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Bulk versus surface contributions to the Rashba spin splitting of Shockley surface states
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Shockley surface states of a bulk crystal with both time reversal and space inversion symmetries exhibit the
Rashba spin splitting due to the broken space inversion symmetry at the surface. Since the evanescent states in
the bulk region are doubly degenerate with respect to spin degrees of freedom even in the presence of spin-orbit
interaction (SOI), one might think that the entire spin splitting occurs via the SOI in the surface region where the
potential energy deviates from the bulk one. In the present work, we elucidate why this is not the case. Namely,
in the presence of SOI, the complex energy bands are modified such that a pair of evanescent states having the
same energy and the same complex wave number become two distinct solutions of the Schrödinger equation
that do not satisfy the same boundary condition. Since the tail of the surface-state wave function is expressed
as a superposition of these evanescent waves, the bulk region also contributes to the Rashba spin splitting. We
illustrate this effect by a first-principles calculation for Au(111) and by a simplified sp-band model Hamiltonian
on a square lattice.
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I. INTRODUCTION

The spin degeneracy of electronic states is lifted at the
surface of nonmagnetic crystals having space inversion sym-
metry. This effect is called Rashba spin splitting, since the
energy dispersion of the L-gap surface state on Au(111), for
which this effect was first observed [1], was well fitted by the
Bychkov-Rashba Hamiltonian for two-dimensional (2D) elec-
trons exposed to a vertical electric field [2]. However, Petersen
and Hedegård [3] pointed out that the spin splitting arising
from the spin-orbit interaction (SOI) involving the normal
derivative of surface potential barrier is by several orders of
magnitude smaller than the experimental one in the case of
Au(111). Furthermore, by using a tight-binding Hamiltonian
comprising three p orbitals, they demonstrated that the spin
splitting of surface bands arises from the conventional SOI of
the type Ĥso = 2λ(�l · �s) (�l and �s are orbital and spin angular
momentum operators of constituent atoms, respectively), if
the hopping between the neighboring pz (the z axis is the sur-
face normal) and px,y orbitals is allowed due to the potential
asymmetry in the z direction. This was consistent with the
density-functional-theory (DFT) calculation of Nicolay et al.
[4] that reproduced the spin-split surface bands on Au(111)
quite well only with the aforementioned conventional SOI
term. Subsequently, a number of mechanisms were proposed
in order to account for large energy splittings observed for
clean surfaces [5–8] as well as for those covered with heavy
atoms such as Pb and Bi [9–12]. Bihlmayer et al. [13] and
Nagao et al. [14] demonstrated that it is not the asymmetry
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of the potential gradient but the asymmetry of the surface-
state wave function (or charge density) that determines the
size of the spin splitting. Park et al. [15] and Kim et al.
[16] suggested that the orbital angular momentum induced
in surface-state wave functions plays a central role in the
formation of helically polarized spin textures in spin-split
surface bands. More recently, Krasovskii proposed that the
Rashba spin splitting is caused by the relativistic modification
of surface-state wave functions [17]. Yan et al. suggested that
the L-gap surface states on noble metals are of topological
nature [18].

In the present work, we present a novel viewpoint on the
physical mechanism of the Rashba spin splitting. It differs
from the aforementioned ones in that it sheds light on the role
of the bulk electronic states. To explain the motivation for the
present work clearly, we show in Fig. 1(a) the spin splitting of
the L-gap surface state on Au(111) as a function of the wave
number along the �̄-M̄ line (chosen as the x direction) calcu-
lated by a DFT code [19] that combines the full-potential lin-
earized augmented plane wave (LAPW) method [20] and the
embedding technique of Inglesfield [21,22]. In the embedding
method, the space is partitioned into the surface region with
a finite thickness and the semi-infinite bulk, and the Green’s
function in the surface region, is calculated by representing the
effects of the semi-infinite substrate via a complex embedding
potential acting on the boundary surface between the two
regions. In Fig. 1(a), L, the number of the Au layers in the
embedded surface region, is varied from L = 1 to 7. It is seen
that the convergence of the energy splitting of the two surface
bands, �ε, with L is surprisingly fast, and even the calculation
with L = 1, in which the second and deeper Au layers are
represented by the embedding potential, can reproduce �ε

very well in a wide kx range. On the one hand, this implies that
the screening length of potential energies is short in a metal
with high electron densities. On the other hand, however,
this does not indicate that the surface-state wave function is
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FIG. 1. (a) Spin splitting �ε of the L-gap surface state on
Au(111) as a function of kx , wave number along the �̄-M̄ line. L

denotes the number of Au layers included in the embedded surface
region. (b) Planar-averaged charge density of the L-gap surface state
on Au(111) at �̄ as a function of normal coordinate z. dz denotes the
layer spacing between two neighboring Au(111) layers, and z/dz = i

(i = 1, 2, . . . , 7) indicates the positions of Au atomic planes. (c)
Complex band structure of Au(111) at kx = 0.1 bohr−1 along the
�̄-M̄ line. Left and right panels show, respectively, the real and
imaginary part of the z component of wave number q = kz + iκz.
Red lines indicate Bloch states with κz = 0, while pairs of green lines
numbered as 1, 2, 3, . . . in both panels represent evanescent states
with κz > 0. For brevity, only a few bands are numbered. The decay
length of the L-gap surface state is determined by the κz value of the
band “1.” Energy is measured relative to the Fermi energy EF .

strongly localized within the first Au layer. Figure 1(b) shows
the planar-averaged charge density of the L-gap state at �̄

as a function of the normal coordinate z. Surely the charge
density decays exponentially toward the interior of the metal.
However, it has considerable amplitudes on the second and
deeper layers. Indeed, according to Bihlmayer et al. [13], more
than 40 percent of �ε arises from the SOI in the second and
deeper Au layers. In the present calculation with L = 1, this
contribution is represented by the embedding potential. For
a given energy ε and planar wave vector k, the embedding
potential is calculated from the wave functions of generalized
Bloch states (complex energy bands) with complex wave
number in the normal direction, q = kz + iκz, which decay or

propagate toward the interior of the metal. The energy versus
q plot of the complex energy bands is called the complex band
structure [23–25]. In Fig. 1(c) we show the complex band
structure of Au(111) at k = (0.1, 0) bohr−1 around which �ε

becomes the largest. As is seen, not only the Bloch states
with κz = 0 (red lines) but also all evanescent states with
κz > 0 (green lines) are doubly degenerate with respect to spin
degrees of freedom. Then, as a natural consequence, one may
raise a question as to why the embedding potential calculated
from the doubly degenerate complex energy bands is able to
represent the contribution of the bulk region to the Rashba
spin splitting of the surface bands. This is the central question
clarified in the present work.

The complex band structure in a bulk crystal with both time
reversal and space inversion symmetries is doubly degenerate.
When electronic states are doubly degenerate, one may tend
to assume that the two states are related by some symmetry
operator. Indeed, regarding Bloch states, by applying both
time reversal and space inversion operators to one of the two
states in a degenerate pair, one obtains the other solution in
the pair. In clear contrast, regarding evanescent waves, as
will be shown later, there exist no simplified mathematical
operators relating the two states in a degenerate pair when SOI
is present. Instead, they become two distinct solutions of the
Schrödinger equation that do not satisfy the same boundary
condition at the boundary surface between the surface and
bulk regions. Since the embedding potential is constructed
from the wave functions of the evanescent states within a
surface-projected bulk band gap, it can reproduce the bulk
contributions to the spin splitting of surface bands.

The plan of the present paper is as follows. In Sec. II
we formulate the complex energy bands (generalized Bloch
states) of bulk crystals by using an orthonormal local-orbital
basis set and discuss their properties when the system pos-
sesses both time reversal and space inversion symmetries.
We also present a short review of the embedding theory and
explain how the embedding potential of a semi-infinite sub-
strate is constructed from the wave functions of generalized
Bloch states. In Sec. III we illustrate the aforementioned
Rashba spin splitting originating from the complex energy
bands by a model calculation that employs a simplified sp-
band Hamiltonian on a two-dimensional (2D) square lattice.
In doing so, we explore two parameter regimes that can be
distinguished from each other by the strength of SOI. Finally,
we conclude in Sec. IV.

II. THEORY

In computing �ε in Fig. 1, we used the LAPW basis
functions and the embedding theory of Inglesfield formulated
in real space [21,22]. While the properties of the complex
energy bands discussed in this section can be derived by using
the real-space representation of electron wave functions, we
switch to a formulation based on local-orbital basis functions
in the following, since it greatly facilitates deriving the prop-
erties of complex energy bands.

A. Complex band structure

We consider a bulk crystal made by stacking atomic layers
in the surface normal direction, which is chosen as the z
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axis. We assume that two of the three primitive translation
vectors of the crystal lie within the plane, while the third one
connects equivalent atoms in two nearest-neighbor layers. To
expand electron wave functions, we use a linear combination
of atomic orbital (LCAO) type basis set {|χk

ln〉} consisting of
basis functions localized in each layer, which are specified by
the planar wave vector k, integer layer index l, and index n

(n = 1, 2, . . . , N ) that specifies atomic sites in the unit cell,
types of atomic orbitals, and also electron spin [26]. The basis
set is assumed to be orthonormal, i.e., 〈χk

ln|χk
l′n′ 〉 = δl,l′ δn,n′ .

Then |φ〉, an arbitrary solution of the Schrödinger equation
with k and real energy ε, is expanded in the form

|φ〉 =
∑
l,n

∣∣χk
ln

〉〈
χk

ln

∣∣φ〉
, (1)

where 〈χk
ln|φ〉 satisfies

Ĥ k
l,l+1 �(l + 1) + Ĥ k

l,l �(l) + Ĥ k
l,l−1 �(l − 1) = ε �(l).

(2)
Here, Ĥ k

l,l′ is the N × N transfer matrix whose (n, n′) ele-
ment is given by 〈χk

ln|Ĥ |χk
l′n′ 〉 with Ĥ being the one-electron

Hamiltonian, Ĥ k
l,l′ is assumed to be nonvanishing only up to

nearest-neighboring layers, and �(l) denotes a column vector
of length N ,

�(l) = (〈
χk

l1

∣∣φ〉
,
〈
χk

l2

∣∣φ〉
, . . . ,

〈
χk

lN

∣∣φ〉)t
. (3)

Let us consider a generalized Bloch state with dimensionless
complex wave number in the z direction, q = kz + iκz, for
which �(l) can be expressed as

�(l) = eiql v (4)

with a column eigenvector v. Inserting Eq. (4) into Eq. (2)
yields

[Ĥ(k, q ) − εÎ ]v = 0, (5)

with the complex Hamiltonian,

Ĥ(k, q ) = Ĥ k
01e

+iq + Ĥ k
00 + Ĥ k

10e
−iq . (6)

The complex band structure of the bulk crystal is obtained by
plotting all complex wave numbers q’s that satisfy Eq. (5),
namely,

det[Ĥ(k, q ) − εÎ ] = 0, (7)

as a function of k and ε. At a given (k, ε), there are 2N q’s
that satisfy Eq. (7) and they can be computed, for example,
by solving the eigenvalue problem of the 2N × 2N transfer
matrix [26–28].

For any (ε, k, q ) satisfying Eq. (7), there exists also a left
eigenvector w that fulfills

w†[Ĥ(k, q ) − εÎ ] = 0, (8)

whose hermitian conjugate gives

[Ĥ(k, q∗) − εÎ ]w = 0. (9)

For a Bloch state with κz = 0, w = v since q = q∗. On
the other hand, for a positive κz, eiqlv represents a solution
decaying toward z = +∞, while eiq∗lw represents a solution
decaying toward z = −∞. In other words, two evanescent
waves that share the same decaying constant and decay toward
opposite directions appear as a pair regardless of the crystal

symmetry. Hence, when ε lies within a surface-projected bulk
band gap at a given k, the 2N evanescent solutions are divided
into those decaying toward z = +∞ with complex wave
numbers {q1, q2, . . . , qN } and the corresponding eigenvectors
{v1, v2, . . . , vN } and those decaying toward z = −∞ with
complex wave numbers {q∗

1 , q∗
2 , . . . , q∗

N } and the correspond-
ing eigenvectors {w1, w2, . . . , wN }.

So far, we assumed that the electron transfer is allowed
only between nearest-neighboring layers. If Ĥ k

l,l′ is nonvanish-
ing for |l − l′| � l0, one may define the complex Hamiltonian
as

Ĥ(k, q ) =
+l0∑

l=−l0

Ĥ k
0,le

+i(lq ), (10)

instead of Eq. (6). Then, the subsequent discussion holds
true irrespective of the value of l0, except that the number
of the pairs of evanescent waves within a surface-projected
bulk band gap becomes l0N instead of N . An alternative
approach employed in previous works [26,27] is to redefine
the unit cell by regarding a super cell comprising l0 successive
layers as a “single layer.” Then, the interaction in the resultant
Hamiltonian is limited to nearest-neighboring layers. In the
present work, we adopt the latter and assume that l0 = 1 in
the following sections.

B. Time reversal and space inversion

Now, we consider a bulk crystal which is invariant with
respect to both time reversal operator T̂ and space inversion
operator P̂ . By applying P̂ on a solution of the Schrödinger
equation with real energy ε, complex wave vector (k, q ),
and eigenvector v, we obtain another solution with energy
ε, wave vector (−k,−q ), and eigenvector P̂v. By further
applying T̂ on this solution, we obtain a solution with energy
ε, wave vector (k, q∗), and eigenvector T̂ P̂v. For Bloch
states with vanishing κz, T̂ P̂v represents a Bloch state which
is orthogonal to v and has the same energy and the same
wave vector as v because q = q∗. In other words, in a bulk
crystal with both symmetries, Bloch states are always doubly
degenerate and the two solutions are related to each other by
T̂ P̂ .

This argument does not hold straightforwardly for an
evanescent wave with complex wave vector (k, q ) and eigen-
vector v, since T̂ P̂v having complex wave vector (k, q∗)
represents an evanescent wave decaying toward the opposite
direction. Nevertheless, as discussed in the preceding section,
evanescent waves appear always as a pair, and for any evanes-
cent wave with energy ε, wave vector (k, q ), and eigenvector
v, there is a solution with energy ε, wave vector (k, q∗), and
eigenvector w. By applying T̂ P̂ on the latter state, we obtain
a solution with energy ε, wave vector (k, q ), and eigenvector
T̂ P̂w. Therefore, the complex energy bands of a bulk crystal
with both time reversal and space inversion symmetries are
doubly degenerate not only regarding Bloch states but also
regarding evanescent states. However, in clear contrast to the
case of Bloch states, the eigenvectors of two evanescent waves
constituting a degenerate pair are v and T̂ P̂w. Importantly, v
and w are the right and left eigenvectors of the same complex
Hamiltonian, and thus, in general, the two vectors are not
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related to each other by any simplified operator in the presence
of SOI.

C. Surface electronic structure

Let us consider a semi-infinite crystal occupying the right-
half space. In its interior, the Hamiltonian matrix between
nearest-neighboring layers and that between the same lay-
ers are given by Ĥ

b,k
01 [= (Ĥ b,k

10 )∗] and Ĥ
b,k
00 , respectively,

whereas the Hamiltonian matrices may deviate from the bulk
ones near the surface. We divide the crystal into the sur-
face layers with layer index 1 � l � L and the semi-infinite
substrate with l > L. According to the local-orbital based
embedding theory [22], the one-electron Green’s function in
the surface region (1 � l, l′ � L) satisfies the equation,

L∑
l′′=1

[
ξ Î δl,l′′ − Ĥ k

l,l′′ − �̂k
l,l′′ (ξ )

]
Ĝk

l′′,l′ (ξ ) = Î δl,l′ , (11)

where ξ = ε + iγ is a complex energy, Î is the identity matrix
of order N , and �̂k

l,l′ and Ĝk
l,l′ are N × N matrices whose

(n, n′) element is given by 〈χk
ln|�̂|χk

l′n′ 〉 and 〈χk
ln|Ĝ|χk

l′n′ 〉,
where �̂ and Ĝ denote the local-orbital-based embedding
potential (called more often lead self-energy [29,30]) and the
Green’s function, respectively. �̂k

l,l′ represents the effects of
the semi-infinite substrate on the surface region. Since we
assume that the transfer integral is nonvanishing only up
to nearest-neighboring layers, �̂k

l,l′ vanishes except for the
boundary element [29,30],

�̂k
L,L(ξ ) = Ĥ k

L,L+1Ĝ
k
L+1,L+1(ξ )Ĥ k

L+1,L, (12)

where Ĝk
L+1,L+1(ξ ) denotes the surface element of the Green’s

function of the semi-infinite substrate obtained by removing
the surface layers with 1 � l � L. In Ref. [26] we derived
another expression for the embedding potential,

�̂k
L,L(ξ ) = Ĥ

b,k
01 V̂ Q̂V̂ −1, (13)

which holds true provided Ĥ k
l,l′ (l, l′ > L) and Ĥ k

L,L+1, the
transfer matrix at the boundary, become identical with the
bulk Hamiltonian matrices, Ĥ b,k

00 and Ĥ
b,k
01 . In Eq. (13), V̂ and

Q̂ are N × N matrices defined by V̂ = (v1, v2, . . . , vN ) and
Q̂ = diag(eiq1 , eiq2 , . . . , eiqN ). Here, vi (i = 1 to N ) are the
eigenvectors of the generalized Bloch states in the bulk crystal
with energy ξ and wave vector (k, qi ), which either propagate
or decay toward the interior of the substrate.

Now, let us consider a bulk crystal with both time re-
versal and space inversion symmetries. Then, as discussed
in Sec. II B, the evanescent waves for a real energy ε in a
surface-projected bulk band gap are made out of N/2 doubly
degenerate pairs of evanescent waves, and thus V̂ and Q̂ are
written as

V̂ = (v1, . . . , vN/2, T̂ P̂w1, . . . , T̂ P̂wN/2),

Q̂ = diag(eiq1 , . . . , eiqN/2 , eiq1 , . . . , eiqN/2 ). (14)

In the presence of SOI, the two evanescent waves, {vi , T̂ P̂wi}
(i = 1, 2, . . . , N/2), become two distinct solutions of the
Schrödinger equation that do not satisfy the same bound-
ary condition. Since the embedding potential constructed by
Eq. (13) contains the full information on both eigenvectors,

it can describe the contributions of the substrate layers with
l > L to the Rashba spin splitting of the surface bands.

III. MODEL CALCULATION

A. Hamiltonian

As an example to demonstrate the properties of the com-
plex energy bands discussed in the preceding section, we
consider an sp-band tight-binding Hamiltonian on a square
lattice, where the sides of its square unit cell are chosen as
the x and z axes, and the y axis is normal to the square plane.
To expand electron wave function, we use s, px , py , and pz

orbitals on each atomic site. We denote the onsite energies
of the four atomic orbitals by {εa

s , ε
a
x , ε

a
y , ε

a
z }, the nearest-

neighbor hopping integrals for the σ bond by {tσss, tσsp, tσpp},
the nearest-neighbor hopping integral for the π bond by tπpp,
and the spin-orbit coupling constant for p orbitals by λ. As
mentioned in the Introduction, the SOI on each atomic site is
given by Ĥso = 2λ(�l · �s).

To expand generalized Bloch states, we employ LCAO
type basis functions, |χkx

ln 〉’s, specified by layer (atomic chain
running in the x direction) index l, the wave number in
the x direction kx , and composite index n representing both
orbital type and spin directions (N = 8). The present sys-
tem possesses not only time reversal and space inversion
symmetries but also mirror reflection symmetry about the
xz plane. By choosing the eigenstates of ŝy (the y com-
ponent of the electron spin operator) as the spin part of
the basis functions, the basis functions become eigenstates
of the mirror reflection with eigenvalues M = ±i. They
are divided into two subsets having opposite mirror pari-
ties. The basis set for mirror parity M = −i is given by
{|χkx

l,s↑〉, |χkx

l,pz↑〉, |χkx

l,px↑〉, |χkx

l,py↓〉}, whereas that for M = +i

is given by {|χkx

l,s↓〉, |χkx

l,pz↓〉, |χkx

l,px↓〉, |χkx

l,py↑〉}. With this basis
set, the original 8 × 8 Hamiltonian is divided into two diago-
nal blocks. The 4 × 4 complex Hamiltonian defined by Eq. (6)
for each block is written as

Ĥ(kx, q,M = ∓i)

=

⎛
⎜⎜⎝

εs (kx, q ) 2itσsp sin q 2itσsp sin kx 0
−2itσsp sin q εz(kx, q ) ∓iλ ±λ

−2itσsp sin kx ±iλ εx (kx, q ) −iλ

0 ±λ +iλ εy (kx, q )

⎞
⎟⎟⎠,

(15)

with

εs (kx, q ) = εa
s + 2

(
tσss cos kx + tσss cos q

)
,

εz(kx, q ) = εa
z + 2

(
tπpp cos kx + tσpp cos q

)
,

(16)
εx (kx, q ) = εa

x + 2
(
tσpp cos kx + tπpp cos q

)
,

εy (kx, q ) = εa
y + 2

(
tπpp cos kx + tπpp cos q

)
.

From Eq. (15), it is easy to check that det[Ĥ(kx, q,M ) −
εÎ ] is identical for both M values, so that complex energy
bands determined by Eq. (7) are doubly degenerate with
respect to mirror parities. Indeed, if we denote the eigenvec-
tor with complex wave vector (kx, q ) and M = −i by v =
(vs, vz, vx, vy ; 0, 0, 0, 0) (the former and latter four elements

205412-4



BULK VERSUS SURFACE CONTRIBUTIONS TO THE … PHYSICAL REVIEW B 98, 205412 (2018)

FIG. 2. Energy dispersion with (kx, kz ) of bulk Bloch states for
the three-band model Hamiltonian on a square lattice. (a) λ = 0 and
(b) λ = 0.5. The other parameters common to both panels are εa

s = 0,
εa

p = 3, tσ
ss = −1.0, tσ

pp = 0.75, tπ
pp = −0.25, and tσ

sp = 1.0.

correspond to M = −i and +i) and its corresponding left
eigenvector w = (ws,wz,wx,wy ; 0, 0, 0, 0), it is straightfor-
ward to show that T̂ P̂w = (0, 0, 0, 0; w∗

s ,−w∗
z ,−w∗

x, w
∗
y ) is

the eigenvector with the same complex wave vector (kx, q )
and the opposite mirror parity M = +i. As for evanescent
states, there is no simplified operator relating these two so-
lutions when |λ| > 0.

B. Shockley surface bands in the weak SOI regime

We present a model calculation of the Rashba spin splitting
by using the tight-binding Hamiltonian introduced in the
preceding section. In the present section, we treat bulk crystals
with weak SOIs, while we treat a topological insulator with
strong SOIs in the next section. For simplicity, we discard the
py orbital from Eq. (15). The resulting three-band (s, pz, px)
model possesses the y component of the electron spin as a
quantum number.

As an example, we set the Hamiltonian parameters to be
εa
s = 0, εa

x = εa
z = 3 (denoted by εa

p hereafter), tσss = −1.0,
tσpp = 0.75, tπpp = −0.25, and tσsp = 1.0, while λ is varied be-
tween 0 and 0.5. In Fig. 2 we show the energy dispersion with
(kx, kz) of the three Bloch bands in the 2D Brillouin zone for
(a) λ = 0 and (b) λ = 0.5. Their energies are given by {εa

s +
4tσss , ε

a
p + 2(tσpp + tπpp ) ± λ} at (kx, kz) = (0, 0), {εa

s , ε
a
p ±√

4(tσpp − tπpp )2 + λ2} at (kx, kz) = (π, 0) and (0, π ), and
{εa

s − 4tσss , ε
a
p − 2(tσpp + tπpp ) ± λ} at (kx, kz) = (π, π ). The

aforementioned parameter set is chosen such that (i) the two
upper bands have the p-orbital character while the lowest
one has the s-orbital character except near the zone boundary
(kx, kz) = (π, π ), (ii) the band inversion occurs at (π, π ), i.e.,
the energy of the s state, εa

s − 4tσss = 4, is higher than the
corresponding ones of the p states, εa

p − 2(tσpp + tπpp ) ± λ =
2 ± λ, and (iii) a finite band gap is opened between the highest
and second highest bands for λ > 0. The relatively large value
of tσsp and the opposite signs of tσpp and tπpp are favorable for
(iii), and then, (ii) ensures that a surface band emerges within
the band gap between the highest and second highest band
gap as indicated by the parity analysis of the three bulk bands
at the four time-reversal invariant momentum (TRIM) points
[31] in the 2D Brillouin zone.

We calculate the Green’s function of the semi-infinite
crystal whose surface (one-dimensional edge) is parallel to the
x direction via the embedding method described in Sec. II C.

FIG. 3. Intensity plot of the kx-resolved DOS of the outermost
layer, ρ1(kx, ε), for semi-infinite surfaces with (a) λ = 0, (b) λ =
0.25, and (c) λ = 0.5. The other parameters are the same as those in
Fig. 2. See the vertical color scale for the actual DOS values. Spin-up
and spin-down surface bands are indicated by red and blue arrows,
respectively. Shaded regions represent surface-projected bulk bands.
Imaginary energy γ = 5 × 10−4.

We consider a simplified case in which the Hamiltonian
matrices in the surface region are the same as those in the
bulk including the outermost layer (l = 1). This model surface
is called “bulk truncated surface” in the present work. While
this model may not represent a realistic surface, it is useful in
discussing the properties of the evanescent states in the bulk
region, since the surface-state wave functions of this model
are expressed as a superposition of the bulk evanescent waves
up to the outermost layer.

We define the kx-resolved density of states (DOS) of the
lth layer by

ρl (kx, ε) = − 1

π
Im

[
Tr Ĝ

kx

l,l (ε + iγ )
]
, (17)

where we add a small imaginary energy γ , which enables us
to treat both bulk and surface states in the same manner when
plotting their DOS, since the δ-function-like DOS peaks of the
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surface states are broadened. In Fig. 3 we show the intensity
plot of the kx-resolved DOS of the outermost layer, ρ1(kx, ε),
for three λ values. When λ = 0 [panel (a)], the surface band
is degenerate with respect to spin, since the Hamiltonian ma-
trices for both spin components are the same. Now, we switch
on the SOI by increasing λ [panels (b) and (c)]. Since the
signs of the (2,3) and (3,2) elements of Eq. (15) are opposite
with respect to two spin directions, σy = +1(↑),−1(↓), the
evanescent waves at a given (kx, ε) for both spin components
become distinct solutions, as a result of which the degeneracy
of surface bands is lifted except at the TRIM point, kx = π .
The splitting at small �kx = kx − π is proportional to �kx

with its constant of proportionality (the Rashba parameter)
increasing with increasing λ.

The aforementioned degeneracy lifting arises because the
linear change in surface-state wave functions upon introduc-
ing Ĥso differs between both spin directions. Nevertheless,
interestingly, the energy splitting itself can be estimated from
the wave functions for λ = 0 via the first-order perturbation
theory with respect to Ĥso. When λ = 0, the surface-state
wave function at kx = π is a linear combination of only s

and pz orbitals, while they mix with px when kx deviates
from π . Hence, the three orbital components of the surface-
state wave function |φσy

〉 on layer l can be expressed as
(αs (l), αz(l), βx (l)�kx ) when �kx � 1, where αs (l), αz(l),
and βx (l) are spin- and kx-independent functions of l that
decay with increasing l. Then, the first-order perturbation

theory suggests that the change in surface-state energies for
small λ is estimated as

�εs (kx, σy = ±1) = 〈φσy
|Ĥso|φσy

〉
= ±2λ �kx

∑
l�1

Im[α∗
z (l)βx (l)], (18)

which agrees with the behavior of the spin splitting of two
surface bands around kx = π in Fig. 3. Equation (18) indicates
that the spin splitting is caused by the mixing of two p

orbitals in surface-state wave functions. This is similar to the
Rashba spin splitting of the L-gap surface states on noble-
metal surfaces [1,7,8] where the energy splitting occurs via
the mixing of two d orbitals in surface-state wave functions
[19,32].

C. Topological surface bands in the strong SOI regime

When the spin-orbit coupling constant λ is large, it is more
convenient to rewrite the upper 3 × 3 block of the complex
Hamiltonian (15) by using basis functions | ± 1〉 = (|pz〉 ±
i|px〉)/

√
2, which are the eigenfunctions of the y component

of orbital angular momentum with eigenvalues m = ±1. We
adopt the basis set {|χkx

l,s,↑〉, |χkx

l,−1,↑〉, |χkx

l,+1,↑〉} for σy = 1 (↑),

and {|χkx

l,s,↓〉, |χkx

l,+1,↓〉, |χkx

l,−1,↓〉} for σy = −1 (↓). Then, the
corresponding complex Hamiltonian for both spin directions
σy = ±1 is written as

Ĥ(kx, q, σy = ±1) =

⎛
⎜⎜⎝

εs (kx, q )
√

2tσsp(i sin q ± sin kx )
√

2tσsp(i sin q ∓ sin kx )
√

2tσsp(−i sin q ± sin kx ) εj=1/2(kx, q ) δε(kx, q )
√

2tσsp(−i sin q ∓ sin kx ) δε(kx, q ) εj=3/2(kx, q )

⎞
⎟⎟⎠, (19)

with

εj=1/2(kx, q ) = εa
z + εa

x

2
+ (

tσpp + tπpp

)
(cos kx + cos q ) − λ,

εj=3/2(kx, q ) = εa
z + εa

x

2
+ (

tσpp + tπpp

)
(cos kx + cos q ) + λ,

δε(kx, q ) = εa
z − εa

x

2
+ (tπpp − tσpp )(cos kx − cos q ),

where j is defined by j = |m + σy |. If the s band and one
of the p bands with j = 1

2 or 3
2 are energetically close to

each other while the other p band is energetically far from
the former two bands, one may discard the latter p band from
Eq. (19). The resultant two-band model coincides with the
Bernevig-Hughes-Zhang model for 2D topological insulators
[24,33,34].

As an example, we calculate the electronic structure of the
bulk truncated surface, which is parallel to the x direction,
for the parameter set, εa

s = 0, εa
z = εa

x = 4, tσss = −1.0, tσpp =
tπpp = 0.75, tσsp = 0.75, and λ = 2.0. This parameter set is
chosen such that (i) δε becomes identically zero, i.e., the two
p bands are separated energetically by a constant 2λ over
the whole Brillouin zone if tσsp = 0, (ii) the three bands are
of the s, j = 1

2 , and j = 3
2 character in the ascending order

except near the zone boundary, (iii) the band inversion occurs
at (kx, kz) = (π, π ), where the s state has the highest energy,
εa
s − 4tσss = 4, and (iv) a finite band gap is opened in the whole

2D Brillouin zone between two neighboring bands. The parity
analysis of the three bands at the four TRIM points in the
2D Brillouin zone [31] reveals that the present system is a
2D topological insulator with regard to both the lower and
higher band gaps. In Fig. 4 we show the intensity plot of the
kx-resolved DOS of the outermost layer, ρ1(kx, ε). As is seen,
a pair of topological surface bands crossing the band gap and
having opposite spin directions emerge in each of the two
surface-projected bulk band gaps.

The spin splitting of the two surface bands in the lower
(higher) band gap occurs because the sign in front of√

2tσsp sin kx in the (1,2) and (2,1) [(1,3) and (3,1)] elements
of the complex Hamiltonian (19) differs between the two spin
components. This results in spin-dependent modifications of
the evanescent-state wave functions. While the spin splitting
of surface bands in Fig. 4 may look similar to those in
Figs. 3(b) and 3(c), there is a crucial difference in its nature.
That is, in the case of Fig. 3, the magnitude of the energy split-
ting and spin texture of both surface bands are determined by
λ. This allowed us to treat the spin splitting of surface bands
by first-order perturbation theory with respect to Ĥso. On the
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FIG. 4. Intensity plot of the kx-resolved DOS of the outermost
layer, ρ1(kx, ε), for a semi-infinite surface with Hamiltonian parame-
ters, εa

s = 0, εa
z = εa

x = 4, tσ
ss = −1.0, tσ

pp = tπ
pp = 0.75, tσ

sp = 0.75,
and λ = 2.0. The color scaling of the DOS is the same as that in
Fig. 3. Spin-up and spin-down surface bands are indicated by red and
blue arrows, respectively. Shaded regions represent surface-projected
bulk bands. Imaginary energy γ = 5 × 10−4.

other hand, in the present case, it is the term ±√
2tσsp sin kx

in the (1,2) and (2,1) elements of Eq. (19) (as for the surface
bands in the lower band gap), or the term ∓√

2tσsp sin kx in the
(1,3) and (3,1) elements (as for the surface bands in the higher
band gap) that governs the energy splitting of two surface
bands. The sign of this term in the (1,2) and (2,1) elements is
opposite to that in the (1,3) and (3,1) elements. This explains
why the spin polarization of the two surface bands in the lower
band gap is opposite to the corresponding one in the higher
band gap.

IV. SUMMARY

In the present paper we have shed light on the role of
the bulk complex energy bands in the Rashba spin splitting
of Shockley surface states. According to the embedding the-
ory, the effects of the bulk potential region on the surface
electronic structure is represented by the embedding potential
generated from the wave functions of complex energy bands.
Since the complex energy bands are doubly degenerate in a
bulk crystal with both time reversal and space inversion sym-
metries, one might wonder why the bulk region can contribute
to the Rashba spin splitting of Shockley surface bands. In
the present paper, we have shown that while two states in
a degenerate pair are related to each other by operator T̂ P̂
with regard to propagating Bloch states, the evanescent states
forming a degenerate pair become two distinct solutions of the
Schrödinger equation in the presence of spin-orbit interaction,
which are not related by a simplified mathematical operator
and also do not satisfy the same boundary condition at the
boundary surface between the surface and bulk regions. Since
the tail of the surface-state wave function is expressed as a
superposition of the evanescent waves, the bulk region also
contributes to the Rashba spin splitting. In the embedding
theory, this contribution is expressed by the embedding poten-
tial that contains the full information on the wave functions
of the evanescent states. We have illustrated this effect by a
DFT calculation for the Au(111) surface and also by using a
simplified sp-band model Hamiltonian on a square lattice.
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