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Signatures of long-range spin-spin interactions in an (In,Ga)As quantum dot ensemble
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We present an investigation of the electron spin dynamics in an ensemble of singly charged semiconductor
quantum dots subject to an external magnetic field and laser pumping with circularly polarized light. The
spectral laser width is tailored such that ensembles with an increasing number of quantum dots are coherently
pumped. Surprisingly, the dephasing time T ∗ of the electron spin polarization depends only weakly on the
laser spectral width. These findings can be consistently explained by a cluster theory of coupled quantum dots
with a long-range electronic spin-spin interaction. We present a numerical simulation of the spin dynamics
based on the central spin model that includes a quantum mechanical description of the laser pulses as well
as a time-independent Heisenberg interaction between each pair of electron spins. We discuss the individual
dephasing contributions stemming from the Overhauser field, the distribution of the electron g factors, and
the electronic spin-spin interaction as well as the spectral width of the laser pulse. This analysis reveals
counterbalancing effects on the total dephasing time when increasing the spectral laser width. On one hand, the
increasing deviations of the electron g factors reduce the dephasing time. On the other hand, more electron spins
are coherently pumped and synchronize due to the electronic spin-spin interaction which extends the dephasing
time. We find an excellent agreement between the experimental data and the dephasing time in the simulation
using an exponential distribution of Heisenberg couplings with a mean value J ≈ 0.26μeV.
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I. INTRODUCTION

The implementation of quantum information technologies
in solid state systems was triggered by potential advantages
such as integrability, robustness, and scalability. Focusing
on semiconductors has appeared particularly appealing be-
cause of established technology platforms to fabricate devices
and the possibility to connect them to classical information
processing components. Here, carrier spins in quantum dots
(QDs) have been identified to be possible quantum bit can-
didates [1–3], because the rather efficient spin relaxation in
semiconductors is mostly associated with free carrier motion
which is suppressed by the three-dimensional confinement
in dot structures. The electron-nuclear hyperfine interaction
limits the electron spin coherence in these QDs, but the
decoherence due to the resulting Overhauser field [4] can be
partially reduced [1,3] by periodic optical pulses that induce
a synchronization between the electron and the nuclear spin
dynamics [5].

Manipulations on single QDs are often limited to an
electrical readout [6,7] of the spin state that is perturbative.
Nonperturbative measurements by a weak probe laser pulse
require a substantial optical signal provided by an ensemble of
QDs [1,3]. Due to the large average distance of the QDs, the
dephasing measured on this ensemble should be determined
by the sum of the individual contributions. Two-color pump-
probe experiments [8], however, clearly revealed the existence
of an effective spin-spin coupling between the electron spins
of different QDs, which is on the order of μeV and of still
unknown microscopic origin.

In this paper, we explore the influence of the tailored pulse
shapes from a single pump laser on an ensemble of QDs in
an external magnetic field applied perpendicular to the optical
axis. A pump pulse induces a finite spin polarization that pre-
cesses around the magnetic field, and the polarization ampli-
tude decays due to various dephasing mechanisms. Disorder
in the growth process of the self-assembled QDs generates a
slight variation in the shapes and compositions of the QDs that
influences the hyperfine interactions, the effective electron g

factor, as well as the trion excitation energy. While a detuned
trion energy strongly suppresses the pump efficiency for a
single-frequency laser, the efficiency of a time-shaped pump
pulse with a finite spectral frequency width is more complex.
Here, all QDs of the ensemble with different trion energies
are subject to the same time-shaped pump pulse such that the
effect of the laser pulse varies from QD to QD and needs to
be individually taken into account.

Surprisingly, the integral effect of all dephasing contribu-
tions yields an external magnetic field dependent dephasing
time that is almost constant as a function of the spectral laser
width. Naively, one would expect a reduction with increasing
spectral width: More and more subensembles of QDs are con-
tributing to the total electron spin polarization which should
lead to a reduction of the dephasing time due to the increasing
spread of the electron g factors. However, experimental data
presented in this paper contradict this naive assumption and
display a dephasing time nearly independent of the spectral
laser width.

We address this question by a numerical simulation of the
spin dynamics of coupled QDs for various parameter regimes.
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We restrict ourselves to the dominant interactions: the hyper-
fine interaction [2,4,5,9], the electronic and nuclear Zeeman
energy, and the pump laser [10–12]. Since the microscopic
origin of an interaction between the QDs is still unresolved,
we model the effective electronic spin-spin interaction with a
simple time-independent Heisenberg term between each pair
of electron spins in the system and leave the discussion on the
effect of the nuclear-electric quadrupolar interaction and the
dipole-dipole terms to a future study.

Establishing the existence of such a long-range spin-spin
interaction and determining the required magnitude of the
average value might provide a basis for a microscopic expla-
nation. It has been speculated [8] that the spin-spin interaction
might be related to an optical RKKY mechanism proposed
in Ref. [13]. This can be probably ruled out since a time-
independent interaction is required to explain the experimen-
tal data. It could be that the doping of the QD layers leads also
to a very weak doping of the wetting layer that connects the
QDs which would generate a conventional RKKY interaction
between the electron spins of the QDs.

In order to address larger numbers of nuclear spins and a
reasonable number of coupled QDs, we resort to a semiclas-
sical approach (SCA) for which the simulation time scales
linearly with the number of degrees of freedom. This SCA
was derived [14] from a saddle-point approximation of a
path-integral formulation for the quantum mechanical spin
dynamics where the quantum mechanical trace is replaced
by the integral over the Bloch sphere of each spin. The ap-
proach is sampled with increasing accuracy by a configuration
average over the classical spins and has been extended to
periodically pulsed QDs [11]. We further extend the SCA to
the simulation of a coupled cluster of a finite number of QDs:
the effect of the Heisenberg coupling of all other QDs leads to
an additional time-dependent magnetic field. Since additional
fluctuations remain finite due to the distance-dependent decay
of the spin-spin interaction, it is sufficient to investigate a
finite-size cluster.

Focusing on the fluctuations of the time-dependent ef-
fective magnetic field acting on the electron spin of one
QD reveals already the basic competing mechanisms that
eventually lead to an almost constant dephasing time with
the laser spectral width. If that QD is optimally pumped for
a very narrow spectral width, all other QDs will be hardly
affected and just provide an additional source of dephasing for
the electron spin polarization. With increasing spectral width
more and more QDs are simultaneously pumped. This leads
to a synchronization after the pump pulse and a significant
reduction of the magnetic field fluctuations. Nevertheless, the
Larmor precession in each QD is governed by the individual
electron g factor: its distribution is a source of increasing
dephasing. While this simplified picture qualitatively explains
the weak dependency of the dephasing time on the spectral
width of the laser, our analysis below provides a detailed
quantitative discussion of the competing effects.

The paper is organized as follows. In Sec. II A we intro-
duce the extended Gaudin [9] or central spin model (CSM)
and review the SCA in Sec. II B. The quantum mechanical
description of an in general detuned laser pulse on the electron
spin is addressed in Sec. II C. A comprehensive benchmark of
the model is presented in Sec. II D. In order to set the stage

for the simulations, we discuss the experimental setup in Sec.
III A and present experimental data on the dephasing time in
Sec. III B. The first part of Sec. IV is devoted to discussing
each dephasing contribution individually: the Overhauser field
contribution in Sec. IV A, the effect of the electron g factor
distribution in Sec. IV B, and the electronic spin-spin inter-
action in Sec. IV C. We provide a statistical analysis and a
simplified toy model to illustrate the dependence of T ∗ on
the parameters in certain limiting cases. Finally, the results
for simulations in the presence of all interaction terms are
provided in Sec. IV D for different effective spin-spin cou-
pling strength. By combining the experimental data with the
theoretical results, we are able to determine a mean spin-spin
coupling strength for which the best fit between theory and
experiment is obtained. We end the paper by a short summary
in Sec. V.

II. MODEL AND METHODS

In this section we present a cluster theory of coupled
central spin systems that is capable of describing electronic
dephasing mechanisms in n-type semiconductor quantum
dots. We start with the introduction of an extended central
spin model [9] that we treat with a SCA [4,11,14,15]. We
combine the spin dynamics between the laser pulses with a
Lindblad approach and use a quantum mechanical description
for the effect of the laser pulses. The SCA [14] overcomes
the the exponential growth of the Hilbert space since the
number of degrees of freedom only grows linearly with the
number of spins. The quantum mechanical trace is replaced
by a configuration average. We use the self-averaging in case
of a large number of configurations to include the ensemble
averaging of different QDs.

A. Extended central spin model

The leading contribution to the central spin dynamics in
n-type singly charged semiconductor QDs is accounted for
by the CSM: the central spin is coupled to a bath of nuclear
spins while there is no interaction among the nuclear spins.
This assumption is justified, since the hyperfine interaction
between the electron spin and the nuclear spins is several
orders of magnitude stronger than the nuclear dipole-dipole
interaction or the nuclear-electric quadrupolar interactions
[7,16–19]. The relevant timescales of the two latter interac-
tions exceed the dephasing time of a few nanoseconds by
several orders of magnitude. The nuclear-electric quadrupolar
interactions induce an additional electronic dephasing time of
the order of 300 ns in the absence of an external magnetic field
[7,18,19]. In a finite magnetic field above 40 mT, the effect
of these interactions is suppressed by the nuclear Zeeman
energy [20] for the second-order spin-spin correlation func-
tion. Only in the fourth-order spin-spin correlation function
relevant for spin-echo experiments, a second dephasing time
associated with these competing interactions increases with
an increasing external field and rises to 2–4μs [21–23] for
large external magnetic fields >3 T. The decay time induced
by the fluctuation of the Overhauser field remains unaltered
[21–23] and, therefore, neglecting the nuclear-electric
quadrupolar interactions is well justified [24].
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Within the CSM, typically a single QD is described. To
model a QD ensemble, the average over a set of single QDs
with different properties (e.g., g factors, trion excitation ener-
gies, and hyperfine coupling constants) should be performed.
But in this case the spin dynamics of the QDs would be in-
dependent of each other. Experimentally, however, two-color
pump-probe experiments [8] have shown that different QDs
are correlated. The coupling has been phenomenologically
identified as a time-independent long-range Heisenberg term
of unknown microscopic origin.

In the present paper, we address the influence of such
an interaction between the electron spins of different QDs.
Therefore, the extended CSM comprises the contribution for
each QD i,

H
(i)
1 = g(i)

e μB �Bext �S (i) +
∑

k

g
(i)
N,kμN �Bext �I (i)

k

+
∑

k

A
(i)
k

�I (i)
k

�S (i), (1)

including the electron and nuclear Zeeman term in the external
magnetic field �Bext as well as the hyperfine coupling between
the nuclei and the electron spin, and the Heisenberg interac-
tion between each pair (i, j ) of QDs

H
(i,j )
2 = Ji,j

�S (i) �S (j ). (2)

The total Hamiltonian is given by

H =
∑

i

H
(i)
1 +

∑
i, j

i �= j

H
(i,j )
2 . (3)

The indices i, j ∈ {1, . . . , NQD} label the different QDs
and the index k ∈ {1, . . . , NN} denotes the different nuclear
spins within a QD. The coupling strength to the external
magnetic field is given by the electron and nuclear g factors
g(i)

e and g
(i)
N,k as well as the Bohr and nuclear magneton μB

and μN, respectively. The coupling constants of the hyperfine
interaction and the electronic spin-spin interaction are labeled
A

(i)
k and Ji,j .
In principle, other contributions to the dephasing that

are not included the Hamiltonian (3) cannot be ruled out.
Since the QDs are charged via donors one could ask about
the influence of charge fluctuations in the vicinity of the QD.
We note that in our studies we use optical excitation from
the valence band ground states to the conduction band ground
states, i.e., below the band gap of the barriers surrounding the
QDs, so that carrier diffusion is suppressed. Hence, charge
fluctuations are strongly suppressed as compared to excita-
tion into higher states, where band electron excitations are
more relevant. Even though they may not be fully excluded,
they occur on rather long timescales (see below). A purely
capacitive coupling will shift the energy and, therefore, could
change the excitation energy. But these effects of shifting the
resonance frequency are included in the photoluminescence
(PL) emission of the QD ensemble, and, therefore, in our
cluster modeling via the probability distribution of finding a
QD with a fixed excitation energy ε

(i)
T (see Sec. II B).

Our model does not include charge fluctuations in and out
of a single charge QD as well as possible deformation of
the electronic wave function as function of the external field.

Since spin revival has been observed in periodically pumped
QDs [1–3], spin coherence on a timescale larger than the pulse
repetition time of 13 ns is required. This gives a lower bound
to this mechanism and clearly does not influence the short
time dephasing scale T ∗ discussed here.

In addition the change of the individual hyperfine cou-
plings A

(i)
k in magnetic field <10 T are negligible since they

depend on the electronic wave function in the nucleus whose
shape is determined by the diverging Coulomb interaction
exceeding the Zeeman energy by several orders of magnitude.
The squeezing of the carrier envelope wave function mainly
normal to the magnetic field may reduce the number of nuclei
to which the electron couples. This effect is, however, largely
compensated by the enhancement of the envelope wave func-
tion amplitude, so that the effective coupling to the ensemble
of nuclear spins remains basically unchanged.

B. Semiclassical approach

To overcome the exponential growth of the Hilbert space,
we use a SCA [11] for the calculation of the time evolution
after a laser pulse. The SCA can be derived from a saddle-
point approximation in the quantum-mechanical path-integral
formulation [14]. By introducing spin-coherent states, the
quantum mechanical trace is replaced by a classical config-
uration average over spins on a Bloch sphere.

The decay of the trion, which is generated by the laser
pulse, has to be taken into account. The trion decay is com-
bined with the SCA using the quantum mechanical Lindblad
formalism for open quantum systems [11,25]. This requires
the trion probability P

(i)
T as an additional parameter of the

system [11]. Quantum mechanically, P
(i)
T represents the oc-

cupation number of the trion state |T(i)〉 = | ↑↓⇑(i)〉 in QD i,
i.e., P

(i)
T = Tr[|T(i)〉〈T(i)| ρ] with the density operator ρ.

The quantum mechanical equations of motion are replaced
by their classical counterpart

d

dt
�S (i) = �B (i)

tot (t ) × �S (i) + γP
(i)
T

�ez

2
, (4)

d

dt
�I (i)
k = �B (i)

tot,k (t ) × �I (i)
k , (5)

d

dt
P

(i)
T = −γP

(i)
T , (6)

with a trion decay rate γ ≈ 10 ns−1 [11].
At each point in time, the equations describe the precession

of each spin driven by a time-dependent effective magnetic
field that consists of the following individual contributions:

�B (i)
tot (t ) = g(i)

e μB �Bext +
∑

k

A
(i)
k

�I (i)
k +

∑
j

Ji,j
�S (j ), (7)

�B (i)
tot,k (t ) = g

(i)
N,k μN �Bext + A

(i)
k

�S (i). (8)

For the central spin in QD i, this total field �B (i)
tot (t ) comprises

the external magnetic field, the Overhauser field, and the
effective magnetic field �B (i)

J caused by the electron spins in
the other QDs,

�B (i)
J =

∑
j

Ji,j
�S (j ). (9)
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For the nuclear spin k in the QD i, the total magnetic field
�B (i)

tot,k is composed of the external magnetic field and the
Knight field of the respective electron spin.

The electron spin precession is superimposed by the trion
decay. The trion probability P

(i)
T decays exponentially with

the decay rate γ into the central spin component along the
optical axis (z direction). The only difference to the equations
employed in Ref. [11] is the additional effective field �B (i)

J

generated by the surrounding QDs.
In our numerical calculation, Eqs. (4) to (6) are solved for

Nconf classical configurations with different initial vectors of
�S (i) and �I (i)

k . Since the configurations are independent of each
other, we omit a potential index labeling of the configurations
for the sake of simplicity. For the initial condition, we assume
the thermal energy to be much higher than the energy scales
of the Hamiltonian in Eq. (3) but much smaller than the
trion excitation energy εT. Thus, �S (i) and �I (i)

k are randomly
aligned on the surface of the Bloch sphere and the trion state is
empty.

In the derivation of the SCA, the values g(i)
e , A

(i)
k , and Ji,j

would be the same within each classical configuration [14]. To
mimic the ensemble averaging over many QDs in the sample,
we choose g(i)

e , A
(i)
k , and Ji,j in each configuration from the

distributions p(g(i)
e ), p(A(i)

k ), and p(Ji,j ), respectively.
In the extended version of the CSM, the effect on QD

i caused by the other QDs is given by the vector �B (i)
J . If

the electron spins are randomly distributed and uncorrelated,
�B (i)
J is just another Gaussian distributed field. Instead of

NQD ≈ 106, as in a real QD sample, one can generate �B (i)
J

with a relatively small number of QDs and use appropriately
scaled couplings Ji,j such that the fluctuations 〈( �B (i)

J )2〉 are
identical. The same is true for synchronized subensembles
of QDs: the noise can either be represented by all the QDs
of the subensemble contributing to �B (i)

J individually, or by
choosing a representative spin for the subensemble and in-
cluding the randomization in the generation of the config-
urations. Using the self-averaging, we can convince our-
selves that we can mimic the ensemble by a relatively small
number of NQD = 10 representative QDs plus configuration
randomization.

C. Laser pulses

Quantum mechanically, a laser pulse with σ+ polarization
creates a transition between the spin-up state | ↑〉 and the
trion state |T〉 while the spin-down state | ↓〉 is unaffected
[26]. Here, the quantization axis matches the optical axis. In
our considerations, we neglect the trion state | ↑↓⇓〉 since
we focus on σ+ pulses. To model the pump pulses, we start
from a quantum mechanical derivation and then transform
the quantum mechanical pulse action into the semiclassical
picture.

In quantum mechanics, the effect of the pump laser pulse
can be described by a unitary transformation. Since the pulse
is much shorter than the dynamics given by the Hamiltonian
H [see Eq. (3)], we omit the effects of H during the laser
pulse duration. Thus, the QDs can be treated separately. In a
rotating wave approximation, the Hamiltonian of light-matter

interaction is given by

H
(i)
L (t ) = ε

(i)
T |T〉〈T| + �(t )

2
[exp (−iεLt ) |T 〉 〈↑ |

+ exp (iεLt ) |↑〉 〈T |], (10)

where a classical laser field drives the dipole transition be-
tween the | ↑〉 and |T〉 state. The trion excitation energy ε

(i)
T

is distinct for each QD and follows a distribution p(ε (i)
T ) (see

Sec. IV B). The photon energy εL determines the fast oscilla-
tions of the electromagnetic field. The envelope function �(t )
describes the variation of the amplitude of the laser pulse. By
a unitary transformation into the rotating frame of the laser
field

UL = exp(−iεLt ) |T 〉 〈T |, (11)

we obtain the Hamiltonian

H̃
(i)
L (t ) = U

†
L

[
H

(i)
L (t ) − εL |T 〉 〈T |]UL (12)

= [
ε

(i)
T − εL

] |T 〉 〈T | + �(t )

2
[ |T 〉 〈↑ | + |↑〉〈T |],

(13)

where the fast oscillations with frequency εL vanish. In this
case, the unitary operator UP can be numerically calculated
using a proper discretization

U
(i)
P ≈ UL

{∏
l

exp
[ − i H̃

(i)
L (tl ) �t

]}
U

†
L, (14)

which becomes exact in the limit of small time steps �t → 0
and a finite pulse duration Tp = N��t = constant.

Since | ↓〉 is an eigenstate of HL(t ) and consequently is
not affected by the pump pulse, the matrix representation of
the pulse operator has the form

U
(i)
P =

⎛
⎝a(i) 0 b(i)

0 1 0
c(i) 0 d (i)

⎞
⎠ (15)

in the basis | ↑〉, | ↓〉, and |T 〉. Here, a(i), b(i), c(i), and d (i)

are complex numbers that are constrained by the fact that U
(i)
P

has to be unitary. The exact value of these four parameters
depends on the detuning δ(i) = εL − ε

(i)
T and the shape �(t ) of

the laser pulse. The detuning δ(i) between the photon energy
and trion excitation energy is different for each QD.

As a next step, the quantum mechanical pulse operator U
(i)
P

has to be translated into the semiclassical picture. By using the
correspondence principle, we obtain the relation

O (i)
ap = Tr

[
U (i)

p ρ
(i)
bp U (i)†

p Ô (i)
]
, (16)

where O (i)
ap is the semiclassical variable (S (i)

x , S (i)
y , S (i)

z , or

P
(i)
T ) after the pulse and Ô (i) is the corresponding quantum

mechanical operator [11]. Assuming that the trion population
has completely decayed before the pulse, the density matrix
ρ

(i)
bp is given by

ρ
(i)
bp =

⎛
⎜⎝

1
2 + S

(i)
z,bp S

(i)
x,bp + iS

(i)
y,bp 0

S
(i)
x,bp − iS

(i)
y,bp

1
2 − S

(i)
z,bp 0

0 0 0

⎞
⎟⎠. (17)
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Combining Eqs. (15) to (17), the effect of a pulse with
arbitrary shape in the semiclassical picture results in

S (i)
x,ap = |a(i)|[S (i)

x,bp cos(ϕ(i) ) + S
(i)
y,bp sin(ϕ(i) )

]
, (18)

S (i)
y,ap = |a(i)|[ − S

(i)
x,bp sin(ϕ(i) ) + Sy,bp cos(ϕ(i) )

]
, (19)

S (i)
z,ap = −1

4
(1 − |a(i)|2) + S

(i)
z,bp

2
(1 + |a(i)|2), (20)

P
(i)
T,ap = (1 − |a(i)|2)

(
1

2
+ S

(i)
z,bp

)
. (21)

Note that the effect of the pulse can be parametrized by a
single complex number a(i) = |a(i)| exp(iϕ(i) ). The parame-
ters b(i) and d (i) do not enter since no trion is present before
the pulse. Furthermore, we used the fact, that U

(i)
P is unitary,

to eliminate the parameter c(i). The effect of the pulse, given
by Eqs. (18) to (21), and the role of the parameter a(i) can be
interpreted in a simple manner. (1 − |a(i)|2) is the probability
to excite an electron in the spin-up state to the trion state and is
a measure of the pulse efficiency. The geometrical phase ϕ(i)

rotates the spin around the optical axis and can be used, e.g.,
for spin echo experiments [27–29] or optical spin tomography
[30]. Equations (18) to (21) describe the general behavior
of a short laser pulse with arbitrary detuning δ(i) and pulse
area � = ∫

�(t )dt . In the case of resonant pulses (δ(i) = 0),
the rotation around the optical axis vanishes (ϕ = 0) and the
pulse equations from Ref. [15] result. For resonant π pulses
(δ(i) = 0, � = π ), the parameter a(i) yields zero and the pulse
equations match those in Ref. [11]. In the present work, we
employ Gaussian pulses

�(t ) = �√
2πσ 2

t

exp

(
− t2

2σ 2
t

)
(22)

with the pulse area � = π . The temporal pulse width σt is the
inverse of the spectral laser width σE . The spectral FWHM is
given by

�E = 2
√

2 ln 2σE = 2
√

2 ln 2

σt

. (23)

In addition to the pump pulses as discussed above, we
have to consider the probe pulse. In the experiments, the S (i)

z

component of the spin polarization is measured by means of
the Faraday ellipticity. The Faraday ellipticity is proportional
to the trion excitation probability of the probe pulse. In our
simulation, we reproduce this behavior by weighting the S (i)

z

component of each QD with the trion excitation probability
(1 − |a(i)|2). Hence, QDs with a trion excitation energy close
to the probe laser energy contribute more efficiently to the
signal than detuned QDs [31,32]. To match the experiment in
Sec. III, we assume that the probe laser has always the same
spectral width as the pump laser.

D. Benchmark of the model

In order to validate our model, we benchmarked it on the
experimental setup of the two-color pump-probe experiment
reported in Ref. [8]. Two distinct subsets of an (In,Ga)As
QD ensemble are excited separately by two circularly

polarized pump pulses with different photon energies and
incident times.

If only one pump laser is used, coherent oscillations of the
photogenerated spin polarization in the transversal magnetic
field can be observed. If the second pump laser is switched
on, the spin polarization of the first QD subset displays phase
shifts relative to the one-color signal. These phase shifts de-
pend on the polarization and incident time of the second pump
laser. The change of the signal depending on the second pump
laser is a clear indicator of a coherent interaction between the
electron spins of the two subsets.

The signatures found in the experiment can be qualita-
tively and quantitatively reproduced by the model presented
in Sec. II A–II C. For simplicity, we use NQD = 2 QDs, one
representative QD for each subset. Each pump pulse excites
one of the two QDs with a resonant π pulse (a(i) = 0) while
the other QD remains unaffected (a(i) = 1). To understand
the experimental results, it is important to consider both the
different electron g factors of the two subsets with the ratio
1.015 and the phase shift generated by the trion decay [33].
The best agreement with the experiment is found for expo-
nentially distributed and time-independent coupling constants
Ji,j with a mean value J = 1.4 ns−1. This value of J matches
the results from Ref. [8] with J ≈ 1μeV ≈ 1.5 ns−1. Note
that J has to be interpreted as an effective coupling constant
between the two spin subsets. By considering a cluster of
NQD = 10 QDs in the following sections, we expect the value
of J to reduce in order to lead the same effective field �B (i)

J as
introduced in Eq. (9).

III. EXPERIMENT

In order to motivate the further analysis, we present a
pump-probe experiment on a sample of self-assembled QDs
with tailored pump and probe pulses. Using laser pulses
with different spectral width, we can excite different numbers
of QDs within the ensemble. In this way, it is possible to
measure signatures of interactions between quantum dots. In
this section we describe the experimental setup as well as
present the measured dephasing times as a function of the
spectral laser width and magnetic field. We find a dephasing
time that depends only weakly on the spectral laser width
at a fixed magnetic field. An interpretation of the measured
signatures and a detailed analysis of the involved dephasing
mechanisms is presented in Sec. IV afterwards.

A. Experimental setup

The investigated sample contains 20 layers of self-
assembled (In,Ga)As QDs separated by 80-nm-wide GaAs
barriers [1]. The dot density per layer amounts to 1010 cm−2.
A Si-δ-doping sheet beneath each layer provides a resident
electron occupation for the dot structures. Thermal annealing
of the sample shifts the band gap into the energy range both of
the photon emission from Ti:sapphire laser oscillators and sig-
nificant sensitivity of Si-based avalanche photodiodes. For the
studied sample, the PL emission is centered around 1.393 eV
with a full width at half maximum (FWHM) of 13 meV; see
the upper trace in Fig. 1. Previous studies indicated that at
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FIG. 1. Laser pulse spectra with varying spectral widths �E and
corresponding temporal lengths �τ . The uppermost spectrum is the
photoluminescence (PL) emission of the QD ensemble.

least 50% of the dots are singly charged while the others are
neutral or doubly charged [8].

For pump-probe Faraday or Kerr rotation experiments we
use a Ti:sapphire laser emitting pulses with a duration of
180 fs at a repetition rate of 76 MHz. The pulse duration
corresponds to a spectral width of 15 meV. The central photon
energy was tuned to the maximum of the PL emission. To
tailor the spectral width, the pulses are diffracted at a grating.
The diffracted pulses widen spatially and the beam intersec-
tion shows a linear photon energy distribution. A slit is placed
into the widened beam. By varying the aperture of the slit,
the spectral width can be continuously reduced down to a
minimum of 3 meV FWHM corresponding to a pulse duration
of about 1 ps. In an alternative laser configuration, pulses
with a duration of 2 ps and a spectral width of 1.5 meV are
emitted.

The laser spectra for different spectral widths are shown in
comparison to the QD emission spectrum in Fig. 1. Without
narrowing, the pulses are broader than the emission band.
With the grating-slit arrangement they can be narrowed such
that only a fraction of QDs is excited. The numbers at each
laser spectrum give the spectral widths and temporal durations
of the pulses, respectively.

The laser beam is then split into a pump and a probe beam.
The circularly polarized pump pulses periodically excite a
spin polarization of resident electrons along the optical axis
[1]. This spin polarization subsequently precesses about an
external magnetic field, applied perpendicular to the optical
axis (Voigt geometry). To measure the spin polarization, the
ellipticity of the initially linearly polarized probe pulses is
measured after transmission through the sample. Both pump
and probe beams are focused to a spot size of approximately
70 μm on the sample, leading to the excitation and probing of
106 QDs. The time evolution of the electron spin polarization
is obtained by varying the time delay between the pump
and probe pulse trains. To ensure a constant pump pulse
area around � = π , where the pump efficiency does not
depend sensitively on slight variations of the pump density,
the spectral pump-power density is reduced according to the
spectral width such that it is about ∼4.5 mW/meV. The probe
beam intensity is kept always about ten times weaker than the
pump.

FIG. 2. Time-resolved ellipticity traces showing the spin preces-
sion and dephasing of the QD ensemble at (a) Bext = 1 T and (b)
Bext = 6 T, both taken at T = 6 K for the different pulse widths
given in Fig. 1.

B. Experimental data

Figure 2 shows pump-probe Kerr rotation traces recorded
for varying spectral width of the laser pulses, as discussed
above. The traces depicted in panel (a) were taken at Bext =
1 T and in panel (b) at Bext = 6 T. For delays of more
than ∼0.5 ns, after which the optically excited trions have
decayed, the signal shows damped oscillations. The period of
the oscillations is given by the average precession frequency
in the excited dot ensembles corresponding to the average
electron g factor. Since the central photon energy is kept at
the same position for the different traces, we observe the
same precession frequency independently of the pulse spectral
width.

Also the decay which occurs on a nanosecond timescale
looks very similar for the different traces. This is a very
surprising finding because the underlying damping is not
related to loss of the coherence of the individual spins in each
QD of the ensemble. The associated coherence time has been
shown to be in the microsecond range [34]. Due to the small
Overhauser field fluctuations of 7.5 mT in this sample [35]
the effect of the hyperfine interaction on the total decay time
is rather small. It is rather an ensemble effect resulting from
the inhomogeneity of the excited g factor distribution. This
leads to dephasing, hence the destructive interference of the
contributions to the signal, arising from the distribution of
corresponding precession frequencies. However, according to
previous studies of the electron g factor in these QDs, the
width of this precession frequency distribution is expected
to increase strongly with increasing spectral width of the
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FIG. 3. Measured (red, blue) signal decay times in dependence of the spectral pulse width �E at Bext = 0.25 T (a), Bext = 1 T (b), and
Bext = 6 T (c). The data with constant power (blue, open circles) are measured by keeping the total average laser power constant for all spectral
widths. For adjusted power (red, full circles), we used a fixed spectral excitation power density such that all QDs are pulsed by a π pulse.
Hence the total average power linearly depends on the spectral width.

exciting laser pulse. Consequently, the signal decay that re-
sults from this inhomogeneity should occur the faster the
broader the spectral width is.

In a naive approach, the characteristic timescale can be
given by the g-factor variation �ge in the optically excited
QD ensemble, the Bohr magneton μB of the electron, and the
external magnetic field Bext:

(T ∗)−1 ∝ �ωL = �geμBBext

h̄
(24)

with the average Larmor frequency ωL and the spread of the
Larmor frequency �ωL as well as with the reduced Planck
constant h̄ = 1. The g factor varies to a good approximation
linearly with the optical transition energy [34]. The pulse
spectral width �E varies by a factor of about 6 in our exper-
iments so that a similar variation is expected for �ge ∝ �E.
Accordingly the decay time is expected to decrease by a factor
of 6 when changing from excitation by pulses with 1000 fs
duration to 180 fs pulses. This is obviously not the case in the
experimentally measured traces.

We determine the signal dephasing time from a fit to the
data by a Gaussian-damped cosine function:

Sz(t ) = A cos(ωLt ) exp

(
− t2

2T ∗2

)
. (25)

The decay times are plotted against the spectral width of the
laser for three different magnetic field strengths in Fig. 3.
Panel (b) gives the data for Bext = 1 T, where the red full dots
show the results from the measurements of Fig. 2. As expected
from the observation there, within the experimental accuracy
there is no variation of the dephasing time T ∗ with the spectral
pulse width. As indicated, these studies were performed with
the spectral excitation power density fixed (adjusted power
in Fig. 3). To test whether the observed constancy is a result
of the specific excitation conditions, we have also performed
measurement with the total excitation power fixed and only
the pulse duration changed. These results are given by the
open symbols and confirm basically the constant trend: The
dependence on the spectral width is weak and even opposite to
the expectations: With decreasing spectral density, the dephas-
ing time drops to slightly below a nanosecond for Bext = 1 T.

To obtain more insight into the observed dependence,
we have also checked the magnetic field dependence of the
dephasing time using a fixed laser spectral width of 1.5 meV.

According to Eq. (24) from above the dephasing for not too
small magnetic fields, where nuclear effects are negligible, is
inversely proportional to the magnetic field strength, which
gave a reasonable description of the trend in observed data
that is also seen here from the shortening of the dephasing
time with increasing Bext in Fig. 3.

Figure 4 shows the magnetic field dependence of the signal
dephasing time for a fixed pulse duration of 2 ps correspond-
ing to a spectral width of about 1.5 meV. The dephasing time
decreases from about 1.6 ns at 0.5 T to almost 0.2 ns at 6 T.
A fit to the data according to a 1/Bext dependence describes
this trend (the gray dash-dotted line), but has significant
deviations. Much better agreement with the data is obtained,
however, from a fit with variable exponent 1/Bα

ext which
gives α = 0.7; see the solid blue line. This is another clear
indication that the signal dephasing is not solely governed by
the g-factor inhomogeneity of independent spins, but is also
influenced by other factors.

An obvious candidate to explain this is the expected elec-
tronic spin-spin interaction in the ensemble, so far demon-
strated for two distinct spin ensembles excited by different
laser pulses only [8]. The interaction should be acting, how-
ever, between the spins in different excited spin ensembles
within a spectrally broadened laser pulse as well as between
the nonexcited electron spins. Transferring this consideration

FIG. 4. Signal decay time for a fixed pulse duration of 2 ps in
dependence on the external magnetic field Bext . The expected 1/Bext

dependence is depicted by the dash-dotted gray line. The blue solid
line shows a fit to the data proportional to 1/Bα

ext .
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to a situation with more than two interacting spin ensembles
leads to smearing out of the modulation as the individual
spin ensembles precess about each other. However, this does
not represent a useful criterion for identifying the interaction
between the electron spins. More conclusive could be the
influence on the signal decay time, where we observed only
a weak dependence on the spectral width of the laser pulses.
This behavior is a result of the superposition of (i) the fluctu-
ations of the nuclear spin bath, (ii) the inhomogeneities in the
electron g factors in the spin ensemble, and (iii) the electronic
spin-spin interaction.

IV. CONTRIBUTIONS TO THE ELECTRON
SPIN DEPHASING

In the following, we make use of the extended CSM
described in Sec. II to study the dephasing mechanisms in
more detail. The dephasing of electron spins in singly charged
semiconductor QDs originates from three major effects: the
nuclear spin fluctuations, the electron g factor dispersion,
and the electronic spin-spin interaction. These contributions
exhibit a different dependency on the external magnetic field
and the spectral width of the laser pulse. We discuss the
dephasing behavior for each effect separately. Afterwards, we
combine all effects and compare the results to the experimen-
tal measurements in Sec. III. We restrict ourselves to a single
laser pulse and the succeeding time evolution. As last aspect,
we analyze the effects that arise from periodically pumping
the system.

A. Dephasing due to the nuclear spin fluctuations

At first, we focus on the influence of the nuclear spin
fluctuations on the dephasing time of the electron spin. By
the hyperfine interaction, each electron spin is coupled to
its own nuclear spin bath. The hyperfine coupling constants
A

(i)
k are proportional to the electronic probability |ψ (Rk )|2

at the position of the nucleus. Thus, the A
(i)
k depend on the

geometry of the QD. Especially a larger diameter of the QDs
leads to smaller A

(i)
k and accordingly smaller Overhauser field

fluctuations. The Overhauser field fluctuations can vary by an
order of magnitude between different samples due to different
growth parameters. For the sample in Sec. III, the Overhauser
field fluctuations are roughly 7.5 mT [35].

The influence of the hyperfine interaction on the electron
spin can be described by effective magnetic fields compris-
ing the sum of the external magnetic field and the intrinsic
Overhauser field. The electron spin �S (i) is affected by the
Overhauser field

�B (i)
N =

∑
k

A
(i)
k

�I (i)
k , (26)

and the nuclear spins in turn are subject to the Knight field

�B (i)
N,k = A

(i)
k

�S (i). (27)

For NN unpolarized nuclear spins, the Knight field is by a
factor

√
NN smaller than the Overhauser field. In real QDs

with NN = 105 nuclear spins, the Knight field is therefore
several orders of magnitude weaker. Hence, the Overhauser
field can be considered as frozen for short timescales [4].

For an unpolarized frozen Overhauser field and a strong
external magnetic field (Bext � BN), it was shown [4] that
the Larmor oscillation of the electron spin polarization Sz

dephases with a Gaussian envelope function

Senv(t ) = ±S0 exp

(
− t2

2T ∗2
N

)
. (28)

The nuclear dephasing time T ∗
N is determined by the fluctua-

tion of the Overhauser field

T ∗
N =

√
3∑

k A2
k

〈
I 2
k

〉 , (29)

where 〈I 2
k 〉 is the averaged square of the spin length.

According to the central limit theorem, for a large number
of nuclei, the Overhauser field �BN is Gaussian distributed
independently of the distribution p(A(i)

k ). The generic effect
of the nuclear spin bath on the electron spin is encoded in
the nuclear dephasing time T ∗

N that determines the width
of the Overhauser field distribution. We use exponentially
distributed hyperfine coupling constants

p
(
A

(i)
k

) = 1

A
exp

(
−A

(i)
k

A

)
(30)

with the mean value A. Since the details of the distribution
p(A(i)

k ) do not display on short timescales as considered in the
present calculations, we compare the results to homogeneous
coupling constants A

(i)
k = A (box model [36]). Note that for

pulse sequences of several thousands of pulses, the details of
the distribution p(A(i)

k ) may have an influence [11,37].
In Fig. 5, the dephasing of the electron spin component

Sz due to the nuclear spin fluctuations is depicted for three
different external magnetic fields. Here, we fix the electron g

factor for all QDs (and all configurations) to the same value
0.555 based on experimental measurements [34] and set the
electronic spin-spin interaction to zero (Ji,j = 0). We consider
QDs with NN = 100 nuclei of length I = 3/2. We restrict
ourselves to one sort of nuclei with an effective nuclear g

factor such that gNμN is 1
800 smaller than the electronic value

geμB [11,33,38]. The hyperfine coupling constants A
(i)
k are

normalized to the nuclear dephasing time T ∗
N = 3 ns according

to experimental data [3,34]. In Fig. 5, differences between ho-
mogeneous and exponentially distributed hyperfine coupling
constants cannot be resolved. If not stated otherwise, expo-
nentially distributed hyperfine coupling constants are used in
the following. Note that we assume all QDs to have the same
nuclear dephasing time T ∗

N . Hence, T ∗
N is independent of both

the external magnetic field and the spectral width of the laser
pulse.

B. Dephasing due to the electron g factor dispersion

As a second contribution to the electron spin dephasing,
we investigate the effect of the electron g factor dispersion.
Due to the growth process of self-assembled QDs, inhomo-
geneities in the ensemble occur. Especially the electron g

factor g(i)
e and the trion excitation energy ε

(i)
T vary within

the ensemble of QDs. The different electron g factors lead
to different Larmor frequencies at a fixed external magnetic
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FIG. 5. Dephasing due to the nuclear spin fluctuations. We set
the parameters to T ∗

N = 3 ns, g(i ) = 0.555, and Ji,j = 0. The Sz

component of the electron spin as function of the time t after a
resonant π pulse is depicted as a blue curve for three different mag-
netic fields in (a), (b), and (c). Differences between homogeneous
and exponentially distributed coupling constants cannot be resolved
on this timescale. The dashed lines mark the analytical envelope
functions according to Eq. (28).

field and consequently to a dephasing of the electron spin
polarization. First, we present the correlated distributions of
g(i)

e and ε
(i)
T that we employ in our calculations and analyze the

magnetic field dependency of the dephasing time. Then, we
investigate the nonlinear relation between the laser bandwidth
and the dephasing time, which arises due to the correlations
between the electron g factor and the trion excitation energy.

1. Distribution of the electron g factors

From the photoluminescence spectra of the self-assembled
QD ensemble (cf. Fig. 1), we extract a Gaussian distribution
of the trion excitation energy εT,

p
(
ε

(i)
T

) = 1√
2σ 2

εT

exp

(
−

(
ε

(i)
T − εT,0

)2

2σ 2
εT

)
, (31)

with a mean value εT,0 = 1392.5 meV and a standard devia-
tion σεT = 5.3 meV. Due to the Roth-Lax-Zwerdling relation,
the trion excitation energy of the QD is linearly related to the
mean electron g factor [31,35]

g
(
ε

(i)
T

) = mε
(i)
T + b. (32)

The parameters m = −2.35 eV−1 and b = 3.83 can be ex-
tracted from spectral dependent measurements of the electron
g factor [39]. The electron g factor g(i)

e is assumed to be
Gaussian distributed,

p
(
g(i)

e

) = 1√
2σ 2

g,0

exp

(
−

[
g(i)

e − g
(
ε

(i)
T

)]2

2σ 2
g,0

)
, (33)

FIG. 6. Distributions of the trion excitation energy ε
(i )
T and the

electron g factor g(i )
e . The trion excitation energy is Gaussian dis-

tributed ε
(i )
T ∼ N (εT,0, σεT ) (solid blue line) based on the experi-

mental photoluminescence spectrum (cf. Fig. 1). The linear relation
between the average g factor g(i )

e and the trion excitation energy
ε

(i )
T as stated in Eq. (32) is shown as a black dashed line. The red

dots depict 5000 pairs (ε (i )
T , g(i )

e ) with g(i )
e ∼ N (g(i )

e , σg,0) generated
randomly.

with the mean value g(ε (i)
T ) depending on the trion energy and

a standard deviation σg,0 = 0.005. In Fig. 6, the distributions
of ε

(i)
T and g(i)

e that are employed in our calculations are
visualized. In numerical calculations, up to NconfNQD = 106

pairs (ε (i)
T , g(i)

e ) are generated from these Gaussians.
To extract the parameter σg,0, we assumed that at high

magnetic fields the electron Zeeman effect dominates the
other contributions to the dephasing, i.e., the nuclear spin
fluctuations or the electronic spin-spin interaction. In this way,
the deviation σg,0 is obtained from the measurement in Fig. 3
at the largest magnetic field (Bext = 6 T). In Sec. IV D, we
elaborate on this point in more detail.

In Fig. 7, the dephasing of the electron spin polarization
due to the electron g factor dispersion is depicted. The hy-
perfine interaction and the electronic spin-spin interaction are
switched off (A(i)

k = Ji,j = 0). The dephasing is slower for
weak external magnetic fields and faster for strong external
magnetic fields. Based on Eq. (24), the dephasing time T ∗

g

is determined by the standard deviation σω of the electron
Larmor frequencies

T ∗
g = 1

σω

= 1

σgμBBext
, (34)

where σg denotes the standard deviation of the electron g

factors. Equation (34) is derived from the fact that the Fourier
transform of a Gaussian function is a Gaussian function with
the inverse standard deviation. The dependency T ∗

g ∝ B−1
ext is

demonstrated in Fig. 8, where the numerical model is com-
pared to the analytical expression in Eq. (34). The dephasing
times are extracted from the numerical simulations by fitting
a Gaussian envelope function [see Eq. (25)] to the calculated
time evolution.

2. Contributions from the spectral width �E of the laser

As a next step, we analyze the dependency of the dephasing
time on the spectral width �E of the laser pulse. Due to
the correlation between the trion excitation energy and the
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FIG. 7. Dephasing due to the electron g-factor dispersion. The
spin dynamic with the parameters A

(i )
k = 0, Ji,j = 0, �E = 5 meV

is depicted for three different external magnetic fields in (a), (b),
and (c). The dashed lines mark the Gaussian envelope functions with
standard deviation T ∗

g according to Eq. (34).

electron g factor, the deviation σg grows for pulses with larger
spectral width �E. Thus, an increase of �E will lead to a
shorter dephasing time.

In Fig. 9, the dependency of the dephasing time T ∗
g on

the spectral laser width �E is depicted. For smaller spectral
widths, T ∗

g is limited to an upper bound because of the
intrinsic g-factor deviation σg,0. For larger spectral widths, T ∗

g

is restricted to a lower bound since for �E � σεT all QDs are
excited by the pulse and a further expansion of �E has no
additional effect.

In between, the value of the g-factor deviation σg and thus
the dephasing time T ∗

g depend on the laser bandwidth �E =
2
√

2 ln 2σE , the slope m, the deviation σεT of the excitation
energies in the ensemble, and the intrinsic g-factor width σg,0.

FIG. 8. Dependency of the electron g factor induced dephasing
time T ∗

g on the external magnetic field Bext . The data points (blue
triangles) are extracted from numerical calculations with the pa-
rameters A

(i )
k = 0, Ji,j = 0, �E = 5 meV. The red line depicts the

dependency ∝ B−1
ext according to Eq. (34).

FIG. 9. Dependency of the electron g factor induced dephasing
time T ∗

g on the laser bandwidth �E. The data points (blue triangles)

are extracted from numerical calculations with the parameters A
(i )
k =

0, Ji,j = 0, and Bext = 1 T. The analytical solution from Eq. (39) is
depicted by the red line.

The exact dependency of the dephasing time T ∗
g on the above

stated parameters will be deduced in the following.
The g-factor spread σg

σ 2
g = σ 2

g,0 + σ 2
g� (35)

is composed of the intrinsic g-factor width σg,0 and a con-
tribution σg� that originates from the linear relation between
the mean electron g-factor and the trion excitation energy.
The deviation σg� = |m|σεT�

is proportional to the slope |m|
in Eq. (32) and the spread σεT�

of trion excitation energies
that contribute to the signal. To calculate the total standard
deviation σεT�

, we introduce the weight w(ε (i)
T ) that indicates

in which proportions the signal comprises contributions from
the different trion excitation energies. The weight

w
(
ε

(i)
T

) ∝ p
(
ε

(i)
T

)
�̃2

(
ε

(i)
T

)
�̃2

(
ε

(i)
T

)
(36)

consists of the probability p(ε (i)
T ) to draw a QD with excitation

energy ε
(i)
T within the ensemble, the strength of the pump

excitation that is proportional to �̃2(ε (i)
T ), and the probability

to be measured by the probe pulse that is also proportional
to �̃2(ε (i)

T ). Here, �̃(ε (i)
T ) is the Fourier transform of the laser

envelope function �(t ). Equation (36) yields

w
(
ε

(i)
T

) ∝ exp

(
−

(
ε

(i)
T − εT,0

)2

2σ 2
εT

)
exp

(
− (ε (i)

T − εT,0)2

2σ 2
E

)4

= exp

(
−

(
ε

(i)
T − εT,0

)2

2σ 2
εT�

)
(37)

with the total deviation

σ−2
εT�

= σ−2
εT

+
(σE

2

)−2
. (38)

All combined, we obtain the relation

T ∗
g = 1

μBB

√
σ 2

g,0 + m2
[
σ−2

εT
+ (

σE

2

)−2]−1
, (39)

which is added as a solid (red) line to Fig. 9. This relation
excellently agrees with T ∗

g extracted from the fit to the nu-
merical simulations. Note only in the limit σεT � σE � σg,0,
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FIG. 10. Dephasing due to the electronic spin-spin interaction.
The blue line depicts the calculated spin dynamics with the parame-
ters A

(i )
k = 0, g = 0.555, J = 0.4 ns−1, and Bext = 1 T. The envelope

function (green line) is given by Eq. (42). The initial dephasing after
the pulse can be approximated by a Gaussian envelope function (red
line) with standard deviation T ∗

J .

the dephasing time T ∗
g is proportional to the inverse laser

bandwidth σE .
The two dephasing mechanisms discussed so far, i.e., the

nuclear fluctuations and the electron g factor spread, are
independent of one another. As a result, the nuclear dephasing
time T ∗

N and the g-factor dephasing time T ∗
g can be combined

to a total dephasing time T ∗
tot via(

T ∗
tot

)−2 = (
T ∗

N

)−2 + (
T ∗

g

)−2
. (40)

Before we consider the combination of dephasing mecha-
nisms in more detail, we focus on the influence of the elec-
tronic spin-spin interaction in the next section.

C. Dephasing due to the electronic spin-spin interaction

As a third contribution to the electron spin dephasing, we
investigate the effect of the electronic spin-spin interaction.
An optically aligned electron spin interacts with the electron
spins in the other QDs due to a spin-spin interaction of
unknown microscopic origin [8]. It turns out that the ex-
perimental findings are compatible with a time-independent
long-range Heisenberg term between each pair of QDs as in-
troduced in Eq. (2). The effect of the spin-spin interaction onto
the dephasing time depends strongly on whether the electron
spins are optically aligned or unpolarized. To distinguish both
cases, we investigate two limits of (i) spectrally narrow laser
pules, where most of the QDs in the ensemble are unpolarized
and (ii) spectrally broad laser pulses, where most of the QDs
in the ensemble are affected by the optical excitation.

1. Spectrally narrow laser pulse

In the case of a spectrally narrow laser pulse, only a few
electron spins are polarized by the laser pulse while most
spins remain randomly oriented. In Fig. 10, the dynamics of
interacting QDs are depicted where nuclear spin fluctuations
and the electron g factor dispersion are switched off. One
of the NQD = 10 QDs is pulsed with a resonant π pulse
(a(1) = 0) while the other QDs are unaffected by the laser
pulse (a(i) = 1, i = 2, . . . , 10). Since the dependency of the
coupling strength Ji,j on the distance ri,j between the QDs is

unknown, we assume the coupling constants to be exponen-
tially distributed,

p(Ji,j ) = 1

J
exp

(
−Ji,j

J

)
, (41)

with a mean value J .
In analogy to the Overhauser field, each QD experiences a

random magnetic field �B (i)
J = ∑

j Ji,j
�S (j ) of the other QDs.

But in contrast to the Overhauser field, �B (i)
J precesses in

the external magnetic field with nearly the same precession
frequency as the electron spin �S (i). Assuming that all electrons
have the same g factor, in the rotating frame of the external
magnetic field, neither �S (i) nor �B (i)

J precess in the external
magnetic field. Consequently, the solution in the rotating
frame is given by the analytical solution in Ref. [4] at zero
magnetic field

Sz(t ) =S0

3

(
1 + 2

[
1 − 2

t2

2 T ∗2
J

]
exp

[
− t2

2 T ∗2
J

])
(42)

with a dephasing time

T ∗
J =

√
6∑

j J 2
i,j S

2
j

. (43)

Here j is the index of the unpolarized QDs. In the static frame,
Eq. (42) corresponds to the envelope function of the electron
spin precession. The envelope decreases to nearly zero and
rises afterwards to a third of the initial spin polarization.

The first decrease of the envelope function is described
by a Gaussian envelope function with standard deviation T ∗

J .
Consequently, we denote T ∗

J as the dephasing time due to
the electronic spin-spin interaction for the limit of narrow
pump pulses. Note the factor

√
2 between T ∗

N and T ∗
J that is

caused by the fact that �B (i)
J precesses with nearly the same

frequency as the electron spin �S (i) while the Overhauser field
is approximately frozen.

The total dephasing time, which has contributions from the
nuclear spin fluctuations, the electron g factor dispersion, and
the fluctuations of unpolarized electron spins, can approxi-
mately be summarized to

(T ∗
tot )

−2 ≈ (T ∗
N )−2 + (T ∗

g )−2 + (T ∗
J )−2. (44)

This relation is valid only if the QDs are independent of each
other, i.e., if only a few QDs are polarized or if the interaction
between the QDs is weak.

2. Spectrally broad laser pulse

In the second case, most of the QDs are polarized and the
electronic spin-spin interaction has a different effect. Directly
after the pump pulse, the electron spin �S (i) and the effective
magnetic field �B (i)

J are parallel aligned along the optical axis:
The electronic spin-spin interaction has no effect. As soon as
the electron spins acquire a relative phase shift due to other
effects, �B (i)

J and �S (i) are not parallel any more. If �S (i) precesses
slower than �B (i)

J , its precession is speeded up by �B (i)
J , and if

�S (i) precesses faster than �B (i)
J , its precession is slowed down

by �B (i)
J . In this way, other dephasing effects are compensated

and the dephasing time increases.
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To demonstrate this effect, we analyze a minimal toy model
comprising two interacting electron spins that are both parallel
aligned initially and are strongly coupled to each other. We
start with the simplified Hamiltonian

H = J1,2 �S (1) · �S (2) + �b(1) �S (1) + �b(2) �S (2) (45)

with the dimensionless frozen effective magnetic field

�b(i) = �b(i)
ext + �b(i)

N . (46)

First, we show that the electron spins do not precess around
their local magnetic field �b(i), but rather around the averaged
magnetic field �b+ = (�b(1) + �b(2) )/2. Second, we demonstrate
that the fluctuations of the averaged magnetic field �b+ are
smaller than the fluctuations of the individual magnetic fields
�b(i). As a result, the dephasing is significantly reduced in the
presence of a strong interaction J1,2.

In order to highlight the spin precession around the av-
eraged magnetic field, we perform a transformation into the
rotating frame of �b+. The new Hamiltonian H ′ in the rotating
frame is

H ′ = J1,2 �S ′(1) · �S ′(2) + �b−(�S ′(1) − �S ′(2) ) (47)

with the transformed spins �S ′(i) and the magnetic field differ-
ence �b− = (�b(1) − �b(2) )/2. The classical equations of motion
in the rotating frame are given by

d

dt
�S ′(1) = (�b− + J1,2 �S ′(2) ) × �S ′(1), (48)

d

dt
�S ′(2) = (−�b− + J1,2 �S ′(1) ) × �S ′(2). (49)

We assume that both spins are almost aligned after the pump
pulse except for a small deviation �β (| �β| � 1):

�S ′(1) = 1
2 (�ez + �β ), (50)

�S ′(2) = 1
2 (�ez − �β ). (51)

The initial conditions can be inserted into the equations of
motion

d

dt
�S ′(1)(0) = 1

2
(�b− × �ez + �b− × �β + J1,2�ez × �β ), (52)

d

dt
�S ′(2)(0) = 1

2
(�ez × �b− + �b− × �β + J1,2 �β × �ez). (53)

The time derivation d
dt

�S ′(i)(0) is zero for

�β =
�b−
J1,2

(54)

and therefore, no spin dynamics in the rotating frame occur.
Note, for J1,2 � |�b−| the deviation | �β| becomes zero, so the
spins are parallel aligned. Thus, strongly coupled parallel-
aligned spins precess around the averaged magnetic field �b+
in the limit of an infinitely strong coupling.

As a next step, we consider how the dephasing time is
affected by the noise in �b(i). We assume �b(1) and �b(2) to

FIG. 11. Testing the analytical results of the toy model with a
numerical calculation. Two QDs are excited by an ideal π pulse at
t = 0. The dephasing time with a strong interaction (J = 200 ns−1,
blue curve) is

√
2 times longer than the dephasing time without

interaction (J = 0, green curve). The parameters T ∗
N = 3 ns, g(i ) =

0.555, and Bext = 1 T are used.

have the same fluctuation σb = σb(1) = σb(2) . To calculate the
fluctuations of �b+ we utilize that σ 2

b+ and σ 2
b(i) are cumulants:

σ 2
b+ = 1

4

(
σ 2

b(1) + σ 2
b(2)

) = 1

2
σ 2

b (55)

⇒ σb+ = 1√
2
σb. (56)

The fluctuations σb+ of the averaged magnetic field �b+ are
smaller by a factor

√
2 than the single fields �b(i). Thus, the

spin dephasing time is reduced due to the electronic spin-
spin interaction. This behavior is demonstrated in Fig. 11.
Both electron spins are excited by a resonant π pulse. The
dephasing time of strongly interacting QDs (blue curve) is
longer by a factor

√
2 than the dephasing time of uncoupled

QDs (green curve).
In conclusion, the effect of the electronic spin-spin inter-

action on the dephasing time depends on whether the electron
spins are polarized or unpolarized. Unpolarized electron spins
create a random magnetic field �B (i)

J that increases the dephas-
ing while polarized electron spins create a directed magnetic
field �B (i)

J that compensates other dephasing effects. Hence, the
electronic spin-spin interaction generates a faster dephasing
for spectrally narrow laser pulses and a slower dephasing for
spectrally broad laser pulses. Note this behavior is contrary to
the dephasing due to electron g factor dispersion, where the
dephasing time is shorter for spectrally broad laser pulses and
longer for spectrally narrow laser pulses.

D. Combining all dephasing effects

In the previous sections, we identified three contributions
to the electron spin dephasing with different signatures. The
nuclear spin fluctuations lead to a dephasing time that is
independent of the laser bandwidth and the external magnetic
field. The electron g factor dispersion yields a faster dephas-
ing for spectrally broad laser pulses and strong magnetic
fields. For the electronic spin-spin interaction, we extracted
two regimes that imply a faster dephasing for spectrally
narrow pulses and slower dephasing for spectrally broad
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FIG. 12. Dephasing time as a function of the spectral width of the laser for three different magnetic fields 0.25 T (a), 1 T (b), and 6 T (c).
All three dephasing effects are included in the numerical calculation. There is a good agreement for J = 0.4 ns−1 with the experimental data
(cf. Fig. 3).

pulses. After analyzing the components of the electron spin
dephasing separately, we continue by combining the three
dephasing effects and match the results to the experimental
measurements. For this purpose, we use the parameters that
were already discussed before. Figure 12 summarizes the
combined dephasing time extracted from the full numerical
simulation of the coupled equations. The three panels present
the total dephasing time T ∗ as function of the spectral laser
width �E for three different external magnetic fields, Bext =
0.25, 1, 6 T. Various colors show T ∗ for different averaged
Heisenberg coupling constants J . Since we always adjusted
the pulse area in the calculations such that a resonant pulse
corresponds to a π pulse, the simulation can be directly
compared to the experimental data in Fig. 3 with adjusted
power (red curves).

Without the electronic spin-spin interaction (J = 0; blue
curves in Fig. 12) the dephasing time is shorter for spectrally
broader pulses. This behavior is observed for all three mag-
netic fields. Furthermore, the dephasing time is reduced with
increasing the magnetic field. This effect is caused by the
dephasing due to the electron g factor dispersion as discussed
in detail in Sec. IV B.

Without the electronic spin-spin interaction, Fig. 12 reveals
substantial differences to the experimental data. Only the
results at Bext = 6 T match the experiment: The physics is
dominated by the Zeeman energy at large magnetic fields.
There is a pronounced negative slope in the numerical results
as function of �E for all three magnetic fields while in the
experiment the dephasing time only exhibits a negative slope
at 6 T. For the two smaller magnetic fields, the experimental
values of T ∗ are nearly independent of the laser bandwidth.

With a finite electronic spin-spin interaction, the behavior
of the dephasing time changes. The dephasing time decreases
for narrow pulses and increases for broad pulses as analyzed
in Sec. IV C. While the electronic spin-spin interaction has
a strong effect for smaller magnetic fields, the effect is less
pronounced at higher magnetic fields where the dephasing
contribution due to the electron g factor dispersion dominates.
Especially for an external magnetic field of 6 T, the effect of
the spin-spin interaction almost vanishes. Only for very nar-
row laser pulses a small deviation of the curves in Fig. 12(c)
is visible.

Whether the slope of T ∗ as function of �E is positive or
negative is a competition between the electron g factor disper-
sion (negative slope) and the electronic spin-spin interaction
(positive slope). Thus, the slope depends on the strength of
the external magnetic field Bext and the interaction strength
J . The best agreement between the experimental data and
the numerical simulations is obtained for J = 0.4 ns−1. In
Fig. 13(a), we combined the experimental data shown in Fig. 3
with the calculated values of T ∗ for J = 0.4 ns−1 as depicted
in Fig. 12. The value J reproducing the experimental features

FIG. 13. Comparison between the numerical results for J =
0.4 ns−1 after a single laser pulse (solid lines) and the experimen-
tal measurements from Sec. III (x markers) with adjusted power.
(a) Dephasing time T ∗ as function of the spectral laser width
�E. Results for various external magnetic fields are depicted in
different colors. In addition to the numerical results after a single
pulse, we added the calculations after 100 pulses as dashed lines.
(b) Dependence of T ∗ on the external magnetic field Bext .
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FIG. 14. Dephasing time as a function of the magnetic field Bext .
All three dephasing effects are included in the numerical calculation
with J = 0.4 ns−1 and �E = 1.5 meV. The data points of the nu-
merical calculation (blue triangles) are compared to a dependency
∝ 1/Bext (green curve) and dependency ∝ 1/Bα

ext with α = 0.7 (red
curve).

best is almost a factor 4 smaller than the value J ≈ 1μeV ≈
1.5 ns−1 reported in Ref. [8]. This smaller value of J is a
consequence of modeling the ensemble by a cluster of ten
QDs instead of a pair only.

The magnetic field dependency of the dephasing time
T ∗ at a fixed spectral width of �E = 1.5 meV is depicted
in Fig. 13(b). The numerical calculations with J = 0.4 ns−1

(triangles) as well as the experimental measurements taken
from Fig. 4 (x markers) display a decrease of the dephasing
time with increasing external magnetic field. For our choice of
parameters, the numerical values of T ∗ are slightly bigger than
in experiment, but show the same curvature. In Fig. 14, we
supplement a power fit T ∗ ∝ B−α

ext to the numerical data. Like
in the experimental results, the best agreement was achieved
for α = 0.7. Deviations from the power law with α = 1,
which is predicted by the electron g factor dispersion in
Eq. (34), can be attributed to the importance of the hyperfine
interaction and the electronic spin-spin interaction at lower
magnetic fields.

As a next aspect, we analyze the effect of periodic pulse
sequences on the dephasing time in our numerical calcu-
lations. The periodicity of the laser pulses imprints on the
electron spin dynamics. As a consequence, the spin system
synchronizes with the repetition rate of the optical excitation.
First, the electron spin synchronizes while the nuclear spins
remain unaffected. To reach this purely electronic steady state,
only a few laser pulses are necessary. For resonant π pulses, a
saturation is achieved in less than 10 pulses [12]. In contrast,
up to 100 pulses are required to reach the electronic steady
state for detuned QDs, since the pulses are less efficient [40].
Second, on a much longer timescale of several thousands
or millions of pulses, the nuclear spins align in such a way
that the electron spin performs an integer or a half-integer
number of revolutions during a pulse interval. This is called
nuclei-induced frequency focusing [11,12,33]. Due to CPU-
time limitations, we restrict ourselves to the analysis of the
purely electronic steady state and leave the effect of the
nuclei-induced frequency focusing on the dephasing time to
future investigations.

In Fig. 13(a), we added the dephasing time after 100
pulses as dashed lines. To save computational effort, we used
homogeneous coupling constants (A(i)

k = A). For a period-
ically pulsed system with repetition time TR = 13.2 ns, the
dephasing time increases slightly. We attribute this increase to
the following effect: The periodic excitation increases the spin
polarization of the electron spins, which are affected by the
laser pulses. In this way, the strength of the aligned component
of the effective field �B (i)

J is increased and the dephasing time
is extended (see Sec. IV C). A better quantitative agreement
could be achieved by slightly adapted choices of the parame-
ters, such as T ∗

N.

V. CONCLUSION

We present pump-probe measurements of the electron
spin dephasing time T ∗ in an ensemble of singly charged
semiconductor QDs. We focus on the dependency of T ∗ on
the external magnetic field Bext as well as the spectral width
�E of the laser pulse. Although T ∗ ∝ �E−1 is expected by
the distribution of the electron g factors, the dephasing time
is almost independent of �E. Furthermore, the power law
T ∗ ∝ B−α

ext with a reduced exponent α ≈ 0.7 can be fitted to
the magnetic field dependent data that deviates significantly
from α = 1 predicted from the Zeeman term.

In order to provide an explanation for these observations
and reveal the competing mechanisms, the QD ensemble
is modeled by a CSM for each singly charged QD and a
static Heisenberg interaction between each pair of electron
spins. Since the microscopic origin is unclear, we included
the distance dependency in a simplified exponential distri-
bution of Heisenberg terms Ji,j as introduced in Ref. [8].
The electron g factors are Gaussian distributed around a
trion excitation energy dependent mean g factor g(ε (i)

T ). We
employ the semiclassical approach developed in Ref. [11]
combining the classical spin dynamics [14] with a quantum
mechanical description of the laser pump pulse and extended
it to a cluster of coupled QDs to simulate the system of
interest. A key ingredient of this approach is the inclusion of
detuning of the laser pulse with respect to the trion excitation
energy of each individual QD. The self-averaging of a large
number of configurations is used to reduce the number of
QDs in the cluster to a computationally manageable size by
assigning each configuration not only random initial electron
and nuclear spins on a Bloch sphere but also random coupling
constants in accordance with their distributions.

By benchmarking our approach with the experiment on
the optical control of coherent interactions between electron
spins in QD ensembles [8], we have not only validated our
simulation but also confirmed that in order to understand the
experimental data a fixed and time-independent Heisenberg
coupling between electron spins in pairs of QDs is essential.

We discuss how each individual effect—the hyperfine in-
teraction, the electron g factor distribution, the spectral width
of the laser, and the Heisenberg coupling—contributes to the
dephasing time T ∗ and derive explicit expressions in cer-
tain limits illustrating in detail the physical mechanism. The
different contributions to the dephasing time reveal unique
signatures when changing the external magnetic field or the

205308-14



SIGNATURES OF LONG-RANGE SPIN-SPIN … PHYSICAL REVIEW B 98, 205308 (2018)

laser bandwidth. The dephasing time due to nuclear spin fluc-
tuations is independent of both Bext and �E. The distribution
of the electron g factors leads to a dephasing time that is
smaller for increasing magnetic field and for increasing laser
bandwidth due to the correlation between the trion excitation
energy and the electron g factor. For the interaction between
the electron spins, we encounter two limits that demonstrate a
reduction of the dephasing time for spectrally broader pulses
due to the increasing number of synchronized electron spins.

In the last section, we investigate the combined influence
of all the individual contributions, using the estimated param-
eters from the experiment but varying the mean Heisenberg
coupling that is still of unknown microscopic origin. We found
an excellent qualitative and quantitative agreement between
the numerical simulations and the experimental data when
choosing the mean as J = 0.4 ns−1. For this value of J , we
found both a dephasing time that is nearly independent of the
spectral laser width as well as a magnetic field dependency
∝ B−α

ext with α = 0.7. The weak dependency of T ∗ as function
of the spectral laser width at a fixed magnetic field can be
explained by a partial compensation between the contribution
of the electron g factor dispersion and of the electronic spin-
spin interaction. The modified power law of the magnetic
field dependence results from the importance of the hyperfine
coupling as well as the electronic spin-spin interaction at
lower magnetic fields.

The smaller value of J ≈ 0.26μeV = 0.4 ns−1 in compar-
ison to J ≈ 1μeV ≈ 1.5 ns−1 from Ref. [8] results from the
extension of the cluster size NQD = 2 in Ref. [8] to NQD =
10 QDs in the simulation presented here. The effect of the
electronic spin-spin interaction on QD i is encoded in the
effective magnetic field �B (i)

J . If a smaller number of QDs
are taken into account, the couplings Ji,j have to be scaled
up to obtain the same dynamics. With this consideration in
mind, J ≈ 1μeV can be interpreted as an upper bound for the
strength of the spin-spin interaction in a real QD sample.

The microscopic origin of the observed coupling is still
open. A possible candidate might be a RKKY interaction
which might be mediated by carriers with extended wave
functions provided, for example, by the wetting layer of the
QDs. For clarification, further studies need to be performed

addressing, for example, structures in which this wetting layer
is varied.

Understanding the role of the electronic spin-spin inter-
action for the electron spin dephasing opens up new possi-
bilities for future research. Our findings can be utilized to
design novel sequences of tailored pulses that minimize the
decoherence in semiconductor QD ensembles. Our model can
be used to clarify the influence of an interaction between
the electron spins on the formation of the nuclei-induced
frequency focusing. While we only considered up to 100 laser
pulses in this study, the influence of the applications of several
million pulses onto the dephasing and correlations should be
addressed which is beyond the present work. The phenomeno-
logical treatment of the electronic spin-spin interaction with a
time-independent Heisenberg term yields an excellent agree-
ment with the experimental results. A further investigation of
the microscopic mechanism would facilitate the exploration of
quantum functionality in this type of QD system. Especially
the investigation of samples without electronic states in the
wetting layer should provide further information about the mi-
croscopic mechanism of the long-range spin-spin interaction.
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