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Three-dimensional Weyl semimetals have been observed to have negative magnetoresistance (MR) with the
magnetic field parallel to the electric field and positive MR with the magnetic field perpendicular to the electric
field. It is understood that the negative MR is due to a Berry phase that causes the chiral anomaly, while the
positive MR can be understood from a semiclassical transport theory. We solve a semiclassical Boltzmann
equation with both the Berry phase and Lorentz force terms present for an arbitrary angle of the applied magnetic
field relative to the electric field within the relaxation-time approximation. The plots of the magnetoconductivity
show both the Berry phase and Lorentz force effects. For some angles between the electric and magnetic fields,
the conductivity has a minimum, where the forces balance each other. The standard semiclassical theory does
not show the linear increase in the transverse MR with the magnetic field seen experimentally. By assuming a
magnetic-field-dependent transport time, we find the transverse MR increases linearly with the magnetic field.
The low-field MR does change from negative to positive as one rotates the magnetic field away from the direction
of the electric field. As the magnetic field is increased, we find in some cases the MR starts out negative and then
becomes positive. This is consistent with recent experimental data in Cd3As2.
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I. INTRODUCTION

Weyl fermions (WFs) are the zero-mass solution of the
Dirac equation. They have been well studied theoretically
in high-energy physics, but it has remained experimentally a
challenge to find a Weyl fermion fundamental particle [1–3].
The experimental discovery of graphene with a gapless energy
spectrum was a milestone towards realizing Weyl fermions
[4]; however, the pseudospin and momentum coupling in
graphene is incomplete, and graphene states are fragile to
perturbations. The search for topologically protected gapless
Weyl fermions, even in condensed-matter physics, has had
many ups and downs. By using ab initio calculations many
materials were predicted to host these topological states [5–8].

At this point there is strong experimental evidence for
Weyl fermions in a number of materials. Angle-resolved
photoemission spectroscopy (ARPES), soft x rays, scanning
tunneling microscopy, and magnetotransport measurements
have become the test beds to detect the elusive WF states
[9–11]. Most of these experimental results are also verified
by the ab initio calculations and minimal Hamiltonian models
[12,13]. The massless WFs travel with Fermi velocity vF ∼
108 cm/s, which is much smaller than the speed of the light.
In fact, the Lorentz symmetry in condensed matter is an
artifact of making the band structure linear near the Dirac
points. Thus, the Lorentz symmetry is allowed to be violated,
unlike the Lorentz symmetry in special relativity. The Weyl
semimetals are categorized as type-I and type-II materials,
depending upon their Fermi surface at the band touching
point. The type-I Weyl semimetals have one point where
conduction and valance bands meet, whereas in type-II Weyl
semimetals electrons and holes pockets meet, and they form
an open Fermi surface [14]. For a discussion on type-I and
type-II Weyl fermions, see Refs. [15–17].

Weyl semimetals are different from topological insulators,
which emerge due to the strong spin-orbit interaction [18].
Three-dimensional topological insulators are novel states of
matter with insulating bulk and topologically protected sur-
face states. In contrast, the bulk and surface states of the Weyl
semimetals are both topologically protected [9]. The unique
surface states of the Weyl semimetals make nonclosed Fermi
arcs that terminate in the bulk. The nontrivial topology of
the band structure of WFs gives rise to the nontrivial Berry
curvature physics of the WF [19]. The Weyl nodes are the
source and sink of Berry magnetic field in momentum space.
In the crystal lattice structures the WFs could emerge in
the absence of time-reversal or inversion symmetry [20,21].
By breaking the time-reversal symmetry [10] or the spatial-
inversion symmetry [11] the WF pairs are detected in ARPES
experiments [9].

The magnetotransport properties of Weyl fermions include
the chiral magnetic effect [22–25], the anomalous Hall ef-
fect [26], and negative magnetoresistance [27]. The negative
magnetoresistance is related to the chiral anomaly, which
is one of the signatures of a Weyl semimetal. The chiral
anomaly is the violation of the conservation law of the chiral
current [10,28]. In a weak magnetic field and in the high-
temperature limit, the longitudinal resistivity in the direction
of magnetic field is shown to decrease quadratically with
the magnetic field [27]. This phenomenon is observed for
samples with low density to keep the Fermi level close to WF
points.

In this study we compare the relative effects of the Lorentz
force and the force due to Berry curvature in magnetotransport
derived from the Boltzmann equation. This is achieved by
changing the relative angle between the electric field and
the magnetic field. The diagonal elements of the transverse
magnetoconductivity tensor decrease quadratically with the
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magnetic field due to the Lorentz force effect. However,
the longitudinal magnetoconductivity (MC) increases with
the magnetic field due to the Berry curvature force effect.
Here transverse and longitudinal are used as a reference to
the direction of magnetic field. Therefore, by rotating the
electric field away from the magnetic field axis, the diagonal
elements of the magnetoconductivity tensor plot pass through
a minimum point. At this minimum point the Lorentz force
and the force of the Berry curvature effectively cancel each
other. The situation is different for the magnetoresistance.
The effect of the Lorentz force is absent in the diagonal
elements of the transverse magnetoresistance (TMR) tensor,
and therefore, a comparison between these forces is not
possible.

Interestingly, the TMR data from Weyl semimetals do
not stay constant with the magnetic field [29]. The TMR
is shown to increase linearly with increasing magnetic field
[30], in contrast to a formal theory of the Boltzmann equa-
tion in the relaxation-time approximation. In this paper we
phenomenologically include the magnetic field dependence in
the relaxation process of the distribution function in order to
obtain a TMR which increases linearly with magnetic field.
The magnetic field dependence of the TMR has been an
active area of research in Dirac and Weyl semimetals in both
the ultraquantum and semiclassical limits of studies [31,32].
In this study we are assuming the magnetic-field-dependent
transport time within a semiclassical region.

In Sec. II of this paper we present the theoretical formula-
tion of magnetotransport through Weyl semimetals; Sec. III is
reserved for numerical results of our model, and we give our
conclusions in Sec. IV.

II. THEORETICAL FORMULATION

This study focuses on the case when both the Lorentz
force and Berry curvature force are important in the magneto-
transport in Weyl fermions. The inclusion of Berry curvature
in a semiclassical study modifies its equations of motion by
introducing the change in phase space, adding an anomalous
velocity and a force that is directly proportional to the Berry
curvature (we shall use the term Berry force for this force)
[30,33–35]. Research has already been carried out on the
magnetotransport in Weyl fermions [27,36–40]. From this
work we know that the negative magnetoresistance in Weyl
fermions can be explained by Berry curvature. Along with
this, the conductivity should show a comparison between the
Lorentz and Berry curvature forces within the plane of applied
fields. Berry curvature is a physical quantity of the Bloch wave
function defined for a crystal lattice structure that lacks either
the inversion symmetry [10] or the time-reversal symmetry
[11]. The semiclassical equations of motion in the presence
of the Berry curvature are a well-studied problem [30,41,42].
We are interested in the magnetotransport of a semiclassical
WF gas described by the linearized energy spectrum of an
energy band structure near the Dirac points. The Dirac points
are degenerate due to Kramer’s rule. By applying an external
magnetic field, the Landau levels are formed, and Kramer’s
degeneracy is lifted.

A. The semiclassical theory of magnetotransport
in the Weyl semimetals

The well-studied Hamiltonian of the Weyl fermions is
[43–45]

Hk = χvF h̄[(�k − χ �Q) · �σ + σ0Q0]. (1)

Here σ are Pauli spinors and denote real spins, and χ = ± is
used to include chirality. The parameter �Q (Q0) breaks time-
reversal symmetry (inversion symmetry) and splits degenerate
Dirac cones in momentum (energy) space [43]. We consider
Q0 = 0, and �Q = Qzẑ. In a semiclassical theory the magnetic
field enters from the Boltzmann equation since the Landau
levels are not resolved. The eigenvalues of this Hamiltonian
are

Ek (±, χ ) = ± h̄k(χ )vF , k(χ ) =
√

k2
⊥ + (Qz + χkz)2, (2)

where χ = ±1 and k⊥ =
√

k2
x + k2

y . The semiclassical dy-
namics of a Bloch wave packet in the presence of electric
and magnetic fields is derived in the Appendix (see also
Refs. [29,33,34] for the derivation and application of these
equations):

�̇x = A
[
�v − e

h̄
�E ∧ �� + e

h̄
( �� · �v) �B

]
, (3)

h̄�̇k = A

[
e �E + e�v ∧ �B + e2

h̄
( �E · �B ) ��

]
, (4)

where ẋ, h̄k̇, and A = (1 + e
h̄

�B · ��)−1 are the mean veloc-
ity, forces, and change in phase space for Berry curvature,
respectively.

To make a comparative analysis of the Berry curvature
force and the Lorentz force, we write the semiclassical Boltz-
mann equation with uniform-in-space and time-independent
electric and magnetic fields perturbing a system of Weyl
particles, which includes both electrons and holes:

�F · 1

h̄
�∇kfχ = I [coll],

�F = −eA
[

�E + e

h̄
( �E · �B ) �� + �v × �B

]
. (5)

Here fχ is the distribution function, I [coll] is the collision
integral of a Boltzmann equation, �E and �B are the electric
and magnetic fields, and �v = ±vF k̂ is the group velocity of
the Dirac spectrum. The force term has the usual electric and
magnetic forces as well as a force arising due to Berry curva-
ture ( �� = χ

�k
2k3 ). This force also displaces the sphere of the

Weyl gas out of equilibrium, and therefore, charge transport
parameters such as the thermal and electrical conductivities
depend on this force. We assume a linear response in the
electric field for the nonequilibrium distribution function and
use the relaxation-time approximation for the Weyl particle
gas sphere to fall back into equilibrium: I [coll] = − δfχ

τtr
,

−e �E · �v ∂feq

∂Ek

− e2

h̄
( �E · �B )( �� · �v)

∂feq

∂Ek

,

−e�v × �B · 1

h̄
�∇kδfχ = − δfχ

Aτtr

. (6)
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Here feq = {1 + exp[β(Ek − μ)]}−1 is the Fermi Dirac dis-
tribution function, β−1 = kBT denotes the thermal energy of
the Weyl fermions, and the symbol μ is used for the chemical
potential. In the above equation we have used the vector
identity �v × �B · �v ∂feq

∂Ek
= 0 in the last term on the left-hand side

of the Boltzmann equation.
As we are dealing with fermions, we make an ansatz in

which the deviation of the equilibrium distribution function
from equilibrium is projected close to the Fermi energy, δfχ =
gχ (−∂feq/∂Ek ). The equation for gχ is

e �E · vF

�k
|k| + χ

e2vF EzBz

2h̄|k|2 = evF

�k
|k| × �B · 1

h̄
�∇kgχ − gχ

Aτtr

.

(7)
Here the wave vector in spherical coordinates is k̂ = �k/|k| =
cos θ ẑ + sin θ (sin φŷ + cos φx̂). Expanding gχ in Fourier
harmonics,

gχ =
∑

n

[
αχ

n cos(nφ) + βχ
n sin(nφ)

]
. (8)

To find the coefficients α
χ
n and β

χ
n we use the orthonormality

of Fourier components. All coefficients with n > 1 are zero.
Our final result for gχ is

gχ = − evF τtrEz

2E2
k cos θ + χeBzh̄v2

F

2E2
k + χeBzh̄v2

F cos θ

− 2evF τtrEk sin θ(
2eEkBzτtrv

2
F

)2 + (
2E2

k + χeBzh̄v2
F cos θ

)2

× (
Ex

{
cos φ

[
Ek

(
2E2

k + χeBzh̄v2
F cos θ

)]
+ sin φ

(
2E2

k eBzτtrv
2
F

)} + Ey

{
sin φ

[
Ek

(
2E2

k

+ χeBzh̄v2
F cos θ

)] − cos φ
(
2E2

k eBzτtrv
2
F

)})
. (9)

Using this distribution function, one can evaluate the den-
sity, currents, and conductivities. It should be noted that the
particle number is conserved:

∑
χ=±

∫
d3k

(2π )3
A−1 δfχ

τtr

=
( e

h

)2 �E · �B
∑
χ=±

χ = 0, (10)

∂

∂t
(N+ + N−) + �∇ · ( �J+ + �J−) = 0. (11)

The Berry curvature force induces an imbalance between the
number density of the different chirality particles populations:

|δF | =
∫

d3k

(2π )3
(δf+ − δf−), (12)

where δF is the average difference in the deviation of the
distribution function due to the chirality. With the distribution
function in Eq. (9) this chirality imbalance is

|δF | = evF τtrEzβ

2π2h̄3v3
F

∫ ∞

−∞
dEk

(
4E4

k

eBzh̄v2
F

+ E2
k

(
eBzh̄v2

F

)2 − 4E4
k(

eBzh̄v2
F

)2

× ln

∣∣∣∣2E2
k + eBzh̄v2

F

2E2
k − eBzh̄v2

F

∣∣∣∣
)

1

cosh2
(
β

Ek−μ

2

) . (13)

This average difference in the distribution function vanishes:
δF → 0 for B → 0.

The current flowing through this system is

�j = −e
∑

χ

∫
d3k

(2π )3
A−1 �̇xδfχ . (14)

Note that in the above formula for the current, we have
included the change in phase space factor due to the Berry cur-
vature: A = 2E2

k /(2E2
k + χeBh̄v2

F cos θ ) [35]. The zz com-
ponent of the conductivity is

σzz = e2τtrβ

32π2h̄3vF

∑
χ

∫ ∞

−∞
dEk

×
∫ 1

−1
dy

(
2E2

k y + χeBh̄v2
F

)2

2E2
k + χeBh̄v2

F y

1

cosh2
(
β

Ek−μ

2

) . (15)

Holes are included in the conductivity formula from the Weyl
particle gas spectrum by changing −e to e and Ek to −Ek .
In a similar manner the other components of the conductivity
tensor are found to be

σxx = e2τtrβ

16π2h̄3vF

∑
χ

∫ ∞

−∞
dEk

∫ 1

−1
dy(1 − y2)

× E4
k

(
2E2

k + χeBh̄v2
F y

)
(
2E2

k + χeBh̄v2
F y

)2 + (
2EkeBτtrv

2
F

)2

× 1

cosh2
(
β

Ek−μ

2

) , (16)

σxy = − e2τtrβ

16π2h̄3vF

∑
χ

∫ ∞

−∞
dEk

∫ 1

−1
dy(1 − y2)

× 2E5
k

(
eBτtrv

2
F

)
(
2E2

k + χeBh̄v2
F y

)2 + (
2EkeBτtrv

2
F

)2

× 1

cosh2
(
β

Ek−μ

2

) . (17)

From σzz, σxx , and σxy one can obtain all the elements of the
conductivity matrix using σyy = σxx and σyx = −σxy .

In the limit of zero temperature, we give here the explicit
formula for the conductivities and compare them with previ-
ous published work [33,46,47]:

σzz = e2μ2

3πh̄3vF

τtr

π

[
1 + 2

5

1

(lBkF )4

]
,

σxx = e2μ2

3πh̄3vF

τtr

π

[
1 − (ωcτtr )2 + 1

20

1

(lBkF )4

]
, (18)

σxy = − e2μ2

3πh̄3vF

τtr

π
(ωcτtr )

[
1 − (ωcτtr )2 + 3

20

1

(lBkF )4

]
.

Here l2
B = h̄

eBz
denotes the magnetic length. For our pertur-

bation theory to be applied here, we consider ωcτtr < 1 and
lBkF > 1, μ = 102 meV [47].

For zero magnetic field our results exactly match those
in Refs. [48,49]. For a single Dirac cone we set

∑
χ =

1
2 and τtr

π
= δ(�), and the conductivity σxx = σyy = σzz =

e2μ2

6πh̄3vF
δ(�). For finite magnetic field, our result for conductiv-

ity δσzz ∼ B2
z qualitatively agrees with Refs. [33,46], namely,
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FIG. 1. The left- and right-handed chiral states of the n = 0
Landau level.

a quadratic increase in the conductivity with magnetic field
due to the chiral anomaly.

The different elements of the resistivity matrix are
found by taking the inverse of the conductivity ma-
trix: ρzz = 1/σzz, ρxx = σyy/(σ 2

xx + σ 2
xy ), ρyy = ρxx, ρxy =

σxy/(σ 2
xx + σ 2

xy ), and ρxy = −ρyx .
To do a comparative analysis of the force entering in

a Boltzmann equation due to the Berry curvature and the
Lorentz force, we use a rotation matrix to rotate the electric
field [23,50]. These forces have counter effects in magneto-
conductivity. The electric field is rotated from a plane perpen-
dicular to the magnetic field to parallel to the magnetic field.
For some angles the MC will change slope with magnetic
field. For this particular value of the magnetic field, the
Berry curvature and the Lorentz forces are balanced. The
conductivity matrix from the above equations is

⎡
⎣jx

jy

jz

⎤
⎦ =

⎡
⎣σxx σxy 0

σyx σyy 0
0 0 σzz

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦. (19)

When rotating about the y axis, the current, conductivity
tensor, and electric field are transformed:

�j ′ = σ̂ ′ �E′, (20)

where �j ′ = M̂ �j, σ̂ ′ = M̂σ̂ M̂†, and �E′ = M̂ �E. The rotation
matrix is

M̂ =
⎡
⎣cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦. (21)

The comparison between these forces is discussed in Sec. III.

B. The quantum theory of magnetotransport
in Weyl semimetals

In the ultraquantum limit only the ground state of the n = 0
Landau level is populated (see Fig. 1). The Weyl fermion
motion is frozen in the plane perpendicular to the magnetic
field since vF τ

lB
� 1, h̄vF

lB
> μ, kBT . However, the fermions

are free to move along the direction of the magnetic field.
In an ideal case of only left- (chirality χ = −1) or right-
(chirality χ = +1) handed Weyl fermions the presence of
impurity would make conductivity zero in the direction of the
magnetic field. However, the Weyl fermions have both left-
and right-handed particles. These Weyl fermions scatter from
the impurities and exchange their chirality state. This makes
the conductivity finite. For instance, the left-handed Weyl
fermions scatter from impurities and enter into a right-handed
Weyl fermion state. The Weyl fermions scatter with impurities
and relax their momentum by exchanging their chirality states
with each other.

Here we use Kubo’s formula to derive the conductivity
in the ultraquantum limit of large magnetic field for Weyl
fermions. The conductivity increases linearly with magnetic
field. This is due to an imbalance in the populations of left-
and right-handed Weyl fermions [20,46].

This is the formula of the current fluctuation as a linear
response of applied electric field:

Qzz(i�n) = − e2v2
F

4π2l2
B h̄

β−1
∑
iωn

∫ ∞

−∞
dkz

× Tr[σ zG(iωn + i�n, kz)σ z�(i�n)G(iωn, kz)].
(22)

Here G(i�n + iωn, kz) = 1
2 {[g+(i�n + iωn, kz) + g−(i�n +

iωn, kz)]σ 0 + [g+(i�n + iωn, kz) − g−(i�n + iωn, kz)]σ z},
with g±(i�n + iωn, kz) = 1

i�n+iωn+μ∓h̄vF kz+ isgn(i�n+iωn )
2τ

. The

symbol sgn is used for the sign function; sgn(x) = +1 for
x > 0, and sgn(x) = −1 for x < 0. The current fluctuation
formula is given in a finite-temperature Matsubara Green’s
function, with fermionic frequency iωn and bosonic frequency
i�n. The symbol lB =

√
h̄

eB
is used for the magnetic length

formed by Landau orbits.
The elastic scattering among Weyl fermions and impurities

is considered. After scattering from impurity the chirality
of the Weyl fermion is changed, for instance, from χ = +
to χ = −. The above formula for conductivity includes the
ladder diagrams sum,

evF σ z�(i�n) = evF σ z + ni

∫ ∞

−∞

dkz

2π
|u(2kz)|2{G(iωn + i�n, kz)[−evF σ z�(i�n)]G(iωn, kz)}. (23)

We assume the impurities’ influence is felt in the short range |u(2kz)| = |u|2, so the impurity potential |u|2 is factored out of the
integral:

�(i�n) = 1 − ni |u|2
2πh̄vF

�(i�n)2
∫ ∞

−∞
dx

(
1

i�n + iωn − x + i
2τ

sgn(i�n + iωn)

1

iωn − x + i
2τ

sgn(iωn)

)
. (24)
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The contour integral gives a nonzero value for this condition, sgn(i�n + iωn) > 0 and sgn(iωn) < 0. Here τ = 2ni |u|2
h̄2vF

, and
x = h̄vF kz. After calculating the contour integral, we find

�(i�n) =
{

�n+τ−1

�n+2τ−1 if − i�n < iωn < 0,

1 otherwise.

We use this in our formula for fluctuations in the current:

Qzz(i�n) = − e2vF

4π2l2
B h̄

2�(i�n)β−1
∑
iωn

∫ ∞

−∞
dx

(
1

i�n + iωn − x + i
2τ

sgn(i�n + iωn)

1

iωn − x + i
2τ

sgn(iωn)

)
, (25)

Qzz(i�n) = − e2vF

4π2L2
B h̄

2
�n + τ−1

�n + 2τ−1
β−1

∑
−i�n<iωn<0

2iπ

i�n + iτ−1
. (26)

Here −β−1 ∑
−i�n<iωn<0 2iπ = i�n.

We analytically continue the above formula to get the
conductivity: σzz(i�n → � + iδ) = Qzz (�+iδ)

�
,

σzz(i�n → � + iδ) = e2vF

4π2l2
B h̄

2

2τ−1 − i�
. (27)

This is the conductivity due to the chiral anomaly
[14,20,30,51]:

σzz(� = 0) = e2vF

4π2L2
B h̄

τ. (28)

The other elements of the conductivity matrix are found
in Ref. [32] (see also Refs. [14,52]). We only quote their
results without deriving them, σxx = A

B
, σxy = nec

B
. Here A

is a constant. This constant depends on the scattering time
between Weyl or Dirac fermions and the charge impurities.

III. RESULTS AND DISCUSSION

A. Magnetoconductivity

In this section, we shall assume μ > h̄ωc, kBT . The av-
erage deviation in the distribution function between opposite
chiralities and the MC due to the chiral anomaly is shown
in Fig. 2. This deviation in the distribution function arises
due to the chiral anomaly and makes the magnetotransport
properties different from the conventional semiclassical mag-
netotransport. This increases linearly with magnetic field and

FIG. 2. The average deviation in the distribution function due
to opposite chiralities and the MC due to the chiral anomaly.
The different parameters are βμ = 5, β2eh̄v2

F B = 90B/T, and � =
evF τtrEz/(2π 2h̄3v3

F β2).

vanishes at B = 0T . The MC due to chiral anomaly increases
quadratically with magnetic field.

In the plane perpendicular to the electric and magnetic
fields the Lorentz force is balanced by the Coulomb force, and
the Hall conductivity is observed. The inclusion of Berry cur-
vature in the magnetotransport introduces a new comparison
between the Lorentz and Berry curvature forces. Therefore,
this study focuses on the plane of the electric and magnetic
fields to see a comparison between the Berry curvature and
Lorentz forces. The MC has a different functional dependence
on these forces. It decreases for the Lorentz force but increases
for the other. By varying the angle between these fields,
we show the change in slope of the MC. This is shown in
Fig. 3. The electric field angle is varied from the magnetic
field axis at θ = 0 to θ = π

2 . For a magnetic field applied
perpendicular to the electric field, the MC decreases with
increasing magnetic field: the familiar Boltzmann’s equation
result for the MC. By rotating the magnetic field to align
with the electric field axis the MC slope starts increasing,
and when both of the fields are parallel to each other, the
MC slope is maximum. This effect is explained by the chiral
anomaly, which enters into Boltzmann’s equation from Berry
curvature. It can be noticed that for some angles between the
electric and magnetic fields the MC plot has a turning point.
This turning point of the MC plot is an interesting point to

FIG. 3. The MC of the Weyl spectrum. The inset shows a mag-
nified look at the MC vs the magnetic field characteristics. The
different characteristics are plotted to show the comparative effect
of the Lorentz force and the Berry force. The different parameters
are βμ = 5, βeτtrv

2
F B = 20B/T, and β2eh̄v2

F B = 50B/T.

205139-5



MUHAMMAD IMRAN AND SELMAN HERSHFIELD PHYSICAL REVIEW B 98, 205139 (2018)

FIG. 4. The MC of Weyl spectrum. The different characteristics
are plotted to show the relative strength of Lorentz force and the
Berry force. The parameter: βμ = 5.

see a comparison between the Lorentz force and the force
arising due to Berry curvature. In Boltzmann’s equation, the
MC in the direction of the magnetic field has no magnetic field
dependence, whereas in a plane perpendicular to the magnetic
field the MC falls off with increasing magnetic field. This is
the case for an electron gas with no chiral anomaly. But in
a Weyl gas, the MC is dependent on magnetic field in every
direction as a result of the chiral anomaly. A comparison of
these two forces’ strength is shown in Fig. 4 at fixed angle

θ = π
4 . The ratio α =

√
ev2

F Bh̄

(ev2
F Bτtr )2 shows the relative strength

between these forces. The minima in the MC are tuned by
this ratio. In this ratio α, h̄ enters due to the Berry curvature,
whereas τtr enters due to the Lorentz force. To detect this
tuning experimentally, the transport time τtr can be changed
by changing the mobility of the sample. The mobility of
Weyl semimetals is a function of temperature and impurity
concentration [27].

The MR in the semiclassical theory stays constant with
changing magnetic field. However, it decreases due to the
chiral anomaly with increasing magnetic field. This is shown
in Fig. 5. The Berry curvature modifies the phase space [35].
Its effect is shown in the magnetoconductivity plot for θ = π

2 ;
here it should have a constant value (zero slope) if the Berry
curvature is zero.

FIG. 5. The MR of the Weyl spectrum for the magnetic-field-
independent transport time. The different characteristics show the
MRs are dependent only on the Berry force, not on the Lorentz
force. The different parameters are βμ = 5, βeτtrv

2
F B = 20B/T,

and β2eh̄v2
F B = 90B/T.

FIG. 6. The MR of the Weyl spectrum for the magnetic-
field-dependent transport time. The different parameters are
βμ = 5, τtr

τs
= 0.9B/T, βeτtrv

2
F B(1 + 0.9B/T)−1 = 20B(1 +

0.9B/T)−1/T, and β2eh̄v2
F B = 45B/T.

B. Magnetic-field-dependent transport time

The experimental results of Weyl semimetals for the MR
are not consistent with semiclassical theory for a magnetic-
field-independent relaxation time [53]. Experimentally, the
MR is often fit with Kohler’s rule [54,55] and is shown to
depend in detail on the shape of the Fermi surface. This expla-
nation usually involves multiband models. In Dirac and Weyl
semimetals the MR cannot be explained with the conventional
multiband theory.

Here we find that the experimentally observed MR results
for Weyl semimetals are well reproduced by assuming a linear
magnetic field dependence in the charge transport rate. We
do this by phenomenologically including the magnetic field
dependence in the transport time. Here we motivate this as-
sumption. A full calculation of the spin-dependent Boltzmann
equation would be necessary to check this assumption. In sup-
port of this phenomenology of the magnetic-field-dependent
relaxation time, we compare the spin precession time and
momentum relaxation time of these materials. The momentum
relaxation time depends on the mobility of the sample; high
mobility results in a large relaxation time. Particularly in Weyl
semimetals of mobility μB ∼ 105 cm2

V −sec
the relaxation time

is τtr ∼ 10−13–10−14 s. The magnetic field of B ∼ 1T can
precess a free electron within the time τs ∼ 5 × 10−12 s. In
Weyl semimetals with a large Landé g factor g ∼ 102 [56] the
same magnetic field should precess an electron with the time
τs ∼ 10−14–10−13 s. This implies the momentum relaxation
and the spin precession times are of the same order, τtr ∼ τs .
This is proposed in the semiclassical range since ωcτtr ∼
0.3 < 1 for the magnetic field B ∼ 3–5 T [57]. Another
supporting argument in favor of the magnetic-field-dependent
transport time in these materials within a semiclassical region
is given in Ref. [31].

The above motivates us to include the magnetic field
dependence in the relaxation time of the Weyl particle gas
in a plane perpendicular to the magnetic field, 1

τ (B ) = 1
τtr

+
�
h̄

; otherwise, it stays constant, 1
τ (B ) = 1

τtr
.By including this

magnetic-field-dependent relaxation time for MR, the resis-
tivity element ρxx increases with the magnetic field, but the
resistivity element ρzz decreases due to the chiral anomaly.
Therefore, the slope of resistivity changes by rotating electric
field from the magnetic field axis. This is shown in Fig. 6.
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This maximum in the MR for angle θ = π
6 between applied

fields is due to the competition between the chiral anomaly
and magnetic-field-dependent transport time. The MR plot
qualitatively agrees with the experimental data of Ref. [27].

IV. CONCLUSION

In this study, we calculated the MC with both the Lorentz
force and the Berry curvature force. For a finite angle between
the electric and magnetic fields, the MC starts decreasing
with increasing magnetic field due to the Lorentz force. It
reaches the minimum point, and then it starts increasing due to
the chiral anomaly. When these fields are orthogonal to each
other, the MC plots show only a decrease with the magnetic
field due to the Lorentz force. The MC increases rapidly with
the magnetic field when both fields are in the same direction.
This increase in the MC is an effect of the chiral anomaly
(Fig. 3). This increase in the MC due to the chiral anomaly is
quadratic (Fig. 2). The relative strength between the Lorentz
and Berry curvature forces depends on the transport time. The
chiral anomaly effect is more prominent in a clean sample
(Fig. 4).

The plot of the MR does not show the effect of the
Lorentz force within a single-band semiclassical theory. The
diagonal elements of the MR show only an effect of the Berry
force. Therefore, the transverse MR ρxx is almost constant (a
slight change is caused by the modification of phase space
with the magnetic field; Fig. 5). In this study, the transverse
MR function’s dependence on the magnetic field was made
consistent with the experimental results by phenomenologi-
cally including the linear in magnetic field dependence in the
transport time [27,36]. This is a plausible approximation for
the relaxation mechanism of a distribution function. These
results are valid for the high-mobility samples and with large
Landé g factor. In these conditions, the momentum relaxation
time and the spin precession time are of the same order within
a semiclassical region [57]. We predict a linear increase in
the transverse MR of high quality, and the large value of the
Landé g factor sample is due to the spin precession. In future
work we plan to solve the full spin Boltzmann equation to test
this ansatz. We conclude by inviting experimentalists to detect
the comparison between the Lorentz force and the Berry
curvature force by avoiding Weyl semimetals that have a large
Landé g factor. The MR element ρxx should be independent of
magnetic field to detect the comparison between these forces
within the semiclassical region.

APPENDIX: EQUATION OF MOTION DERIVATION

The formulas for the mean velocity and the Lorentz force
of the Bloch wave packet are derived here. The equation of
motion for the Bloch wave packet was derived by using the
variational time-dependent principle [29,41,42]. Here we con-
sider only the electromagnetic field coupling with the Bloch
wave packet. The Bloch wave packet is formed by integrating
the Bloch wave function over the Bloch wave vector h̄�q:

|ψ〉 =
∫

�q
|a(q, t )| expi[�q·x̂−γ (�q,t )] |u(�q )〉, (A1)

where γ (�q, t ) is the phase of the Bloch wave packet and
|u(�q )〉 is the atomic part of the Bloch wave function. We are
assuming a single-band Bloch wave function, so no index is
needed to define different orbitals |un=1(�q )〉 = |u(�q )〉. The
Bloch wave packet is assumed to be normalized 〈ψ |ψ〉 = 1.
The spatial integral over the Bloch wave packet consists of
two parts; the bigger part involves the whole crystal (our
sample under investigation), and the smaller part involves
only the unit cell,

∫
�x = ∫

cell ×
∫

crystal. The formula for the
Lagrangian of the Bloch wave packet is written by following
the time-dependent variational principle:

L = 〈ψ |
(

ih̄
d

dt
− H

)
|ψ〉. (A2)

The first term gives

〈ψ |ih̄ d

dt
|ψ〉 =

∫
�q
|a(�q, t )|2 ∂γ (�q, t )

∂t

= ∂γ (�qc, t )

∂t
. (A3)

In the above equation we have used the fact that probability
is not time dependent, ∂

dt

∫
�q |a(�q, t )|2 = 0, and the Bloch

wave packet is narrowly peaked in the unit cell. The time
derivative of the Bloch wave packet phase ∂

∂t
γ (�qc, t ) is related

to its mean position �xc = 〈ψ |x̂|ψ〉 and the �q dependence
〈u(�q )|i ∂

∂ �q u(�q )〉:

〈ψ |x̂|ψ〉 =
∫

�q,�q ′
δ(�q − �q ′)

{
i

2

∂

∂ �q |a(�q, t )|2 + |a(�q, t )|2

×
[

∂

∂ �q γ (�q, t ) + 〈u(�q )|i ∂

∂ �q u(�q )〉
]}

, (A4)

where the fact that probability is conserved also means∫
�q

∂
∂ �q |a(�q, t )|2 = δ|a(�q, t )|2 = 0,

〈ψ |x̂|ψ〉 =
∫

�q
|a(�q, t )|2

[
∂

∂ �q γ (�q, t ) + 〈u(�q )|i ∂

∂ �q u(�q )〉
]
,

(A5)

�xc = ∂

∂ �qc

γ (�qc, t ) + 〈u(�qc )|i ∂

∂ �qc

u(�qc )〉. (A6)

Adding a total time derivative function to a Lagrangian does
not change the Euler’s Lagrange equation:

d

dt
γ (�qc, t ) = �̇qc · ∂

∂ �qc

γ (�qc, t ) + ∂

∂t
γ (�qc, t ), (A7)

∂

∂t
γ (�qc, t ) = d

dt
γ (�qc, t ) − �̇qc · �xc + �̇qc · 〈u(�qc )|i ∂

∂ �qc

u(�qc )〉.
(A8)

This also implies d
dt

[γ (�qc, t ) − �qc · �xc] = 0. By using
Eqs. (A3) and (A8),

〈ψ |ih̄ d

dt
|ψ〉 = �qc · �̇xc + �̇qc · 〈u(�qc )|i ∂

∂ �qc

u(�qc )〉. (A9)

Now we shall include the coupling of the electromagnetic
fields [φ(�x, t ), A(�x, t )] with the Bloch wave packet. This
will modify the Bloch wave vector �q into the gauge-invariant
Bloch wave vector �k = �q + e �A(�x, t ).
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This is the expectation value of the Hamiltonian,

〈ψ |H |ψ〉 = ε �M − eφ(�xc, t ). (A10)

Here ε �M = ε�kc
− �M · �B, and �M is the orbital magnetization.

The orbital magnetization gives the perturbation correction in
the energy. In our calculation of magnetotransport the orbital
magnetization effect is ignored.

By using Eqs. (A9) and (A10) in Eq. (A2), we derive the
Lagrangian of Bloch wave packet:

L(�xc, �̇xc, �kc, �̇kc, t ) = −ε �M + eφ(�xc, t )

+ �̇xc · [�kc − e �A(�xc, t )]

+ �̇kc · 〈u(�kc )|i ∂

∂ �kc

u(�kc )〉. (A11)

The Lorentz force acting on the Bloch wave packet is derived
by using Euler’s Lagrange equation of the canonical conjugate
pair [�xc, �̇xc]:

d

dt

∂L

∂ �̇xc

= ∂L

∂ �xc

, (A12)

∂L

∂x
j
c

= e
∂φ(�xc, t )

∂x
j
c

− eẋi
c

∂Ai (�xc, t )

∂x
j
c

, (A13)

d

dt

∂L

∂ẋ
j
c

= δij

(
h̄k̇i

c − e
∂Ai (�xc, t )

∂t
− eẋk

c

Ai (�xc, t )

∂xk
c

)
, (A14)

h̄�̇k = −e( �E + �̇xc ∧ �B ). (A15)

Also, the formula for the mean velocity of the Bloch wave
packet is derived by using Euler’s Lagrange equation for the

canonical conjugate pair [h̄�kc, h̄�̇kc]:

1

h̄

d

dt

∂L

∂ �̇kc

= 1

h̄

∂L

∂ �kc

, (A16)

1

h̄

∂L

∂ki
c

= − 1

h̄

∂ε �M
∂ki

+ ẋj δij , (A17)

1

h̄

d

dt

∂L

∂k̇i
c

= i
d

dt
〈u(�kc )

∣∣∣∣∣∂u(�kc )

∂k
j
c

〉
δij , (A18)

i
d

dt
〈u(�kc )

∣∣∣∣∣∂u(�kc )

∂k
j
c

〉
= ik̇i

c

(〈
∂u(�kc )

∂ki
c

∣∣∣∣∂u(�kc )

∂k
j
c

〉

−
〈

∂u(�kc )

∂k
j
c

∣∣∣∣∣∂u(�kc )

∂ki
c

〉)
. (A19)

Let’s define Berry curvature:

�k
n = i

(〈
∂u(�kc )

∂ki
c

∣∣∣∣∂u(�kc )

∂k
j
c

〉
−
〈

∂u(�kc )

∂k
j
c

∣∣∣∣∂u(�kc )

∂ki
c

〉)
. (A20)

Therefore, anomalous velocity enters into the equation of
motion of the mean position of the Bloch wave packet �xc:

�̇xc = �v − �̇kc ∧ ��. (A21)

Here �v = 1
h̄
��kε �M . The anomalous velocity �̇kc ∧ �� is the

Lorentz force in momentum space:

h̄�̇kc = −e( �E + �̇xc ∧ �B ), (A22)

�̇xc = �v − �̇kc ∧ ��. (A23)

One can uncouple these equations by using vector cross-
product properties ( �A ∧ �B ) ∧ �C = ( �A · �C ) �B − ( �B · �C) �A:

�̇xc = 1

1 + e �B· ��
h̄

[�v − e

h̄
�E ∧ �� + e

h̄
( �� · �v) �B], (A24)

h̄�̇kc = 1

1 + e �B· ��
h̄

[e �E + e�v ∧ �B + e2

h̄
( �E · �B ) ��]. (A25)

These are the formulas of the mean velocity �̇xc and the Lorentz

force h̄�̇kc of the Bloch wave packet.
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