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While the coherent control of two-level quantum systems, qubits, is now standard, their continuum electronic
equivalents, flying qubits, are much less developed. The first step in this direction has been achieved in dc
interferometry experiments. Here, we propose a simple setup to perform the second step, the spectroscopy of
these flying qubits, by measuring the dc response to a high-frequency ac voltage drive. Using two different
concurring approaches (Floquet theory and time-dependent simulations) and three different models (an analytical
model, a simple microscopic model, and a realistic microscopic model), we predict the power-frequency map
of the multiterminal device. We argue that this spectroscopy provides a direct measurement of the flying qubit
characteristic frequencies and a key validation for more advanced quantum manipulations.
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I. INTRODUCTION

The development of a new type of quantum bit happens
in stages. Let us consider the singlet-triplet double-quantum-
dot qubit [1] as a typical example. In this case, the first
stage consists of dc measurements of the so-called stability
diagram. Once a suitable physical regime has been found, the
second stage consists of performing the spectroscopy of the
qubit to assert its suitability and determine its dynamical char-
acteristics. This can be done through, e.g., electronic dipolar
spin resonance [2]. It is crucial to pass these two stages before
one can consider sending more elaborate pulse sequences like
Rabi, Ramsey, and echo experiments. In the last stage (before
considering coupling several of these qubits), one implements
single-shot measurements.

Quantum mechanics, however, is not limited to bound
states, and propagating quantum states instead of bound states
could also be used to form qubits. The so-called flying qubits
have been successfully realized with photons in linear quan-
tum optics [3,4], but here, we focus on proposals based on
electrons [5]. The first stage of the electronic flying qubit
[6,7] implementation has been demonstrated in several ex-
periments that show controlled two-path interferometry in a
two-dimensional electron gas in the presence [8,9] or ab-
sence [10,11] of magnetic field as well as in graphene [12].
Other features, specific to propagating quantum systems, have
also been demonstrated (including single-electron sources
[13–16] and their Hong-Ou-Mandel characterization) or pro-
posed theoretically [17–19]. However, the second stage, the
spectroscopy of a flying qubit, has not yet been realized
experimentally.

The electronic flying qubits that we consider in this paper
are “two-path” interferometers, the electronic analog of the
Mach-Zehnder interferometer studied in optics. The two states
of the qubits are coded in the two paths, ↑ and ↓, that a single
electronic excitation uses for propagation. Here, the role of the
qubit frequency is replaced by h̄/τ , where τ is a characteristic
time, the difference between two times of flight (to be defined
below), of the device. Like in a localized system that may have

multiple energy levels, there may be several propagating chan-
nels, giving rise to several characteristic times τ . Measuring
these times and assessing whether electronic interferometry
experiments can be performed at high frequency are the next
key milestone of the field.

In this paper, we propose to use quantum rectification
(measurement of a dc current in the presence of a high-
frequency sinusoidal drive) [20–25] as a tool to perform the
spectroscopy of flying qubits. We argue that quantum rectifi-
cation provides a clear spectroscopy of the device while being
much more accessible experimentally than other techniques,
in particular in the challenging ∼10 GHz–1 THz frequency
range which is required for this type of physics.

II. A TWO-PATH ELECTRONIC INTERFEROMETER
USING A SPLIT-WIRE GEOMETRY

We focus this study on the tunneling wire “flying qubit”
geometry sketched in Fig. 1(a) and studied experimentally
in [10,11,26,27]. The device consists of two quasi-one-
dimensional wires labeled ↑ (upper) and ↓ (lower) connected
to four electrodes: two on the left, L ↑ and L ↓, and two on
the right, R ↑ and R ↓. Close to the electrodes, the wires
are disconnected. However, in a central region of length L,
the two wires are in contact, so that an electron can tunnel
back and forth from the upper to the lower part. A capacitive
top gate Vg controls the intensity of the tunneling coupling
between the wires. The coherent oscillation that takes place in
the tunneling region between the upper and lower wires can
be interpreted as a quantum gate operated on the flying qubit.
Equivalently, an electron entering the upper wire decomposes
into a superposition of symmetric and antisymmetric propa-
gating states, which forms a two-path interferometer.

The dc characteristics of this device were analyzed previ-
ously [10,28] both theoretically and experimentally. For com-
pleteness, we recall here its salient features. Let us determine
the scattering matrix of this device in the limit where (i) there
is only one propagating channel in each of the wires and
(ii) the spatial variation of the tunneling coupling is very
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FIG. 1. (a) Schematic of the flying qubit geometry. Two wires
labeled ↑, ↓ are connected to two electrodes on the left (L ↑,
L ↓) and two electrodes on the right (R ↑, R ↓). Schematics of the
transverse part of the propagating modes (b) close to the electrodes
and (c) in the central tunneling region.

smooth with respect to the Fermi wavelength. This implies
that there is no reflection in the device as backscattering
involves the 2kF Fourier component of the potential (kF

is the Fermi momentum): an electron injected on the left,
say, in L ↑, is transmitted toward either R ↑ or R ↓. To
determine the transmission amplitude dba (E) from channel
a on the left to channel b on the right (a, b ∈ {↑,↓}), let
us consider the transverse part of the propagating modes. A
schematic representation of these wave functions is shown in
Fig. 1(b) for the decoupled wires (close to the electrodes) and
in Fig. 1(c) for the tunneling region. In the latter, the ↑ and
↓ channels hybridize into symmetric (S) and antisymmetric
(A) channels of respective longitudinal momenta kS and kA

along the x direction. The key point is to recognize that
the S (A) channel is continuously connected to the symmet-
ric (antisymmetric) combination of the ↑ and ↓ channels,
|S/A〉 ↔ (|↑〉 ± |↓〉)/

√
2. Hence, an electron injected in |↑〉,

|↑〉 = 1

2
(|↑〉 + |↓〉) + 1

2
(|↑〉 − |↓〉) → 1√

2
(|S〉 + |A〉),

(1)

is transmitted into S and A with amplitude 1/
√

2. Inside the
tunneling wire, the wave function picks up a phase eiφS/A ,
which in the Wentzel-Kramers-Brillouin (WKB) approxima-
tion reads φS/A = ∫ L

0 dx kS/A(x) ≈ kS/AL. After the tunnel-
ing region, S and A recombine into the ↑ and ↓ channels, and
we arrive at

d↑↑(E) = 1
2 (eiφS + eiφA ), d↓↑(E) = 1

2 (eiφS − eiφA ). (2)

The differential conductance gba that relates the current flow-
ing on the right in lead b from an increase of voltage in
the left on lead a is given by the Landauer formula, gba =
(e2/h)Dba (EF ), with Dba (EF ) = |dba (EF )|2 and EF being
the Fermi energy (we ignore spin everywhere; it can be
restored by simply multiplying the currents by a factor of
2). The above analytic expressions have been shown to grasp
the important features of the corresponding experimental
devices in dc [10]. In particular, upon decreasing the gate
voltage Vg toward large negative values, kS − kA decreases
toward zero (the two channels become increasingly alike),
and the differential conductance g↑↑ ∝ cos2[(φS − φA)/2] ≈
cos2[(kS − kA)L/2] first oscillates, then saturates to perfect
transmission.

For the ac response discussed in this paper, we need the
energy dependence of the transmission amplitude. Linearizing
the dispersion relation of the S and A channels, we introduce
the corresponding velocity vS,A = (1/h̄)dES,A/dk and the
time of flight τS/A = L/vS,A through the channel. The phase
difference φS (E) − φA(E) is controlled by the difference τ ≡
τS − τA of the times of flight, and we arrive at

φS (E) − φA(E) ≈ δF + (E − EF )τ/h̄, (3)

with δF ≡ φS (EF ) − φA(EF ).

III. A GENERAL FORMULA FOR CALCULATING
RECTIFICATION CURRENTS

We now develop the scattering theory of the rectified direct
current generated by an ac voltage drive. We consider a
multiterminal mesoscopic system and apply a periodic time-
dependent voltage V (t ) to one electrode (for definiteness, we
focus below on L ↑) with frequency ω. We seek to obtain
the average (over time) dc current flowing in the different
electrodes. Such a calculation can be performed in differ-
ent but fully equivalent “Floquet” formalisms, including the
scattering [29], nonequilibrium Green’s function [30], and
wave function approach [31]. Here, we follow the latter after
Refs. [19,31].

In what follows, we neglect the spatial dependence of
the electric potential drop; that is, we suppose that the drop
in electric potential takes place very abruptly at the Ohmic
contact–two-dimensional gas interface. Such an approxima-
tion is well justified in the present case due to the presence of
the electrostatic gates that define the conducting region. These
gates are metallic and hence equipotential; they ensure that the
potential drop takes place over a distance which is essentially
set by the distance between the gate and the two-dimensional
electron gas. This distance is typically of the order of 100 nm,
which is much shorter than the size of the device (typically,
10 μm), so that the approximation of a perfectly sharp drop is
reasonably accurate. In the opposite situation (the absence of
electrostatic gates) the potential drop would be linear between
the two contacts. A discussion of this problem can be found in
Sec. 8.4 of [31]. The abrupt drop in potential is an important
ingredient for the physics of propagating pulses such as the
minimum excitations, “levitons.” The recent experiments that
measured the time of flight of such pulses [32] provided
clear experimental evidence that the drop is indeed sharp and
takes place at the Ohmic contact–electron gas interface since
well-defined velocities could be measured.

The effect of the time-dependent voltage is to dress an
incoming wave function of the form eikx−iEt/h̄ with an extra
phase factor e−i�(t ) [with �(t ) ≡ ∫ t

0 dt ′ eV (t ′)/h̄] that ac-
counts for the variation of electric potential. Decomposing this
phase into its Fourier component Pn,

e−i�(t ) =
∑

n

Pne
−iωnt , (4)

the net effect of V (t ) is that the incoming wave func-
tion is now a coherent superposition

∑
n Pne

ikx−iEt/h̄−iωnt of
plane waves at different energies. As different energies get
transmitted into different channels, we arrive at the follow-
ing time-dependent transmission amplitude for an incoming
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energy E:

dba (t, E) =
∑

n

Pndba (E + nh̄ω)e−iEt/h̄−iωnt , (5)

where dba (t, E) is the Fourier transform with respect to E′
of dba (E′, E), which is itself the inelastic amplitude to be
transmitted from energy E of lead a toward energy E′ of
lead b. The generalization of the Landauer formula to time-
dependent currents provides the time-dependent current Ib(t )
as

Ib(t ) = e

h̄

∫
dE

2π
[|dba (t, E)|2 − |dba (E)|2]fa (E), (6)

where fa (E) is the Fermi function of lead a subject to the
time-dependent voltage. The second term in the previous
equation subtracts the current sent from lead a in the absence
of time-dependent voltage, which is a convenient way to
ensure the overall current conservation [17,31]. Focusing on
the dc (rectification) current Īb = ω/(2π )

∫ 2π/ω

0 dtIb(t ), we
arrive at

Īb = e

h

∑
n

|Pn|2
∫

dE|dba (E)|2[fa (E + nh̄ω) − fa (E)].

(7)

Equation (7) is very general and relates the rectification
properties of an arbitrary mesoscopic system to its scattering
matrix dba (E), a well-known dc object. In particular, it can be
easily evaluated numerically for a large class of microscopic
models using readily available numerical packages (in our
case the KWANT [33] package) for arbitrary periodic pulses.
We note that following the same arguments as in Ref. [31], we
find that the rectification current is “conserved” and “gauge
invariant” in the sense defined by Büttiker et al. [34]; that is,
the dc current in electrode a is exactly compensated by the dc
currents in the other leads, and applying an ac potential on all
the leads simultaneously does not generate any dc current.

IV. APPLICATION TO THE FLYING QUBIT

A. Simple scattering model

We now make a specific calculation using our analytical
model (2) for the flying qubit geometry. We also specialize
to a drive V (t ) = V0 cos ωt with a unique frequency which
implies Pn = Jn(eV0/h̄ω), where Jn(x) is the Bessel function
of the first kind. Up to an irrelevant phase factor, the time-
dependent transmission reads

d↑↑(t, E) = 1
2 [1 + eiδF +iτ (E−EF )/h̄ei�(t )e−i�(t−τ )]. (8)

Following the same route as in the general case and assuming
zero temperature for simplicity, we get

Ī↑ = e

4πτ
sin(δF )

{
J0

[
2eV0

h̄ω
sin

(ωτ

2

)]
− 1

}
, (9a)

Ī↓ = −Ī↑. (9b)

Equations (9a) and (9b) call for a few comments. (i) Even
though we apply the oscillatory voltage on the upper left
electrode, no dc current actually flows there as implied by
Eq. (9b) and current conservation. Instead, the dc rectified

FIG. 2. Rectified dc current from Eq. (9a) for δF = 0.32π and
τ = 58 ps. The results of Fig. 4 correspond to cuts along the green
lines.

current is pumped from the upper right to the lower right
electrode. (ii) Equation (9a) is nonperturbative with respect
to both frequency and drive amplitude. An illustrative color
plot is shown in Fig. 2. It shows rich oscillatory features as a
function of both ω and V0. Figure 2 is the flying qubit analog
of the usual spectroscopy maps. (iii) The adiabatic limit
ω → 0 can be understood without using the time-dependent
Floquet formalism. First, we compute the dc current-voltage
characteristics

I (V ) = (e/h)
∫ EF +eV

EF

dE |d↑↑(E)|2

= e2

2h
V + e

2πτ
sin

(
eV τ

2h̄

)
cos

(
δF + eV τ

2h̄

)
. (10)

Then the adiabatic rectified dc current is found by computing
the time average of I (V = V0 cos ωt ), and we arrive at

Ī↑ = e

4πτ
sin(δF )

[
J0

(
eV0τ

h̄

)
− 1

]
, (11)

which corresponds to the ω → 0 limit of Eq. (9a). The rec-
tified current is directly linked to the presence of the non-
linear term in the I (V ) characteristics. (iv) At large x, the
Bessel function decreases as J0(x) ∼ sin(x + π/4)

√
2/πx,

so that the rectified current reaches its maximum value Ī↑ =
− e

4πτF
sin(δF ) at large voltage and ωτ = π .

B. Simple microscopic model

We now introduce a microscopic model for the Mach-
Zehnder interferometer of Fig. 1 and discuss our direct
method to perform time-dependent simulations of the device.
We shall find a perfect match between our time-dependent
simulations and a semianalytical approach that uses the mi-
croscopic model to calculate the dc scattering matrix (using
the KWANT package [33]) and Eq. (7) to relate the latter to the
rectified current in the presence of an ac drive. We model the
Mach-Zehnder interferometer through the following Hamilto-
nian:

Ĥ (t ) =
∑

a∈{↑,↓}

+∞∑
i=−∞

[−c
†
i+1,aci,a + Uic

†
i,aci,a]

+
+L/2∑

i=−L/2

γic
†
i,↑ci,↓ + H.c., (12)
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FIG. 3. Simple microscopic model. Left: dc differential conduc-
tances g↑↑(E) (dashed blue line) and g↓↑(E) (solid red line) as
obtained from a direct numerical calculation of the tight-binding
model. The numerical calculations were performed with the KWANT

[33] package. The reflection probability from L ↑ to L ↑ or L ↓
vanishes in the region of interest. Right: currents in R ↓ [solid red
line, I↓(t )] and R ↑ [dashed blue line, I↑(t )] after a microwave
excitation in L ↑ (dotted black line) computed using time-dependent
simulations of the microscopic model.

where ci,a (c†i,a) is the usual fermionic destruction (creation)
operator on site i and wire a ∈ {↑,↓}. Ui is an electric
potential present in the central region, γi characterizes the
tunneling between the upper and lower wires and is controlled
by the voltage Vg , and L is the total length of the tunneling
part of the wire. The nearest-neighbor hopping amplitude is
set to unity, which defines our energy and time units (h̄ = 1).

For our simulations, we choose L = 500 sites, EF = 1.3,
and γi interpolates smoothly (over 50 sites) between zero in
the electrodes and −0.7 in the tunneling region. The potential
Ui interpolates smoothly between 0.8 in the electrode and 1
in a small region just before and after the tunneling region
(this region is present for numerical convenience; see Sec.
10 of Ref. [31]) and vanishes inside the tunneling region. Ui

also includes a uniform contribution V0 cos(ωt ) for all sites
in the upper left electrode and t > 0. For these parameters,
we find a characteristic time τ ≈ 58 and δF ≈ 0.32π . These
two values can be determined consistently from three different
calculations: from the propagation of a voltage pulse in the
time-dependent simulation, from the energy dependence of
the dc conductance, and from the WKB approximation.

The time-dependent simulations are performed using the
method described in Refs. [31,35], in which all details are pro-
vided. In this method, we directly integrate the Schrödinger
equation

ih̄∂t |�(t )〉 = Ĥ (t )|�(t )〉 (13)

without further approximations. The main difference from
Eq. (7) lies in the treatment of the oscillatory ac potential:
in the scattering matrix approach, it is assumed that the
ac potential drop does not create any backscattering. This
approximation is usually very good, up to small deviations of
∼V0/EF that were calculated in Ref. [31]. The left panel of
Fig. 3 shows an example of the dc differential conductances
g↑↑(E) and g↓↑(E) as obtained from a direct numerical
calculation of the tight-binding “simple microscopic model”.
We indeed observe the oscillations with energy discussed
after Eq. (2). We checked that the period of these oscillations
matches the WKB result that can be calculated independently.
The right panel of Fig. 3 shows the result [current I (t ) versus

FIG. 4. Simple microscopic model. The dc current Ī↑ for
three different voltage amplitudes V (t ) = V0 cos(ωt ) with V0 =
31, 62, 93 μV (green, red, and blue lines, respectively). The sym-
bols correspond to a time-dependent simulation of Eq. (12), the solid
lines correspond to semianalytic theory (7), and the dashed lines
correspond to the analytic approach (9a).

time t] of a typical time-dependent simulation of the model
in the presence of the ac drive (smoothly switched on at
t = 0). These curves are averaged over time to calculate the
dc rectification current Ī .

C. Comparison between the different approaches

The first remarkable feature of the rectified current is the
fact that it is pumped between the two right electrodes. The dc
current in electrode L ↑ vanishes even though the ac voltage
is applied there. Figure 2 shows the rectified current (9a) as a
function of the drive frequency and amplitude.

The dc current follows damped oscillations with both V0

and ω with frequency h/τ in the ∼10- GHz range. In particu-
lar, the characteristic time τ can be extracted directly from the
minima of the dc current as a function of ω. Figure 4 shows the
plot of current Ī↑ versus frequency ω for three different values
of V0, corresponding to cuts in Fig. 2 (green lines). Figure 4
contains the results of three different calculations: the ideal
analytical calculation (9a), the time-dependent simulations of
the microscopic model (12), and a semianalytical calculation
that uses the time-independent part of the microscopic model
and computes the rectification properties using Eq. (7). We
find close agreement among the three approaches, with a very
accurate agreement between the latter two. Departure from
the ideal analytic formula (9a) arises due to the presence of
a small backscattering in the device (which is not perfectly
adiabatic) and the fact that the linear relation (3) is not strictly
valid in the microscopic model (the presence of the other
characteristic scales).

We conclude that the ideal analytical model (9a) describes
the physics qualitatively but cannot be used for quantitative
predictions. On the other hand, Eq. (7) is computationally
affordable and in precise agreement with the direct integration
of the Schrödinger equation. It may be used for other, more
realistic models, which we shall do in the next section.
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FIG. 5. Top view of the layout of the gates that define the realistic
microscopic model.

V. REALISTIC MICROSCOPIC MODEL

The two models studied above are, of course, idealized.
Below, we develop a much more refined model which builds
upon our previous work [10]. The model of Ref. [10] was
shown to be in remarkable agreement with the dc experimen-
tal data even though the electrostatic potential was modeled
rather crudely. Here, we extend the modelization and per-
form a self-consistent treatment of the electrostatic-quantum
problem. We also include finite-temperature thermal smearing
(∼20 mK).

Before describing the specifics of the “realistic model,”
let us briefly discuss some orders of magnitude. The typi-
cal value of the difference of the time of flight τ that can
be reached experimentally depends on the product of three
factors, τ = L(1/vS − 1/vA) ≈ ((kS − kA)/kS )L/vS . The
longitudinal velocity vS can be estimated from the exper-
imental results of Ref. [32] to be vS ≈ (2–5) × 105 m s−1.
Typical values of kS − kA found in Ref. [10] lie between
1% and up to 10% of the Fermi momentum kS . The length
L of the tunneling region in Ref. [10] was L = 1 μm, but
coherent oscillations have since been observed in much longer
samples [36], L ≈ 40 μm, indicating that the low-temperature
(≈20 mK) phase coherence length in these samples is of a few
tens of micrometers, comparable to what has been observed
in the quantum Hall regime [9]. Altogether, we estimate τ ∼
100 ps for the slowest mode of a 20-μm-long sample, which
is consistent with what is found below in the simulations of
the realistic model.

A. Geometry

The model is defined solely by the position of the top gates
that are deposited on the surface of the GaAs heterostructure.
It consists of a central region (defined by two lateral gates
and a central tunneling gate) which smoothly evolves into two
disconnected wires on the left and on the right of the central
region. A top view of the layout of the gates is shown in Fig. 5.
A cut at x = 0 (left panel) and x > 10 μm (right panel) is
shown in the top row of Fig. 6.

The dimensions of the device (with a central region
13.8 μm long and 0.92 μm wide) are fully compatible with
standard electron-beam lithography techniques. The different
gates are grouped into three categories: the three interior gates
(green) are set to the same potential Vt , the two outer gates

FIG. 6. Top: side view of the realistic microscopic model layout.
Bottom: self-consistent electrostatic potential seen by the electrons
as a function of the transverse direction y. The insets show a zoom
close to the Fermi level EF = 0. Left: cut inside the central region
(x = 0). Right: cut inside the leads (x > 10 μm or x < 10 μm)

of the central region are set to Vm, and the four outer gates
of the electrodes are set to Vl . The transition region between
the central region and the lead (x ∈ [−9.2,−6.9] and x ∈
[6.9, 9.2] μm) is defined by an interpolation described later
in this section.

B. Self-consistent model

In order to calculate the electrostatic potential seen by
the two-dimensional electron gas, we work in the effective-
mass (m∗ = 0.067me, where me is the bare electron mass)
approximation for the Schrödinger equation, which is solved
self-consistently with Poisson’s equation. The Hamiltonian of
the two-dimensional electron gas,

H = P 2
x + P 2

y

2m∗ − eV (x, y, z = 0), (14)

is discretized on a square grid with lattice constant
a = 3 nm (approximately 2 × 106 ≈ 300 × 6000 sites). The
Schrödinger equation

H�αE = E�αE (15)

is solved using the KWANT package [33]. The electrodes are
taken to be semi-infinite, so that the spectrum is actually
continuous and the eigenfunctions are labeled by an energy
E and a mode index α. The density of electrons n(x, y) is
given by the integral over energy of the local density of states,

n(x, y) =
∑

α

∫
dE

2π
|�αE (x, y)|2f (E), (16)

where f (E) = 1/(eE/kBT + 1) is the Fermi function at tem-
perature T (and we have set the Fermi energy EF = 0 as our
reference energy point). The Poisson equation away from the
electron gas reads

�V (x, y, z) = 0, (17)
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while close to the gas the discontinuity of the electric field is
set by n(x, y):

∂zV (x, y, 0+) − ∂zV (x, y, 0−) = − e

ε
[n(x, y) + nd ], (18)

where the dopant density nd sets the actual density of the gas
and ε ≈ 12ε0 is the dielectric constant. The Poisson equation
is solved using the FENICS package [37].

In order to solve the set of self-consistent equations (15),
(16), (17), and (18), we perform one approximation which
considerably lowers the computational effort while retaining
good accuracy. In a first step, we solve the self-consistent
problem deep in the lead region where the system is invariant
by translation along x (which hence effectively maps to a
two-dimensional problem for the Poisson equation and a
one-dimensional one for the quantum problem). We obtain
V (|x| � 10, y, 0) ≡ VA(y). Second, we solve the problem
deep inside the central region, assuming that the potential
is not affected by the leads (and hence is also invariant by
translation along x). We obtain V (|x| � 10, y, 0) ≡ VB (y).
An example of the obtained self-consistent potentials VB (y)
(left) and VA(y) (right) is shown in Fig. 6 for Vt = −0.43 V,
Vm = −0.495 V, and Vl = −0.45 V. In the last step, we de-
scribe the potential in the transition regions (x ∈ [−9.2,−6.9]
and x ∈ [6.9, 9.2]) by performing an interpolation between
VA(y) and VB (y).

The density of the gas is ∼3.2 × 1011 cm−2, which corre-
sponds to a Fermi wavelength λF ≈ 45 nm. Since the transi-
tion region is long compared to λF , the transition is adiabatic,
and we observe a very small reflection probability. We also
have to check that the mode coming from L ↑ is fully trans-
mitted into the mode of R ↑ and R ↓ and is not leaked into
L ↓. Otherwise, it would create Fabry-Pérot interferences be-
tween both potential transitions which will compete with the
Mach-Zehnder interferometry. This is achieved by a smooth
transition of the potential.

C. dc and ac characterization

Once the electrostatic potential is known, we calculate the
transmission probabilities for the various conducting chan-
nels. We have used Vt = −0.43 V, Vl = −0.45 V, and Vm =
−0.495 V, so that five propagating channels are open in each
lead, and ten channels are open in the central region (a typical
experimental situation). The left panel of Fig. 7 shows an
example of the band structure of the central region, where
we have used matching colors to identify the symmetric-
antisymmetric pairs. The right panel of Fig. 7 shows E(k = 0)
for the various modes, which allows us to identify the prop-
agating channels [E(k = 0) < 0] and evaluate the splitting
between the symmetric and antisymmetric components. Fig-
ure 8 shows the dc conductance (at zero temperature) as a
function of the tunneling voltage Vt (lower panel) obtained
with KWANT [33]. The top panel shows the contributions from
the different propagating channels. The strongest oscillating
signal is obtained close to the onset of the opening of a
new channel where the two momenta for the symmetric and
antisymmetric channels are the most different.

FIG. 7. Structure of the subbands in the central region. Left:
Energy dispersion E(k) versus k for Vt = −0.43 V. The bands
that cross the Fermi energy E = EF = 0 correspond to propagat-
ing channels. Right: Transverse energies E(k = 0) of the different
modes as a function of the tunneling voltage Vt . The bands below
the Fermi energy are propagating. Parameters: Vm = −0.495 V and
Vl = −0.45 V for both panels. Symmetric-antisymmetric mode pairs
are plotted with similar colors and line styles.

D. Rectification spectroscopy

The total number of orbitals is now rather large (∼2 ×
106), so a direct time-dependent calculation is prohibitive. But
discussion of Sec. IV C shows that we can use Eq. (7) and get
the same results with much less computational time. In order
to obtain the rectification current one requires the calculation
of the total transmission probability

Dab(E) =
∑

α∈a,β∈b

|dαβ (E)|2, (19)

where the sum is taken over all the propagating channels of
the corresponding electrode. An example of such a calculation
using KWANT [33] is shown in Fig. 9 together with the detailed
contributions of the different channels. The curve Dab(E),
antisymmetrized around the Fermi level, provides the infor-
mation for the calculation of the rectified current response to

FIG. 8. Bottom: dc differential conductance ∂I/∂Vb as a func-
tion of the central gate voltage Vt for Vl = −0.45 V and Vm =
−0.495 V. The voltage bias Vb is applied to the upper left contact
L↑, while the other three are grounded. The current is measured in
the upper right contact R↑ (solid lines, ∂I↑/∂Vb) and in the lower
right contact R↓ (dashed line, ∂I↓/∂Vb). Top: contribution from the
individual propagating channels, shifted by multiples of 2e2/h for
clarity. Calculations were performed at zero temperature.
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FIG. 9. Middle: total transmission probability D(E) [solid line,
D↑↑(E); dashed line, D↑↓(E)] vs energy E, where E is measured
relative to the Fermi energy EF . Top: contribution from the individ-
ual propagating channels, shifted by multiples of 2e2/h for clarity.
Bottom: zoom of the middle panel. Parameters: Vt = −0.43 V, Vl =
−0.45 V, and Vm = −0.495 V for all panels.

an ac drive, as can be seen from the following reformulation
of Eq. (7):

Īb = e

h

∑
n>0

|Pn|2
∫

dE[Dba (E−n) − Dba (En)]

× [fa (En) − fa (E−n)], (20)

where En = E + nh̄ω/2. Conversely, Eq. (20) shows that
the rectification response can be used to reconstruct the
antisymmetrized transmission probability of the device. To
reconstruct the full transmission probability, including the
symmetric part, calculations and measurements for different
Fermi levels (using, e.g., a back gate) are necessary.

The resulting rectified current for the realistic model is
shown in Fig. 10. Figure 10 is qualitatively similar to the
idealized model despite the fact that it includes a realistic
modeling of the electrostatic potential, multiple open channels
(five), and a finite temperature (20 mK). This is a strong
indication of the robustness of this type of spectroscopy.

An important aspect of the multichannel model is that
different channels (with different scales τ ) contribute to the
rectified current with contributions of the order of 1/τ , so
the fastest channels have larger contributions. However, this
does not prevent one from observing the slowest channels
since the scales at which the different contributions vary is
also very different [as can be inferred by an inspection of
Eq. (9a)]. In order to bring the different contributions to the
same scale, it can be advantageous to plot the derivative
of the current ∂Ī/∂V0 instead of the current itself. This is
typically performed experimentally using a lock-in technique.
The signal can be furthered amplified by plotting the an-
tisymmetric signal ∂Ī↑/∂V0 − ∂Ī↓/∂V0 with respect to the
two outputs in order to subtract any spurious signal coming
from other rectification processes. Indeed, the multichannel
realistic model contains another source of rectification current
coming from the opening of new channels which give rise

FIG. 10. Realistic microscopic model. Color map of ∂Ī↑/∂V0 −
∂Ī↓/∂V0 versus voltage amplitude V0 and frequency ω/2π . The inset
shows a zoom of the main panel. Two channels with τ = 220 ps
(oscillations visible in the inset) and τ = 19 ps (oscillations visible
in the main panel) dominate the signal. Calculations were performed
at 20 mK.

to plateaus in the rectification current. These plateaus are
very conveniently subtracted by looking at the antisymmetric
signal ∂Ī↑/∂V0 − ∂Ī↓/∂V0.

The data in Fig. 10 correspond to five pairs of propagating
channels with τ = 220, 19, and 3 ps and two very fast chan-
nels with τ � 1 ps. With current experimental capabilities,
the two interesting pairs that may be used for flying qubits
are the two slowest, τ = 220 ps and 19 ps. It is interesting that
despite the presence of the three faster pairs, the spectroscopy
lines of these two pairs are clearly visible in Fig. 10: at these
scales, the three fast pairs contribute only to a global back-
ground. The two characteristic times τ = 220 and 19 ps can
be directly extracted by fitting the low-frequency (<10 GHz)
and high-frequency (<100 GHz) parts of the diagram.

VI. DISCUSSION AND CONCLUSION

The experimental observation of the features shown in
Fig. 10 would provide the first direct measure of the char-
acteristic times of the device and validate the possibility for
the dynamical probing of an interference pattern at high fre-
quency. This is a key step on the route toward further quantum
manipulation with voltage pulses and the first full-fledged
electronic flying qubit [5].

Another important aspect which is at stake is our ability
to make accurate models and predictive simulations for high-
frequency quantum transport. At the experimental level, the
electrostatic gates are controlled with voltages of the order
of 1 V, while the equilibrium electrostatic potential seen
by the electrons is of the order of several mV, i.e., 2–3
orders of magnitude smaller (see, e.g., Fig. 6). Hence, the
construction of accurate models must go through a precise
understanding of the combined electrostatic-quantum prob-
lem in the presence of high-frequency dynamics. Conversely,
the physics of these systems depends on the precise interplay
between these two physics. Being in the position to make
quantitative predictions for these systems would allow one
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to design much more optimum geometries and experimental
protocols, which would have a decisive impact on the de-
velopment of the field. This paper presented a step in this
direction.

Our understanding of high-frequency quantum transport,
pulse propagation, and dynamical interferometry (the ingredi-
ents of electronic flying qubit architectures) is mostly based
so far on noninteracting models. As the experiments progress
toward the exploration of this new physics, the modeling will
require new aspects to be treated more accurately. Future
work will include a proper treatment of the electron-electron
interactions at the random-phase approximation level [38] and

beyond as well as the modelization of the different channels
for decoherence. Indeed, understanding what sets the funda-
mental limit of coherence in these systems will probably be
one of the most interesting challenges of the field in the years
to come.
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