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Constructing an effective field theory in terms of doped magnetic impurities [described by an O(3) vector
model with a random mass term], itinerant electrons of spin-orbit coupled semiconductors (given by a Dirac
theory with a relatively large mass term), and effective interactions between doped magnetic ions and itinerant
electrons (assumed by an effective Zeeman coupling term), we perform the perturbative renormalization group
analysis in the one-loop level based on the dimensional regularization technique. As a result, we find that the mass
renormalization in dynamics of itinerant electrons acquires negative feedback effects due to quantum fluctuations
involved with the Zeeman coupling term, in contrast with that of the conventional problem of quantum
electrodynamics, where such interaction effects enhance the fermion mass more rapidly. Recalling that the
applied magnetic field decreases the band gap in the presence of spin-orbit coupling, this renormalization group
analysis shows that the external magnetic field overcomes the renormalized band gap, allowed by doped magnetic
impurities even without ferromagnetic ordering. In other words, the Weyl metal physics can be controlled by dop-
ing magnetic impurities into spin-orbit coupled semiconductors, even if the external magnetic field alone cannot
realize the Weyl metal phase due to relatively large band gaps of semiconductors. Furthermore, we emphasize
that quasiparticles do not exist in this emergent disordered Weyl metal phase due to correlations with strong
magnetic fluctuations. This non-Fermi-liquid type Weyl metal state may be regarded to be a anomalous metallic
phase in the respect that a topologically nontrivial band structure appears in the vicinity of quantum criticality.
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I. INTRODUCTION

The problem of doping magnetic impurities into semicon-
ductors has been investigated for more than two decades,
referred to as dilute magnetic semiconductors [1–3]. Several
fundamental problems such as the nature of effective inter-
actions between randomly doped magnetic impurities and the
mechanism of spin polarization of itinerant electrons resulting
from these random-positioned magnetic impurities had been
discussed both extensively and intensively. Unfortunately, the
final goal to achieve the ferromagnetic critical temperature of
itinerant electrons at the order of room temperature has not
been reached, yet.

In this study we propose a different aspect in the problem
of dilute magnetic semiconductors: a Weyl metal phase arises
as a result of such doped magnetic impurities in spin-orbit
coupled semiconductors under external magnetic fields. It
may not be completely a new idea that breaking time-reversal
symmetry by either applying magnetic fields or doping mag-
netic ions turns spin-orbit coupled Dirac metals into Weyl
metals [4–6]. An essential point is that applied magnetic fields
of the order of 10 T are much smaller than the band gap of
original semiconductor samples without magnetic impurities,
given by the order of 102−103 meV. This implies that it is
not possible to reach the Weyl metal phase only by applying
external magnetic fields without doped magnetic impurities.
Doping magnetic impurities such as Eu and Gd into spin-orbit

coupled semiconductors, recent experiments could realize
Weyl metal phases in EuxBi2−xSe3 and GdxBi2−xTe3−ySey ,
respectively, where the doping concentration covers from 2%
to 4% approximately [7]. Here, transport measurements have
shown that negative magnetoresistivity appears only when
the applied magnetic field is in parallel with the applied
electrical current [7], referred to as the negative longitudinal
magnetoresistivity and regarded to be a fingerprint of the Weyl
metallic state [8–10].

We investigate the role of doped magnetic impurities in
spin-orbit coupled semiconductors, where gapped itinerant
electrons are described by a Dirac theory with a mass param-
eter. First, we consider the situation that magnetic impurities
are randomly distributed in the vicinity of antiferromagnetic
ordering [11]. This physical picture suggests an O(3) vector
model with the relativistic dispersion for the dynamics of ran-
domly distributed magnetic impurities, where the distribution
function of the random mass term is set to be Gaussian with
a zero average value and a finite variance. Second, we assume
that the dominant interaction channel between doped mag-
netic impurities and gapped itinerant electrons is described
by the Zeeman term, reformulated as a chiral-current minimal
coupling term, where the O(3) vector field of the doped
magnetic impurity plays the role of an emergent chiral gauge
field in the dynamics of gapped itinerant electrons [12,13].

Based on this effective field theory, we perform the per-
turbative renormalization group analysis up to the one-loop
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level. As a result, we find that the excitation gap for itin-
erant electrons of semiconductors acquires negative renor-
malization effects due to chiral current fluctuations driven
by doped magnetic impurities. However, it turns out that the
gap cannot be closed by such chiral-current fluctuations since
their average vanishes in the vicinity of antiferromagnetic
ordering. If ferromagnetic ordering is considered, the chiral-
current flowing phase is realized as nothing but the Weyl
metal state [10,12,13]. Recent experiments have shown anti-
ferromagnetic ordering at low temperatures for EuxBi2−xSe3

and GdxBi2−xTe3−ySey [7]. Even if the gap cannot be closed
by doped magnetic impurities alone, this situation opens a
new possibility: applying external magnetic fields into these
magnetically doped systems, renormalized band gaps would
be closed to allow Weyl metal phases. Actually, our renormal-
ization group analysis leads us to propose an interesting phase
diagram in the plane of temperature and external magnetic
field at a given disorder strength for magnetic impurities.
A Weyl metal phase arises below a critical temperature and
above a critical magnetic field, relatively low due to the
role of doped magnetic impurities. In particular, we sug-
gest a two-parameter scaling theory [10] for the longitudinal
magnetoconductivity near the semiconductor to Weyl metal
transition.

One interesting aspect of the emergent disordered Weyl
metal state is that quasiparticles do not exist due to corre-
lations with strong magnetic fluctuations. We claim that this
non-Fermi-liquid type Weyl metal state may be regarded to be
a metallic phase in the respect that a topologically nontrivial
band structure appears in the vicinity of quantum criticality.

This paper is organized as follows. In Sec. II we construct
an effective field theory for spin-orbit coupled semiconductors
and doped magnetic impurities. In addition, we prepare for the
renormalization group analysis, setting up the general struc-
ture of the renormalization group transformation. In Sec. III
we perform the renormalization group analysis up to the
one-loop level, based on the dimensional regularization. In
Sec. IV we propose a phase diagram for our quantum phase
transition from a spin-orbit coupled semiconducting phase to
a Weyl metal phase, driven by doped magnetic impurities
in the presence of external magnetic fields. In addition, we
suggest a two-parameter scaling theory for the longitudinal
magnetoconductivity near the semiconductor to Weyl metal
transition. In Sec. V we discuss various subjects on the emer-
gence of non-Fermi-liquid type Weyl metals due to strong
fluctuations of localized magnetic moments: Sec. V A: Model
construction, Sec. V B: Origin of the negative feedback effect
on the mass gap, Sec. V C: Role of the random-mass disorder,
Sec. V D: Role of potential scattering, Sec. V E: Ward
identity, and Sec. V F: Higher-order quantum corrections.
In the Appendices we show all details of our perturbative
renormalization group analysis.

II. MODEL SYSTEM

A. Effective field theory

Our effective Hamiltonian consists of three main parts. The
first describes the dynamics of electrons in topological or band
insulators with strong spin-orbit coupling, given by a free

Dirac theory as a minimal model,

Ĥf =
∑

k

ψ
†
σak

(
vk · σ σσ ′ ⊗ τ z

ab + mIσσ ′ ⊗ τ x
ab

)
ψσ ′bk, (1)

where the sign change of the mass parameter m gives rise to
a topological phase transition from a topological insulating
state to a normal band insulating phase [14]. Here, a (σ ) is
a band (spin) index. An important parameter is the excitation
gap m of these electrons, given by the order of 102−103 meV,
which cannot be closed by external magnetic fields alone
as discussed before. This effective Dirac theory is proposed
to describe itinerant electrons in Bi2Se3 (EuxBi2−xSe3) and
Bi2Te3−ySey (GdxBi2−xTe3−ySey) [7].

The second describes the dynamics of doped magnetic
impurities. We propose an effective Hamiltonian for doped
magnetic impurities as follows:

Ĥm =
∑
ij

Jij Si · Sj , (2)

where Jij is a random variable, described by a probabil-
ity functional of P [Jij ]. This effective Heisenberg model
with random exchange interactions describes the dynamics
of magnetic ions such as Eu in EuxBi2−xSe3 and Gd in
GdxBi2−xTe3−ySey [7]. An essential question is how these
magnetic impurities interact with each other in this almost
insulating host, i.e., the nature of Jij and P [Jij ] [1–3]. It
turns out that samples in recent experiments are not in the
insulating regime completely [7,11]. Instead, resistivity mea-
surements show quite a small number of metallic carriers.
Although this aspect does not mean that the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction would be the mechanism
of effective interactions between doped magnetic moments
[15], where the dynamics of such electrons with a small Fermi
surface would be essential to determine the nature of their
effective interactions, we resort to this physical picture as
our reference. The small Fermi surface leads us to consider
ferromagnetic interactions dominantly between such mag-
netic moments, where the oscillating period of this effective
interaction, given by the inverse of the Fermi momentum, is
regarded to be quite long, compared with the average distance
between magnetic impurities. As a result, it is natural to
consider ferromagnetic clusters as coarse-grained variables
and their effective interactions (see Fig. 1). Measurements for
spin susceptibility in recent experiments [7,11] show that an
antiferromagnetic order appears around the order of 10 K,
depending on physical properties of magnetic impurities in
samples, of course, including the concentration.

These experimental results drive us to construct an effec-
tive field theory for such ferromagnetic clusters � in the form
of an O(3) vector model with a relativistic dispersion relation
[11]

Sm =
∫ β

0
dτ

∫
d3r

{
(∂τ�)2 + c2(∂r�)2

+ [r + δr (r )](� · �) + u

8
(� · �)2

}
. (3)

Here, their random distributions in space are simulated by
the introduction of a random mass term δr (r ), regarded to
be the most relevant term in this formulation. We recall
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FIG. 1. A schematic physical picture of a spin-orbit coupled
semiconductor doped with magnetic impurities. Black arrows with
blue balls denote doped magnetic impurity spins. Black polygons
represent ferromagnetic clusters, correlated with each other via
effective antiferromagnetic interactions. Red curve expresses the
electron’s wave-function envelope.

that the transverse field Ising model can be mapped into
an effective �4 theory in (d + 1) dimensions, assuming a
paramagnetic ground state, where d is a spatial dimension
[16]. In other words, the transverse field Ising model shares
essentially the same infrared universal physics with the �4

field theory, described by the Wilson-Fisher fixed point for
quantum criticality [16]. Following the same procedure for
the O(3) Heisenberg model, we obtain the above O(3) vector
field theory. Actually, this mapping gives rise to other types
of randomness in addition to the random mass term, given by
random velocity and random self-interaction terms. Utilizing
the replica trick and integrating the effective replica action
over these random variables, one finds that these random
variables are irrelevant at least for the weak disorder regime
in the renormalization group analysis. In this respect, we keep
only the random mass term to describe the disordered nature
of doped magnetic ions.

The most important third part is how these ferromagnetic
clusters interact with electrons of the semiconducting host.
Although it is not easy to determine the average size of such
clusters, we propose an effective Zeeman interaction term
between doped magnetic impurities and itinerant electrons,
given by

Ĥint = −λ
∑

i

ψ
†
iσaσ σσ ′ ⊗ Iabψiσ ′b · Si . (4)

This effective interaction term is quite special in the respect
that the chiral matrix appears in the mathematical expression,
where the ferromagnetic cluster field drives the chiral current
along all directions of fluctuations [12,13]. The mathematical
formulation implies the conservation law of the U(1) chiral
current. Indeed, the Ward identity is confirmed in the renor-
malization group analysis of the one-loop level, proven in
Sec. V E.

Based on the above discussion, we construct an effective
free-energy functional as follows:

F = − 1

β

∫
Dδ r (r )P [δr (r )] ln

∫
Dψ D� e−Sf −Sm−Sint ,

Sf =
∫ β

0
dτ

∫
d3r ψ̄ (γ0∂τ − ıvγ · ∂r + m)ψ,

Sm =
∫ β

0
dτ

∫
d3r

{
(∂τ�)2 + c2(∂r�)2

+ [r + δr (r )](� · �) + u

8
(� · �)2

}
,

Sint = −
∫ β

0
dτ

∫
d3r λψ̄γ γ5ψ · �. (5)

Here, the Dirac theory is reformulated in terms of Dirac
gamma matrices, given by

γ0 =
(

0 1

1 0

)
, γi =

(
0 −σi

σi 0

)
, γ5 =

(
1 0

0 −1

)
(6)

with (i = 1, 2, 3), where ψ = (ψ↑1 ψ↓1 ψ↑2 ψ↓2)T is a
Dirac spinor field. In particular, we point out that the Zeeman
interaction term is rewritten in the form of the chiral-current
and gauge-field minimal coupling term, where the three-
component vector field of � plays the role of the chiral gauge
field. We assume the Gaussian distribution for the random
mass, given by P [δr (r )] = N

∫
Dδ r (r ) exp[− ∫

d3 r[δr (r )]2

2�m
],

where N is the normalization constant and �m is the variance.
Resorting to the replica trick for the disorder average

[10,12], we reformulate our effective field theory as follows:

Z =
∫

D(ψ̄ (a), ψ (a) )D�(a)e−Sf −Sm−Sint ,

Sf =
∫ β

0
dτ

∫
d3r ψ̄ (a)(γ0∂τ − ıvγ · ∂r + m)ψ (a),

Sm =
∫ β

0
dτ

∫
d3r

{
(∂τ�

(a) )2 + c2(∂r�
(a) )2

+ r (�(a) )2 + u

8
(�(a) · �(a) )2

−
∫ β

0
dτ ′ �m

8

(
�(a)

τ · �(a)
τ

)(
�

(a′ )
τ ′ · �

(a′ )
τ ′

)}
,

Sint = −
∫ β

0
dτ

∫
d3r λψ̄ (a)γ γ5ψ

(a) · �(a), (7)

where (a) is the replica index. We recall that fermions (ψ (a))
represent semiconductor bands while bosons (�(a)) denote
spin fluctuations of ferromagnetic clusters around antiferro-
magnetic ordering. They are characterized by the fermion
velocity (v), the fermion mass (m), the boson velocity (c),
and the boson mass (r). Bosons are self-interacting with
their interaction strength (u), and disorder scattering with the
disorder strength (�m). Both fermions and bosons are inter-
acting through the Zeeman coupling term with the interaction
strength (λ). A total of seven parameters define this effective
field theory completely.
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B. Setup for renormalization group analysis

1. Renormalized effective field theory within the
dimensional regularization scheme

We take the double ε-expansion scheme [17], where all
coupling constants of the self-interaction strength, the dis-
order strength, and the Zeeman interaction strength can be
treated as perturbations. We generalize not only the space
dimension (3 → d), but also the time dimension (1 → dτ ).
Then, the bare effective action is given by

Sf =
∫

ddτ τ

∫
dd r ψ̄ (a)(γ τ · ∂τ − ıγ · ∂r + m)ψ (a),

Sm =
∫

ddτ τ

∫
dd r

{
(∂τ�

(a) )2 + c2(∂r�
(a) )2

+ r (�(a) )2 + u

8
(�(a) · �(a) )2,

−
∫

ddτ τ ′ �m

8

(
�(a)

τ · �(a)
τ

)(
�

(a′ )
τ ′ · �

(a′ )
τ ′

)}
,

Sint = −
∫

ddτ τ

∫
dd r λψ̄ (a)γ γ5ψ

(a) · �(a), (8)

where γ τ = (γ0, . . . , γ(dτ −1)) and γ = (γ1, . . . , γd ) follow
the Clifford algebra as {γτi, γj } = 0, {γτi, γτj } = 2δij 12×2,
and {γi, γj } = −2δij 12×2.

Dimensional analysis gives scaling dimensions of [ψ] =
d+dτ −1

2 , [�] = d+dτ −2
2 , [c] = 0, [m] = 1, and

[u] = 4 − d − dτ , [�m] = 4 − d, [λ] = 4 − d − dτ

2
.

(9)

This leads us to set dτ = ετ and d = 4 − ε − ετ in the loop
calculation so that all coupling constants are put into the
perturbative regime, where [u] = ε, [�m] = ε + ετ , and [λ] =
ε
2 . In principle, we set ετ = 1 and ε = 0 in the last stage.
Here, the fermion velocity v is set to be unity. As a result,
we have a total of six parameters to characterize our effective
field theory.

Introducing all counterterms to cancel ultraviolet (UV)
divergences from quantum fluctuations into the above bare
action, we have an effective renormalized action

Sf =
∫

ddτ τ

∫
dd r ψ̄ (a)

r (Z0γ τ · ∂τ − Z1ıγ · ∂r + μZmmr )ψ (a)
r ,

Sm =
∫

ddτ τ

∫
dd r

{
Z2

(
∂τ�

(a)
r

)2 + Zcc
2
r

(
∂r�

(a)
r

)2 + μ2Zrrr

(
�(a)

r

)2 + μεZuur

8

(
�(a)

r · �(a)
r

)2

−
∫

τ ′

με+ετ Z�m
�mr

8

(
�(a)

τ r · �(a)
τ r

)(
�

(a′ )
τ ′r · �

(a′ )
τ ′r

)}
,

Sint = −
∫

ddτ τ

∫
dd r Zλμ

ε/2λrψ̄
(a)
r γ γ5ψ

(a)
r · �(a)

r . (10)

Here, μ is a renormalization scale ([μ] = 1). Field renor-
malization factors are introduced to relate bare fields with
renormalized ones as follows: ψ = Z

1/2
ψ ψr and � = Z

1/2
� �r

with Zψ = Z1(Z0/Z1)dτ and Z� = Z2(Z0/Z1)dτ −2, where
the subscript r means “renormalized.” All other renormalized
parameters are given by

mr = μ−1(Z1/Zm)m,

cr = (Z2/Zc )1/2(Z0/Z1)−1c,

rr = μ−2(Z2/Zr )(Z0/Z1)−2r,
(11)

λr = μ− ε
2 Z

1/2
2 (Z0/Z1)−1+ετ /2λ

ur = μ−ε
(
Z2

2

/
Zu

)
(Z0/Z1)−4+ετ u,

�mr = μ−ε−ετ
(
Z2

2

/
Z�m

)
(Z0/Z1)−4�m,

where the Ward identity of Z1 = Zλ has been used.
Counterterms are given by singular quantum corrections

δ0γ0 = −ı∂k0�(k), δ1γ = ∂k�(k), δmm = �(k)|k=0,

δ2 = ∂q2
0
�(q ), δc = ∂q2�(q ), δrr = �(q )|q=0,

(12)
δλ = −λ−1

∑
i

δλ(i), δu = u−1
∑

i

δu(i),

δ�m
= −�−1

m

∑
i

δ�m(i),

where all renormalization factors are related to these countert-
erms as Z0 = 1 + δ0, Z1 = 1 + δ1, Zm = 1 + δm, Z2 = 1 +
δ2, Zc = 1 + δc, Zr = 1 + δr , Zu = 1 + δu, Z�m

= 1 + δ�m
,

and Zλ = 1 + δλ. Here, we resort to the minimal subtraction
scheme and use the convention of G−1(k) = G−1

0 (k) − �(k)
and D−1(k) = D−1

0 (q ) − �(q ). �(k) (�(q )) are singular
self-energy corrections for fermions (bosons), δλ(i) are singu-
lar fermion-boson vertex corrections, δu(i) are singular boson
self-interaction vertex corrections, and δ�m(i) are singular
boson disorder-scattering vertex corrections. The meaning of
i will be clarified below, used to identify various Feynman
diagrams.

2. Renormalization group equations

The renormalized Green’s function is defined as

〈ψ̄r (k1) . . . ψr (km+1) . . . �r (k2m+1) . . . 〉

= G(m,n)({ki}; F, μ)δd+dτ

⎛
⎝ 2m∑

i=1

ki −
2m+n∑

j=2m+1

kj

⎞
⎠, (13)

where the coupling constants are put into a vector form of
F = (λ, u,�m,m, c, r ). This is related to the bare Green’s
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function as

G(m,n)({ki}; F, μ) = Z−m
ψ Z

− n
2

� (Z0/Z1)−ετ G
(m,n)
B ({kBi}; FB ).

(14)

It is straightforward to show that the renormalized Green’s
function satisfies the following differential equation, referred
to as the Callan-Symanzik equation for the Green’s function:{

2m+n∑
i=1

(
zkτ,i · ∇kτ,i

+ ki · ∇ki

) − β · ∇F

− 2m

(
−5 − ε

2
+ ηψ

)
− n

(
−6 − ε

2
+ ηφ

)

− ετ (z − 1) − (4 − ε)

}
G(m,n)({ki}; F, μ) = 0. (15)

Here, beta functions are expressed in terms of renormalization
factors as follows:

βλ = λ

[
−ε

2
−

(
1 − ετ

2

)
(z − 1) + 1

2

∂ ln Z2

∂ ln μ

]
,

βu = u

[
−ε − (4 − ετ )(z − 1) + ∂ ln(Z2

2/Zu)

∂ ln μ

]
,

β�m
= �m

[
−ε − ετ − 4(z − 1) + ∂ ln(Z2

2/Z�m
)

∂ ln μ

]
,

(16)

βc = c

[
−(z − 1) + 1

2

∂ ln (Z2/Zc )

∂ ln μ

]
,

βm = m

[
−1 + ∂ ln(Z1/Zm)

∂ ln μ

]
,

βr = r

[
−2 − 2(z − 1) + ∂ ln(Z2/Zr )

∂ ln μ

]
,

where we defined βλ ≡ ∂λ
∂ ln μ

, βu ≡ ∂u
∂ ln μ

, β�m
≡ ∂�m

∂ ln μ
, βc ≡

∂c
∂ ln μ

, and βr ≡ ∂r
∂ ln μ

. z is the dynamical critical exponent,
introduced to incorporate the space-time anisotropy. ηψ (η�)

is the anomalous scaling dimension for the fermion (boson)
field, describing its fractal behavior. They are given by

z = 1 + ∂ ln(Z0/Z1)

∂ ln μ
, ηψ = 1

2

∂ ln Z1

∂ ln μ
+ ετ

2
(z − 1),

η� = 1

2

∂ ln Z2

∂ ln μ
+

(
ετ

2
− 1

)
(z − 1). (17)

Solving the Callan-Symanzik equation at the fixed point,
given by the fact that all beta functions vanish, we obtain
the scaling expressions for both Green’s functions of fermions
and bosons, respectively,

G(kτ , k) = 1

|k|1−ετ (z−1)−2ηψ
g̃(|kτ |1/z/|k|),

(18)

D(qτ , q ) = 1

|q|2−ετ (z−1)−2η�
d̃ (|qτ |1/z/|q|).

Here, g̃(|kτ |1/z/|k|) [d̃(|qτ |1/z/|q|)] is the scaling function of
the fermion (boson) propagator, which should be found by
explicit calculations, not trivial.

III. RENORMALIZATION GROUP ANALYSIS

A. Self-energy corrections

Based on the renormalized effective action, we introduce
Feynman rules as shown in Fig. 2. Here, the thick line rep-
resents an electron propagator, and the thin line describes the
Green’s function of an order-parameter field. The spring line
means an effective self-interaction between order-parameter
fluctuations, and the dotted line gives an interaction vertex in-
volved with disorder. The

⊗
symbol describes a counterterm

for each propagator and each vertex. Resorting to these Feyn-
man rules, one can take into account quantum fluctuations
perturbatively, where the dimensional regularization scheme
is utilized.

The fermion self-energy is shown in Fig. 3, diagram (1).
The calculation is similar to that of quantum electrodynamics

FIG. 2. Feynman rules in momentum space. The first line represents fermion and boson propagators, respectively. The second line expresses
counterterms for fermion and boson propagators, respectively. The third line describes three types of vertices for boson self-interactions,
boson disorder scattering, and fermion-boson Zeeman interactions, respectively. The last line denotes counterterms for all interaction vertices
described by the third line.
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(1) (2)

(4) (5)
(3)

FIG. 3. Self-energy corrections for both fermions and bosons.
The first diagram is the fermion’s self-energy and the others are the
boson’s self-energy corrections.

(QED) [16]. Here, we summarize our results

Z0 − 1 = − 3λ2

4π2εc(1 + c)2
,

Z1 − 1 = − (1 + 2c)λ2

12π2εc(1 + c)2
, (19)

Zm − 1 = + 3λ2

4π2εc(1 + c)
,

where all integral details are shown in Appendix A 1. The
main difference compared to QED is the fact that the anoma-
lous dimension of the fermion mass is positive, i.e., Zm − 1 >

0. In other words, the electron mass is reduced by spin fluctu-
ations while it is enhanced by gauge fluctuations in QED. This
is an unusual feature given by chiral gauge-field fluctuations.
There exist other differences. The boson velocity appears in
the renormalization factors because of the absence of the
Lorentz symmetry (c 
= v = 1). The numerator factors also
differ from those of QED because there is no time component
here for chiral gauge-field fluctuations, i.e., �0 = 0.

The other diagrams in Fig. 3 are for boson self-energy
corrections. The calculation of Fig. 3, diagram (2), is similar
to that of QED while integrals of the others are in parallel with
those of the φ4 theory. We also summarize our results only:

Z2 − 1 = − λ2

6π2ε
− 4�m

(4π )3/2(ε + ετ )c3
,

Zc − 1 = − λ2

6π2εc2
, (20)

Zr − 1 = 5u

16π2εc3
− 4�m

(4π )3/2(ε + ετ )c3
,

where all details involved with integrals are shown in Ap-
pendix A 2. The Zeeman coupling term results in negative
field renormalization, which may be interpreted as screening
effects for all coupling constants. The disorder scattering
causes additional field renormalization, identified with addi-
tional screening effects. This additional field renormalization
also decreases the boson velocity while the boson mass is
unaffected by the disorder scattering since the effect on it is

(1) (2) (3) (4) (5)

(14)

(9)

(13)(12)

(8)(7)

(11)(10)

(6)

FIG. 4. Three types of vertex corrections. Vertex corrections for
the disorder scattering are in the first line, and those for the boson
interaction, in the second and the third lines. The last diagram in
the third line should be interpreted as an amputated diagram. The
diagram in the box is the correction in the one-loop order for the
Zeeman coupling.

canceled by the �m term in Zr . The boson self-interaction
increases the boson mass as well known in the φ4 theory while
it does not give the field renormalization in the one-loop order
[16].

B. Vertex corrections

Vertex corrections are shown in Fig. 4. The calculation is
standard, similar to the φ4 theory for diagrams from Fig. 4,
diagram (1), to Fig. 4, diagram (12), and QED for Fig. 4,
diagram (13), and Fig. 4, diagram (14), though one should
be careful about the mixing of the boson interaction and the
disorder scattering, shown in Figs. 4, diagrams (4), (5), (10),
(11), and (12). Our results are summarized as

Zλ − 1 = − λ2(1 + 2c)

12π2c(1 + c)2ε
,

Zu − 1 = 11u

16π2c3ε
− 12�m

(4π )3/2c3(ε + ετ )
, (21)

Z�m
− 1 = − 8�m − 12u

(4π )3/2c3(ε + ετ )
+ u

4π2c3ε
.

See Appendix A 3 for more details. We point out that Zλ = Z1

is satisfied by the Ward identity (Sec. V E). Figure 4, diagram
(13), possibly gives renormalization for the boson interaction.
However, it turns out to vanish by the Ward identity. The dis-
order scattering gives an antiscreening effect while the boson
interaction causes a screening effect in the renormalization of
the boson interaction and the disorder scattering.

C. Beta functions and fixed points

Inserting all renormalization factors of Eqs. (19), (20), and
(21) into the formal expressions for the beta functions (16),
we obtain

βλ = λ

[
−ε

2
+ (c3 + 2c2 + 2c − 4)λ2

12π2c(1 + c)2
+ 2�m

(4π )3/2c3

]
,

βu = u

[
−ε + (4c3 + 8c2 + 10c − 24)λ2

12π2c(1 + c)2
+ 11u

16π2c3
− 4�m

(4π )3/2c3

]
,
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FIG. 5. Two types of fixed points described by the beta functions in Eq. (22). We introduce dimensionless couplings as α̃ ≡ λ2

12π2c
, ũ ≡

u

16π2c3 , and �̃ ≡ 2�m

(4π )3/2c3 . (a) When ε = 0.01, the boson interaction strength and the disorder strength are finite while the boson velocity and the
Zeeman interaction strength vanish in the low-energy limit. This corresponds to the disordered Wilson-Fisher fixed point. (b) When ε = 0.3,
all coupling constants are finite. This fixed point is identified as a disordered Weyl metal phase in that the fermion mass parameter gets the
negative feedback from the Zeeman interaction term, and the Weyl metallic phase may arise in the presence of external magnetic fields.

β�m
= �m

[
−1 − ε + (4c3 + 8c2 + 12c − 32)λ2

12π2c(1 + c)2
+ (24

√
π + 4)u

16π2c3

]
,

βm = m

[
−1 + (10 + 11c)λ2

12π2c(1 + c)2

]
,

βc = c

[
(c4 + 2c3 + 2c2 − 10c − 1)λ2

12π2c2(1 + c)2
+ 2�m

(4π )3/2c3

]
,

βr = r

[
−2 + (c3 + 2c2 + 3c − 8)λ2

6π2c(1 + c)2
+ 5u

16π2c3

]
, (22)

which describe the evolution of all coupling parameters as a
function of an energy scale, where ετ = 1.

The limit of λ → 0 reproduces the β functions of the O(3)
vector model with a random mass term as expected [16]. On
the other hand, the existence of the λ vertex involved with
effective interactions between magnetic clusters and itinerant
electrons gives rise to serious modifications on the fixed-point
structure. One may point out that the λ vertex is essentially the
same as that of QED, regarded to be a U(1) gauge coupling
constant. Indeed, we confirm the Ward identity, given by
Sec. V E in spite of the presence of the chiral matrix. However,
there exists an essential different aspect between our chiral-
gauge vertex and the U(1) gauge vertex of QED. The sign
of the mass renormalization given by the one-loop quantum
correction shows negativity instead of positivity. We recall
the mass renormalization in QED, given by Ref. [16]. This
“negative” quantum correction in the chiral-gauge interaction

vertex opens the possibility for the emergence of a Weyl metal
phase, driven by doped magnetic impurities.

In order to verify this possibility, we solve these renormal-
ization group equations and find two types of fixed points.
They are allowed to exist until ε < 0.310, which we can-
not find any fixed points beyond. In the region of 0 � ε <

0.0832, the Zeeman coupling constant vanishes while both the
self-interaction and disorder parameters remain finite, which
is nothing but the disorder fixed point of the O(3) vector
model with a random mass term. In the region of 0.0832 <

ε < 0.310, all coupling constants are finite, identified with
an interacting fixed point between itinerant electrons and
doped magnetic impurities (see Fig. 5). The reason why this
interacting fixed point is allowed only within this ε region
is that for nonvanishing λ∗, ε should be large enough to
overcome the screening of the disorder scattering in βλ, i.e.,
ε
2 >

2�m∗/c3
∗

(4π )3/2 while the upper limit of 0.310 comes from the

205133-7



KIM, KIM, KIM, JUNG, AND KIM PHYSICAL REVIEW B 98, 205133 (2018)

stability condition of the fixed point. This means only in
quasi-two-dimensional systems can the Zeeman coupling play
a central role in low-energy physical phenomena.

This nontrivial fixed point is given by

λ∗ = 6.90 + 2.45 ln ε, u∗ = 4.05 + 0.773ε,
(23)

�m∗ = 1.03 + 2.45ε, c∗ = 1.37 − 0.0216ε−1.5,

where the critical exponents near this fixed point are

z = 1.00 + 0.394ε, ηψ = −0.00427 + 0.346ε,

η� = 0.5ε, ν−1
m = 1.08 − 1.99ε, ν−1

r = 1.97 − 0.411ε.

(24)

The scaling laws of both fermions and bosons are corrected.
Especially, the scaling of the fermion mass (ν−1

m ) is fairly
nontrivial. It decreases proportionally to ε due to the screening
effect of the Zeeman coupling. For example, ν−1

m = 1 in the
free theory becomes ν−1

m = 0.463 at ε = 0.310. As a result,
the increasing rate of the fermion mass becomes smaller. This
allows an external magnetic field to overcome the mass gap.

IV. EMERGENCE OF WEYL METALS FROM
MAGNETICALLY DOPED SPIN-ORBIT

COUPLED SEMICONDUCTORS

A. Applying external magnetic fields

We introduce an external magnetic field coupled to the
fermions in the following way [12]:

Sh =
∫

ddτ τ

∫
dd r ψ̄h · γ γ5ψ. (25)

This magnetic field makes two bands of twofold degeneracy
spilt into four bands as (Fig. 6)

E(k) = ±
√

k2
⊥ + (|h| ±

√
m2 + k2

‖ )2, (26)

where k‖ = h(k · h)/|h|2 and k⊥ = k − k‖. When |h| = h >

m, the mass gap is closed and a Weyl semimetal appears.
An idea is that although the mass gap is too large to be

overcome by external magnetic fields, taking into account
renormalization effects by doped magnetic impurities allows
the gap closing as a function of the applied magnetic field and

the temperature. The renormalized action of Eq. (25) is

Sh =
∫

ddτ τ

∫
dd r Zhψ̄r hr · γ γ5ψr, (27)

where the renormalized magnetic field is related with the bare
magnetic field as hr = μ−1(Z1/Zh)h. Then, the beta function
for hr is given by

βh = h

[
−1 + ∂ ln(Zh/Z1)

∂ ln b

]
= −h. (28)

We note that there is no quantum correction for hr in the one-
loop level, consistent with the Ward identity.

Solving renormalization group equations of βh = − h(μ),
βm = −(1/νm)m(μ), βT = −zT (μ), we find

h(μ) = hμ−1, m(μ) = mμ−1/νm, T (μ) = T μ−z, (29)

which shows how these parameters are renormalized by the
presence of doped magnetic impurities as a function of an
energy scale μ.

A Weyl semimetal appears when h(μ) > m(μ), which
means h/m > μ1−1/νm . Replacing the scaling parameter with
temperature and fixing the scale of T (μ) = T0, we find the
gap closing condition(

h

m

)
c

=
(

T

T0

)γ

, (30)

where γ = νm−1
zνm

. Physical units are brought back as h =
gsμBH , where gs , μB , and H are the Lande g factor of the
electron’s spin, the Bohr magneton, and the external magnetic
field, respectively. As a result, we obtain the critical field
strength given by

Hc = (m/gsμB )

(
T

T0

)γ

, (31)

where γ = 0.0828–0.479 for ε = 0.0832–0.310.
Figure 7 shows a phase diagram based on Eq. (31). The

external magnetic field can turn spin-orbit coupled semicon-
ductors into Weyl semimetals by closing the band gap. The
critical strength of the field is huge in the high-temperature
regime, for example, Hc(T = 300 K) = 86.2 T. However,
Hc(T ) becomes much smaller at low temperatures because
the mass gap gets screened by spin fluctuations while the
magnetic field is unaffected. Using T0 = 300 K as an UV

3 2 1 0 1 2 3
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2

1

0

1

2

3

k

E
k
,k

0

3 2 1 0 1 2 3

4

2

0

2

4

k

E
k
,k

0

(a) (b)

FIG. 6. Band structures of spin-orbit coupled semiconductors with Zeeman splitting. (a) Bands are gapped when the magnetic field is
smaller than the band gap while (b) a pair of Weyl points appear at the Fermi level when the magnetic field is larger than the band gap.
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FIG. 7. A phase diagram of dilute magnetic semiconductors in
the plane of temperature and magnetic field. The solid line describes
a topological phase transition from dilute magnetic spin-orbit cou-
pled Dirac metals to non-Fermi-liquid type disordered Weyl metals
(I), given by Eq. (31). Here, the non-Fermi-liquid type disordered
Weyl metal phase means that Weyl electrons are incoherent due
to correlations with strong antiferromagnetic spin fluctuations. The
dashed line represents a crossover line from non-Fermi-liquid type
disordered Weyl metals (I) to Fermi-liquid like conventional Weyl
metals (II), where quasiparticles of Weyl electrons appear due to the
suppression of antiferromagnetic fluctuations by external magnetic
fields. For this crossover line, see Sec. V A. We utilized z = 1.13,
νm = 2.15, T0 = 300 K, m = 100 meV, and gs = 20 for parameters.

energy scale and m = 100 meV, gs = 20 for typical values
at that scale, we find

Hc = 9.50−58.9 T (at T = 3 K), (32)

for ε = 0.0832−0.310.

B. Negative longitudinal magnetoresistivity

The existence of a topological phase transition from either
a topological or band insulating state to a Weyl metal phase
has been confirmed by our renormalization group analysis.
Although this demonstration itself touches a different aspect
in the study of dilute magnetic semiconductors, it is necessary
to verify the present scenario more quantitatively. Here, we
focus on the longitudinal magnetoresistivity, which acquires
an essential modification in the Weyl metal state, given by

σL(H, T ) = σ0(T )(1 + CWH 2), (33)

where σ0(T ) is the Drude conductivity with a weak antilocal-
ization quantum correction and CW is a positive coefficient
with the applied magnetic field along the direction of the
electric field [8]. This modification has been proposed to
originate from the chiral anomaly [18–21], where CWH 2 ∼
h2 − m2 corresponds to the square of the momentum-space
distance between a pair of Weyl points [8,12,13] given by
k‖ = √

h2 − m2 from Eq. (26).
Introducing renormalization effects from renormalization

group equations into this expression, given by Eq. (29), we
find

CW (H, T ) = a

T 2/z
− b

H 2T 2/zνm
, (34)

FIG. 8. Longitudinal magnetoconductivities in Weyl semimetals.
The conductivities are normalized with the Drude conductivity. For
parameters, a = 0.2 and b = 0.1 are used.

where a ∝ g2
s and b ∝ m2 are regarded to be phenomenolog-

ical fitting parameters [7]. Note that CW depends not only
temperature, but also on external magnetic fields. This is
not the case in usual Weyl semimetals, where CW is just a
coefficient of the negative magnetoresistance (MR) [10]. This
is a characteristic feature of Weyl semimetals arising from
magnetically doped spin-orbit coupled semiconductors [7].

Figure 8 shows longitudinal conductivities normalized
with the Drude conductivity, given by

σL(H, T )/σ0(H, T ) = 1 +
(

a

T 1.78
− b

H 2T 0.838

)
H 2, (35)

where we used z = 1.13 and νm = 2.15 for a numeri-
cal estimate. Positive magnetoconductivities start at Hc =
1.2, 1.8, 2.9, 4.9 for T = 3, 7, 20, 60, respectively. More-
over, the positive magnetoconductivity is significantly en-
hanced as temperature is lowered.

V. DISCUSSION

A. Discussion on our model construction

1. Role of an effective Zeeman interaction between external
magnetic fields and antiferromagnetic spin fluctuations

One may criticize that our effective field theory does not
take into account an effective Zeeman interaction between ex-
ternal magnetic fields and antiferromagnetic spin fluctuations.
He/she may claim that the absence of the effective Zeeman
coupling gives rise to a severe conceptual flaw of this study.
The main conclusion is that magnetic fluctuations of dopant
atoms near an antiferromagnetic transition effectively (in the
sense of effective field theory) decrease the bulk insulating
gap, which lowers the energy scale of perturbations required
to reach a Weyl semimetal phase. However, the magnetic field
which is producing the Weyl semimetal phase should itself
suppress antiferromagnetic fluctuations and may therefore
counteract the effect of the magnetic field claimed by this
study.

Taking into account this effective Zeeman interaction, we
have a modified potential energy for a ferromagnetic clus-
ter V (�) = −g�μ� H · � + r�2 + u

8 (�2)2, where μ� and
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g� are the magnetic moment and the Lande g factor of
the ferromagnetic cluster, respectively. The magnetic field
lowers the potential energy by making � point in its direc-
tion, suppressing fluctuations of � in the ground state. At
finite temperatures, effects of entropy making � disordered
compete with the potential energy. It is natural to consider
a crossover temperature, given by Tmag = C1g�μ�|H|1/z,
where C1 is a positive constant and z is the dynamical critical
exponent. The breakdown of the H/T scaling is an essential
property from our renormalization group analysis. Above
this crossover temperature, antiferromagnetic fluctuations are
still strong, responsible for the negative feedback effect on
the carrier gap. In other words, there exists an intermediate
temperature regime Tmag < T < Tc for a given H , where Tc

is the temperature scale for a topological phase transition
from dilute magnetic spin-orbit coupled Dirac metals to non-
Fermi-liquid type disordered Weyl metals, given by Eq. (31).
Below the crossover temperature Tmag, such antiferromagnetic
fluctuations are suppressed and ferromagnetic components are
expected to appear. As a result, a conventional Weyl metal
phase would be realized, where quasiparticles of Weyl elec-
trons exist. This consideration introduces an additional phase
boundary of Hmag = ( T

C1g�μ�
)
z

in the phase diagram of Fig. 7.
Considering Hmag = Hc, where Hc is given by Eq. (31), we
obtain a threshold value for the Lande g factor, given by

g
mag
� = T0

C1μ�
( gsμB

m
)
1/z

with T ≈ T0. When the Lande g factor
is larger than this threshold value, the negative feedback
effect disappears by the magnetic field effect to suppress spin
fluctuations. Using the same parameter for Eq. (31), we find
that this happens when g� � 1.95

C1μ�
.

2. Role of the existence of a small Fermi surface

One may ask the origin of effective interactions between
doped magnetic ions. We would like to emphasize that our
effective UV lattice model is given by an O(3) Heisenberg
model with random exchange interactions as our starting
point. Frankly speaking, the physically meaningful mathemat-
ical description of this effective spin interaction term is not
completely clear at all. This is the reason why we explain
our effective UV lattice model in a very careful sentence:
“Although this aspect does not mean that the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction would be the
mechanism of effective interactions between doped magnetic
moments, where the dynamics of such electrons with a small
Fermi surface would be essential to determine the nature of
their effective interactions, we resort to this physical picture as
our reference.” However, the question on the role of the small
Fermi surface would be quite relevant for possible consistency
between the UV and infrared (IR) physics for this problem,
although we focused on the semimetallic regime in this study.

Now, we take a chemical potential slightly above the
mass gap in a semimetallic regime (μ ∼ m). Then, we find
that the result is not much changed in the present level of
approximation if we do not consider possible damping effects
on the boson dynamics. We refer all details to Appendix C. On
the other hand, we point out that the finite density of fermions
gives rise to a Landau damping term for bosons, given by
μ2 |q0|

|q| . This Landau damping term becomes more singular

than the quadratic term q2
0 in the low-frequency regime. We

also mention that this Landau damping term can be modified
when disorder scattering is introduced into fermions directly,
resulting in a diffusive fixed point for the dynamics of itinerant
electrons of the bulk. But, the “pseudogap” effect allows an
effective “ballistic regime” in the most temperature regime,
where the small Fermi surface may result in the diffusive
dynamics of electrons at a relatively low-temperature regime.
In this respect, the above Landau damping term can be taken
into account. For related discussions, see Sec. V C. Then, our
renormalization group analysis will lose its validity in that
regime. This consideration introduces another crossover scale
into the result. We estimate the crossover scale based on q2

0 ∼
T 2 and μ2|q0|/|q| ∼ μ2 since the dynamical critical exponent
z is almost one, so |q0|/|q| ∼ T z/T ∼ 1. When T � Tμ =
C2μ with a positive constant C2, our renormalization group
analysis is applicable.

3. On the effective field theory for antiferromagnetic fluctuations

Although the O(3) vector model (IR effective field the-
ory) has been derived from the O(3) Heisenberg model (UV
effective Hamiltonian) in the O(3) symmetric paramagnetic
vacuum, one may consider an alternative description for the
spin dynamics of antiferromagnetic fluctuations. For example,
an O(3) nonlinear σ model can be suggested, which would
be derived from the Heisenberg model in an O(3) symmetry-
broken ground state.

An O(3) vector model is an effective field theory for a
phase transition characterized with O(3) symmetry breaking,
which starts from an O(3)-symmetric state. On the other hand,
a nonlinear σ model is an alternative description for the same
phase transition, but it starts from a symmetry-broken state.
We recall the Haldane mapping from the O(3) Heisenberg
model to an effective O(3) nonlinear σ model with a theta term
[22]. In other words, field contents of the nonlinear σ model
describe elementary excitations from the symmetry-broken
ground state. It contains phase or (angular or transverse)
fluctuations of the order parameter but neglects amplitude
(radial or longitudinal) fluctuations, which become massive so
less important in the ordered phase. Here,“an alternative de-
scription for the same phase transition” means that performing
the renormalization group analysis for the nonlinear σ model,
we reach the same critical point as described by the Landau-
Ginzburg field theory, for example, the Wilson-Fisher fixed
point. An explicit demonstration can be found in Ref. [23],
where O(2) symmetry is considered.

In this study we start from a paramagnetic state at high
temperatures and approach the critical point, where order-
parameter fluctuations proliferate. We investigated nontriv-
ial effects of such fluctuations on strong spin-orbit coupled
electrons. In this respect, the O(3) vector model seems more
appropriate than the nonlinear σ model for our problem.
Meanwhile, we might start from a nonlinear σ model because
these two models are expected to have the same universal
physics. Unfortunately, the appearance of the gradient cou-
pling interaction between itinerant electrons and Goldstone
boson excitations, referred to as Adler’s principle [24], does
not affect the dynamics of itinerant electrons, at least in
the one-loop order renormalization group analysis. This is
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the reason why Landau’s Fermi-liquid state appears even
in the symmetry-broken phase although there exist gapless
Goldstone boson excitations. Of course, one may describe
possible strong coupling physics between fermions and Gold-
stone bosons at a critical point beyond the one-loop order
based on the nonlinear σ model description, but we do not
know any explicit calculations.

4. Connection between the disorder strength
and dopant concentration

One may ask how the disorder strength, given by the
variance of the random mass in this study, is related with
dopant concentration. It is natural to assume that the effective
exchange interaction between doped magnetic ions on average
is proportional to the average distance between magnetic
ions, given by ∼n

−1/3
imp in three dimensions, where nimp is the

concentration of magnetic dopants. An essential point is how
the variance of the exchange interaction can be related with
the variance of the impurity position or the distance between
magnetic ions. Here, we assume that they are proportional to
each other. Then, the final question is how the variance of the
distance between magnetic ions is related with the impurity
concentration. Applying the central limit theorem to this situ-
ation, we conjecture

√
〈δr2

ij 〉 ∼ n
−1/2
imp in the thermodynamic

limit. If we assume
√

〈δJ 2
ij 〉 ∼

√
〈δr2

ij 〉 as discussed above,
we suggest

√
〈δJ 2

ij 〉 ∼ n
−1/2
imp . However, we cannot give any

rigorous arguments for this monotonic behavior with respect
to the impurity density.

B. Origin of the negative feedback effect

To clarify the physical picture, we demonstrate how chiral
gauge fields given by spin fluctuations cause the negative
feedback effect of the mass gap. First, we consider the absence
of spin fluctuations. When a mass term is zero (m = 0), Dirac
fermions can be described by their chiral states, denoted by
|+,↑, k〉 and |+,↓, k〉 for “+” chiral fermions and |−,↑, k〉
and |−,↓, k〉 for “−” chiral fermions whose eigenvalues are
|k|, −|k|, −|k|, and |k|, respectively. Here, up- and down-spin
states denote diagonal bases of spin-orbit coupling for each
chiral block, where the spin direction varies with k. Now,
we turn on a mass term. The mass term mixes two chiral
states. For example, it describes scattering from |+,↑, k〉
into |−,↑, k〉. Actually, the overlap of both wave functions
is given by 〈+, σ, k|mI2|−, σ, k〉 = m, where I2 is a 2 × 2
unit matrix applied to the chiral block. This overlap integral
determines the size of the excitation gap, given by the energy
spectrum as Ek, −Ek, −Ek, and Ek with Ek =

√
|k|2 + m2.

Next, we take into account magnetic fluctuations. We recall
that such spin fluctuations are described by chiral gauge
fields. When chiral gauge fields are present, they reduce
the wave-function overlap. Here, we consider the case of
uniform fields for simplicity. Now, chiral states are modified
as |+, σ, k + �〉 and |−, σ, k − �〉, where � represents the
uniform chiral gauge field. Note the sign difference in front
of �. Spin states of two chiral states are rotated in opposite
directions. This difference makes their overlap less than unity,
resulting in 〈+, σ, k + �|mI2|−, σ, k − �〉 < m. Expanding
the overlap with �, we find reduction of the effective mass

gap as follows:

meff = m

[
1 − (∂θk k̂ · �)2

|k|2 − (∂φk k̂ · �)2

(|k| sin θk )2

]1/2

(36)

with k̂ = k/|k|, where θk and φk are the polar angle and
the azimuthal angle of k̂, respectively. This is in contrast
to the case of gauge fields. A vector field A does not change
the wave-function overlap, which rotates two chiral states
equivalently, resulting in 〈+, σ, k − A|mI2|−, σ, k − A〉 =
m. The mass gap is not affected by the gauge field in this level
of approximation.

We would like to point out that the chiral field was taken
into account in a perturbative way but the mass term was
treated exactly. If we take both terms on equal footing, we
will have band splitting similar with Eq. (26) instead of the
reduced gap. We recall that the chiral gauge field of the short-
distance scale has been integrated out in the renormalization
group analysis, where the chiral gauge field of that scale is
smaller than the mass gap. In this respect, taking into account
the chiral gauge field in a perturbative way is actually what we
performed in the renormalization group approach.

If we should take into account fluctuations of chiral gauge
fields, the task is not straightforward anymore. We need to
count wave-function renormalization factors and vertex cor-
rections. All of these renormalization factors were taken into
account systematically in the renormalization group approach,
where the gap reduction is manifest in the reduction of the
scaling exponent of the carrier gap.

C. Role of the random-mass disorder

One cautious person may point out that the random mass
of magnetic modes does not seem to be crucial for the present
phenomenon. Actually, introduction of the randomness re-
flects the real physical situation. The softening of the carrier
gap is the direct result of the effective Zeeman coupling
between fluctuating local magnetic moments and Dirac elec-
trons. To clarify this physics, we set �m = 0 in Eq. (22). Then,
we obtain

βc = c

[
(c4 + 2c3 + 2c2 − 10c − 1)λ2

12π2c2(1 + c)2

]
,

βλ = λ

[
−ε

2
+ (c3 + 2c2 + 2c − 4)λ2

12π2c(1 + c)2

]
,

βu = u

[
−ε + (4c3 + 8c2 + 10c − 24)λ2

12π2c(1 + c)2
+ 11u

16π2c3

]
,

βm = m

[
−1 + (10 + 11c)λ2

12π2c(1 + c)2

]
. (37)

When ε > 0, we have a fixed point given by

c∗ = 1.49, λ∗ = 9.03
√

ε, u∗ = 0, (38)

where critical exponents are

z = 1 + 0.377ε, ν−1
m = 1 − 1.97ε. (39)

These are almost the same with those of Eq. (24). In this
respect, all physical phenomena in Sec. IV remain to be valid
in the clean case. For example, the critical field strength for
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TABLE I. All fixed points in the one-loop order are shown.

α̃∗ ũ∗ �̃∗ c∗ Stability

0 0 0 Nonuniversal Unstable
0 ε

11 0 Nonuniversal Unstable

0 0 − ε+1
3 0 Unphysical (negative �̃)

0 5+2ε

120
√

π−13
11+ε(7−24

√
π )

120
√

π−13 0 Stable when 0 � ε < 0.083 18
ε

f2
0 0 f −1

1 (0) Unphysical (stable when ε > 4.055)
ε

f2

ε(1−f3/f2 )
11 < 0 0 f −1

1 (0) Unphysical (negative ũ)
4ε+1

3f2+f4
0 εf4−(ε+1)f2

3f2+f4
< 0 [(4ε + 1)f1 + (ε + 1)f2 − εf4]−1(0) Unphysical (negative �̃)

ε

f1+f2

ε[6f1+f2−f3]
11[f1+f2]

εf1
f1+f2

[ 11(4f1+f2−f4 )−4(6
√

π+1)[6f1+f2−f3]
11(f1+f2 )

]−1(− 1
ε

)
exists and stable when 0.083 18 � ε < 0.3103

the gap closing is given by Hc ∼ T γ with γ = 0−0.548 for
ε = 0−0.3.

In the absence of the random-mass term, the negative
feedback effect exists for all values of ε as long as ε > 0. In
the presence of the random-mass term, such an effect exists
only in 0.0832 < ε < 0.310. Thus, the role of the random-
mass term affects the negative feedback effect indirectly by
reducing the range of ε. This means that the negative feedback
effect appears more easily in homogeneous systems. However,
there always exist certain amount of disorders in actual sys-
tems of magnetically doped semiconductors. In this case, the
clean fixed point in Eq. (38) becomes unstable (see Table I),
and the disordered fixed point in Eq. (23) will appear to govern
real physical phenomena.

D. Role of potential scattering in the emergent
disordered Weyl metal phase

One cautious person may criticize that the role of potential
scattering has been neglected in our emergent disordered Weyl
metal phase. If the translational symmetry is broken, scatter-
ing between Weyl nodes could potentially mix the chirality of
Weyl fermions and destroy the topological protection. Then,
one can ask whether the disordered Weyl metal phase can
survive in the presence of impurity scattering or not. In this
section, we show that there exists a weak-scattering regime,
where the disordered Weyl metal phase remains stable.

We recall Eq. (26), which shows a pair of Weyl points
at k = +c and k = −c, where c = h

√
1 − (m/|h|)2. Now,

we expand fermion fields near the Weyl points as ψ (τ, r ) =∑
k ψ+(τ, r )eı(k+c)·r + ∑

k ψ−(τ, r )eı(k−c)·r . Then, we ob-
tain an effective Weyl-fermion action, given by

S =
∫ β

0
dτ

∫
dd r �̄(∂τ γ0 − ı∂r · γ + c · γ γ5)�, (40)

where � = (ψ+, ψ−)T . Next, we consider nonmagnetic im-
purity scattering on Weyl fermions, given by

Sdis = −
∫ β

0
dτ

∫ β

0
dτ ′

∫
dd r

�1

2
�̄τ�τ �̄τ ′�τ ′

−
∫ β

0
dτ

∫ β

0
dτ ′

∫
dd r

�2

2
�̄τ γ0�τ �̄τ ′γ0�τ ′, (41)

where �1 (�2) is the disorder strength for intervalley (intraval-
ley) scattering.

Two of us have performed the renormalization group analy-
sis for this effective field theory, where renormalization group
equations for the distance between the pair of Weyl points c
and both disorder scattering parameters �1 and �2 are derived
to describe their evolutions with respect to temperature [10].
Here, self-energy corrections are introduced in the two-loop
order while disorder vertex corrections are taken into account
up to the one-loop order. The intravalley scattering strength
remains irrelevant, regarded to be the pseudogap effect of the
Weyl band structure. On the other hand, the intervalley scatter-
ing strength turns out to flow into a weak disorder fixed point,
the existence of which results from the self-energy correction
of the two-loop order. An interesting and unexpected result
is that the effect of intervalley scattering results in positive
renormalization for the distance between the Weyl pair, i.e.,
|c|, as temperature is lowered. This gives rise to more rapid
enhancement of the Weyl-pair distance than that of the clean
case.

Combining the scaling theory of Eq. (31) with the result of
Ref. [10], we obtain

|c| ∼ (T/Tc )a
√

1 − (Hc/H )2(T/Tc )2b, (42)

where b = νm−1
zνm

= 0.166−0.957 for ε = 0.0832−0.310. a is
a function of the fixed point value of �1, where we obtain
a = −1 for �1 = 0. If a is positive, |c| will decrease in the
case of T < Tc[(H/Hc )

√
b/(a + b)]1/b and vanish eventually

as T → 0. On the other hand, if a is negative, the Weyl metal
phase will persist in a low-temperature regime. The perturba-
tive renormalization group study revealed a = −1.6, showing
more rapid enhancement of the Weyl-pair distance than that
of the clean case due to the intervalley scattering [10]. Based
on this discussion, we claim that the disordered Weyl metal
phase remains stable at least in the weak-scattering regime.

E. Ward identity

In our renormalization group analysis we observed that
the Ward identity of Z1 = Zλ is satisfied. This is rather
unexpected in the respect that the chiral symmetry is explicitly
broken by the mass term in the classical level. However, the
result turns out to be consistent with the symmetry analysis
based on the Schwinger-Dyson equation [23]. Here, we briefly
sketch the derivation. See Appendix D for details.
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We start from the fermion Green’s function, given by

〈ψ (x1)ψ̄ (x2)〉 = 1

Z

∫
D(ψ̄, ψ )ψ (x1)ψ̄ (x2)e−S, (43)

where Z = ∫
D(ψ̄, ψ )e−S is the partition function. In

this expression, we focus on the fermion action of Sf =∫
dx ψ̄ (x)(ı∂μγμ + m)ψ (x) with ∂μ = (−ı∂0, ∂r ) and γμ =

(γ0, γ ).
One may consider the chiral symmetry of Eq. (43) based

on the chiral transformation

ψ (x) → eıα(x)γ5ψ (x). (44)

Inserting Eq. (44) into Eq. (43), we organize the resulting
expression order by order in α(x). In the first order of α(x),
we obtain

kμ�μ5(p + k, p) = [G−1(p + k) − G−1(p)]γ5

+ 2m[�5(p + k, p) − Zmγ5], (45)

where �μ5(p + k, p) is the one-particle-irreducible ver-
tex for

∫
dp1〈ψ̄ (p1 + k)γμγ5ψ (p1)ψ (q )ψ̄ (p)〉 and �5(p +

k, p), that for
∫

dp1〈ψ̄ (p1 + k)γ5ψ (p1)ψ (q )ψ̄ (p)〉. The ver-
tex function �μ5 arises from the chiral current generated by
the chiral transformation while the fermion Green’s function
results from nontrivial commutation of fields [23]. There ap-
pear new terms, identified with the pseudoscalar term �5 and
the mass term Zm, both of which originate from the explicit
symmetry breaking given by the mass term. In Appendix D,
we confirm that these two terms are canceled to each other in
the renormalization group structure. As a result, we obtain the
Ward identity

Zμ5γμγ5 = ∂G−1(p)

∂pμ

γ5, (46)

where Zμ5γμγ5 ≡ limk→0 �μ5(p + k, p).
This Ward identity forces the relationship among the renor-

malization factors, resulting in Z1 = Zλ = Zh. Spin fluc-
tuations reduce the fermion’s velocity and renormalize the
coupling with the U(1) chiral current. However, these two
effects are exactly canceled to each other. As a result, the
coupling with the U(1) chiral current, associated with the
chiral symmetry, is not affected by quantum corrections given
by chiral gauge fields. In other words, the external magnetic
field does not have an anomalous dimension.

F. Higher-order quantum corrections

We show how our one-loop renormalization group result
can be justified, including higher-order quantum corrections.
More precisely, we figure out how general Feynman diagrams
depend on both coupling constants and boson velocity. We
consider a general L-loop diagram, given by

I ∼ uV1�V2
m λV3

∫ [
L∏

i=1

dpi

]
Ib∏

l=1

{
1

q2
τ,l + c2q2

l + r

}

×
If∏

j=1

{
1

−ıkτ,j · γ τ,j + kj · γ + m

}
, (47)

where kj and ql are linear combinations of the internal
momenta pi and the external momenta. V1, V2, and V3 are
the number of interaction vertices, given by the boson self-
interaction u, the random-mass-induced interaction �m, and
the fermion-boson interaction λ, respectively. L is the total
number of loops, and If (Ib) is the number of fermion (boson)
propagators.

To estimate the dependence on the velocity c, we note
that there are three types of loops: loops made of boson
propagators (boson loops), loops made of fermion propagators
(fermion loops), and loops made of both propagators (boson-
fermion loops). Boson loops appear from the boson self-
interaction and the disorder scattering [see Fig. 3, diagram (3)]
while fermion loops and boson fermion loops appear from the
Zeeman coupling [see Figs. 3, diagram (2), and 3, diagram
(1), respectively]. We consider a case where there are Lb

boson loops, Lf fermion loops, and Lbf boson-fermion loops.
The total number of loops is given by L = Lb + Lf + Lbf .
For the boson loops, we find a factor of c−3Lb from the
scaling of ql → ql/c. For the boson-fermion loops, the same
scaling analysis gives rise to c−Lbf H (c, v), where H (c, v)
describes mixing between the boson velocity and the fermion
velocity, here, v = 1, with H (c∗, 1) ∼ O(1) [see Eq. (19), for
example]. For the fermion loops, we do not have any c factor
because there are no boson propagators in the loops. Totally,
we find the boson-velocity factor as c−3Lb−Lbf H (c, v) in this
loop diagram.

Next, we rewrite the general loop integral I in terms of
the dimensionless coupling constants, introduced before and
given by

α̃ ≡ λ2

12π2c
, ũ ≡ u

16π2c3
, �̃ ≡ 2�m

(4π )3/2c3
. (48)

Then, we obtain

I ∼ ũV1 �̃V2 α̃V3/2cρH (c, 1), (49)

where we introduced ρ = 3V1 + 3V2 + V3/2 − (3Lb + Lbf ).
Using the following identities of L = Ib + If − (V1 + V2 +
V3) + 1, 4(V1 + V2) + V3 = 2Ib + Eb, and 2V3 = 2If + Ef ,
where Eb (Ef ) is the number of the external boson (fermion)
lines, we simplify ρ as ρ = 2δ + 1

2 (Eb + Ef − 2) + Lf with
δ = V1 + V2 − Lb � 0. Based on this result, we find all the
renormalization factors in the L-loop order as follows:

δ0, δ1, δm, δ2, δr ∼ ũV1 �̃V2 α̃V3/2c2δ+Lf ,

δc ∼ ũV1 �̃V2 α̃V3/2c2δ+Lf −2,

δλ ∼ ũV1 �̃V2 α̃(V3−1)/2c2δ+Lf , (50)

δu ∼ ũV1−1�̃V2 α̃V3/2c2δ+Lf −2,

δ�m
∼ ũV1 �̃V2−1α̃V3/2c2δ+Lf −2.

Note that all the renormalization factors are proportional to
positive powers of the couplings. If the couplings are small,
so are the renormalization factors.

Figure 9 shows the fixed-point values of the couplings
obtained in the one-loop order. The boson velocity is the
order of unity (c∗ � 1.2) and all other couplings are much
less than unity, i.e., ũ∗ � 0.025, �̃∗ � 0.08, and α̃∗ � 0.12,
respectively. As a result, the renormalization factors are more
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FIG. 9. Fixed-point values of the dimensionless coupling con-
stants (α̃, ũ, and �̃; left axis) and the boson velocity (c; right axis)
are shown as a function of ε.

strongly suppressed in higher orders. This demonstration sup-
ports an idea that the fixed-point solution that we obtained in
the one-loop order remains valid, even including higher-order
quantum corrections. However, we admit that it does not prove
the idea obviously since it is not clear whether the total sum
converges or diverges. We stress that other factors such as
symmetry factors and momentum integrations, which we did
not take into account explicitly in Eq. (50), do not give rise to
any enhancement factor.

VI. SUMMARY

Constructing an effective field theory for magnetically
doped spin-orbit coupled semiconductors [Eq. (5)], we per-
formed the renormalization group analysis [Eqs. (15)–(17)]
and obtained beta functions [Eq. (22)] for all coupling pa-
rameters (the fermion-boson Zeeman interaction, the boson
self-interaction, the disorder scattering, the fermion mass, the
boson velocity, and the boson mass), evaluating Feynman dia-
grams up to the one-loop level [Eqs. (19)–(21)]. Solving these
renormalization group equations, we found an interacting
fixed point [Eq. (23)] and revealed how all parameters evolve
as a function of temperature near the fixed point [Eq. (24)].
In particular, we proposed a phase diagram in the plane of

the applied magnetic field and temperature at a given con-
centration of magnetic impurities based on Eq. (31) (Fig. 7).
In addition, we suggested the temperature and magnetic-field
evolution for the longitudinal magnetoconductivity [Eqs. (34)
and (35)] at low temperatures, where the Weyl metal phase is
realized, given by Fig. 8.

Recently, we applied the present scenario to magnet-
ically doped spin-orbit coupled semiconductors such as
EuxBi2−xSe3 and GdxBi2−xTe3−ySey [7]. Actually, we could
fit the temperature evolution for the enhancement factor CW

of the longitudinal magnetoconductivity at low temperatures,
where a Weyl metallic state is realized. Furthermore, ex-
periments could extract out a phase diagram in the plane
of the applied magnetic field and temperature at a given
concentration of magnetic impurities, taking into account the
maximum point of the longitudinal magnetoresistivity, which
determines a critical magnetic field at a given temperature.
It turns out that such a phase diagram is consistent with our
proposed phase diagram.

One unsatisfactory point in our renormalization group
analysis is that the regularization parameter ε was utilized as
a phenomenological fitting parameter. Theoretically speaking,
it should be chosen as ε → 0 in the last stage. However, the
interacting fixed point turns out not to exist in the exactly
three-dimensional space. If we accept ε = 0.31 literally, such
an interacting fixed point can appear in quasi-two-dimensional
systems. According to experiments [7], these semiconduc-
tors are rather anisotropic, where the in-plane resistivity
(∼0.001 � cm) is two orders of magnitude smaller than the
out-of-plane one (∼0.1 � cm), regarded to be quasi-two-
dimensional. In addition, further doping of magnetic impu-
rities is expected to make such magnetically doped semi-
conductors more isotropic, where the negative longitudinal
magnetoresistivity disappears, indeed. It would be important
to reveal the distribution pattern of doped magnetic impurities
clearly in order to understand the physical meaning of the
finiteness of the regularization parameter for our interacting
fixed point.
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APPENDIX A: EVALUATION OF FEYNMAN DIAGRAMS

1. Fermion self-energy

The fermion self-energy (1) in Fig. 3 is

�(1) =
d∑

i=1

∫
dd+ετ l

(2π )d+ετ
(λγiγ5)G0(k − l)(λγiγ5)D0(l)

= λ2
∑

i

∫
dd+ετ l

(2π )d+ετ

γiγ5[−ı(kτ − lτ ) · γ τ + (k − l ) · γ − m]γiγ5

[(kτ − lτ )2 + (k − l )2 + m2][l2
τ + c2l2 + r]

. (A1)
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This can be evaluated in the standard way: Feynman parametrization, a momentum shift, and a spherically symmetric integration
as

�(1) = λ2
∫ 1

0
dx

∫
dd+ετ l

(2π )d+ετ

−ıd(kτ − lτ ) · γ τ + (d − 2)(k − l ) · γ − dm[
(lτ − xkτ )2 + a2

x

(
l − xk/a2

x

)2 + �
]

= λ2
∫ 1

0
dx

∫
dd+ετ l̃

(2π )d+ετ

−ıd(1 − x)kτ · γ τ + (d − 2)(1 − x) c2

a2
x
(k · γ ) − dm

ad
x [l̃2 + �]2

= λ2�
( 4−d−ετ

2

)
(4π )(d+ετ )/2

∫ 1

0
dx

−ıd(1 − x)kτ · γ τ + (d − 2)(1 − x) c2

a2
x
(k · γ ) − dm

ad
x [�]

4−d−ετ
2

, (A2)

where � = x(1 − x)(k2
τ + c2k2/a2

x ) + xm2 + (1 − x)r and a2
x = x + (1 − x)c2. In the second line, the loop momentum is

scaled as l → l/ax and then redefined as l̃ = (lτ − xkτ , l − xk/ax ). Near d = 3 and ετ = 1, we get

�(1) = λ2

8π2ε
[−ı3n1kτ · γ τ + n2k · γ − 3n3m] + O(1), (A3)

where

n1 =
∫ 1

0
dx

1 − x

a
3/2
x

= 2

c(1 + c)2
, n2 =

∫ 1

0
dx

(1 − x)c2

a
5/2
x

= 2(1 + 2c)

3c(1 + c)2
, n3 =

∫ 1

0
dx

1

a
3/2
x

= 2

c(1 + c)
. (A4)

Using Eq. (12), we find the counterterms for the fermion dynamics as

δ0 = − 3λ2

4π2εc(1 + c)2
, δ1 = − (1 + 2c)λ2

12π2εc(1 + c)2
, δm = + 3λ2

4π2εc(1 + c)
. (A5)

This result is comparable with that of QED in four dimensions, referred to as QED4. In QED4, we have δψ = e2(2−d )
16π2(4−d )

d→4−→
− e2

8π2ε
and δm = e2(−d )

8π2(4−d )
d→4−→ − e2

2π2ε
. Setting c = 1 and tracking the dimensional factors, we observe that the above counterterms

are reduced into

δ0
d→3−→ − 3λ2

16π2ε
, δ1

d→3−→ − λ2

16π2ε
, δm

d→3−→ + 3e2

8π2ε
. (A6)

The � field has three space components but without the time component, so it gives 3
2 , 1

2 , and − 3
4 factors for the field, the

velocity, and the mass counterterm, respectively.

2. Boson self-energy

In Fig. 3, bosons get self-energy corrections (2) from the Zeeman coupling, (3) and (4) from the boson self-interaction, (5)
from the disorder scattering, respectively.

a. Zeeman coupling

The correction (2) is

�ii (2) = −λ2
∫

dd+ετ l

(2π )d+ετ
tr[γiγ5G0(l + q )γiγ5G0(l)]

= −λ2
∫

dd+ετ l

(2π )d+ετ

4[−l · (l + q ) + 2li (li + qi ) + m2]

[(l + q )2 + m2][l2 + m2]

= −4λ2
∫ 1

0
dx

∫
dd+ετ l

(2π )d+ετ

−d−ετ +2
d+ετ

(l + xq )2 + x(1 − x)
(
q2 − 2q2

i

) + m2

[(l + xq )2 + x(1 − x)q2 + m2]2

= − 4λ2

(4π )(d+ετ )/2

∫ 1

0
dx

[2x(1 − x)q2 − 2x(1 − x)q2
i + 2m2]�

( 4−d−ετ

2

)
[x(1 − x)q2 + m2]

4−d−ετ
2

. (A7)

Near d = 3 and ετ = 1, we get

�ii (2) = −λ2
(
q2

τ + q2 − q2
i

)
6π2ε

− λ2m2

π2ε
. (A8)
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b. Boson interaction

The correction (3) is

�ii (3) = −Nu

2

∫
dd+ετ l

(2π )d+ετ
D0(q − l) = −Nu

2

∫
dd+ετ l

(2π )d+ετ

1

l2
τ + c2l2 + r

= − Nu�
( 2−d−ετ

2

)
2(4π )(d+ετ )/2cdr

2−d−ετ
2

. (A9)

Near d = 3 and ετ = 1, we get �ii (3) = Nur
16π2εc3 . The correction (4) in the same line is similar except for the absence of N

2 factor.
The result is �ii (4) = ur

8π2εc3 .

c. Disorder scattering

The correction (5) is

�ii (5) = �m

∫
dd+ετ l

(2π )d
D0(q − l)δ(ετ )(lτ ) = �m

∫
dd l

(2π )d
1

c2l2 + q2
τ + r

= �m�
(

2−d
2

)
(4π )d/2cd

(
q2

τ + r
) 2−d

2

. (A10)

Near d = 3 and ετ = 1, we get �ii (5) = − 4�m(q2
τ +r )

(4π )3/2(ε+ετ )c3 .

d. Counterterms

The total boson self-energy is

�ii (q ) = �ii (2) + �ii (3) + �ii (4) + �ii (5)

= −λ2
(
q2

τ + q2 − q2
i

)
6π2ε

− λ2m2

π2ε
+ (N + 2)ur

16π2εc3
− 4�m

(
q2

τ + r
)

(4π )3/2(ε + ετ )c3
. (A11)

The Zeeman coupling term results in two unusual features and their corresponding complications. First, it has a transverse-mode
structure (�ii ∼ q2 − q2

i ) while the original action does not. This is not surprising because bosons are coupled to Dirac fermions
in the fashion of the “gauge field” (chiral). However, we will just ignore q2

i to find the counterterms by assuming that the
effective action is “chosen” for the Feynman gauge so that no projection appears in Eq. (7). Second, a mass shift proportional
to the fermion mass appears. This makes the boson mass increase even at the critical point. Thus, in a naive viewpoint, there
is no critical state. Recall that the similar thing happens in the φ4 theory with a cutoff (	), where a mass shift proportional
to 	2 appears. Redefinition of the boson mass with including the shift is required to access the critical point. Practically, this
can be done by eliminating the additional mass shift. We will do the same thing here: the mass shift is canceled by an ad hoc
counterterm, not participating in the renormalization group.

Based on the above discussion, we find the counterterms for the bosons as

δ2 = − λ2

6π2ε
− 4�m

(4π )3/2(ε + ετ )c3
, δc = − λ2

6π2εc2
, δr = (N + 2)u

16π2εc3
− 4�m

(4π )3/2(ε + ετ )c3
. (A12)

Compared with the result of QED4, δA = − e2

6π2ε
, the counterterms have the same numerical factor. However, due to the

presence of velocity factors, c gets renormalized for the fermion velocity v = 1. Actually, this renormalization structure appears
ubiquitously [25], at least in the models that critical bosons are coupled to Dirac fermions.

3. Vertex corrections

The boson self-interaction and the disorder scattering can be mixed, while the Zeeman coupling gets affected from the others
only through the field renormalization. We calculate the disorder scattering, the boson interaction, mixing of them, and the
Zeeman coupling in turn.

a. Disorder scattering

We calculate the diagrams of (1), (2), and (3) in Fig. 4. The correction (1) is

δ�m(1) = �2
m

∫
dd+ετ l

(2π )d+ετ
D0(k + l)D0(k′ − l)(2π )ετ δ(ετ )(lτ )

= �2
m

cd

∫ 1

0
dx

∫
dd+ετ l

(2π )d+ετ

(2π )ετ δ(ετ )(lτ )

[[l + xk + (1 − x)k′]2 + x(1 − x)(k − k′)2 + r]2

= �2
m

cd

∫ 1

0
dx

∫
dd l

(2π )d
1

[[l + xk + (1 − x)k′]2 + �]2
= �2

m

(4π )d/2cd

∫ 1

0
dx

�
(

4−d
2

)
[�]

4−d
2

, (A13)
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where � = [xkτ + (1 − x)k′
τ ]2 + x(1 − x)(k − k′)2 + r . Near d = 3 and ετ = 1, we find δ�m(1) = 2�2

m

(4π )3/2c3(ε+ετ ) . Other
corrections differ from this only with numerical factors. The correction (2) is the same. The correction (3) is two times larger
because there are two inequivalent diagrams. As a result, we find

δ�m(1) = 2�2
m

(4π )3/2c3(ε + ετ )
, δ�m(2) = 2�2

m

(4π )3/2c3(ε + ετ )
, δ�m(3) = 4�2

m

(4π )3/2c4(ε + ετ )
. (A14)

b. Boson interaction

We calculate the diagrams of (6), (7), (8), and (9) in Fig. 4. The correction (6) is

δu(6) = u2
∫

dd+ετ l

(2π )d+ετ
D0(q + l)D0(l) = u2

cd

∫
dd+ετ l

(2π )d+ετ

1

[(q + l)2 + r](l2 + r )

= u2

cd

∫ 1

0
dx

∫
dd+ετ l

(2π )d+ετ

1

[(l + xq )2 + �]2
= u2

(4π )
d+ετ

2 cd

∫ 1

0
dx

�
( 4−d−ετ

2

)
[�]

4−d−ετ
2

, (A15)

where � = x(1 − x)q2 + r . We find δu(6) = u2

8π2εc3 . The other corrections can be found similarly. The correction (7) is the
same. The correction (8) is two times larger because there are two inequivalent diagrams. The correction (9) is N

2 times the first
correction, where 2 comes from two equivalent vertices and N results from a free-index summation. As a result, we find

δu(6) = u2

8π2εc3
, δu(7) = u2

8π2c3ε
, δu(8) = u2

4π2c3ε
, δu(9) = Nu2

16π2c3ε
. (A16)

c. Mixing of boson interaction and disorder scattering

The disorder scattering gets corrections from the diagrams of (4) and (5) in Fig. 4. The calculation of (4) is similar with that
of (1) because frequency is not exchanged in the loop. Numerical factor is 2N , where 2 comes from two inequivalent diagrams
and N results from a free-index summation. The calculation of (5) is similar with that of (6) because frequency is exchanged in
this case. Numerical factor is 2 because there are two inequivalent diagrams. As a result, we find

δ�m(4) = − 4Nu�m

(4π )3/2c3(ε + ετ )
, δ�m(5) = − u�m

4π2c3ε
. (A17)

The boson interaction gets corrections from the diagrams of (10), (11), and (12). The calculations are similar with that of (1)
because frequency is not exchanged. Numerical factors are 2 because there are two inequivalent diagrams. As a result, we find

δu(10) = − 4u�m

(4π )3/2c3(ε + ετ )
, δu(11) = − 4u�m

(4π )3/2c3(ε + ετ )
, δu(12) = − 4u�m

(4π )3/2c3(ε + ετ )
. (A18)

d. Zeeman coupling term

The correction (14) in Fig. 4 is

δλ(14)γiγ5 =
3∑

j=1

∫
dd+ετ l

(2π )d+ετ
D0(p − l)(λγjγ5)G0(l + q )(λγiγ5)G0(l)(λγjγ5)

= λ3
∑

j

∫
dd+ετ l

(2π )d+ετ

γjγ5[−ı(lτ + qτ ) · γ τ + (l + q ) · γ − m]γiγ5[−ılτ · γ τ + l · γ − m]γjγ5

[( pτ − lτ )2 + c2( p − l )2 + r][(lτ + qτ )2 + (l + q )2 + m2]
[
l2
τ + l2 + m2

] . (A19)

This is rearranged as

δλ(14)γiγ5 = λ3
∫ 1

0
dx dy dz δ(1 − x − y − z)

∫
dd+ετ l̃

(2π )d+ετ

2N
D3

, (A20)

where

D = l̃
2
τ + a2

x l̃
2 + �,

l̃ = [
lτ − x pτ + yqτ , l − (

xc2
/
a2

x

)
p + (

y
/
a2

x

)
q
]
,

(A21)
� = x(1 − x) p2

τ + y(1 − y)q2
τ + 2xy pτ · qτ + [xyc2( p + q )2 + xzc2 p2 + yzq2]

/
a2

x + xr + (1 − x)m2,

a2
x = xc2 + (1 − x).

205133-17



KIM, KIM, KIM, JUNG, AND KIM PHYSICAL REVIEW B 98, 205133 (2018)

The numerator is given by

N =
∑

j

γjγ5[−ı(lτ + qτ ) · γ τ + (l + q ) · γ − m]γiγ5[lτ · γ τ + l · γ − m]γjγ5

=
∑

j

γjγ5[−ı l̃τ · γ τ + l̃ · γ ]γiγ5[−ı l̃τ · γ τ + l̃ · γ ]γjγ5 + O(l̃)

→ [
(d − 2)l̃

2
τ + (d − 2)2 l̃2

k

]
γiγ5. (A22)

In the last line, only the quadratic terms are kept. The integration is straightforward, and the result is

δλ(14) = λ3
∫ 1

0
dx dy dz δ(1 − x − y − z)

�
( 4−d−ετ

2

)[
(d − 2) + (d − 2)2

/
a2

x

]
ad

x 2(4π )(d+1)/2�
4−d−ετ

2

. (A23)

Near d = 3 and ετ = 1, we find

δλ(14) = λ3

16π2ε

∫ 1

0
dx dy dz δ(1 − x − y − z)

(
a−3

x + a−5
x

) = λ3(1 + 2c)

12π2εc(1 + c)2
. (A24)

Lastly, we calculate the correction (13). It should be interpreted as an amputated diagram since six distinct diagrams appear
when it is contracted to external lines. It possibly gives a correction for the boson interaction because a power counting tells that
it may have a logarithmic divergence. However, it turns out not to diverge. The correction (13) is

δu(13) = −λ4
∫

dd+ετ l

(2π )d+ετ
tr[γiγ5G0(l)γjγ5G0(l + k)γkγ5G0(l − q )γlγ5G0(l − k′)]

= −λ4
∫ 1

0
dx dy dz dw

∫
dd+ετ l

(2π )d+ετ
δ(1 − x − y − z − w)

3!N
D4

. (A25)

The denominator and the numerator are

D = (l + yk − zq − wk′)2 + �,

� = y(1 − y)k2 + z(1 − z)q2 + w(1 − w)k
′2 + 2(yzk · q − zwq · k′ + ywk · k′),

(A26)
N = tr[γiγ5(l · γ )γjγ5[(l + k) · γ ]γkγ5[(l − q ) · γ ]γlγ5[(l − k′) · γ ]]

→ tr[γiγ5 l̃ · γ γjγ5 l̃ · γ γkγ5 l̃ · γ γlγ5 l̃ · γ ],

where l̃ = l + yk − zq − wk′ and only the quartic term is kept in the last line. The integration is straightforward and the result
is

δu(13) = −λ4�
( 4−d−ετ

2

)
(4π )(d+ετ )/2

∫ 1

0
dx dy dz dw

δ(1 − x − y − z − w)

[�]
4−d−ετ

2

×1

4
(δμνδρσ + δμρδνσ + δμσ δνρ )tr[γiγ5γμγjγ5γνγkγ5γργlγ5γσ ]. (A27)

Near d = 3 and ετ = 1, we find

δu(13) = − λ4

192π2ε
(δμνδρσ + δμρδνσ + δμσ δνρ )tr[γiγμγjγνγkγργlγσ ], (A28)

where we used
∫ 1

0 dx dy dz dw δ(1 − x − y − z − w) = 1
6 .

Taking the trace, we have

tr[γiγμγjγμγkγνγlγν] = tr[γiγμγjγνγkγνγlγμ]

� 16(δij δkl − δikδjl + δilδjk ),

tr[γiγμγjγνγkγμγlγν] = −32δikδjl, (A29)

where O(ε) terms are dropped. In the calculation, we used the
following identities repeatedly:

γμγνγμ = (d − 2 + ετ )γν,

γμγνγργμ = 4δνρ − (d − 4 + ετ )γνγρ, (A30)

γμγνγργσ γμ = 2γσ γργν + (d − 4 + ετ )γνγργσ .

As a result, we find

δu(13) = − λ4

6π2ε
(δij δkl − 2δikδjl + δilδjk ). (A31)

Contracted to external fields, each gives rise to two diagrams
because there are four options but each two are the same (see
Fig. 10). As a result, we obtain

M1 = M2 = M3 = M4 = − λ4

6π2ε
, M5 = M6 = λ4

3π2ε
.

(A32)
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FIG. 10. Vertex corrections for the boson interaction from the
four Zeeman couplings. Three diagrams in the first line are M1, M2,
and M3 from left to right, and three diagrams in the second, M4,
M5, and M6.

Note that the sum is zero
∑6

i=1 Mi = 0. Thus, the logarithmic
divergence is canceled as well known in the Ward identity of
QED4.

e. Counterterms

We gather all the results from Eqs. (A14), (A16), (A17),
(A18), and (A24) as

5∑
i=1

δ�m(i) = 8�2
m − 4Nu�m

(4π )3/2c3(ε + ετ )
− u�m

4π2c3ε

− 4Nu�m

(4π )3/2c3(ε + ετ )
,

12∑
i=6

δu(i) = (N + 8)u2

16π2c3ε
− 12u�m

(4π )3/2c3(ε + ετ )
,

14∑
i=14

δλ(i) = λ3(1 + 2c)

12π2c(1 + c)2ε
. (A33)

Using Eq. (12), we find

δ�m
= − 8�m

(4π )3/2c3(ε + ετ )
+ u

4π2c3ε
+ 4Nu

(4π )3/2c3(ε + ετ )
,

δu = (N + 8)u

16π2c3ε
− 12�m

(4π )3/2c3(ε + ετ )
, (A34)

δλ = − λ2(1 + 2c)

12π2c(1 + c)2ε
.

APPENDIX B: FIXED-POINT STRUCTURE

The beta functions are given by

βc = c[−f1(c)α̃ + �̃],

βα̃ = α̃[−ε + f2(c)α̃ + �̃],

βũ = ũ[−ε + 11ũ + f3(c)α̃ − 5�̃],
(B1)

β�̃ = �̃[−1 − ε − 3�̃ + f4(c)α̃ + 4(6
√

π + 1)ũ],

βm = m[−1 + f5(c)α̃],

βr = r[−2 + f6(c)α̃ + 5ũ],

where α̃, ũ, and �̃ are defined in Eq. (48) and

f1(c) = −c4 + 2c3 + 2c2 − 10c − 1

c(1 + c)2
, f2(c) = c2 + 1

c
,

f3(c) = 3 + c2

c
, f4(c) = c4 + 2c3 + 6c2 − 2c + 3

c(1 + c)2
, (B2)

f5(c) = 10 + 11c

(1 + c)2
, f6(c) = 2(c3 + 2c2 + 3c − 8)

(1 + c)2
.

There are two stable fixed points. The first fixed point (FP1)
is

α̃∗ = 0, ũ∗ = 5 + 2ε

120
√

π − 13
,

(B3)

�̃∗ = 11 + ε(7 − 24
√

π )

120
√

π − 13
, c∗ = 0,

where it is stable when 0 � ε < 0.083 18. All coupling con-
stants are zero but the ratios of the boson interaction and the
disorder strength to the boson velocity are finite. This results
from the fact that the screening effect of the disorder strength
is so strong (�̃∗ > ε/2) that the Zeeman coupling cannot have
a non-Gaussian fixed point (βα̃ > 0). The disorder strength
makes the boson velocity decrease (βc ∝ −c�̃∗). Since the
boson velocity goes to zero, the ratios of ũ ∼ u/c3 and �̃ ∼
�m/c3 are finite.

The anomalous dimensions are given by

z = 1, ηψ = 0, η� = 0.0551 − 0.178ε,

ν−1
m = 1, ν−1

r = 1.96 − 0.805ε. (B4)

Note that the scaling law of fermions is trivial: z = 1, ηψ = 0,
and νm = 1. This is because fermions are noninteracting (λ →
0) in the low-energy limit. On the other hand, the interaction
strength and the disorder strength change the scaling law of
bosons: ηφ 
= 0 and νr 
= 0.5. Thus, this phase is rather trivial
in that it is thought to be a Wilson-Fisher fixed point with a
finite disorder strength.

The second fixed point (FP2) is

α̃∗ = ε

f1(c∗) + f2(c∗)
, ũ∗ = ε[6f1(c∗) + f2(c∗) − f3(c∗)]

11[f1(c∗) + f2(c∗)]
,

�̃∗ = εf1(c∗)

f1(c∗) + f2(c∗)
,

4f1(c∗) + f2(c∗) − f4(c∗)

f1(c∗) + f2(c∗)
− 4(6

√
π + 1)

11

× 6f1(c∗) + f2(c∗) − f3(c∗)

f1(c∗) + f2(c∗)
= −1

ε
, (B5)

where c∗ is obtained by solving the last equation. Numerically,
the second fixed point is given by

α̃∗ = 6.897 + 2.446 ln ε, ũ∗ = 4.052 + 0.7732ε,
(B6)

�̃∗ = 1.031 + 2.450ε, c∗ = 1.367 − 0.02158ε−1.75.

We find that FP2 exists when 0.083 18 � ε because ε should
be large enough to overcome the screening in βα (ε > 2�̃). It
is stable only when ε < 0.3103. The anomalous dimensions
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FIG. 11. Flowing of deviations of coupling constants (a) from Eq. (B3) and (b) from Eq. (B5).

are given by

z = 1.00 + 0.394ε, ηψ = −0.00427 + 0.346ε,

η� = 0.5ε, ν−1
m = 1.08 − 1.99ε, ν−1

r = 1.97 − 0.411ε.

(B7)

The other fixed points can be found in Table I. Most of
them are either unphysical or unstable. The only stable fixed
points are the fourth (FP1) and the last one (FP2), which are
given in Eqs. (B3) and (B6), respectively. Stabilities of FP1
and FP2 can be checked with the linearized equations (�X ≡
X − X∗):

⎛
⎜⎜⎜⎝

β�c

β�α̃

β�ũ

β��̃

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c∗ 0 0 0

0 α̃∗ 0 0

0 0 ũ∗ 0

0 0 0 �̃∗

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

−α̃∗f ′
1(c∗) −f1(c∗) 0 1

α̃∗f ′
2(c∗) f2(c∗) 0 1

α̃∗f ′
3(c∗) f3(c∗) 11 −5

α̃∗f ′
4(c∗) f4(c∗) 4(6

√
π + 1) −3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

�c

�α̃

�ũ

��̃

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

(βc )∗
c∗

�c
(βα̃ )∗
α̃∗

�α̃
(βũ )∗
ũ∗

�ũ
(β�̃ )∗
�̃∗

��̃

⎞
⎟⎟⎟⎟⎠. (B8)

In Fig. 11, deviation from Eq. (B3) and that from Eq. (B5) go to zero in the low-energy limit, so both FP1 and FP2 are infrared
stable.

APPENDIX C: FERMI-SURFACE EFFECT

In this Appendix, we look into the consequence of a finite density of fermions on the boson dynamics. With a chemical
potential μ, the fermion action is given by

Sf =
∫ β

0
dτ

∫
dd r ψ̄ ((∂τ − μ)γ0 − ıγ · ∂r + m)ψ. (C1)

Then, the boson self-energy in Eq. (A7) is modified as

�ii (2) = 4λ2
∫

dd+1l

(2π )4

(l0 + q0 − ıμ)(l0 − ıμ) + (l + q ) · l − 2(li + qi )li − m2

[(l0 + q0 − ıμ)2 + E′2][(l0 − ıμ)2 + E2]
, (C2)

where E′ =
√

(l + q )2 + m2 and E =
√

l2 + m2.
Performing the integration over l0, we have

�′
ii (2) = 4λ2

∫
dd l

(2π )d
θ (E′ � |μ|)θ (E � |μ|)

{
(E′ + E)[E′E + (l + q ) · l − 2(li + qi )li − m2]

2E′E
[
q2

0 + (E′ + E)2
] }

,

�′′
ii (2) = 4λ2

∫
dd l

(2π )d
θ (E′ � |μ|)θ (E � |μ|)

{
(E′ − E)[E′E − ((l + q ) · l − 2(li + qi )li − m2)]

2E′E
[
q2

0 + (E′ − E)2
] }]

, (C3)

where �ii (2) = �′
ii (2) + �′′

ii (2) and θ (x) = 1 (0) if x is true (false).
First, we consider �′

ii (2). If |μ| � m, it just goes back to the original expression in Eq. (A7). On the other hand, if |μ| > m,
it changes as the chemical potential constrains the phase space with the theta function. Expanding �′

ii (2) with respect to the
external momentum, we have

�′
ii (2) = −λ2

(
q2

0 + q2 − q2
i

)
4

∫
dd l

(2π )d
θ (|l| � kF )

(
l2 − l2

i

)
E5

+ 2λ2
∫

dd l
(2π )d

θ (|l| � kF )

(
l2 − l2

i

)
E3

+ 4λ2
∫

dd l
(2π )d

δ(|l| − kF )

{
− (l · q )2

4|l|E3
− (l · q )(liqi )

2|l|E3
+ 3(l · q )2

(
l2
i + m2

)
4|l|E5

}
, (C4)
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where kF =
√

μ2 − m2. The first term gives a correction for
the boson dynamics. There is a singular correction since the
theta function does change a finite part but not a singular
part. For the same reason, the second term gives a singular
correction for the boson mass. The third term gives a finite
correction for the q2 term since the delta function forces l
onto kF . As a result, we obtain

�′
ii (2) = −λ2

(
q2

0 + q2 − q2
i

)
6π2ε

− λ2μ2

π2ε
+ O(1), (C5)

whose epsilon poles are the same with that of Eq. (A8) except
for the change of m2 → μ2 in the boson mass.

Next, we consider �′′
ii (2) term. This term arises due to

the finite density of fermions, where it vanishes in the case
of |μ| < m. It also vanishes in the limit of q0 → 0 so that
we keep q0 finite. Then, it is irregular with q (it cannot be
expanded with respect to |q|) as is in the standard Lindhard
function. Keeping most singular terms, we have

�′′
ii (2) = 4λ2

∫ ∞

0

dlld−1

(2π )3

∫ 1

−1
dx

Eδ(l − kF )(lqx)2

l
[
(lqx)2 + q2

0E2
]

� λ2μkF

π3
− λ2μ2

2π2

|q0|
|q| . (C6)

The first term gives a finite mass shift so it is not impor-
tant. On the other hand, the second term, called the Landau
damping term, changes the boson dynamics severely. In the
low-frequency regime, it is more singular than the quadratic
term q2

0 , so this quadratic term cannot be used in this case.

Doing the similar calculation for Eq. (A1), one can show
that the renormalization factors for the fermion dynamics are
not changed. Also, the fermion dynamics does not get any
singular corrections as opposed to the boson case. However,
if we use the damped boson propagator ( λ2μ2

2π2
|q0|
|q| + c2q2)

instead of the bare one (q2
0 + c2q2), then one may find that the

fermion dynamics gets a singular correction with a logarithm
factor (� ∼ ω log ω), well known to be a marginal Fermi
liquid.

APPENDIX D: WARD IDENTITY

We prove the Ward identity in Eq. (46). We focus
on Sf = ∫

dx ψ̄ (x)(ı∂μγμ + m)ψ (x), where ∂μ = (−ı∂0, ∂r )
and γμ = (γ0, γ ). Performing the chiral transformation given
by

ψ (x) → eıα(x)γ5ψ (x), (D1)

we have

δSf =
∫

dx{∂μα(x)ψ̄ (x)γμγ5ψ (x) + 2ımα(x)ψ̄ (x)γ5ψ (x)}.
(D2)

Thus, the action is not invariant not only by the chiral current
term, but also by the pseudoscalar term proportional to the
mass.

Now, we calculate the fermion Green’s function:

〈ψ (x1)ψ̄ (x2)〉 = 1

Z

∫
D(ψ̄, ψ )ψ (x1)ψ̄ (x2)e−S, (D3)

where Z = ∫
D(ψ̄, ψ )e−S is the partition function. If we

assume Eq. (D3) is invariant under Eq. (D1) in spite of the
explicit symmetry breaking, we have

0 = −
∫

dx〈{∂μα(x)ψ̄ (x)γμγ5ψ (x) + 2ımα(x)ψ̄ (x)γ5ψ (x)}ψ (x1)ψ̄ (x2)〉

+ ıα(x1)〈γ5ψ (x1)ψ̄ (x2)〉 + ıα(x2)〈ψ (x1)ψ̄ (x2)γ5〉 + O(α2)

=
∫

dx α(x){∂μ〈ψ̄ (x)γμγ5ψ (x)ψ (x1)ψ̄ (x2)〉 + 2ım〈ψ̄ (x)γ5ψ (x)ψ (x1)ψ̄ (x2)〉

+ ıδ(x − x1)〈γ5ψ (x1)ψ̄ (x2)〉 + ıδ(x − x2)〈ψ (x1)ψ̄ (x2)γ5〉
}+O(α2), (D4)

where we performed integration by parts on ∂μα(x) and used α(x1) = ∫
dx δ(x − x1)α(x).

The right-hand side of Eq. (D4) should be zero order by order. In the first order, we have∫
dp1{kμ〈ψ̄ (p1 + k)γμγ5ψ (p1)ψ (q )ψ̄ (p)〉 − 2m〈ψ̄ (p1 + k)γ5ψ (p1)ψ (q )ψ̄ (p)〉}

= 〈γ5ψ (q − k)ψ̄ (p)〉 + 〈ψ (q )ψ̄ (p + k)γ5〉. (D5)

More compactly, we have

kμG(p + k)�μ5(p + k, p)G(p) − 2mG(p + k)�5(p + k, p)G(p) = γ5G(p) + G(p + k)γ5, (D6)

where �μ5(p + k, p) is the one-particle-irreducible vertex for
∫

dp1〈ψ̄ (p1 + k)γμγ5ψ (p1)ψ (q )ψ̄ (p)〉 and �5(p + k, p) is that
for

∫
dp1〈ψ̄ (p1 + k)γ5ψ (p1)ψ (q )ψ̄ (p)〉. Multiplying G−1(p + k) on the left and G−1(p) on the right, we obtain

kμ�μ5(p + k, p) = G−1(p + k)γ5 + γ5G
−1(p) + 2m�5(p + k, p). (D7)

Recalling G−1(p) = Z0ı pτ · γ τ − Z1 p · γ − Zmm, we find γ5G
−1(p) = −G−1(p)γ5 − 2Zmmγ5. Resorting to this expression,

we obtain

Zμ5γμγ5 = ∂G−1(p)

∂pμ

γ5 + 2m(Z5 − Zm)γ5, (D8)
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where Zμ5γμγ5 ≡ limk→0 �μ5(p + k, p) and Z5γ5 ≡ limk→0 �5(p + k, p). If Z5 = Zm, we have the Ward identity

Zμ5γμγ5
!= ∂G−1(p)

∂pμ

γ5. (D9)

In order to verify Eq. (D9), we calculate Z5. It is given by

δ�5γ5 =
3∑

j=1

∫
dd+ετ l

(2π )d+ετ
D0(p − l)(λγjγ5)G0(l + q )(γ5)G0(l)(λγjγ5)

= λ2
∑

j

∫
dd+ετ l

(2π )d+ετ

γj γ5[−ı(lτ + qτ ) · γ τ + (l + q ) · γ − m]γ5[−ılτ · γ τ + l · γ − m]γjγ5

[( pτ − lτ )2 + c2( p − l )2 + r][(lτ + qτ )2 + (l + q )2 + m2]
[
l2
τ + l2 + m2

] . (D10)

This is rearranged as

δ�5γ5 = λ2
∫ 1

0
dx dy dz δ(1 − x − y − z)

∫
dd+ετ l̃

(2π )d+ετ

2N
D3

, (D11)

where D, l̃, �, and a2
x are given in Eq. (A21). The numerator is

N =
∑

j

γjγ5[−ı(lτ + qτ ) · γ τ + (l + q ) · γ − m]γ5[lτ · γ τ + l · γ − m]γjγ5

=
∑

j

γjγ5[−ı l̃τ · γ τ + l̃ · γ ]γ5[−ı l̃τ · γ τ + l̃ · γ ]γjγ5 + O(l̃)

→ −d
[
l̃

2
τ + l̃

2]
γiγ5. (D12)

In the last line, only the quadratic terms are kept. The integration is straightforward, and the result is

δ�5 = −λ2
∫ 1

0
dx dy dz δ(1 − x − y − z)

�
( 4−d−ετ

2

)[
d + d2

/
a2

x

]
ad

x 2(4π )(d+1)/2�
4−d−ετ

2

. (D13)

Near d = 3 and ετ = 1, we find

δ�5 = − λ2

16π2ε

∫ 1

0
dx dy dz δ(1 − x − y − z)

(
3a−3

x + 9a−5
x

) = − 3λ2

4π2εc(1 + c)
. (D14)

This is the same with δm in Eq. (A5), i.e., Z5 = Zm. Thus, the Ward identity in Eq. (D9) is proven.
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