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Second-order photonic topological insulator with corner states
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Higher-order topological insulators (HOTIs) which go beyond the description of conventional bulk-boundary
correspondence, broaden the understanding of topological insulating phases. Being mainly focused on electronic
materials, HOTIs have not yet been found in photonic crystals. Here, we propose a type of two-dimensional
second-order photonic crystals with zero-dimensional corner states and one-dimensional boundary states for
optical frequencies. All of these states are topologically nontrivial and can be understood based on the theory of
topological polarization. Moreover, by tuning the easily fabricated structure of the photonic crystals, different
topological phases can be realized straightforwardly. Our study can be generalized to higher dimensions and
provides a platform for higher-order photonic topological insulators and semimetals.
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I. INTRODUCTION

Topological insulators (TIs) and topological semimetals
(TSMs) have been theoretically and experimentally studied
due to their distinct edge states and transport properties [1,2].
Normally, d-dimensional (dD) TIs have dD gapped bulk
states and (d − 1)D gapless boundary states. Recently, the
concept of higher-order topological insulators (HOTIs) has
been put forward to describe those topological insulators (TIs)
which have lower-dimensional gapless boundary states [3–8].
Generally speaking, a dD TI with (d − 1)D, (d − 2)D, . . .,
(d − n − 1)D gapped boundary states and (d − n)D gapless
boundary states is called an nth-order TI. The HOTIs broaden
the family of nontrivial topological insulating phases.
Moreover, the HOTIs have unique boundary states which go
beyond the conventional bulk-boundary correspondence and
are characterized by novel topological invariants [3,4,6,8].

However, it is not easy to realize these topological phases
in electronic materials. One of the obstacles is that the
Fermi levels of electronic materials are not always in the
topologically nontrivial band gaps or at the gapless points.
The band structures of photonic crystals (PCs) provide us
with platforms to study various topological phases such as
photonic topological insulators (PTIs) and photonic topologi-
cal semimetals (PTSMs) without limitations imposed by the
Fermi level [9–34]. In terms of the HOTIs, the topologi-
cal corner and hinge states in PCs can be used to design
robust optical cavities and waveguides. So far, the obser-
vations of HOTIs are only realized in mechanical metama-
terials [35], electrical circuits [36,37], and weakly coupled
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optical waveguides [38] which are described predominantly
with quadrupole or rotation-symmetry-protected topological
orders. The extension of the notion of HOTIs to PCs without
negative coupling is still lacking.

In this paper, we propose a two-dimensional (2D) PTI
which is the 2D photonic generalization of the Su-Schrieffer-
Heeger (SSH) model [39]. Similarly to the 1D SSH model,
the topological classes of the 2D photonic SSH model can
be determined by different lattice structures as proposed in
Ref. [40]. Previous studies of the 2D photonic SSH model are
focused on the zero Berry curvature of the bulk band topology
and gapless 1D edge states [40,41]. Here, by a theoretical
investigation and numerical simulation, we demonstrate that
there are coexisting edge and corner states when two topo-
logically distinct PCs are placed together to form box-shaped
boundaries. We reveal that both the bulk polarization, de-
scribed by the vector P = (Px, Py ), and the edge polarization,
p

νy

x and pνx
y , are quantized by the mirror symmetries Mx :=

x → −x and My := y → −y. The theoretical predictions
and analysis are supported by numerical simulations for all-
dielectric PCs at optical frequencies.

This paper is organized as follows. The band structures of
PC and topological corner states are introduced in Sec. II.
In Sec. III, we study the 1D edge states and extend our
discussion from isotropic case to anisotropic case where the
lattice constant may be different for the x and y directions.
Finally, a summary is given in Sec. IV.

II. SECOND-ORDER TOPOLOGICAL
PHOTONIC CRYSTALS

We consider a 2D PC with mirror symmetries as shown
in Fig. 1(a). There are four identical dielectric rods in each
unit cell which form isotropic (lx = ly) or anisotropic (with
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FIG. 1. (a) The 2D photonic SSH model and the first Brillouin
zone. We set a = 1.5 μm, r = 0.12a, and the relative dielectric
constant ε = 12 for all the cases. The coupling strength is denoted
as ta and tb. (b)–(d) The band inversion induced by changing
l. + (−) indicates the even (odd) parity of the band. (b) l =
0.14a (topologically trivial PBG). (c) l = 0.25a (band-gap closing).
(d) l = a/2.8 (topologically nontrivial PBG). We choose the values
of l in order to make a maximal overlap between the band gaps in
(b) and (d). (e) Photonic eigenmodes of a combined structure where
the PC in (d) is inside a box and the PC in (b) is outside the box, as
shown in the inset. There are four degenerate states localized at the
four corners in the band gap. Here, edge (bulk) modes are denoted
by orange (gray) points, whereas the corner modes are represented
by blue points.

lx �= ly) PCs, depending on their configurations (square or
rectangular). The center of the configuration is at the center
of the unit cell which is also the origin of the coordinates
throughout this paper. For a 2D PC, the dielectric function
is homogeneous along the z direction and therefore has a
reflection symmetry. Consequently, the electromagnetic fields
which are the eigenmodes of the PC can be classified into
transverse-electric (TE) fields and transverse-magnetic (TM)
fields. Without loss of generality, here we consider the TM
modes throughout this paper and the TE modes can be studied
in a similar way.

Photonic band structures of distinct topological properties
can be realized by tuning the distance between the four rods.
Despite such a simple design, topological edge and corner
states [see Fig. 1(e)] can appear in the photonic band gap
(PBG) between the first and the second bulk bands (denoted
as PBG I). For isotropic PCs with lx = ly ≡ l, we find that the
intra- and inter-unit-cell distances (lintra and linter) between the
neighboring rods control the band topology. Here, lintra = 2l

and linter = a − 2l, where a is the lattice constant. For lintra <

linter the PBG I has trivial topology, whereas for lintra > linter

the PBG I carries nontrivial topology as signified by the parity
inversion at the X point. The parities of the bands which
are the eigenvalues of the inversion symmetry operator are
defined in the same way as those in Ref. [40]. A transition

appears at lintra = linter (i.e., l = a/4), where the PBG is closed
by the band degeneracy on the Brillouin zone boundary lines
(e.g., the MX line) [see Figs. 1(b)–1(d)].

The photonic band structure and the topological properties
of the isotropic PC can be well approximated by the tight-
binding model as depicted in Fig. 1(a), whose Hamiltonian is

H(k) =

⎛
⎜⎜⎜⎝

0 h12 h13 0

h∗
12 0 0 h24

h∗
13 0 0 h34

0 h∗
24 h∗

34 0

⎞
⎟⎟⎟⎠. (1)

Here, h12 = ta + tb exp(ikx ), h13 = ta + tb exp(−iky ), h24 =
ta + tb exp(−iky ), h34 = ta + tb exp(ikx ), and k = (kx, ky ).

The tight-binding parameters ta, tb reflect the intra- and
inter-unit-cell couplings between the neighboring rods, re-
spectively. Here, we neglect the higher-order couplings such
as the next-nearest-neighbor coupling. This approximation is
valid for lower-band structure and this validity is verified
by the numerical calculation of the band structures of PC
as shown in Figs. 1(b)–1(d) which is similar to the band
structure calculated by directly diagonalizing tight-binding
Hamiltonian as shown in Ref. [40]. It is known that the above
tight-binding model has nontrivial topology as characterized
by the 2D polarization P where

Pi = − 1

(2π )2

∫
d2k Tr[Âi], i = x, y, (2)

where (Âi )mn(k) = i 〈um(k)| ∂ki
|un(k)〉, where m, n run over

all occupied bands, and |um(k)〉 is the periodic Bloch function
for the mth band. The 2D polarization is connected to the
2D Zak phase [40] via θi = 2πPi for i = x, y. The 2D Zak
phase of the PC equals (π, π ) [i.e., P = ( 1

2 , 1
2 )] for ta < tb

(i.e., lintra > linter) and reveals that the PC is in the topological
nontrivial insulating phase, while it equals (0, 0) for ta > tb
(i.e., lintra < linter) where the PC is in the trivial insulating
phase. Beyond the isotropic tight-binding model, Px and Py

can be different, resulting in nontrivial topological invariants
P = ( 1

2 , 0) or P = (0, 1
2 ), beside P = ( 1

2 , 1
2 ). We will show

that only the last case can lead to both topological edge and
corner states, whereas the first two cases can only support
topological edge states but not corner states.

Consider a box-shaped boundary between the PC with
P = ( 1

2 , 1
2 ) and the PC with P = (0, 0) [see Fig. 1(e)]. There

are boundaries along the x and y directions which support
topological edge states due to the 2D Zak phase. For in-
stance, the nontrivial Zak phase θx = π for each ky gives rise
to the edge states on the boundaries along the y direction
for the whole edge Brillouin zone ky ∈ [−π

a
, π

a
]. A similar

bulk-edge correspondence works for the boundaries along the
x direction. We consider a ribbon structure where a strip of
a nontrivial PC is sandwiched in between two PCs in the
trivial phase. Then the band structure for the ribbon, namely,
the projected band structure, contains the information of the
lower-dimensional edge states. We numerically simulated this
structure and the dispersion of the 1D edge state is clearly
shown in Fig. 2. For the isotropic case, the projected band
structures for the kx and ky directions are the same due
to the symmetry. Without loss of generality, we calculate
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FIG. 2. Projected band structure along the kx direction for
Fig. 1(e) (isotropic). There are 1D edge states appearing in the first
band gap which are topologically protected by bulk polarization
as depicted by the solid blue line. The dashed red line labels the
frequency of the corner states.

the projected band structure along the kx direction for the
combined structure as shown in Fig. 1(e). The result shows
that there are 1D edge states in the first band gap. We also
label the frequency of one of the corner states as the dashed
line in Fig. 2.

Remarkably, those 1D edge states themselves are similar
to the 1D photonic SSH model with nontrivial topology
protected by Mx (My) for the edges along the x (y) direction.
The topology of the edge states is characterized by the edge
polarizations, pνx

y and p
νy

x , for edges perpendicular to the x

and y directions, respectively.
The topological theory of polarization [3,6] connects the

polarization of the edge states to the eigenvalues of the nested
Wilson loops (mathematical details are given in the Supple-
mental Material [42]). In simple terms, the nested Wilson
loops construct the Zak phases of the edge states by projecting
the bulk Bloch states into a sector which is topologically
equivalent to the edge states using the Wannier band bases,
|wx,α (k)〉 = ∑

n∈NPBG
να

n (ky ) |un(k)〉. Here, n ∈ NPBG stands
for summation over all bands below the PBG, and να

n (ky ) is
the αth Wilson-loop eigenvector for the Wilson-loop operator
with kx looping from −π/a to π/a at fixed ky . With the nested
Bloch states, one can calculate the polarization for the edge
states perpendicular to the x direction,

pνx

y = − 1

(2π )2

∫
d2k Tr[B̂y], (3)

where (B̂y )α,β = i 〈wx,α (k)| ∂ky
|wx,β (k)〉. Remarkably, for

the PBG considered in this work, there is only one photonic
band below the PBG. Hence, there is only one Wilson-loop
eigenvalue and the eigenvector ν1

1 (ky ) ≡ 1. Hence, the nested
Wilson loop becomes the same as the bulk Wilson loop. How-
ever, the above equation is valid only when there are physical
edge states on the boundary perpendicular to the x direction,
i.e., only when Px = 1

2 (the edge polarization should vanish
when Px = 0). Putting these two factors together, we find
that pνx

y = (2Px ) × Py = 1
2 . Similarly, p

νy

x = (2Py ) × Px =
1
2 . Numerical calculations of these topological indices are
presented in the Supplemental Material [42].

FIG. 3. (a) Schematic of bulk-edge-corner correspondence. The
nontrivial topology of the bulk (cyan region) leads to the emergence
of the edge states, while the polarization of the edge (indicated
by the black arrows) results in the formation of the topological corner
state (indicated by the shallow yellow region). (b) There are in total
four degenerate corner states at the four corners with frequency
66.0 THz. The electrical fields Ez (a.u. stands for arbitrary units) are
strongly localized at the corners (a superposition of the four degen-
erate corner states is shown here). The blue dashed line indicates
the boundary between the two PCs. (c) The zoom-in structure of
the corner, where the dashed black lines indicate the border of the
unit cells. The topological unit cell has a much larger l (l = a/2.8)
compared to the three trivial unit cells (l = 0.14a).

The topological edge states along the x and y directions
meet at the corner of the box-shaped combined structure
shown in Figs. 1(e) and 3(b) where the outside PC has trivial
topology, i.e., P = (0, 0). Differing from Refs. [3,35–37],
there is no quadrupole topological order in our system,
since there is only a single band below the PBG. Therefore,
the topological corner charge is determined by the edge
polarizations as [6]

Qc = p
νy

x + pνx

y = 4PxPy. (4)

If the inner PC has P = ( 1
2 , 1

2 ), then Qc = 1. This quantized
corner charge gives rise to a single corner state in each of
the four corners, as confirmed by the numerical simulation in
Fig. 3(b). The detailed dielectric structure of the combined
structure is given in Fig. 3(c) for one of the corners. The
spectrum of the eigenmodes is already shown in Fig. 1(e)
where four degenerate corner modes are found in the PBG.
The electromagnetic fields of the corner modes are strongly
localized at each of the four corners. These corner states
are protected by the nontrivial topology, as characterized
by Qc = 1, as well as the mirror symmetries Mx and My

which quantize the polarizations. The bulk-edge-corner
correspondence elucidated above shows the topological
protection in a hierarchy of dimensions, which is a
smoking-gun signature of HOTIs. The robustness of the
corner states against perturbations is demonstrated by the
simulations presented in the Supplemental Material [42].

On the other hand, the emergence of the corner modes
can be understood from the tight-binding model, particularly
when one considers the extreme case where ta = 0 and tb �= 0.
In this case, the four corner sites of the tight-binding model
become “dangling atoms” which trap zero-energy corner
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FIG. 4. Anisotropic 2D photonic SSH model where lx �= ly . The
PCs have the same a, r , and ε as the isotropic 2D photonic SSH
model but have deformed lattice structures characterized by lx and ly .
The eigenstates are solved by COMSOL. For the outer PC, we set lx =
ly = 0.14a. For inner PCs, we set (a) lx = 0.37a and ly = 0.35a.
Nontrivial phase in both x and y directions. Two sets of degenerate
edge states (DESs) with different frequencies. For the DESs in the
upper (lower) figure, the frequency is 60.2 THz (61.1 THz). (b) lx =
0.15a and ly = 0.35a. The x direction in the topologically trivial
phase and the y direction in the topologically nontrivial phase. There
are only 1D DESs in the upper and lower sides. The frequency is
64.2 THz. (c) lx = 0.35a and ly = 0.15a. The x direction in the
topologically nontrivial phase and the y direction in the topologically
trivial phase. There are only 1D DESs in the left and right sides.
The frequency of the state in this figure is 65.2 THz. The solid green
circles emphasize the differences in the corner structures and field
strengths in (a)–(c). The dashed blue lines label the boundaries of
two PCs.

modes. Since the band structure of this extreme case can be
adiabatically connected to the ta �= 0 case, they are in the same
topological class and the corner states will always exist as long
as |ta| < |tb|. In terms of the topological invariants, Qc = 1
corresponds to the P = ( 1

2 , 1
2 ) phase.

III. ANISOTROPIC PHOTONIC CRYSTALS AND
TOPOLOGICAL PHASE DIAGRAM

Next, we extend our discussions to anisotropic 2D PCs
where lx �= ly as shown in Fig. 4. The bulk polarizations are
determined by the intra- and inter-unit-cell distance between
the rods along the x and y directions, liintra and liinter with i =
x, y. For instance, lxintra > lxinter leads to nontrivial topological
indices Px = 1

2 . The edge polarizations are given by p
νy

x =
pνx

y = 2PxPy .
For a box-shaped combined structure with the outer PC of

P = (0, 0), the edge states along the y (x) direction emerge
when the inner PC has Px = 1

2 (Py = 1
2 ), as shown in Fig. 4.

The electrical fields for the edge states in Fig. 4(a) indicate
that the four dielectric rods at the corners have vanishing
field intensity, emerging as dangling atoms in the topological

FIG. 5. Projected band structures for Fig. 4(c) along the kx and
ky direction as shown in (a) and (b), respectively. (a) There are no 1D
edge states along the kx direction. (b) There are 1D edge states in the
band gap along the ky direction as depicted by the solid blue line.

SSH model. Such unoccupied dielectric rods leave space
for unpaired topological corner modes. In comparison, for
inner PCs of P = ( 1

2 , 0) or (0, 1
2 ) as shown in Figs. 4(b)

and 4(c), the corner rods have finite field intensities and do
not support corner modes. These observations are consistent
with the corner charge given in Eq. (4). We also study the
1D edge states in the anisotropic cases. For the anisotropic
case, namely, with the x direction in the topological nontrivial
phase and the y direction in the topological trivial phase,
the projected band structures are different for the kx and
ky directions. We calculate the projected band structures for
Fig. 4(c) as a demonstration. The result is shown in Figs. 5(a)
and 5(b) for the projected band structures along the kx and ky

FIG. 6. Classification of all kinds of the generalized 2D photonic
SSH model with different configurations in the x and y directions.
A (B ) = 1 means the 2D photonic SSH model is in the topologically
nontrivial phase along the x (y) direction. A (B ) = 0 means the 2D
photonic SSH model is in the topologically trivial phase along the x

(y) direction. The blue area represents isotropic cases and the yellow
area represents anisotropic cases. The dashed lines represent there
are no 1D edge states and solid lines represent the existence of 1D
edge states. The solid circles mean there are corner states. The edge
(or corner) states of the same color have the same frequency, whereas
the states with different colors have different frequencies.
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directions, respectively. The results of the simulation match
our theoretical predictions well.

According to the above discussions, the whole phase di-
agram of the 2D PCs can be classified into four different
phases, as depicted in Fig. 6: the topologically trivial phase
with liintra < liinter for both i = x and y of which P = (0, 0) and
Qc = 0; the two phases with nontrivial bulk topology but zero
corner charge, i.e., P = ( 1

2 , 0) or (0, 1
2 ), and Qc = 0 where

lxintra < lxinter or l
y

intra < l
y

inter; and the phase with both nontrivial
bulk topology and corner charge, i.e., P = ( 1

2 , 1
2 ) and Qc =

1 where liintra > liinter for both i = x and y. Therefore, by
simply changing the relative distances of the nearest rods
in the anisotropic 2D photonic SSH model, we can achieve
various topological phases with different 1D DESs as well as
corner states. This can be potentially used to design different
optical topological switches for photonic integrated chips in
the future.

IV. CONCLUSIONS AND DISCUSSIONS

We propose a simple realization of the second-order topo-
logical insulator in all-dielectric photonic crystals (PCs) with
corner states. The exotic corner states can be regarded as the
0D boundary states of the 1D edge of the 2D PC which is
topologically protected by mirror symmetries. Besides, we
study the anisotropic 2D photonic SSH model and find that
the 1D DESs arise due to the 1D structures existing in the 2D
photonic SSH model. By adjusting the distances between the
nearby rods in the x and y directions, the emergence of the
edge and corner states can be controlled straightforwardly.

These topologically protected edge and corner states
may be valuable for robust waveguides, optical couplers,

and optical topological circuit switches. Our PC can be
experimentally realized in a surface plasmon polariton
(SPP) slab and in microwave frequencies. In both cases, the
structure is similar to our model but has a finite size in the z

direction. The relevant parameters need to be modified from
our theoretical model but the topological properties are the
same.

If our theory is generalized to a 3D photonic SSH model,
there can be second-order and third-order topological insulat-
ing phases where topological hinge states and corner states
can emerge, respectively. The 3D second-order topological
semimetals may be achieved by stacking the 2D photonic SSH
model along the z direction. The 3D second-order topological
semimetals have rich bulk and boundary properties which are
yet to be explored [43].

Note added. Recently, we became aware of a paper show-
ing 0D topological bound states in a 2D PC due to the pres-
ence of dislocation (a topological defect) [44], demonstrating
another mechanism for lower-dimensional topological light
trapping.
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