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Dominant electron-phonon scattering mechanisms in n-type PbTe from first principles
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We present an ab initio study that identifies the main electron-phonon scattering channels in n-type PbTe. We
develop an electronic transport model based on the Boltzmann transport equation within the transport relaxation
time approximation, fully parametrized from first-principles calculations that accurately describe the dispersion
of the electronic bands near the band gap. Our computed electronic mobility as a function of temperature and
carrier concentration is in good agreement with experiments. We show that longitudinal optical phonon scattering
dominates electronic transport in n-type PbTe, while acoustic phonon scattering is relatively weak. We find that
scattering due to soft transverse optical phonons is by far the weakest scattering mechanism, due to the symmetry-
forbidden scattering between the conduction band minima and the zone center soft modes. Soft phonons thus
play the key role in the high thermoelectric figure of merit of n-type PbTe: they do not degrade its electronic
transport properties although they strongly suppress the lattice thermal conductivity. Our results suggest that
materials like PbTe with soft modes that are weakly coupled with the electronic states relevant for transport may
be promising candidates for efficient thermoelectric materials.
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I. INTRODUCTION

Lead telluride (PbTe) is one of the most efficient ther-
moelectric materials from 400 K to 800 K, owing to its
low lattice thermal conductivity, as well as high electri-
cal conductivity and Seebeck coefficient when appropriately
doped [1–4]. Nevertheless, it is still unclear which scattering
mechanisms determine electronic transport in PbTe. In some
previous works [5–7], the main scattering mechanism has
been attributed to acoustic phonons. Other studies argued
that scattering due to polar and nonpolar optical phonons is
also important at certain temperatures and carrier concentra-
tions [8–12]. In all these studies, the parameters related to
the strength of scattering due to acoustic and nonpolar optical
phonons (acoustic and optical deformation potentials, respec-
tively) were determined empirically, by fitting their values
to electronic transport measurements. However, our recent
first principles calculations have shown that the widely used
empirical values of the acoustic deformation potentials of
n-type PbTe are largely overestimated [13]. Consequently, the
relative strength of different electron-phonon (e-ph) scattering
mechanisms and their contribution to electronic transport in
n-type PbTe is still unknown.

It is of particular interest to understand the strength of
e-ph scattering due to transverse optical (TO) phonons since
they play a major role in establishing the low lattice thermal
conductivity of PbTe. Inelastic neutron scattering measure-
ments [14] and first-principles calculations [15] have shown
that the TO modes near the zone center are soft and have
very small frequencies (∼1 THz). They are strongly coupled
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to heat carrying acoustic phonons and lead to low lattice ther-
mal conductivity [16–19]. These properties raise the question
about the strength of the interaction between these soft TO
modes and the electronic states near the conduction band
minima at L. If this interaction were weak, it would mean that
soft TO modes are the key to the high thermoelectric figure of
merit of PbTe: they preserve its high electronic conductivity
while suppressing the lattice thermal conductivity.

In recent years, it has become possible to calculate the
strength of e-ph scattering of semiconductors in the entire
Brillouin zone (BZ) purely from first principles [20–24].
Methods for solving the linearized Boltzmann transport equa-
tion (BTE) and calculating the electronic transport coefficients
from first principles have also been developed [25–28]. How-
ever, these methods suffer from a large computational cost.
This is due to the fact that electronic conduction occurs only
in a small energy window close to the Fermi level. In the
momentum space, this energy window corresponds to a very
small fraction of the BZ. To converge transport coefficient
values, a high sampling density is necessary to ensure that
enough sampling points fall into this critical volume. In many
first principles calculations [25–27], the whole BZ is sampled
brute force, using a very dense mesh. On the other hand, since
the energy window of interest is small, using a simpler BTE
model with parameters calculated from first principles (e.g.,
effective masses, deformation potentials) may offer an effi-
cient and accurate alternative to describe electronic transport
in semiconductors.

It is especially challenging to accurately calculate from
first principles the electronic transport properties of direct
narrow-gap semiconductors, such as PbTe. The reason for
this is the well-known band gap underestimation using the
standard approximations for the exchange-correlation energy
in density functional theory (DFT), such as the local density
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approximation (LDA) [29]. It has been shown that the LDA
with spin-orbit coupling (SOC) leads to the incorrect character
of the states near the band gap in PbTe, i.e., the valence and
the conduction bands are inverted and the resulting band gap
is negative [13,30,31]. As a result, the effective masses of
PbTe computed using this approach are in large disagreement
with experiments. Furthermore, the calculated parameters for
e-ph scattering (deformation potentials, dielectric constants)
may also not be reliable [13]. Recently, such electronic band
structure has been used to calculate the thermoelectric trans-
port coefficients of PbTe from first principles [32]. More
accurate electronic band structures of PbTe were used only in
conjunction with the constant relaxation time approximation
in the Seebeck coefficient calculations [33–35]. In contrast to
the LDA including SOC, both the hybrid HSE03 exchange-
correlation functional including SOC and the LDA excluding
SOC correctly describe the curvature of the states near the
band gap [13,30,31]. The parameters obtained from these
accurate band structure calculations can be readily used in
charge transport models and allow us to identify the main
electronic scattering mechanisms in PbTe.

In this paper, we present an electronic transport model
developed for n-type PbTe based on the Boltzmann transport
equation within the transport relaxation time approximation.
All the input parameters are calculated ab initio, using the
exchange-correlation functionals that correctly describe the
character of the electronic states close to the band edges
(the hybrid HSE03 exchange-correlation functional including
SOC and the LDA excluding SOC). We find that electron-
longitudinal optical (LO) phonon scattering dominates elec-
tronic transport in n-type PbTe over a range of temperatures
(up to 300 K) and carrier concentrations (up to ∼1020 cm−3),
due to weak screening effects. We show that scattering due
to acoustic phonons is much weaker than previously as-
sumed [7–9]. Only at very high concentrations, acoustic and
LO phonon scattering become comparable. Using a symmetry
analysis, we show that the e-ph matrix elements for the
electronic states at the conduction band minimum and the
soft TO phonons at � are zero. Our detailed first principles
calculations confirm that electron-TO phonon scattering is in-
deed the weakest scattering mechanism in PbTe. This finding
elucidates the central role of soft TO modes and their weak
interaction with conducting states in establishing the high
thermoelectric figure of merit of PbTe.

II. METHOD

A. Boltzmann transport equation in the transport relaxation
time approximation

Under a weak electrical field, solving the Boltzmann trans-
port equation in the steady state gives the electrical conduc-
tivity tensor [36]

σ ij = − 2e2

V Nk

∑
nk

∂f 0
nk

∂Enk
τnkv

i
nkv

j

nk, (1)

where e is the electron charge, V is the unit cell volume, Nk

is the number of k points sampled in the first BZ, i and j

are the Cartesian directions, and vnk and f 0
nk are the group

velocity and the equilibrium Fermi-Dirac occupation of an

electronic state with the crystal momentum k in the band n.
The deviation of the distribution function from f 0

nk due to
the electrical field is encoded in the transport relaxation time
τnk. Electronic drift mobility can be obtained as μ = σ/enc,
where nc is the carrier concentration at temperature T , given
by nc = 2

V Nk

∑
nk f 0

nk.
The transport relaxation time τnk is given by [23,37]

τ−1
nk =

∑
mq

S
mk+q
nk

1 − f 0
mk+q

1 − f 0
nk

(
1 − β

mk+q
nk

)
, (2)

with S
mk+q
nk denoting the transition rate from initial nk to

final state mk + q, and β
mk+q
nk = vnk · vmk+q/(|vnk||vmk+q |)

characterizing the scattering angle. We note that the last term
in Eq. (2) is sometimes neglected in the literature [32,38,39].
This approximation corresponds to using the inverse of
the imaginary part of the e-ph self-energy, i.e., τnk =
(2/h̄��nk )−1. We refer to this approximation as the self-
energy relaxation time (SERT) approximation, while Eq. (2)
represents the transport relaxation time (TRT) approximation.
We will show explicitly that the SERT approximation gives
much underestimated results for the electronic mobility of
n-type PbTe compared to the TRT approximation. On the
other hand, the TRT is usually a very good approximation for
the full numerical solution of the linearized BTE [37,40].

In this work, we consider electron-phonon and ionized-
impurity scattering. For e-ph scattering, the scattering term
S

mk+q
nk in Eq. (2) can be written as [41]

S
mk+q
nk = 2π

h̄

∑
λ,±

∣∣gmk+q
nk,qλ

∣∣2
(

N0
qλ + 1

2
∓ 1

2

)

×δ(Enk ± h̄ωqλ − Emk+q ), (3)

where h̄ is the reduced Planck constant, and Enk is the electron
energy. N0

qλ and ωqλ are the equilibrium distribution and the
frequency of a phonon with the crystal momentum q and the
branch λ, and g

mk+q
nk,qλ is the e-ph Hamiltonian matrix element.

The upper/lower sign in ± and ∓ in the energy conservation
denotes phonon absorption/emission.

We parametrize Enk, ωqλ, and the matrix elements g
mk+q
nk,qλ

for each phonon mode using first-principles calculations, as
described in the following subsections. This enables us to
exactly solve the energy conservation condition in Eq. (3),
see Appendix A. In contrast, many first principles calcula-
tions [23,26,32] evaluate the delta function in Eq. (3) using
a Lorentzian or Gaussian with an empirical parameter for en-
ergy broadening or using the linear tetrahedron method [42].
Our parametrization and the exact energy conservation enable
us to use a very fine k point sampling in those parts of the
BZ which contribute most to mobility and thus substantially
reduce the computational cost compared to the standard first-
principles methods [23,26,32].

B. Electronic band structure

PbTe is a direct narrow-gap semiconductor whose gap is
located at four equivalent L points. The conduction band L
valleys (CBL) are far below in energy from other conduc-
tion band minima [13]. Consequently, electrons will partially
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occupy only the L valleys for a large range of temperatures
and doping concentrations, and only the L valleys will con-
tribute to electronic conduction. Such electronic band struc-
ture is usually well described using the Kane model derived
from the k · p theory [43,44].

The main assumption of the Kane model is that the top
valence and bottom conduction bands are strongly coupled to
each other and weakly coupled to all other bands. Due to the
strong coupling between the valence and conduction bands,
the energy dispersion curve in the Kane model is nonparabolic
and for the band minimum at the L point in the [111] direction
reads as

h̄2

2

(
k2
‖

m∗
‖

+ k2
⊥

m∗
⊥

)
= E(1 + αE), (4)

where α is the nonparabolicity parameter, k‖ and k⊥ are the
components of the wave vector parallel and perpendicular
to the [111] direction, and m∗

‖ and m∗
⊥ are the parallel and

perpendicular effective masses. If the coupling of the top
valence and bottom conduction bands with all other bands is
neglected, then α = 1/Eg , where Eg corresponds to the direct
band gap [43]. We will refer to this approximation as the Kane
two-band model, while the more general case with α �= 1/Eg

will be denoted as the generalized Kane model. Analytical ex-
pressions for all the quantities that enter Eqs. (1), (2), and (3)
obtained from the Kane model are given in Appendix A.
We will verify the applicability of both the generalized and
two-band Kane models by comparison with the first-principles
electronic band structures that correctly capture the character
of the electronic states near the band gap: the hybrid HSE03
functional including SOC and the LDA excluding SOC.

We use the Vienna ab initio simulation package
(VASP) [45] to perform electronic band structure calcula-
tions using the screened Heyd-Scuseria-Ernzerhof (HSE03)
hybrid functional [46,47] including the spin-orbit coupling
(SOC). The basis set for the one-electron wave functions
is constructed with the projector augmented wave (PAW)
method [48]. For the PAW pseudopotentials, we include the
5d106s26p2 states of Pb and 5s25p4 states of Te as the valence
states. A cutoff energy of 18.4 eV and a 8 × 8 × 8 k mesh are
used to calculate the electronic band structure of PbTe.

We also carry out DFT calculations with the ABINIT
code [49,50] using the LDA [51,52] excluding SOC. Here, we
turn off the SOC to ensure a positive band gap and physically
correct conduction and valence band states near the L point
in PbTe. We use the Hartwigsen-Goedecker-Hutter (HGH)
norm-conserving pseudopotentials with the 6s26p2 states of
Pb and 5s25p4 states of Te explicitly included as the valence
states [53]. The electronic band structure is calculated using
a cutoff energy of 45 Ha and a four-shifted 12 × 12 × 12 k
mesh. The LDA without SOC is also used to calculate all
deformation potential values, phonon frequencies, dielectric
and elastic constants using density functional perturbation
theory (DFPT) [54,55] and the ABINIT code.

C. Scattering mechanisms

Since electronic conduction in n-type PbTe occurs only
through the L valleys, we consider scattering within an L val-
ley via phonons near the � point, as well as scattering between

nonequivalent L valleys via phonons near the X point. Our
treatment of these scattering mechanisms from first principles
will be described in this subsection, where we give explicit
expressions for the e-ph matrix elements for each phonon
mode. We also consider ionized-impurity scattering, whose
details are given in Appendix B. The transport relaxation
times (TRTs) of different scattering channels are combined
via Matthesien’s rule to find the total TRTs and the electronic
mobility of PbTe via Eq. (1).

1. Symmetry-forbidden scattering mechanisms

We first show that the e-ph matrix elements of PbTe
corresponding to scattering of the CB state at the L point
via a � point phonon, as well as scattering between the CB
states at two inequivalent L points via an X point phonon,
are zero. In PbTe, the center of inversion is the Pb or Te site,
and thus all X and � point phonons have odd parity under
inversion symmetry [56]. Odd parity phonons can only couple
between electronic states of opposite parity since e-ph matrix
elements are invariant under symmetry operations [56]. The
e-ph matrix elements 〈ψk|Hep|ψk+�〉 and 〈ψk|Hep|ψk+X〉 thus
vanish exactly at the L point since initial and final electronic
states are of the same parity. Our direct calculations of these
matrix elements obtained using DFPT-LDA also confirm that
these matrix elements are zero.

Based on the symmetry analysis above, we neglect inter-
valley scattering via long wave-vector phonons near the X
point in the rest of the paper. The comparison of our calculated
scattering rates with detailed DFPT-LDA e-ph calculations
outside of the high symmetry points shows that this is a
reasonable approximation (see Sec. III B). For short wave-
vector phonons near the � point, we take into account the
linear dependence on q of the corresponding e-ph matrix
elements, as described in the following.

2. Intravalley acoustic phonon scattering

To describe scattering due to acoustic phonons in the long-
wavelength limit, we use a generalized deformation potential
theory developed by Herring and Vogt for anisotropic many-
valley semiconductors [57]. For a cubic material with the
conduction band minima at the L valleys, the interaction
between the CBL electrons and acoustic phonons for q → 0
can be described as [13]

Hep = �ac
d eqλ · q + �ac

u (eqλ · k̂L)(q · k̂L), (5)

where �ac
d and �ac

u are the two linearly independent elements
of the acoustic deformation potential tensor, eqλ is the strain
polarization vector, and k̂L is the unit vector parallel to the
k vector of the L valley. The dilatation deformation potential
�ac

d represents the band shift due to a dilatation in the two
directions normal to the symmetry axis of the L valley [57].
The uniaxial deformation potential �ac

u corresponds to the
band shift due to a uniaxial shear along the symmetry axis
of the L valley [57].

Following the procedure outlined by Herring and
Vogt [57], we obtain the expressions for the electron-acoustic
phonon matrix elements starting from the deformation po-
tential Hamiltonian given by Eq. (5). Since acoustic phonon
frequencies are small, we use N0

qλ ≈ kBT /h̄ωqλ in Eq. (3) for
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both absorption and emission processes. If we define Mλ ≡
|gk+q

k,qλ|2 × N0
qλ and assume that phonon frequencies change

linearly with q, these terms for longitudinal and transverse
acoustic phonons can be written as [57]

MLA = kBT I 2
k,k+q

V

(
�ac

d + �ac
u cos2 θ

)2
αl,

(6)

MTA1 + MTA2 = kBT I 2
k,k+q

V

(
�ac

u

)2
cos2 θ sin2 θαt ,

where V is the unit cell volume, θ is the angle between
q and the parallel direction of the L valley, and
Ik,k+q = 〈k|k + q〉 is the overlap integral between the
two Bloch wave functions. Also, αl = [1 + (2/3c∗(0.15 −
1.50 cos2 θ+1.75 cos4 θ )/(c12 + 2c44 + 3

5c∗)]/(c12 + 2c44 +
3
5c∗) and αt = [0.375/c44 + 0.625/(c44 + c∗/3) + 9/8 ×
cos2 θ (1/c44 − 1/(c44 + c∗/3)], where c11, c12, and c44

are the elastic constants and c∗ = c11 − c12 − 2c44 [57].
We neglect acoustic phonon energies when calculating the
scattering rate given by Eq. (3).

We calculate deformation potentials �ac
d and �ac

u by fitting
the e-ph matrix elements obtained using DFPT with the defor-
mation potential Hamiltonian of Eq. (5) in the limit of q → 0,
as explained in detail in Ref. [13]. The calculated values of
�ac

d and �ac
u are given in Table I, together with our DFPT

values of elastic constants and our DFT value of the lattice
constant a0.

3. Intravalley optical phonon scattering

As already discussed, the zero-order terms of the matrix
elements between the CBL states and the zone center optical
phonons are zero in PbTe. To account for the short-range (non-
polar) part of this interaction, we consider the first-order terms
of these matrix elements [58,59]. Due to symmetry reasons,
the e-ph interaction Hamiltonian for nonpolar optical phonons
has the same form as that for acoustic phonons [58,59]:

Hep = �
opt
d ēqλ · q + �opt

u (ēqλ · k̂L)(q · k̂L), (7)

where �
opt
d and �

opt
u are the two linearly independent elements

of the optical deformation potential tensor, and ēqλ is the unit
vector in the direction of atomic displacements.

The expressions for the matrix elements due to the non-
polar interaction with longitudinal and transverse optical
phonons can be derived similarly to those for acoustic
phonons [58,59] and read as

∣∣gLO
DP

∣∣2 = h̄q2I 2
k,k+q

2MωLO
q

(
�

opt
d + �opt

u cos2 θ
)2

,

(8)∣∣gTO1
DP

∣∣2 + ∣∣gTO2
DP

∣∣2 = h̄q2I 2
k,k+q

2MωTO
q

(
�opt

u

)2
cos2 θ sin2 θ,

where M is the mass of the unit cell, and ωLO
q and ωTO

q are
the LO and TO frequencies. Owing to the finite frequency
of optical phonons, we distinguish explicitly between the
absorption and emission processes in the scattering rate given
by Eq. (3) and use the Bose-Einstein distribution.

The optical deformation potentials �
opt
d and �

opt
u are ob-

tained from first principles, in the same manner as the acoustic

TABLE I. Parameters used in the calculation of the electronic
mobility of n-type PbTe, computed from first principles: acoustic
deformation potentials (�ac

u and �ac
d , see Eq. (6)), optical deformation

potentials (�opt
u and �

opt
d , see Eq. (8)), optical phonon frequencies

(ωLO
� , ωTO

� , and ∂2ωTO/∂|q|2, see Eq. (8)), static and high-frequency
dielectric constant (εs and ε∞, see Eqs. (9), (B1) and (C1)), elastic
constants (c11, c12 and c44, see Eq. (6)), lattice constant (a0), parallel
and perpendicular effective masses (m∗

‖ and m∗
⊥, see Eq. (4)), direct

band gap and its temperature coefficient, and nonparabolicity param-
eter (α, see Eq. (4)).

Parameter Value Experiment

�ac
d (eV) 0.37 12–22a

�ac
u (eV) 7.03 4.5b

�
opt
d (eV) 19.09

�opt
u (eV) −34.24

ωLO
� (THz) 3.2 3.42c,f

ωTO
� (THz) 1.0 0.95c,f

∂2ωTO/∂|q|2 (THz Å2) 15

εs 356.8 478,c 412f

ε∞ 34.85 36.9,c 31.81f

c11 (GPa) 136.4 128.1,d 107.2f

c12 (GPa) 3.8 4.4,d 7.68f

c44 (GPa) 17.1 15.14,d 13.0f

a0 (nm) 0.634 0.642e

m∗
‖/m0 0.216 0.24,c 0.21g

m∗
⊥/m0 0.037 0.024,c 0.021g

Eg(eV) 0.237 0.19c

∂Eg/∂T (10−4eV/K) 2.90 3.2e

α (eV−1) 2.0

aObtained by fitting a model to electronic transport measurements
from Ref. [7,9,44].
bReference [44]
cReference [62]
dReference [63]
eReference [64]
fReference [65]
gReference [66].

deformation potentials using DFPT-LDA calculations [13].
Their values are given in Table I. The q dependence of the
TO phonon frequency is modeled by a quadratic function for
q → 0 (ωTO

q = ωTO
� + ∂2ωTO/∂|q|2 × |q|2) and fitted to the

DFPT-LDA calculations along �-X and �-K directions. For
LO mode, we consider a constant phonon frequency equal
to our DFPT value at the � point, which is a reasonable
approximation of its dispersion [18]. The DFPT values of
ωTO

� , ∂2ωTO/∂|q|2, and ωLO
� are listed in Table I.

In addition to the nonpolar interaction, the atomic dis-
placements corresponding to the LO mode of PbTe create
long-range interactions between electrons and LO modes.
The long-range interaction can be described by the Fröhlich
model [60], whose e-ph matrix element is given by

∣∣gLO
F

∣∣2 = h̄e2ωLO
q

2V ε0

(
1

ε∞
− 1

εs

)
q2I 2

k,k+q[
q2 + (

q∞
scr

)2]2 , (9)
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E
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)

LDA
HSE03
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2-band Kane

FIG. 1. The conduction band of PbTe near the L point at 0 K
calculated from first principles using the local density approximation
(LDA) without spin-orbit coupling (red dots) and the HSE03 hybrid
functional with spin-orbit coupling (blue squares). The conduction
band minima from the LDA and HSE03 calculations are aligned.
The path L-� and L-W corresponds to the parallel and perpendicular
direction, respectively. The fits to the HSE03 band using the general-
ized and two-band Kane model are shown in solid and dashed black
lines, respectively. Fermi levels for different doping concentrations
calculated with the HSE03 bands are also indicated by dotted black
lines.

where ε0 is the vacuum permittivity, and ε∞ and εs are the
high-frequency and static dielectric constant whose DFPT
values are given in Table I. The effect of screening by mobile
charges is included via the screening wave vector q∞

scr, which
is taken into account using the Thomas-Fermi model [61] (see
Appendix C). The short- and long-range contributions to the
electron-LO phonon interaction are coherently combined as
gLO = gLO

F + gLO
DP .

III. RESULTS AND DISCUSSION

A. Electronic band structure

We first discuss the electronic band structure of n-type
PbTe obtained from first principles. Figure 1 shows the
conduction band near the minimum at the L point in the
directions parallel and perpendicular to the [111] direction,
calculated using the HSE03 functional including SOC and
the LDA excluding SOC. We also illustrate the Fermi levels
for the doping concentrations of n̄ = 1018 cm−3, 1019 cm−3,
and 1020 cm−3 calculated with the HSE03 bands. The band
structure obtained with the LDA excluding SOC compares
well with that of the hybrid functional for the doping con-
centrations of ∼1019 cm−3 and lower in the parallel direction.
On the other hand, the LDA conduction band deviates from
that of the HSE03 calculation along the perpendicular direc-
tion. Previous works [13,30] show that the HSE03 functional
yields the values of band gap and effective masses that are
in very good agreement with experiment [67,68] and GW
calculations [31]. Our LDA excluding SO calculation gives
a similar value for m∗

‖ as the HSE03 calculation and exper-
iment and overestimates m∗

⊥ (∼25% larger than HSE03 and

experiment) [13]. We also showed that the HSE03 with SOC
and the LDA without SOC predict similar values of the acous-
tic deformation potentials for n-type PbTe [13]. Consequently,
here we use the HSE03 electronic structure to obtain the
parameters for the Kane model, while all other parameters are
calculated using the LDA without SOC.

We find that we can accurately fit the conduction band
near the L point calculated with the hybrid functional using
the Kane model if we use the values of the effective masses
calculated using the LDA excluding SOC as the parameters of
the Kane model (m∗

‖ = 0.216me and m∗
⊥= 0.037me). These

fits are shown in Fig. 1. The generalized Kane model with
α = 2.0 eV−1 accurately reproduces the HSE03 conduction
band in a large energy window, even for doping concentrations
of 1020 cm−3. The band obtained using the Kane two-band
model with α = 1/Eg = 4.22 eV−1 shows a slightly worse
agreement with the HSE03 calculation in the perpendicular
direction. Even though α = 2.0 eV−1 gives a more accurate
description of the conduction band L valley at 0 K compared
to α = 4.22 eV−1, in this paper we use both values to evaluate
the sensitivity of our mobility values to electronic band vari-
ations. Unless explicitly stated, we use α = 2.0 eV−1 in our
calculations. We note that the fitting is done in a wide energy
window instead close to the band minimum to represent well
a wide range of doping concentrations (up to 1020 cm−3).
Therefore, our set of parameters is not expected to work
ideally at very low carrier density and low temperature.

We also account for the temperature dependence of
the electronic band structure of PbTe by calculating the
temperature variation of the band gap from first princi-
ples. We computed the temperature dependence of Eg ac-
counting both for the contributions of thermal expansion
and e-ph coupling [69], where the latter effect was com-
puted using the Allen-Heine-Cardona approach [70–72] and
DFPT [73]. Our calculated ∂Eg/∂T = 2.9 × 10−4 eV/K is
in very good agreement with experiment [64]. The tempera-
ture dependence of the gap leads to the temperature depen-
dent nonparabolicity parameter and effective masses in the
Kane two-band model (m∗(T )/m∗(0 K) = α(0 K)/α(T ) =
Eg (T )/Eg (0 K)) [56]. In the generalized Kane model, we as-
sume that the temperature dependence of α and m∗ is the same
as in the Kane two-band model even though α �= 1/Eg . This
approximation may be reasonable in the temperature range
considered here (100–300 K), where the temperature varia-
tions of α and effective masses have a small effect on mobility.

B. Electron-phonon scattering rates

We next verify our model by comparing the e-ph scattering
rates with those computed from first principles using a general
form of the e-ph Hamiltonian (see Appendix D) and Eq. (3),
without using any assumptions of the deformation potential
theory. The e-ph matrix elements were first calculated us-
ing DFPT as implemented in QUANTUM ESPRESSO [74,75]
with the LDA excluding SOC using 10 × 10 × 10 k and q
grids and a cutoff energy of 45 Ha. We then used the EPW
code [76] to interpolate these matrix elements on finer 80 ×
80 × 80 k and q grids using a real-space Wannier functions
approach [20,24]. In these calculations, we use the norm-
conserving fully relativistic pseudopotentials with the 6s26p2
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FIG. 2. Electron-phonon scattering rates of n-type PbTe for dif-
ferent phonon modes versus electronic energy. Dots represent the
scattering rates calculated using the electron-phonon Wannier ap-
proach and density functional perturbation theory (see text for expla-
nation), and solid lines correspond to the scattering rates computed
using our model parameterized from first principles. Dashed blue line
shows the nonpolar contribution to longitudinal optical scattering
from our model.

states of Pb and 5s25p4 states of Te as the valence states [77].
The electronic band structure and the e-ph matrix elements
of PbTe calculated in this way using QUANTUM ESPRESSO

are very similar to those calculated with the ABINIT code
using the LDA excluding SOC and HGH pseudopotentials.
In the EPW calculation, we used the broadening parameter
of 30 meV for the energy conservation. The screening effect
is not considered in these calculations. The scattering rates
for n-type PbTe at 300 K due to different phonon modes are
illustrated in Fig. 2. The very good agreement between the
scattering rates computed with our model (solid lines) and the
EPW approach (dots) confirms the validity and accuracy of
our model.

Our results show that LO phonon scattering is the dom-
inant scattering mechanism in n-type PbTe with low carrier
concentrations. Scattering due to polar long-range interactions
represents the main contribution to LO scattering, while the
short-range contribution is very small, as shown by the dashed
blue line in Fig. 2. The polar nature of LO phonon scattering
can also be observed from the weak energy dependence of the
scattering rate. If the electron energy is smaller than the LO
frequency, LO phonons can only be absorbed. When the elec-
tron energy becomes higher than the LO frequency, emission
processes steeply increase the LO phonon scattering rate.

We also find that acoustic phonon scattering is one order
of magnitude weaker than LO scattering for low energy elec-
trons, as shown in Fig. 2. Acoustic scattering rate has a larger
energy dependence than that due to LO phonons (proportional
to the electronic density of states), which makes it comparable
to LO scattering for higher energies. The relatively weak
acoustic scattering can be understood from the fact that our
first principles value of the acoustic dilatation deformation
potential (�ac

d = 0.37 eV) is substantially lower than those
obtained by fitting electronic transport measurements (�ac

d ∼
12–22 eV) [7–9], as discussed in Ref. [13].
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FIG. 3. Relaxation times of n-type PbTe for different phonon
modes versus electronic energy. Solid lines represent transport relax-
ation times (see text for explanation), while dashed lines correspond
to self-energy relaxation times i.e. inverse scattering rates. The two
relaxation times are identical for acoustic phonons.

Scattering due to soft TO phonons is by far the weakest e-
ph scattering mechanism, owing to the fact that TO scattering
vanishes by symmetry for the conduction band state at L and
the zone center TO modes. This finding suggests that soft TO
modes do not degrade electronic transport of n-type PbTe,
while strongly suppressing its lattice thermal conductivity.
We note that our calculated optical deformation potentials
given in Table I are of similar order of magnitude to those
obtained empirically (�opt ∼ 15–32 eV) [9,11,12]. Finally,
our conclusions about the relative strength of each scattering
mechanism qualitatively agree with those of Ref. [32], in spite
of different electronic band structures.

C. Transport relaxation times

Here we illustrate the importance of using the correct
transport relaxation times (TRTs) in mobility calculations
instead of the commonly used self-energy relaxation times
(SERTs) [32,38,39], which correspond to inverse scattering
rates. The TRTs and SERTs of n-type PbTe resolved by
acoustic, TO, and LO modes are shown in Fig. 3. The TRTs of
LO phonons are much larger than the corresponding SERTs.
This originates from the fact that the 1/|q| singularity of
the polar Fröhlich e-ph matrix element does not contribute
much to TRTs, since the scattering angle factor (1 − β

k+q
k )

becomes zero for q → 0. Therefore, the SERTs strongly
overestimates the contribution of LO phonon scattering to
electronic transport. Apart from the difference in magnitude,
the TRTs for LO scattering increase slightly with electronic
energy, while the SERTs are nearly constant. In contrast,
the TRTs for acoustic phonons are the same as the SERTs
because electron-acoustic phonon matrix elements have no q
dependence [78], see Eq. (6). The SERTs of acoustic phonons
lay exactly on the top of the TRTs in Fig. 3. For TO phonon
scattering, there is a slight difference between the TRTs and
SERTs since electron-TO phonon matrix elements depend on
q according to Eq. (8) but do not diverge as those due to LO
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FIG. 4. Temperature dependence of the Hall mobility of n-type
PbTe calculated using the transport relaxation time (TRT) approxi-
mation with the generalized Kane model (solid lines) and with the
Kane two-band model (dashed lines). Black and red lines correspond
to the doping concentrations of 1018 cm−3 and 1019 cm−3, respec-
tively. Black circles and red triangles represent the experimental
data from Ref. [5] for the doping concentrations of 1018 cm−3

and 1019 cm−3, respectively. Dotted black line shows the mobility
calculated using the self-energy relaxation time (SERT) approxima-
tion and the two-band Kane model for the carrier concentration of
1018 cm−3. The additional experimental data at 300 K are shown in
an open square and triangle (Ref. [12]), and a circle (Ref. [82]).

scattering. Our results thus demonstrate that it is essential to
use the transport relaxation times when electronic transport is
dominated by LO phonon scattering, as also shown previously
in the case of GaAs [40].

Using the transport relaxation times instead of the corre-
sponding self-energy values does not change the qualitative
conclusions about the relative strengths of scattering mech-
anisms in n-type PbTe, but it does change their magnitudes,
see Fig. 3. Low energy electrons scattered by LO phonons
still have much shorter TRTs, compared to those scattered by
acoustic and TO phonons. However, for higher energies, the
TRTs due to acoustic phonons are more comparable to those
of LO phonons. This indicates that acoustic phonon scattering
will become more important for electronic transport for high
doping concentrations and temperatures. Figure 3 shows that
the TO contribution to the TRTs is very weak and that TO
scattering will be ineffective in a wide range of temperatures
and carrier concentrations.

D. Mobility

We calculate the mobility of n-doped PbTe with dop-
ing concentrations of n̄ = 1018 cm−3 and 1019 cm−3 in the
temperature range from 100 K to 300 K [79] and compare
our results with the experimental data on single-crystalline
samples from Allgaier and Scanlon [5]. (The mobility values
of Silverman and Levinstein [80] for the n̄ = 1018 cm−3

are very similar to those of Allgaier and Scanlon [5]). Full
and dashed red lines in Fig. 4 show our TRT calculations
using generalized and two-band Kane model, respectively. We
note that the experimental data represent Hall mobility. We

thus multiply our drift mobility with the Hall factor given
as [57,81]

σH

σ
= 〈τ 2〉 × 〈1〉

〈τ 〉2
× 3K (K + 2)

(2K + 1)2
, (10)

where K = m∗
‖/m∗

⊥, and the angular brackets represent the
thermal average of a function, for example τ , given as 〈τ 〉 =∫

dk(−∂f 0/∂E)|k|2τ . Our estimated ratio between the Hall
and drift mobility of n-type PbTe is ≈0.9 for the doping
concentrations and temperatures of interest.

Our calculated mobility with the Kane two-band model
for the carrier concentration of 1019 cm−3 is in very good
agreement with experiment, see Fig. 4. At room temperature,
the calculated mobility is 1569 cm2/Vs and experimental
values are in the range from 1335 cm2/Vs to 1550 cm2/Vs.
The computed mobility for n̄ = 1018 cm−3 and the Kane
two-band model is very similar to that for n̄ = 1019 cm−3,
as observed in other measurements [12,44,82]. However, our
calculation for n̄ = 1018 cm−3 exhibits a departure from the
measured data of Ref. [5], particularly for lower temperatures
around 100 K. The mobility computed using the generalized
Kane model is closer to experiment for n̄ = 1018 cm−3 and
T ∼ 200 K than that of the Kane two-band model due to a
lower density of states, but it is further away from experiment
for n̄ = 1019 cm−3. The variations of our calculated results
indicate that the nonparabolicity of the conduction band L val-
leys has a non-negligible effect on the mobility of PbTe, which
is challenging to describe accurately from first principles and
translate into simpler models.

To further understand the difference between the computed
and experimental mobility values, we note that if we fit the
Kane models only over a very small energy range close
to the conduction band minimum, the model gives a better
estimation of the experimental mobility at low T for n̄ =
1018 cm−3, due to smaller effective masses. However, we fit
the models in a wider energy window to cover the wide range
of doping concentrations up to 1020 cm−3 in the experiments.
This results in a worse fitting close to the conduction band
minimum and is partially responsible for the difference in
mobility between our model and the experiment at low T

and low doping concentration. Experimentally, it is difficult
to precisely measure the carrier concentration of lightly doped
samples with n̄ ∼ 1018 cm−3. Furthermore, Ref. [5] reports
that the carrier concentration decreases at lower temperatures
for the sample with n̄ = 1018 cm−3 carriers and is 10–20%
lower at 4.2 K than at 295 K. This could partially explain
a steeper mobility increase with decreasing temperature for
the n̄ = 1018 cm−3 sample and its larger departure from the
mobility of the sample with n̄ = 1019 cm−3. We also find
that the temperature dependence and the mobility values
for the sample with n̄ = 1019 cm−3 are consistent with the
measurements for n̄ = 2 × 1019 cm−3 and temperatures above
300 K [7]. We thus speculate that the experimental mobility
values for the sample with n̄ = 1019 cm−3 may be more
accurate than those for n̄ = 1018 cm−3. In the light of all
the described theoretical and experimental challenges, we
deem the agreement between our calculated and experimental
mobility values reasonably good.

We now demonstrate that using the self-energy relaxation
time approximation instead of the correct transport one leads
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FIG. 5. Drift mobility of n-type PbTe calculated using the gen-
eralized Kane model for the carrier concentration of 1018 cm−3 as a
function of temperature (solid black line) and its contributions due
to scattering with different phonon modes and ionized impurities
(colored dashed lines).

to a large underestimation of our calculated mobility values.
Figure 4 shows that the mobility of n-type PbTe obtained
using the SERTs and the two-band Kane model for n̄ =
1018 cm−3 (dotted black line) is significantly lower than that
computed using the TRTs (dashed black line). This difference
is ∼50% in the entire temperature range considered, which is
significantly larger than the sensitivity of our μ values to the
nonparabolicity effects (∼25%). Furthermore, the mobility
computed using the SERTs significantly underestimates the
experimental values. This result confirms the importance of
using the TRTs instead of the SERTs to calculate the elec-
tronic mobility of polar materials like PbTe, where LO phonon
scattering is very strong.

To identify the contribution of each scattering channel to
electronic transport in n-type PbTe, we plot the drift mobility
resolved by phonon modes in Fig. 5 for n̄ = 1018 cm−3. We
confirm again that LO phonon scattering is the dominant
scattering channel, which is in contrast to the previous works
claiming that the strongest scattering mechanism is that due
to acoustic phonons [6,7]. In these works, the temperature
dependence of the mobility suggested that charge carriers are
predominantly scattered by acoustic phonons in PbTe. How-
ever, after accounting for nonparabolicity, anisotropy, exact
energy conservation, and the Fermi-Dirac distribution in our
BTE model, we find that LO scattering has a similar temper-
ature dependence as acoustic scattering, see Fig. 5. Acoustic
and TO phonon scattering contribute little to the mobility for
the carrier concentration of 1018 cm−3 and the temperature
range between 100 K and 300 K. Ionized-impurity scattering
also has a small impact on the mobility due to the very large
static dielectric constant of PbTe (εs = 313.65).

The calculated Hall mobility of n-type PbTe at room tem-
perature as a function of doping concentration is illustrated
in Fig. 6 and compared with experiments [12,44,82]. The
mobility values computed using both the generalized and
two-band Kane models are reasonably close to the measured
data (solid and dash-dotted black lines, respectively). Figure 7
shows the contributions to the drift mobility from each
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FIG. 6. Hall mobility of n-type PbTe limited by scattering due
to phonons and ionized impurities versus doping concentration cal-
culated using the generalized and two-band Kane model (solid and
dash-dotted black lines, respectively). Experimental data are shown
in circles (Ref. [44]), squares (Ref. [82]), and triangles (Ref. [12]).

scattering channel. LO scattering is the strongest for low
carrier concentrations, where the mobility is nearly insensitive
to concentration variations. For higher doping concentrations,
charge carriers screen the potential generated by phonons,
and the e-ph scattering due to the long-range LO phonon
interaction is reduced. Neglecting screening (dotted black line
in Fig. 7) results in lower values of electronic mobility for
higher doping levels with respect to the case when screening
is accounted for (solid black line). However, the screening
effect is not very large owing to the large high-frequency
dielectric constant of PbTe (ε∞ = 34.85). As a result, acoustic
scattering becomes comparable to that of LO phonons only for
very high carrier concentrations (>1020 cm−3) that screen LO
phonons significantly. The effect of ionized-impurity scatter-
ing on the mobility remains relatively weak in the whole range
of concentrations, and it weakens as the carrier concentration
increases due to screening. In the concentration range between
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FIG. 7. Drift mobility of n-type PbTe calculated using the gen-
eralized Kane model including screening at 300 K as a function
of doping concentration (solid black line) and its contributions due
to scattering with different phonon modes and ionized impurities
(dashed colored lines). Dotted black line shows the drift mobility
without screening effect.
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1019 cm−3 and 1020 cm−3 where scattering due to acoustic
modes becomes stronger, the mobility decreases rapidly with
increasing carrier concentration.

Scattering due to soft TO phonons is the weakest and
almost negligible in the whole range of temperatures and
carrier concentrations considered here, see Figs. 5 and 7. As
our symmetry analysis showed, the weak electron-TO phonon
scattering is caused by the symmetry-forbidden scattering
between the conduction band states exactly at the L point
and the TO modes at the zone center. The low-lying soft
TO modes are beneficial for the thermoelectric performance
of PbTe since they cause strong acoustic-TO scattering and
reduce the lattice thermal conductivity, while not affecting
significantly the electronic transport properties. Our findings
suggest that other materials with soft phonon modes and
symmetry-forbidden electron-soft phonon coupling may also
have good thermoelectric properties.

IV. CONCLUSION

We develop an electronic transport model for n-type PbTe
based on the Boltzmann transport equation in the transport
relaxation time approximation, where all the parameters are
obtained from ab initio calculations that accurately represent
the dispersion of the electronic bands near the band edge.
We obtain a very good agreement between our computed
electronic mobility with experimental data in a range of
temperatures and carrier concentrations. We find that charge
carriers are predominantly scattered by longitudinal optical
phonons in n-type PbTe. Acoustic phonon scattering becomes
important only for very high concentrations (∼1020 cm−3)
when LO phonons are sufficiently screened. Scattering due
to soft transverse optical phonons is weak owing to the
symmetry-forbidden scattering between the conduction band
states at L and the zone center soft modes. This finding
suggests that soft optical modes are the main reason for
the excellent thermoelectric performance of n-type PbTe:
they cause the low lattice thermal conductivity while not
degrading the electronic conductivity. Our results indicate that
other high-performing thermoelectric materials may be found
among materials with soft modes that are weakly coupled to
conducting electronic states.
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APPENDIX A: KANE MODEL

Using the Kane model [43,44], the energy dispersion of the
bottom conduction band of PbTe near the L point in the [111]
direction is given as

h̄2

2

(
k2
‖

m∗
‖

+ k2
⊥

m∗
⊥

)
= E(1 + αE) ≡ γ (E), (A1)

where α is the nonparabolicity parameter, k‖ and k⊥ are the
components of the wave-vector parallel and perpendicular
to the [111] direction, and m∗

‖ and m∗
⊥ are the parallel and

perpendicular effective masses. In our transport calculations,
we also consider the contribution of the top valence band
near the L point, whose dispersion is accounted for in the
Kane model as a mirror image of the conduction band with
respect to the middle of the direct band gap, whose energy
is given by Eh = −(E + Eg ). Furthermore, we use the same
parameters to describe e-ph scattering for the valence band
as those calculated for the conduction band, given in Table I.
These approximations in the valence band description are
reasonable since we find that the valence band has a negligible
effect on the mobility values reported in the paper.

To perform all the summations given by Eqs. (1), (2),
and (3) using the Kane band structure, we first define a
new coordinate system by scaling the k components along
the three principal axes of the ellipsoids so that the energy
surfaces are spherical:

wi = ki/m
∗
i

1/2
, (A2)

where i denotes the direction. Consequently,

h̄2w2/2 = E(1 + αE). (A3)

The conduction band density of states (DOS) at electron
energy E is then given as

D(E) = m
3/2
d√

2π2h̄3

√
γ (E)

dγ (E)

dE
, (A4)

where md = (m∗
⊥

2m∗
‖ )1/3 is the DOS effective mass.

The gradient of energy with respect to the wave vector,
which is proportional to the group velocity, reads as

∇kE = dE

dγ
h̄2

(
kx

m∗
⊥

,
ky

m∗
⊥

,
kz

m∗
‖

)
, (A5)

in the coordinate system where the z axis is parallel to the
[111] direction. From here, the scattering angle factor β

determining transport relaxation times can be written as

βw′
w = cos θ + a cos δ cos δ′

√
1 + a cos2 δ

√
1 + a cos2 δ′ , (A6)

where a = (m∗
⊥/m∗

‖ )2 − 1, θ is the angle between k and k′,
and δ (δ′) is the angle between k (k′) and the parallel axis of
the ellipsoidal isoenergy surface. We also derive the overlap
integral, which enters the expressions for electron-phonon
matrix elements, from the k · p Hamiltonian as

Iw,w′ = awaw′ + cwcw′ (cos θ + b cos δ cos δ′)√
1 + b cos2 δ

√
1 + b cos2 δ′ , (A7)

where b = m∗
⊥/m∗

‖ − 1, the angles θ , δ, and δ′ are defined in
the same way as in Eq. (A6), and the factors aw and cw are
given by

aw =
(

1 + αE

1 + 2αE

)1/2

, cw =
(

αE

1 + 2αE

)1/2

. (A8)

In the expressions for calculating e-ph matrix elements, we
also need to re-write the phonon wave vector q = k′ − k in
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the scaled w coordinate system. Starting from

q2 = ‖k′ − k‖2 = ‖k′
⊥ − k⊥‖2 + (k′

‖ − k‖)2, (A9)

we replace the parallel and perpendicular components and
write

q2 = m∗
⊥(w′2 + w2 − 2ww′ cos θ )

+ (m∗
‖ − m∗

⊥) × (w′ cos δ′ − w cos δ)2.
(A10)

The transport relaxation time given by Eq. (2) can be
rewritten in the w coordinate system as [83]:

τ−1
w,λ = 1

(2π )3

∫ 2π

0
dφ′

∫ 1

−1
d(cos θ ′)[1 − 〈β(θ ′)〉]

×
[

w2(E′
−)

[∂E/∂w]w=w(E′− )

1 − f 0(E′
−)

1 − f 0(E)
〈Sλ〉(w(E′

−), w, θ ′)

+ w2(E′
+)

[∂E/∂w]w=w(E′+ )

1 − f 0(E′
+)

1 − f 0(E)
〈Sλ〉(w(E′

+), w, θ ′)
]
,

(A11)

where λ denotes scattering due to different phonon modes
or impurities, θ ′ is defined as the angle between the initial
and final w vectors, and E′

+/− is the electron energy of the
final state due to phonon absorption/emission. For LO and
TO phonons, the energies E′

+/− are obtained from the exact
solution of the energy conservation E(w′

±) = E(w) ± h̄ωqλ,
where q is given by Eq. (A10). The analytical forms for
electronic and phonon bands enable us to solve the energy
conservation exactly, using the linear search and bisection
methods. For acoustic phonons and impurities, the energies
of the initial and final states are the same. Sλ represents the
scattering term given by Eq. (3) without its energy-conserving
δ functions that are calculated by integrating Eq. (3) over the
radial coordinate in w space and inserting the density of states
factor [∂E/∂w]−1. In general, Sλ depends on w, w′, θ ′ and
the angles δ and δ′ between w and w′ vectors and the parallel
axis, respectively. Here we calculate its angular average value
〈Sλ〉(w′, w, θ ′) over δ and δ′, which “folds” the anisotropic
effects from δ and δ′ into an “effective” isotropic average [83].
To calculate 〈S〉(w′, w, θ ′), we replace the overlap integral
|I |2 and q2 in the matrix element expressions [given by
Eqs. (6), (8), (9), and (B1)] by their angular averages over
δ and δ′. In the same spirit, the angular average of q is used
to determine the phonon frequency in the energy conservation
condition. The scattering angle factor β is also replaced by
its angular average. These averages are evaluated numerically
using Eqs. (A6), (A7), and (A10).

Finally, the electronic conductivity expression given by
Eq. (1) is expressed as

σ = e2NL
v m

3/2
d

π2

∫ ∞

0

(
−∂f 0

∂E

)
τww2v2dw, (A12)

where the NL
v = 4 is the number of L valleys, f 0 the Fermi-

Dirac distribution, v2 = ∑
i v

2
i /3 the average group velocity,

and τ−1
w = ∑

λ τ−1
w,λ. The conductivity per phonon mode is

obtained using Eq. (A12) by replacing τw with τw,λ. The
hole conductivity is obtained by replacing E in Eq. (A12)
with the valence band dispersion Eh = −(E + Eg ). The total

conductivity is the sum of the electronic and hole conductivi-
ties. Using the averaging procedure, the numerical evaluation
of Eq. (1) is simplified from a five-dimensional integration
to a two-dimensional integration (an “outer” loop over w for
the conductivity and an “inner” loop over θ ′ for the transport
relaxation times) and contains additional two-dimensional
integrals for the calculation of the isotropic averages. In all our
calculations, we have used 50 points on a Gaussian quadrature
grid for the angles θ , φ, δ, and δ′, and 1000 equally spaced
points for w in the energy range of (±10kBT ) around the
Fermi level.

APPENDIX B: IONIZED IMPURITY SCATTERING

We consider that chemical doping introduces charged im-
purity scattering in addition to changing the Fermi level in a
material. We treat the ionized impurity scattering as elastic
and use the Brooks-Herring model [84,85]. In this approach,
the matrix element for Ni ionized impurities of charge ZIIe is
written as

|gII|2 = e4NiZ
2
II

V ε2
s

1[
q2 + (

qs
scr

)2]2 I 2
k,k+q, (B1)

where V is the unit cell volume, εs is the static dielectric con-
stant, and qs

scr is the screening wave vector. ZII is taken to be
1, and Ni is chosen to be equal to the electron concentration,
thus assuming full ionization [44].

APPENDIX C: CHARGE SCREENING

In the Fröhlich and Brook-Herring models of scattering
due to polar optical phonons and ionized impurities, respec-
tively, the presence of conduction band electrons screens the
long-range electric field via the screening wave vector q∞

scr
and qs

scr, respectively. According to the work of Hauber and
Fahy [86] using coupled plasmon-phonon collective modes,
the effect of screening in PbTe is fairly weak for electron den-
sity up to 1020 cm−3. In addition, the LO phonon frequency
is low in PbTe. Therefore, we computed the screening vectors
using Thomas-Fermi theory [61]:

(
q∞/s

scr

)2 = −e2

ε0ε∞/s

∂n

∂Ef

= e2

ε0ε∞/s

∫ ∞

0

(
−∂f 0

∂E

)
D(E)dE.

(C1)

For LO scattering, we do not take into account screening
due to polar phonons and use the high-frequency dielectric
constant ε∞ in the expression for the screening wave vector
q∞

scr. In contrast, screening due to polar phonons is included
when calculating ionized impurity scattering by using the
static dielectric constant εs in the expression for the screening
wave vector qs

scr.
Screening also induces a q dependence of the LO phonon

frequencies near �. In the limit of very high doping and
complete screening, the LO frequency approaches that of
TO mode for q → 0, and the unscreened LO frequency for
q � qscr. In this case, the q dependence of the LO phonon
frequency can be described with a quadratic function for q →
0 (ωLO

q = ωLO
� + ∂2ωLO/∂|q|2 × |q|2) and fitted to the DFPT-

LDA phonon bands obtained by setting the Born effective
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charge to zero (the fit was done along �-L, �-X, and �-K
directions). We estimate that the impact of including this q
dependence on the scattering rate for the carrier concentration
of 1020 cm−3 is noticeable only very close to the band edge
and makes a difference of less than 2% to the mobility. There-
fore, we neglect the q dependence of LO frequencies due to
screening and approximate it to be equal to the unscreened
value of the LO frequency at the zone center.

APPENDIX D: ELECTRON-PHONON MATRIX ELEMENTS
FROM DENSITY FUNCTIONAL PERTURBATION THEORY

Within density functional perturbation theory (DFPT), the
electron-phonon matrix element for an electron scattering
event from a state k and band n to a state k + q and band m

via a phonon with wave vector q and branch λ can be defined
as [24]:

Hmn(k; qλ) =
(

h̄

2ωqλ

)1/2 ∑
b,i

(
1

mb

) 1
2

e
qλ

b,i

×〈umk+q |∂b,i,qv
KS|unk〉uc, (D1)

where e
qλ

b,i is the ith Cartesian component of the phonon
eigenvector for an atom b with mass mb. The subscript “uc”
in Eq. (D1) indicates that the integral is carried out within
one unit cell. unk is normalized to unity in the unit cell and
is the lattice periodic part of the wave function ψnk expressed
in Bloch form as N

−1/2
l unke

ik·r, where Nl is the number of
primitive cells. ∂b,i,qv

KS is the lattice periodic part of the
perturbed Kohn-Sham potential expanded to first order in the
atomic displacement, see Ref. [24] for further details.
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