = 0 now gives the follow-
ing matching condition for the wave function,

ψx→0+ = e(c/v)σ z

ψx→0− . (51)

[Interestingly, Eqs. (40) and (51) both satisfy continuity of
the current ψ†Jxψ at x = 0, although Eq. (40) is a unitary
transformation while Eq. (51) is not.] Using the same wave
functions as in the case of a δ-function potential barrier, we
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FIG. 5. Transmitted spin currents (in units of v) integrated over
θ as a function of c/v, when both incident waves are present, E = 2
and λ = 1.
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obtain

t

(
1

e−iθ

)
=

(
ec/v 0

0 e−c/v

)[(
1

e−iθ

)
+ r

(
1
eiθ

)]
. (52)

Solving for r and t , from the two conditions above, we get

r = − e−2c/v − 1

e−2c/vei2θ − 1
,

t = e−c/v (ei2θ − 1)

e−2c/vei2θ − 1
. (53)

It can be checked that |r|2 + |t |2 = 1. In the limit c/v → ∞,
we get r = −1 and t = 0. Hence the transmission probability
goes to zero as the strength of the barrier increases; this
is in contract to the δ-function potential barrier where the
transmission probability oscillates with the barrier strength.

D. δ-function magnetic barrier: Two surfaces

Similar to the case of a δ-function potential barrier, we
apply a δ-function magnetic barrier on the top surface of a
TI, with the bottom surface being coupled to the top with
the coupling λ as usual. The same boundary condition in this
case gives the following equation for the case that the incident
wave vector is chosen to be |1in〉,
t1|1in〉 + t2|−1in〉 = �1 [|1in〉 + r1|1ref〉 + r2|−1ref〉],

(54)

where the matrix �1 is given by

�1 =

⎛
⎜⎝

exp(c/v) 0 0 0
0 exp(−c/v) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (55)

Here r1 and t1 are the reflection and transmission amplitude
of |1in〉, and r2 and t2 are the reflection and transmission
amplitude of |−1in〉. Upon solving these equations in the limit
c/v → ∞, we get

t1 = sin θ (E2 − λ2)

(2E2 − λ2) sin θ − iλ2 cos θ
,

r1 = − E sin θ (E + λ) + λ2e−iθ

(2E2 − λ2) sin θ − iλ2 cos θ
,

r2 = − E sin θ
√

E2 − λ2

(2E2 − λ2) sin θ − iλ2 cos θ
,

t2 = − sin θ (E − λ)
√

E2 − λ2

(2E2 − λ2) sin θ − iλ2 cos θ
. (56)

We see that unless E → λ, the transmission probability does
not vanish even in the limit of c/v → ∞. This is because
the bottom surface (which does not have a magnetic barrier)
allows for the conduction of electrons since it is coupled to
the top surface.

Figure 4 shows the differential conductance as a function
of c/v for various values of λ; we see that there are no
oscillations, unlike the case of a δ-function potential barrier
(Fig. 2). For a very large value of c/v, the conductance
does not vanish but reaches a constant value. However, as λ

approaches E, the conductance approaches zero for a large

barrier. This matches with the analytic expressions presented
in Eqs. (56). Figure 5 shows the transmitted spin current as a
function of c/v; this too does not show any oscillations.

V. POTENTIAL BARRIER WITH FINITE WIDTH

We now study the case of a finite width potential barrier on
the top surface. In region II where the potential is nonzero,
the Hamiltonian is

HII =

⎛
⎜⎜⎝

V0 vk′eiθ ′
λ 0

vk′e−iθ ′
V0 0 λ

λ 0 0 −vk′eiθ ′

0 λ −vk′e−iθ ′
0

⎞
⎟⎟⎠. (57)

The eigenvalues of HII and the respective eigenstates are

e′
1 = V0

2
+ 1

2

√
(V0 + 2vk′)2 + 4λ2

and |e′
1〉 = 1√

2(1 + α2
1 )

⎛
⎜⎜⎝

1
e−iθ ′

α1

α1e
−iθ ′

⎞
⎟⎟⎠,

e′
2 = V0

2
− 1

2

√
(V0 + 2vk′)2 + 4λ2

and |e′
2〉 = 1√

2(1 + α2
2 )

⎛
⎜⎜⎝

1
e−iθ ′

α2

α2e
−iθ ′

⎞
⎟⎟⎠,

e′
3 = V0

2
+ 1

2

√
(V0 − 2vk′)2 + 4λ2

and |e′
3〉 = 1√

2(1 + α2
3 )

⎛
⎜⎜⎝

1
−e−iθ ′

α3

−α3e
−iθ ′

⎞
⎟⎟⎠,

e′
4 = V0

2
− 1

2

√
(V0 − 2vk′)2 + 4λ2

and |e′
4〉 = 1√

2(1 + α2
4 )

⎛
⎜⎜⎝

1
−e−iθ ′

α4

−α4e
−iθ ′

⎞
⎟⎟⎠, (58)

where

α1 = −V0 − 2vk′ +
√

(V0 + 2vk′)2 + 4λ2

2λ
,

α2 = −V0 − 2vk′ −
√

(V0 + 2vk′)2 + 4λ2

2λ
,

α3 = −V0 + 2vk′ +
√

(V0 − 2vk′)2 + 4λ2

2λ
,

α4 = −V0 + 2vk′ −
√

(V0 − 2vk′)2 + 4λ2

2λ
,

k′eiθ ′ = ky + ik′
x and k

′2 = k
′2
x + k2

y. (59)

[In the limit λ → 0, we note that the states labeled 1 and 3
reduce to states at the top surface (namely, e′

1 → V0 + vk′,
e′

3 → V0 − vk′, and the lower two components of |e′
1〉 and
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FIG. 6. Transmitted currents (in units of v) and probabilities as a function of θ when (a) the incident wave is |1in〉, (b) the incident wave
function is |−1in〉, and (c) both incident waves are present. We have taken E = 2, λ = 1, V0 = 1, and L = 1.

|e′
3〉 → 0), while states 2 and 4 reduce to states at the bottom

surface (namely, e′
2 → −vk′, e′

4 → vk′, and the upper two
components of |e′

2〉 and |e′
4〉 → 0. We have assumed here that

V0 ± 2vk′ > 0.] To find the allowed values of k′
x , we note that

ky is conserved, i.e., has the same value as in the barrier-free
region, because the potential is independent of y. We now
equate the four eigenvalues shown in Eq. (58) to the energy
E in the barrier-free region since the energy is conserved. We
then obtain for k′ the expression

k′ = ± 1

2v
(V0 ±

√
(2E − V0)2 − 4λ2), (60)

in which all four combinations of plus and minus signs can
appear. We then find that

k′
x1 =

√√√√ 1

v2

(
−V0

2
+

√(
E − V0

2

)2

− λ2

)2

− k2
y ,

k′
x2 = −

√√√√ 1

v2

(
−V0

2
+

√(
E − V0

2

)2

− λ2

)2

− k2
y ,

k′
x3 =

√√√√ 1

v2

(
−V0

2
−

√(
E − V0

2

)2

− λ2

)2

− k2
y ,

k′
x4 = −

√√√√ 1

v2

(
−V0

2
−

√(
E − V0

2

)2

− λ2

)2

− k2
y . (61)

A. Numerical results

We will now present our results for the transmission proba-
bilities |t1|2 and |t2|2, transmitted current 〈Jx〉, the differential
conductance G/G0, and the transmitted spin current 〈Jxσ

y〉
for various parameter values. In all the plots, the values of
E, λ, and V0 are in units of 0.01 eV, the barrier width L is
in units of h̄v/(0.02 eV) 
17 nm, and the currents are in
units of v (we have taken v = 0.333 eV nm as in Bi2Se3). We
have chosen these units of energy and barrier width as they
are experimentally realistic (see Ref. [48] where tunneling
through barriers in single- and bilayer graphene was studied).
Further, we want the incident energy E to be much smaller
than m = 0.28 eV (for Bi2Se3) so that the bulk states do not
contribute to the conductance.

Figures 6 show the transmitted probabilities |ti |2 and cur-
rents 〈Jx〉 for different choices of the incident waves. In
Fig. 6(a), where the incident wave has been chosen to be
|1in〉, we see that |t1|2 is symmetric about θ = π/2, whereas
|t2|2, which is the probability of |−1in〉 in region III , is
asymmetric. Similarly, in Fig. 6(b), where the incident wave
is |−1in〉, we see that |t2|2 is symmetric, whereas |t1|2, which
is the probability of |1in〉 in region III , is asymmetric about
θ = π/2. In Fig. 6(c), both are symmetric as the transmitted
current gets an equal contribution from the two waves, |1in〉
and |−1in〉; this makes |t1|2, |t2|2 and the total current sym-
metric about θ = π/2. We can understand these symmetries
as follows.

σy symmetry: The symmetry between |t1|2 and |t2|2 at the
incident angles θ and π − θ can be understood by looking at
the effect of a unitary transformation by the operator σy . We
observe that

(i) σyH (kx, ky )σy = H (kx,−ky ), where H (kx, ky ) is the
total Hamiltonian in region II given by

H (kx, ky ) = vτ z(σxky − σykx ) + λτx + V0

2
(1 + τ z).

(62)
(ii) Since σy anticommutes with σ z, we have τ xσ zσ y =
−σyτ xσ z. Hence σy changes the eigenvalue of τ xσ z from +1
to −1, thus changing |1in〉 to |−1in〉, and vice versa.

Using the above results, we can understand why (i) |t1|2 in
Fig. 6(a) and |t2|2 in Fig. 6(b) are related by ky → −ky , i.e., by
θ → π − θ , and (ii) |t2|2 in Fig. 6(a) and |t1|2 in Fig. 6(b) are
also related by θ → π − θ . These symmetries imply that the
total transmission probability, |t1|2 + |t2|2, when both incident
waves are present, must be symmetric under θ → π − θ . This
is consistent with Fig. 6(c).

In Fig. 7, the conductance has been plotted as a function
of V0L/v (which is in units of h̄). The conductance is seen
to oscillate with a period which depends on the parameter λ.
The conductance decreases with increase in λ as expected. An
interesting phenomenon is that for small values of λ (much
smaller than the incident energy E), the period of oscillation
of the current with V0L/v is π . However, for large values of λ,
comparable to E, the oscillation period is 2π , which is twice
the previous value. The oscillation period for small λ can been
understood analytically as follows. For λ 
 0, the top and
bottom states are decoupled, and we can find the transmitted
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FIG. 7. Conductance versus V0L/v for different values of λ, with
E = 2 and L = 1.

amplitudes analytically. For V0 � E, we find that

|t1|2 = sin2 θ

sin2(V0L/v) cos2 θ + sin2 θ
. (63)

It is clear that the maxima of |t1|2 lie at V0L/v = nπ . For
λ close to E, we do not have an analytical expression for
|t1|2, and we therefore do not have an analytical understanding
of the oscillation period. However, we have gained some
understanding of this by looking at the limit of a δ-function
potential barrier in Sec. IV.

B. Currents at the top and bottom surfaces

It is interesting to look at the currents at the top and bottom
surfaces separately. (It may be possible to experimentally
detect these currents by attaching leads to the system which
couple differently to the top and bottom surfaces.) This is done
by taking the projections of the previously obtained trans-
mitted wave functions onto the top and bottom surfaces (i.e.,
taking the upper and lower two components, respectively) and
then calculating the expectation value of Jx for these wave
functions. [In Eq. (26), we note that Jx is block diagonal in
the basis of top and bottom surface states.]

In region III , we have

|1in〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E + λ√

E − λe−iθ√
E + λ

−√
E − λe−iθ

⎞
⎟⎟⎠,

|−1in〉 = 1

2
√

E

⎛
⎜⎜⎝

√
E − λ√

E + λe−iθ

−√
E − λ√

E + λe−iθ

⎞
⎟⎟⎠. (64)

For the top and bottom surfaces,

|ψIII,t/b〉 = (t1|1in,t/b〉 + t2|−1in,t/b〉) ei(kxx+kyy), (65)

where |1in,t/b〉 = [(1 ± τ z)/2]|1in〉 and |−1in,t/b〉 = [(1 ±
τ z)/2]|−1in〉. Namely,

|1in,t〉 = 1

2
√

E

⎛
⎜⎜⎜⎝

√
E + λ√

E − λe−iθ

0
0

⎞
⎟⎟⎟⎠,

|−1in,t〉 = 1

2
√

E

⎛
⎜⎜⎜⎝

√
E − λ√

E + λe−iθ

0
0

⎞
⎟⎟⎟⎠ (66)

are the wave functions at the top surface, and

|1in,b〉 = 1

2
√

E

⎛
⎜⎜⎝

0
0√

E + λ

−√
E − λe−iθ

⎞
⎟⎟⎠,

|−1in,b〉 = 1

2
√

E

⎛
⎜⎜⎝

0
0

−√
E − λ√

E + λe−iθ

⎞
⎟⎟⎠ (67)

are the wave functions at the bottom surface. Since Jx

is block diagonal in this basis, we can calculate 〈Jx,t/b〉
where

Jx,t = 1 + τ z

2
Jx and Jx,b = 1 − τ z

2
Jx. (68)

We then get for the top and bottom surfaces

〈ψIII,t |Jx,t |ψIII,t 〉

= v2k

2E
sin θ (|t1|2 + |t2|2)

+ v

2E
[E sin θ (t∗1 t2 + t1t

∗
2 ) + iλ cos θ (t∗1 t2 − t1t

∗
2 )],

〈ψIII,b|Jx,b|ψIII,b〉

= v2k

2E
sin θ (|t1|2 + |t2|2)

− v

2E
[E sin θ (t∗1 t2 + t1t

∗
2 ) + iλ cos θ (t∗1 t2 − t1t

∗
2 )].

(69)

Note that the cross terms do not vanish when we calcu-
late the currents at the top and bottom surfaces separately,
and these terms appear with opposite signs at the two
surfaces.

Note that when V0 = 0, i.e., there is no scattering, we have
no cross terms since either t1 or t2 vanishes depending on
whether the incident wave is |1in〉 or |−1in〉. We then get equal
currents at the top and bottom surfaces,

〈ψIII,t |Jx,t |ψIII,t 〉 = 〈ψIII,b|Jx,b|ψIII,b〉. (70)

The difference between the currents at the two surfaces is
therefore a measure of the barrier strength V0.

Using the expressions in Eq. (69), we obtain the results
shown in Figs. 8 for the currents at the top and bottom surfaces
as a function of θ . Interestingly, these figures show that the
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FIG. 8. Transmitted currents (in units of v) at the top and bottom surfaces as a function of θ when (a) the incident wave is |1in〉, (b) the
incident wave function is |−1in〉, and (c) both incident waves are present. We have taken E = 2, λ = 1, V0 = 0.25, and L = 1.

currents at the top and bottom surfaces separately can have
negative values for certain ranges of θ when only one of
the incident waves is present. This means that some current
flows from the top surface to the bottom surface or vice versa.
(Typically this happens close to a glancing angle of incidence,
i.e., θ � 0 and θ � π .) However the total current when both
incident waves are present is positive for all values of θ at
both surfaces; we can see this in Fig. 8(c). We also note
that the individual currents are not symmetric about θ = π/2
(normal incidence) although the total current is symmetric
about θ = π/2.

Figures 9(a), 9(b), and 9(c) show how the conductances at
the top and bottom surfaces vary with V0L/v. For small values
of the coupling λ, the bottom surface conducts independently
of the top surface and gives a constant current, while the
current at the top surface oscillates with a period π . As we
increase λ, the current at the bottom surface also begins to
develop an oscillatory behavior. Finally, when λ is close to E,
there are sharp peaks which occur with a period equal to 2π .
The variation of the period as λ increases from zero to E is
similar to the results that we found for a δ-function potential
barrier in Sec. IV B.

Similarly, we can obtain the expressions for the spin
current (Jxσ

y) as discussed in Eqs. (34) and (35). For the
top and bottom surfaces separately, we have to calculate

the expectation values of −(v/2)(1 + τ z) and (v/2)(1 − τ z),
respectively; this gives

〈Jxσ
y〉t = −v

2

[
|t1|2 + |t2|2 + vk

E
(t∗1 t2 + t1t

∗
2 )

]
,

〈Jxσ
y〉b = v

2

[
|t1|2 + |t2|2 − vk

E
(t∗1 t2 + t1t

∗
2 )

]
. (71)

In contrast to Eqs. (69) for the currents at the top and bottom
surfaces, we see that the cross terms for the spin current
appear with the same sign at the two surfaces. For V0 = 0,
there are no cross terms and the spin currents at the top and
bottom surfaces have opposite values,

〈Jxσ
y〉t = −〈Jxσ

y〉b. (72)

The total spin current is then zero. Hence the total spin current
is a measure of the barrier strength V0.

In Fig. 10, we show the total spin currents as a function of
V0L/v when both incident waves are present. Once again we
see oscillations, the period of the largest oscillations being 2π .
Note also that the spin current is always negative (positive) at
the top (bottom) surface as was mentioned after Eq. (35).
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FIG. 9. Conductances at the top and bottom surfaces versus V0L/v for (a) a small value of λ = 0.01, (b) an intermediate value of λ = 1,
and (c) a value of λ = 1.9 close to E. We have taken E = 2 and L = 1.
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FIG. 10. Total spin currents (in units of v) as a function of V0L/v

when both incident waves are present, for E = 2, λ = 1, and L = 1.

VI. MAGNETIC BARRIER WITH FINITE WIDTH

In Sec. V, we have studied the effects of a potential barrier
with strength V0 on the top surface. We will now study what
happens if we replace the potential barrier by a magnetic
barrier of the form V0σ

x . This may be experimentally realized
by placing a strip of a ferromagnetic material on the top
surface whose magnetization points along the x̂ direction and
has a Zeeman coupling to the spin of the surface electrons.
(For convenience, we will include both the magnetization of
the ferromagnetic strip and its coupling to the electron spin in
the definition of V0 so that it has dimensions of energy.) The
Hamiltonian in the barrier region II is now given by

HII =

⎛
⎜⎜⎝

0 vk′eiθ ′ + V0 λ 0
vk′e−iθ ′ + V0 0 0 λ

λ 0 0 −vk′eiθ ′

0 λ −vk′e−iθ ′
0

⎞
⎟⎟⎠.

(73)
The eigenvalues of this are found to be

e′
1 =

√
E2 + V0vk′ cos θ ′ + V 2

0

2
+ V0 A ,

e′
2 = −

√
E2 + V0vk′ cos θ ′ + V 2

0

2
+ V0 A ,

e′
3 =

√
E2 + V0vk′ cos θ ′ + V 2

0

2
− V0 A ,

e′
4 = −

√
E2 + V0vk′ cos θ ′ + V 2

0

2
− V0 A ,

A =
√

V 2
0

4
+ λ2 + V0vk′ cos θ ′ + v2k

′2 cos2 θ ′. (74)

Since the energy E = √
v2k2 + λ2 and ky = k cos θ =

k′ cos θ ′ are conserved in all the regions, we find that k′
x can
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FIG. 11. Total transmitted current (in units of v) and probability
as a function of θ when both incident waves are present. We have
taken E = 2, λ = 1, V0 = 1, and L = 1.

take one of the following values in region II ,

k′
x1 = 1

v

√
v2k

′2 sin2 θ ′ − V0vk′ cos θ ′ − V 2
0

2
+ V0 A ,

k′
x2 = −1

v

√
v2k

′2 sin2 θ ′ − V0vk′ cos θ ′ − V 2
0

2
+ V0 A ,

k′
x3 = 1

v

√
v2k

′2 sin2 θ ′ − V0vk′ cos θ ′ − V 2
0

2
− V0 A ,

k′
x4 = −1

v

√
v2k

′2 sin2 θ ′ − V0vk′ cos θ ′ − V 2
0

2
− V0 A ,

(75)

where A is defined in Eq. (74).

A. Numerical results

Just as for the case of a potential barrier, we will now
study how the current varies with different parameters like the
angle of incidence θ , the coupling λ, and the strength of the
magnetic barrier V0. We present our numerical results below.

Figure 11 shows the total transmitted current and probabil-
ity as a function of θ when both incident waves are present.
We see that these are not symmetric about θ = π/2. This
is because the magnetic barrier term V0σ

x breaks the σy

symmetry of the Hamiltonian, unlike the case of the potential
barrier discussed in Eq. (62).

Figures 12(a), 12(b), and 12(c) show the conductance as a
function of V0L/v for different values of λ and L. While we
do not see appreciable oscillations in the conductance if L and
λ are small, more and more oscillations become visible when
L becomes large and λ approaches E.
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FIG. 12. Conductance versus V0L/v for (a) different values of λ and L = 1, (b) different values of λ and L = 10, and (c) different values
of L and λ = 1.99. We have taken E = 2.

B. Currents at top and bottom surfaces

We have again studied the transmitted currents and conduc-
tances on the top and bottom surfaces separately. We find that,
just like the case of a potential barrier, the currents in either
of the surfaces can take negative values for certain values of θ

when only one incident wave is present. When both incident
waves are present, we find that the current is always positive
on both the surfaces.

The conductances at the top and bottom surfaces as a
function of V0L/v are shown in Fig. 13 for two values of
λ. Figure 13(a) shows that when the coupling λ is small,
the bottom surface (which has no magnetic barrier) conducts
almost the same current for different values of the barrier
strength V0, while the current at the top current decreases
quickly as V0 increases. When the coupling λ has a value
close to the energy E [Fig. 13(b)], the current at the top and
bottom surfaces mix producing a more complex behavior. The
current at the bottom surface decreases up to about V0L/v = 2
beyond which it increases and reaches a constant. The current
at the top surface decreases up to about V0L/v = 1 where it is
negative; beyond that value it increases and eventually reaches
a constant value of zero. We note that this nonmonotonic
variation with V0L/v occurs only when the barrier width
is substantial; in contrast, the behavior is monotonic for a
δ-function magnetic barrier (Fig. 4) or when the width is 0.4
[Fig. 12(c)].

Finally, we present plots of the transmitted spin current,
similar to the case of a potential barrier. In Fig. 14, we show
the total spin current as a function of V0L/v when both
incident waves are present. We do not see any oscillations in
the spin current for the values of λ and L chosen in this figure.
Indeed Fig. 14 looks very similar to Fig. 5 which showed the
total spin current for a δ-function magnetic barrier.

C. Magnetic barrier with other orientations of magnetization

We have so far studied the effects of a magnetic barrier
in which the magnetization points along the x direction. We
will now discuss briefly what happens if the magnetization
points along the y or z direction. To obtain a qualitative
understanding of these two cases, let us consider a δ-function
magnetic barrier on the top surface similar to the situation
studied in Secs. IV C and IV D. If the magnetization points
along the y direction, we get a Hamiltonian and a matching

condition on the top surface given by

H = v(−iσ x∂y + iσ y∂x ) + c δ(x) σy, (76)

and

ψx→0+ = ei(c/v)ψx→0− . (77)

This resembles the matching condition given in Eq. (40) for a
δ-function potential barrier in the sense that ψx→0+ and ψx→0−

are related by a unitary transformation. We find numerically
as well that the dependence of the conductance on the various
parameters is similar to the case of a δ-function potential
barrier. For instance, in both cases, the conductance oscillates
with increasing barrier strength c as in Fig. 2.

On the other hand, if the magnetization points along the z

direction, the Hamiltonian and matching condition on the top
surface are given by

H = v(−iσ x∂y + iσ y∂x ) + c δ(x) σ z, (78)

and

ψx→0+ = e−(c/v)σx

ψx→0− . (79)

This resembles the matching condition given in Eq. (51) for
a δ-function magnetic barrier with magnetization pointing
in the x direction in that the matrix connecting ψx→0+ to
ψx→0− is not unitary. Numerical calculations show that the
dependence of the conductance on the various parameters is
indeed similar to the case of a δ-function magnetic barrier
with magnetization in the x direction. In both cases, the
conductance becomes small and saturates at a nonzero value
with increasing c as in Fig. 4. Thus the effects of a magnetic
barrier with magnetization along the y and z directions are,
respectively, similar to a potential barrier and to a magnetic
barrier with magnetization in the x direction.

VII. DISCUSSION

In this work, we have studied a three-dimensional topo-
logical insulator in which the states at the top and bottom
surfaces are coupled to each other, with the coupling being
characterized by an energy scale λ. For each value of the
energy and surface momentum, there are two possible states
which are linear combinations of states at the top and bottom
surfaces. We have considered two types of barriers applied
to the top surface, a potential barrier and a magnetic barrier.
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FIG. 13. Conductances at the top and bottom surfaces versus
V0L/v for (a) a small value of λ = 0.01 and (b) a value of λ = 1.9
close to E. We have taken E = 2 and L = 1.

We have studied the transmitted currents and conductances as
functions of various parameters of the system: the angle of
incidence θ of the incident waves, the coupling λ, and the
strength of the barrier V0. We also studied the transmitted
currents at the top and bottom surfaces separately which gives
a clearer picture of the contributions from the two surfaces.
Further, we have studied the transmitted spin currents at the
two surfaces separately. We note that the qualitative features
of many of the results obtained for barriers with finite widths
can be analytically understood using models with δ-function
barriers.

The main results obtained for potential barriers are as
follows. First, we have shown that the transmitted currents
from the two possible incident waves as a function of the angle
of incidence θ are symmetric about normal incidence (θ =
π/2). Moreover, the conductance G/G0 is, expectedly, an
oscillatory function of the barrier strength V0. The difference
of these oscillations from their single surface counterpart is
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FIG. 14. Total spin current (in units of v) as a function of V0L/v

when both incident waves are present, E = 2, λ = 1, and L = 1.

that their period increases from π to 2π (in dimensionless
units) as we increase the coupling λ. The conductance at the
peaks of these oscillations reaches almost unity, independent
of the value of λ, for specific values of the barrier potential
V0 thus demonstrating near-perfect transmission resonances.
Second, for a fixed value of V0, the conductance as a function
of the coupling λ decreases with increasing λ. Third, looking
at the currents at the top and bottom surfaces separately, we
find that when we send only one of the two possible incident
waves, the currents can take negative values for a small range
of values of θ close to glancing angles. This shows that due
to the coupling λ between the two surfaces, some current can
tunnel from the top surface to the bottom surface or vice versa.
However, the sum of the currents when both incident waves
are present is always positive at both the surfaces. Fourth,
the transmitted spin current (with spin component along the
ŷ direction) is observed to be always negative (positive) at
the top (bottom) surface, but their sum is always positive.
This is due to the opposite forms of spin-momentum locking
on the two surfaces as mentioned after Eq. (7); an electron
with positive energy and moving in the +x̂ direction on the
top (bottom) surface has a spin pointing in the −ŷ (+ŷ)
direction, respectively. We note that this allows the usage of
these junctions as splitters of currents into two separate spin
currents with opposite polarizations. These spin currents can
be picked up by attaching spin-polarized metallic leads to the
two surfaces.

Next we summarize our main results for magnetic barriers.
First, for a barrier in which the magnetization points along the
x̂ direction, the transmitted current as a function of the angle
of incidence θ is not symmetric about normal incidence (θ =
π/2), unlike the case of a potential barrier. This is because the
magnetic barrier breaks the symmetry θ → π − θ . Moreover,
the normalized conductance G/G0 does not oscillate but
decreases and reaches a constant value as the barrier strength
V0 increases, in contrast to the case of a potential barrier. Even
for very large V0, there is always a nonzero current due to
the presence of the bottom surface. Second, the conductance
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decreases as a function of λ for a given value of V0. As
E → λ, the current goes to zero. Third, the currents at the
top and bottom surfaces separately can again exhibit negative
values near the glancing angles, for the same reasons as
mentioned above. Finally, the transmitted spin currents have
opposite signs on the top and bottom surfaces due to the
spin-momentum locking as discussed above.

In this work, we have not considered the effects of disorder.
In the limit of strong nonmagnetic disorder, where the mean
free path of the Dirac electrons becomes less than the width
of the potential or magnetic barrier, the effect of the disorder
would have to be considered. This is, by itself, an interesting
problem and could be a topic of future study. However, in
this paper, we have concentrated on the other (ballistic) limit,
where the mean free path of the Dirac electrons is much
larger than the barrier width. In this weak disorder or “clean”
limit, as also pointed out in Ref. [49] in the context of two-
dimensional Dirac electrons in graphene, the transmission is
not significantly affected. Further, such systems with weak
disorder are experimentally feasible; thus this limit is expected
to have experimental relevance.

The experimental verification of our results would involve
transport measurements in these systems. The best experimen-
tal setup would involve four leads which separately connect to
the top and bottom surfaces on the left and on the right of the
barrier. One can then apply a common voltage to the two input
leads on the left side from where the electrons are incident
and measure the currents individually at the two output leads
on the right side where the electrons are transmitted. Apart
from attaching the leads, one would also need to implement
the potential and magnetic barriers for these experiments.
The potential barriers can be implemented by putting gates
across the top surface. For magnetic barriers, one would need
to deposit a layer of magnetized material with magnetiza-
tion along x̂ on the top surface; such a strip will induce a
magnetization on the region below it via the proximity effect

and thus mimic the Hamiltonian of region II [28]. The first
experiment that we suggest involves attaching spin-polarized
leads with opposite spin polarizations, along −ŷ and +ŷ, at
the top and bottom surfaces, respectively. This would allow
one to pick up oppositely polarized spin currents as output for
a generic charge current input in these junctions. We predict
that a much smaller output current will be picked up if the
spin polarizations of the leads on the two surfaces are reversed
(i.e., +ŷ and −ŷ at the top and bottom surfaces). Further, one
can carry out a standard tunneling conductance measurement
with these junctions in the presence of potential barriers. The
period of the oscillations of these tunneling conductances as
a function of the barrier strength (which could be tuned using
the gate voltage on the top surface) would depend on λ/E.
Although it would be difficult to tune λ, one can easily tune
the incident electron energy E and verify the change in the
period of G as a function of λ/E predicted in this work.

In conclusion, we have studied the transport across a
junction of a thin topological insulator whose top and bottom
surface are connected by a coupling of strength λ in the
presence of either a potential or a magnetic barrier atop its top
surface. We have shown that such junctions show conductance
oscillations as a function of the potential barrier strength
whose period can be tuned by varying E. For a magnetic
barrier, the conductance approaches a finite nonzero value
with increasing barrier strength. We find that the spin currents
on the top and bottom surfaces of such junctions always have
opposite polarizations. Consequently, they can act as splitters
of a charge current into two oppositely oriented spin currents.
We have suggested experiments to test our theory.
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