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The long-studied Hubbard model is one of the simplest models of copper-oxide superconductors. However,
the connection between the model and the experimental phase diagram is still under debate, in particular
regarding the existence and extent of the d-wave superconducting phase. Recent rapid progress in improving
the accuracy of numerical solvers has opened a way to answer this question reliably. Here, we study the
hole-doping concentration (δ) dependence of the Hubbard model in the ground states on a square lattice at
strong coupling U/t = 10, for the on-site interaction U and the transfer t , using a variational Monte Carlo
method. The method, which combines tensor network and Lanczos methods on top of Pfaffian wave functions,
reveals a rich phase diagram, in which many orders compete severely and degenerate within the energy range of
0.01t . We have identified distinct phases including a uniform d-wave superconducting phase for 0.17 � δ � 0.22
and a stripe charge/spin ordered phase for δ � 0.17 with the stripe period depending on δ, together with
presumable spatially coexisting antiferromagnetic and stripe order for δ � 0.07 and coexisting stripe and d-wave
superconductivity for 0.07 � δ � 0.17. The present, improved method revealed a wider region of a charge
uniform superconducting phase than the previous studies and shows a qualitative similarity to the phase diagram
of the cuprate superconductors. The superconducting order parameter is largest at doping of around δ = 0.17 in
the ground state, which undergoes phase transitions from an inhomogeneous to a uniform state.
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I. INTRODUCTION

The mechanism of high-temperature superconductivity in
doped Mott insulators remains a challenging open issue [1–6].
In such systems, superconductivity severely competes with
charge inhomogeneities [7–12], and resolving the different
orders requires careful and accurate estimates. While a strong
effective attractive interaction could be responsible for both
Cooper pair formation and charge inhomogeneity (or the
charge susceptibility enhancement) [4,13–22], a true micro-
scopic origin of these phenomena and their relationship is yet
to be understood.

For this issue, an analysis of the single-band Hubbard
model on a square lattice offers one of the simplest starting
points. Many numerical studies [23–31] have shown that the
Hubbard model is a unique playground which exibits a large
number of strongly competing orders observed in the cuprates,
including d-wave superconducting, and charge/spin stripe
orders. Despite its simple form with only nearest-neighbor
transfer (t) and on-site Hubbard interaction (U ) terms, the
ground-state phase diagram of the Hubbard model is still
under active debate.

Recent advancement of sophisticated numerical techniques
and growing computational power have potentially brought
the phase diagram of the Hubbard model within reach.
The auxiliary-field quantum Monte Carlo method (AFQMC)
[32,33] has enabled clarification of the instability to the charge
inhomogeneity signaled by the diverging charge suscepti-
bility near δ = 0 at a moderate coupling U/t = 4 [14,34].

At stronger coupling (U/t > 6), it has turned out that the
charge instability with the critical divergence at δ = 0 is more
expanded and the phase separation region occupies the low-
doping region [22]. By allowing stripe-type charge inhomo-
geneity with the period of several lattice constants, a part
of phase separation region at the strong coupling is replaced
by the stripe ground state. A recent paper [30] employed
various numerical methods such as density matrix embedding
theory (DMET) [35], constrained path AFQMC [16], infi-
nite projected entangled-pair states (iPEPS) [36], and density
matrix renormalization group (DMRG) [37,38] to study the
ground state at 1/8 doping. This study mainly considered
U/t = 8, but less comprehensive results were also presented
for U/t = 6 and 12. All the methods support the stripe ground
state with a near degeneracy of stripes with periods from
5 to 8.

Systematic doping dependence has been studied by the
many-variable variational Monte Carlo (mVMC) method
[39,40] (see also Refs. [41–44] and a review [45]) and by
various embedding methods [35,46–51]. Among embedding
methods, DMET was used to investigate the doping de-
pendence for U/t � 8 [52]. However, due to the restricted
size of the embedded clusters used in that study, the roles
of different period stripes could not be compared. Another
embedding method, cellular dynamical mean-field theory, was
also recently applied to the U/t = 6 model [53]. While cluster
sizes were allowed to vary to allow consideration of long
stripe periods, certain discrepancies in this work compared to
other works, for instance, in the energetically preferred stripe
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periods [30], suggests that conclusive results had not yet been
reached.

The mVMC results for doping dependence suggest a
charge/spin stripe ground state with the period increasing with
decreasing δ [31]. However, these ground states are severely
competing with superconducting excited states. Because the
energy difference is tiny (∼0.01t per site, which corresponds
to roughly ∼50 K in the scale of the cuprates), improving
the accuracy of wave functions might lead to different con-
clusions.

In this work, we use a method developed in Ref. [54],
which combines the mVMC method with a tensor network
(TN) method, to study the doping concentration dependence
of the ground state in the strongly coupled U/t = 10 Hubbard
model, taking into account both homogeneous and inho-
mogeneous orders. The wave function is further improved
with first-step Lanczos, and ground-state energies are finally
obtained by extrapolation to zero energy variance. In this way,
we obtain energy estimates that are comparable to state-of-
the-art calculations at δ = 1/8 [30], and substantially better
than the previous mVMC study [31]. Systems of various sizes
are considered, and finite-size effects are carefully examined
to estimate the thermodynamic limit.

One of the most important findings of the present paper
is that there is a stable uniform nonmagnetic ground state
showing superconductivity in the doping region of 0.17 �
δ � 0.22, which has not been seen in the previous study [31].
For the doping region with concentration between 0.07 �
δ � 0.17, we find stripe-ordered ground states. The super-
conductivity of stripe states in this region appears less robust
than for the uniform region. However, a possible region of
phase separation for 0.12 � δ � 0.19 suggests that a uniform
state with higher doping could largely account for the super-
conductivity in the doping range 0.12 � δ � 0.19, where a
mixture of stripe and superconducting ordered domains could
be stabilized.

II. DEFINITIONS AND METHOD

The target of the present study is the single-band Hubbard
model on a square lattice, given by

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

Ns∑
i=1

ni↑ni↓ , (1)

where the first sum is taken over all nearest-neighbor pairs,
ciσ is the annihilation operator for an electron at site i with
spin σ, niσ = c

†
iσ ciσ is the corresponding number operator,

and Ns = LxLy is the number of lattice sites. This study
will primarily focus on the strong interaction regime with
U/t = 10 (except for benchmark calculations).

At large U/t , the low energy space of the model is expected
to host many different types of order, which must be accu-
rately described by the numerical method. For this purpose,
we employ a tensor-network method on top of variational
Monte Carlo method. The wave function can be written
as [54]

|ψ〉 =
∑

x

P (x)M(x)ψpair (x)|x〉 , (2)

where {|x〉} is a basis of real-space configurations, ψpair (x)
is a Pfaffian, P (x) are correlation factors, and M(x) is a fat
tree tensor network. Full details of the definitions and roles of
each factor are included in Appendix A. Further improvement
to the wave function is obtained using first-step Lanczos
[55] where the optimized variational wave function |ψ〉 is
replaced with |ψ ′〉 = (1 + αH)|ψ〉 with a single variational
parameter α.

The ground-state energy is arrived at by extrapolation with
respect to the energy variance �var := (〈H2〉 − 〈H〉2)/〈H〉2,
which is zero for the true ground state. Both the energy and
energy variance are calculated for the optimized variational
wave function with and without the tensor network factor,
and with and without first-step Lanczos. Since linear relation-
ship between variance and energy is shown if the obtained
variational wave function is a good approximation containing
substantial portion of the true ground state [41,56–58], we
regard the ground-state energy as the y intercept for this linear
fit of the above described four data points. See Ref. [57] for
the basis of the linearity. In almost all of our calculations (as in
Fig. 3 in Appendix A), linear relationship between the energy
and variance can been seen, resulting in a small fitting error.
The only exception is seen close to the critical point in the
uniform state. We remark that any deviation from this linear
behavior that could occur at low energies is not taken into
account in this method, and thus the linear approximation is
a potential source of error not included in fitting error bars.
However, when the variance is small enough, we can expect
that the error from the linear approximation is small.

For most of our calculations we have used twisted bound-
ary conditions which are periodic in the y direction and
antiperiodic in the x direction. This choice appears to improve
the optimization and resulted in small finite-size effects. Inho-
mogeneous charge and spin stripe orders could be optimized
using a unit cell size commensurate with the period of the
stripe. For stripes of odd charge period λ, a unit cell of size
λ × 2 was used, while for even period stripes a 2λ × 2 unit
cell was used. This is because the length of spin period is
twice larger than (equal to) that of charge when the charge
period is even (odd) [31,59]. Examples of stripes with odd
and even λ are shown in Fig. 1(a). Charge density variation
is always chosen to be in the x direction. For charge uniform
states, a 2 × 2 unit cell was used, which can accommodate
antiferromagnetic and d-wave superconducting order.

The system size was varied to examine finite-size effects
and extrapolation of physical quantities. The largest systems
used in our calculations were 24 × 24, 36 × 16, and 72 × 8,
which have Ns = 576 sites, however, certain quantities con-
verged rapidly to thermodynamic limit (TL) values, and so
only smaller sizes were required. Details of finite-size effects
are included in Appendix B.

We have tested the accuracy of the method against var-
ious relevant benchmarks. Results of these benchmarks are
provided in Appendix C. At half-filling with U/t = 8, a
discrepancy of about 0.005t is observed in the energy per site,
however, this is reduced to less than 0.001t if quantum number
projections are applied. In the following study, however, we
do not apply quantum number projections due to numerical
cost, because, as we demonstrate in Appendix D, the effect
of quantum number projections on other physical quantities
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FIG. 1. (a) Examples of hole density and 〈Sz〉 in a 2λ × 2 cell for
an odd and even period stripe obtained by optimization at U/t = 10.
Hole density is proportional to the diameter of the circle, while 〈Sz〉
is proportional to the length of the arrow. (b) Energies of stripe and
uniform states per site in units of t as a function of doping for Ly = 8
systems (U/t = 10). Lx is indicated in the legend. As finite-size
effects are found to be small (see Appendix B) we note that the
result here essentially represents the thermodynamic limit. A linear
function f (δ) = 1.835δ + 0.4304 has been added to the energy in
(b) to improve visibility. (c) Ground-state phase diagram with phase
separation (PS), stripe spin and charge order coexisting with weak
d-wave superconductivity (SO + weak SC), charge uniform d-wave
SC (SC) and charge uniform paramagnetic normal (PM) regions
indicated. Checkerboard region indicates a possible region of phase
separation between SO and uniform SC phases. (d) Thermodynamic
limit extrapolations of order parameters of the ground state in dif-
ferent regions: peak of charge structure factor is plotted for the SO
region, and �SC is plotted in the PM region. Charge structure of
several different stripe periods is plotted simultaneously as different
stripe periods are near degenerate.

is relatively small. Away from half-filling, exact results are
not available for comparison, however, the method achieves
close agreement with the recent results from other methods at
1/8 doping at U/t = 8, a point which was recently intensively
studied [30].

III. PHASE DIAGRAM

The energies of charge uniform and various stripe states,
with charge periods ranging from 4 to 9, were calculated as
a function of doping as shown in Fig. 1(b). The strength of
the on-site Coulomb repulsion was fixed to U/t = 10, which
is close to ab initio estimates for cuprates [60]. Each point
represents the ground state of an Ly = 8 system obtained

by variance extrapolation. While only fixed system sizes are
displayed, we have carried out a careful analysis of size
effects, finding that further increasing the system size makes
only a small change to energies, and does not change the
essential features in the diagram. Full details of finite-size
checks are included in Appendix B.

Firstly, we remark that for values of doping up to δ = 0.25,
many different orders are severely competing and the ground-
state phase is determined by subtle energy balance: the energy
differences between different stripe states and uniform states
is small, typically less than 0.01t (∼50 K in cuprate energy
scale [60]). This is smaller by about a factor of two compared
to the energy difference observed using the variational mVMC
energies in Ref. [31]. This tendency indicates that improving
the accuracy of the wave function results in a larger energy
reduction for the charge uniform (superconducting as will
be clarified later) state than the stripe ordered state. This
was also observed in iPEPS [61]. Relative stabilization of
the charge uniform state for a better wave function may
be understood by the fact that the charge uniform metal
and d-wave superconducting off-diagonal ordered states are
subject to larger quantum fluctuations than simple charge/spin
symmetry-broken states and require more sophisticated wave
functions. In contrast, the stripe-type diagonal symmetry-
broken states can be represented already by the mean-field
level relatively well and the sophisticated wave functions do
not improve the energy as much as the charge uniform states.

The ground-state phase diagram from δ = 0 to δ = 0.25
is shown in in Fig. 1(c) and the relevant order parameters
determined by TL extrapolation are shown in Fig. 1(d).

For large values of doping 0.17 � δ � 0.25, the ground
state is homogeneous. The uniform ground state was not ob-
served in the less accurate mVMC study for this doping range
[31] and could provide insight into the mechanism for high-
temperature superconductivity in cuprates. The superconduc-
tivity is seen in the region 0.17 � δ � 0.22. The staggered
antiferromagnetic order, seen at low doping of uniform state,
happens to disappear continuously at δ = 0.17 as we discuss
later.

In the region 0.07 � δ � 0.17, the ground state is stripe
ordered with very small energy differences between stripes
states of different periods. The preferred stripe period de-
creases with increasing doping, as the mean distance between
the holes decreases. The extent of this region agrees well with
experiments on cuprates, in which charge inhomogeneities
have been observed in the doping range 0.05 � δ � 0.2
[7,62–73].

Although we have used a larger coupling strength of U/t =
10, our results qualitatively agree with those of Ref. [30]
with U/t = 8 at doping point δ = 0.125. We observe near
degeneracy of stripes with periods from 5 to 8, with period 4
stripe and uniform states being about 0.01t higher in energy.
Although in agreement with other numerical methods, this
deviates from the experimentally observed period of around
4 at δ ≈ 1/8 in La-based cuprates [7,62]. As was recently
shown in Ref. [31], this discrepancy can be explained by the
absence of next-nearest hopping in the simple square-lattice
model.

In the region δ � 0.07, the energy follows a slightly
downward concave path as the ground-state transitions from
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uniform state to a long period stripe. This suggests that phase
separation occurs between the Mott insulator at half-filling
and a long period stripe. We have limited our calculations to
a maximum charge period of 9. Longer charge periods were
not considered due to their prohibitive computational cost.
Since the period of the stripe in the ground state increases
with decreasing carrier doping, it is conceivable that longer
period stripe may appear for δ < 0.07, which fills the phase
separation region. This is left for future studies.

IV. CHARGE AND SPIN CORRELATIONS

We now discuss the physical properties of the ground
state in more detail. We have found that applying first-step
Lanczos to the variational wave function makes little change
to spin, charge and pairing correlations, in agreement with
Ref. [31] (see Appendix D of that work for more details).
Therefore, unless otherwise specified, physical quantities in
the following discussion are obtained using the variational
wave function which includes the tensor network correlation
factor but without first-step Lanczos applied.

In order to quantify charge and spin correlations, we have
calculated structure factors as a function of doping. The spin
structure factor is defined as

Ss (q ) = 1

3Ns

∑
i,j

〈Si · Sj 〉eiq·(r i−rj ) , (3)

where r = (rx, ry ) is the site position. The charge structure
factor is defined as

Sc(q ) = 1

Ns

∑
i,j

〈(ni − n)(nj − n)〉e−iq·(r i−rj ) , (4)

where n = N/Ns .
The peak values of Ss (q ) and Sc(q ) for different states

as a function of doping are shown in Figs. 1(d) and 2(a),
respectively. For Ss (q ), results for both finite-size systems
and TL extrapolated values are shown. Details of the TL
extrapolation are included in Appendix B 2.

In the stripe region, we obtain nonzero TL values for
Ss (q ) and Sc(q ), which confirms that stripe order persists in
the TL. For the charge uniform state, a transition from an
antiferromagnetic phase to a paramagnetic phase is observed
at δc ≈ 0.17, where the continuous reduction of Ss to zero is
consistent with a continuous or very weak first-order transi-
tion. We establish the robustness of anti-ferromagnetic order
below δc using the correlation ratio [74,75], defined as

R = 1 − Ss (qpeak + δq )

Ss (qpeak )
, (5)

where qpeak is the point where Ss takes its maximum value
and qpeak + δq the closest neighboring point. As the system
size tends to infinity, R → 1 in an ordered phase, R → 0 in a
disordered phase and R will be a constant independent of Ns

at a critical point. The correlation ratio is plotted as a function
of doping in Fig. 2(c), in which the antiferromagnetic quantum
critical point is again suggested at δ ≈ 0.17. Although the
weak first-order transition is not excluded, the transition point
δ = 0.17 is well determined.

FIG. 2. (a) Peak values of spin structure factor and (b) correlation
ratio as a function of doping δ. In (a) dots are from finite-size
(Ly = 16) calculations, while cross symbols are obtained as values
after the TL extrapolation. (a) shows results with the tensor network
correlation factor, while (b) is calculated without it due to computa-
tional cost.

V. SUPERCONDUCTING ORDER

Here we investigate superconducting correlations in var-
ious low energy states of the Hubbard model. We quantify
superconductivity with the dx2−y2 -wave superconducting cor-
relation function

Pd (r ) = 1

2Ns

∑
r i

〈�†
d (r i )�d (r i + r ) + �d (r i )�

†
d (r i + r )〉 ,

(6)
where

�d (r i ) = 1√
2

∑
r

fd (r )(cr i ↑cr i +r↓ − cr i ↓cr i +r↑) , (7)

fd (r ) = δry ,0(δrx,1 + δrx ,−1) − δrx ,0(δry,1 + δry,−1) is the
dx2−y2 -wave form factor and δi,j is the Kronecker delta.
In our calculations we define the superconducting order
parameter as �SC = √

P ∞
d , where P ∞

d = 1
|A|

∑
r∈A Pd (r ) is

the long-range correlation function, which is averaged over
a set A of sufficiently large displacements to smooth out
fluctuations. For stripe states, rather than averaging over all
sites r i in Eq. (6), we measure correlations along hole rich
stripes, which typically have stronger correlations.

The main question that we seek to answer is whether stable
superconducting phase exists in the Hubbard model or not. In
the charge uniform state, the doping dependence of supercon-
ducting order has a dome shape with a maximum at around
δ = 0.125. The dependence for a finite sized system was
found to be qualitatively identical to that shown in Ref. [31],
so we have not included the figure here. After the TL
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extrapolation (see details in Appendix B 2), the superconduct-
ing order survives up to δ ≈ 0.22, as shown in Fig. 1(d). Be-
low δ ≈ 0.17, superconducting and antiferromagnetic orders
coexist.

We also have indications for nonzero �SC in certain
stripe states, however, it is much smaller than the uniform
state, and does not have systematic size dependence, making
TL extrapolation difficult. A rough extrapolation was per-
formed using the mVMC wave function without the TN. We
found �SC = 0.052 ± 0.023 in a λ = 7 stripe at δ = 0.107
and �SC = 0.045 ± 0.018 in a λ = 6 stripe at δ = 0.125. We
also found nonzero �SC in λ = 8 and 9 stripes for finite-
size systems, with similar magnitude to the λ = 6 and 7
stripes. However, due to computational cost, we were unable
to estimate TL values for these systems.

It appears that �SC is a challenging quantity to estimate,
with different methods obtaining different values in stripe and
uniform states [30]. Nevertheless, in agreement with DMET
and iPEPS in Ref. [30], we have shown that �SC is more
robust in charge uniform states than stripe states. The uniform
state is the ground state at δ � 0.17 and �SC decreases with
doping in this region, as seen in Fig. 1(d). At lower doping
δ � 0.17, this state competes with the stripe states, which are
less superconducting. Superconductivity in the ground state
therefore appears optimal at around δ ≈ 0.17, which is in
good agreement with the optimal doping in cuprates of around
δ ≈ 0.16 [76].

Figure 1 hints at an intriguing possibility of phase sep-
aration between the superconducting state at δ ≈ 0.19 and
the stripe state at δ ≈ 0.12. This could explain the gradual
decrease in critical temperature away from optimal doping in
this region. In reality, this region may remain as the charge
inhomogeneous phase with the volume fraction of the super-
conducting states Rs = (δ − 0.12)/(0.19 − 0.12) and Rc =
1 − Rs for the stripe states. Such reduction of the volume
fraction may alter the critical temperature as in the granular
superconductivity [77,78]. However, the existence of phase
separation depends on the precise shape of the uniform state’s
energy curve. Precise numerical calculations are challenging
in this region due to the antiferromagnetic quantum critical
point at around δ ≈ 0.17. We leave the detailed study of this
feature to future work.

VI. CONCLUSION

In this work, we have performed a systematic study of
the hole-doped Hubbard model on a square lattice at strong
coupling U/t = 10, focusing on how the ground-state prop-
erties vary as a function of doping. We have employed a
variational wave function which combines a Pfaffian with a
tensor network to efficiently represent the different types of
entanglement likely to be present. Our method is substan-
tially more accurate than the previous mVMC study [31].
Our improved method has enabled us to uncover a charge
uniform and strong d-wave superconducting phase near δ ≈
0.2 sandwiched by the paramagnetic normal metal phase for
δ � 0.22 and stripe phase with doping-dependent periodicity
for δ � 0.17. This region was formerly identified as the stripe
ordered ground state with either period 5 or 8 [31]. However,
the present, more accurate method has exposed the existence
of a small window with the superconducting order in the so-

called overdoped region. These phases are severely competing
within the energy scale of 0.01t for all the doping δ > 0
studied. The possible phase separation suggests a coexistence
of stripe and superconducting domains roughly for 0.12 �
δ � 0.19. Possible weak superconductivity is also found in
the stripe ground states at low doping. It is remarkable that the
simplest Hubbard model studied here qualitatively reproduces
the basic experimental phase diagram of the cuprates with
various similarities.

However, a very wide region (0.07 � δ � 0.17) of stripe
long-range order with strongly suppressed (or vanishing) d-
wave superconducting order is required to be critically com-
pared in the future with the experimental phase diagrams for
most of cuprate compounds dominated by the d-wave super-
conductivity at lowest temperatures. An interesting direction
for future study would be to observe how physical properties
change when additional terms are added to the Hamiltonian
to more realistically describe the physics of cuprates, for
instance, terms obtained from ab initio studies [60]. Start-
ing from an accurate ab initio effective Hamiltonian for the
cuprates, its reliable solution with detailed and quantitative
comparison with the cuprates will open the materials design
for further enhancing superconductivity. For instance, the
enhancement of superconductivity due to laser irradiation [79]
has recently been investigated using a similar VMC technique.
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APPENDIX A: DETAILED DESCRIPTION OF METHOD

Here, we provide a more detailed description of the
method. The variational wave function in Eq (2), has three
components: a Pfaffian ψpair (x), correlation factors P (x), and
a fat tree tensor network M(x). The Pfaffian term represents
a pair-product wave function, defined as

|ψpair〉 =
⎛
⎝∑

i,j

fij c
†
i↑c

†
j↓

⎞
⎠

N/2

|0〉 , (A1)

where fij are variational parameters. This wave function
can exactly represent various types of states typically found
in strongly correlated quantum systems, including mean-
field superconducting, charge-ordered and antiferromagnetic
states, resonating valence bond solid states and many others.
For any real space configuration |x〉, the overlap ψpair (x) :=
〈x|ψpair〉 is the Pfaffian of a matrix, which can be computed
efficiently.
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FIG. 3. Variance extrapolation of the energy per site in units of
t at δ = 0.0625 on a 16 × 8 system at U/t = 10. Points on this plot
from highest to lowest energy are the VMC wave function without
TN, VMC wave function with TN and D = 2, VMC wave function
without TN with first-step Lanczos applied and VMC wave function
with D = 2 TN and first-step Lanczos.

The correlation factors are given by P = PJPGPd−h,
where PG = exp [− 1

2

∑
gini↑ni↓] is the Gutzwiller factor,

PJ = exp [ 1
2

∑
vijninj ] is the Jastrow factor, and Pd−h =

exp [−∑4
m=0 α(m)

∑
ξ(m)] is the doublon-holon factor, ni =

ni↑ + ni↓ is the number of electrons at site i, and ξ(m) is
1 when a doublon (holon) exists at site i, with m holons
(doublons) at nearest-neighbor sites. These factors are all
diagonal in the real-space configuration basis. The variational
parameters gi, vij , and α(m) are optimized by the method.
The Gutzwiller factor can take into account local correlation
effects, while the Jastrow factor and doublon holon fac-
tors can take into account longer range correlations, which
are particularly important in describing correlations in Mott
insulators [80].

The combination of the tensor network M(x) and P|ψpair〉
was first introduced in Ref. [54], in which a full description
is available. In this tensor network, entangled plaquettes of
four sites are coupled via a binary tree tensor network. Such
a tensor network can flexibly represent types of area law
entanglement that are not captured by P or ψpair. A parameter
D specifies the bond dimension, with larger D resulting in a
larger number of parameters, and a more accurate variational
wave function. Evaluation of M(x) for any given real space
configuration x consists of the contraction of a binary tree ten-
sor network, which can be performed exactly and efficiently
in time O(D3Ns ). In most of our calculations, we set D = 2.
While it is possible to obtain a more accurate wave function
by increasing D, we found it more efficient to apply first-order
Lanczos to the D = 2 wave function than to increase D.

In variational Monte Carlo, expectation values of local
observables are estimated by sampling over the probability
distribution p(x) = 〈ψ |x〉〈x|ψ〉/〈ψ |ψ〉 using Markov chain
Monte Carlo. This is possible for the variational wave func-
tion in Eq. (2), because P (x), M(x) and ψpair (x) can be
efficiently calculated for any x. The doping δ is fixed by
sampling only over configurations |x〉 with a fixed number of
electrons N .

Given that derivatives of the wave function with respect
to variational parameters can be calculated, the variational
parameters can be optimized with respect to the energy us-
ing the stochastic reconfiguration (SR) method [41]. We use
a version of SR that employs conjugate gradient to avoid

constructing the SR matrix explicitly, allowing a large number
of parameters to be simultaneously optimized [81].

Calculating the energy requires time complexity scaled
by O(ns (N3

s + D3Ns log2(Ns ))), where ns is the number of
samples. The first term comes from the calculation of the
Pfaffian, while the second term comes from the tensor net-
work contraction. The optimization has a time complexity of
O(nsnpniter ), where niter is the number of iterations in solving
the SR equation with conjugate gradient and np is the number
of parameters, which scales as O(N2

s + NsD
3) if a full unit

cell is used.
The ground state of a finite sized system has a number of

symmetries which can be exploited to further improve the en-
ergy. Projections that restore translation, SU (2) and rotational
C4 symmetry, denoted respectively by LK, LS , and LC4 , can
be applied to the ground state by modifying the M(x) and
ψpair (x) terms in Eq. (2). Details of how such quantum number
projections [82] are implemented can be found in Ref. [40].
Since these projections are computationally expensive and
result in a relatively small improvement for large system
sizes, they are used only in certain cases. As we show in
Sec. D, these projections also have a negligible effect on other
physical quantities, such as spin and charge correlations.

APPENDIX B: FINITE-SIZE EFFECT
AND THERMODYNAMIC LIMIT

To ensure that the quantities calculated are representative
of the TL values, we have performed a number of finite-size
checks. Regarding the energy, our basic observation is that
under our calculation conditions, and for sufficiently large
systems, the energies obtained by variance extrapolation are
largely insensitive to system size. Since we employ the peri-
odic boundary condition in the y direction while antiperiodic
in the x direction, the two directions are not equivalent. Then
we discuss below the Lx and Ly dependencies separately.
Of course, in the limit of both Lx,Ly → ∞, the unique TL
values should be recovered.

1. Size dependence of energy

Let us first discuss Ly dependence. Although we have
presented only the Ly = 8 plot in Fig. 1 in the main text,
we have also calculated energies for different sized systems.
The entire plot for Ly = 16 is shown below the Ly = 8 plot
in Fig. 4. All essential features of the diagram and even the
energy differences of various stripe orders and uniform state
are preserved within the range of error bars. The insensitivity
supports that the results obtained by the size Ly = 8 is close
to the TL results.

We adopted Ly = 8 because we can perform more sta-
ble energy-variance extrapolations for the following reason:
although the energy is relatively weakly dependent on the
energy variance, the improvement of the energy variance
obtained from taking first-step Lanczos and employing larger
number of tensor dimension in the tensor network part tends
to decrease when the system size becomes larger. Namely,
the energy variance stays relatively higher for larger sys-
tems for the same level of Lanczos and tensor-network
treatment and remains more distant from the limit of the
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FIG. 4. Comparison of energy per site (in units of t) vs doping
plot at U/t = 10 for two different system sizes: (a) with Ly = 8
and (b) with Ly = 16. Essential features of the diagram appear
unaffected by increasing size beyond Ly = 8. A linear function
f (δ) = 1.835δ + 0.4304 has been added to the energy to improve
visibility.

zero-energy-variance extrapolation. Then the extrapolation
causes larger errors in the extrapolated energy. This explains
why the error bars on the Ly = 16 plot are relatively larger
than on the Ly = 8 plot in Fig. 4. Since the energies at
Ly = 8 lie more or less within the increased error-bar range of
Ly = 16, the size extrapolation is not meaningful. However,
the weak system size dependence of the energies suggests
that the results at Ly = 8 are already close to the TL energies
even for the relative order of energies for different periods of
stripes despite their severe competitions. Therefore we show
the result for Ly = 8 as a good estimate of the TL phase
diagram.

We next discuss the Lx dependence. At certain doping
points, system size was also extended in the Lx direction,
and we observe similar size insensitivity. Energies obtained
with different system sizes at U/t = 10 are shown in Table I.
The energies depend very little on the system size again and
the energies of different sizes are indistinguishable within the
error bars, if Lx is larger than 10. Even when we perform the
energy extrapolation using the variance, for both stripe and
uniform states, doubling the system size results in only a slight
decrease in extrapolated energy of approximately ∼0.001t to
0.002t and the relative energy difference of various competing
orders hardly changes. Therefore, in the main text, we use
12 � Lx � 20.

TABLE I. Energies per site in units of t obtained for different
system sizes at U/t = 10.

System size (Lx × Ly) Energy per site

Stripe λ = 5, δ = 0.2
10 × 8 −0.8195(6)
10 × 16 −0.8180(8)
20 × 8 −0.8165(3)
20 × 16 −0.8175(9)

Stripe λ = 6, δ = 0.167
12 × 8 −0.7579(5)
24 × 8 −0.7589(2)
12 × 16 −0.7601(9)

Stripe λ = 7, δ = 0.143
14 × 8 −0.7144(3)
28 × 8 −0.7150(3)
14 × 16 −0.716(1)

Stripe λ = 8, δ = 0.125
16 × 8 −0.6798(5)
16 × 16 −0.6813(5)
32 × 8 −0.681(1)

Uniform, δ = 0.125
16 × 8 −0.674(1)
16 × 16 −0.676(1)
32 × 8 −0.677(2)

2. Size extrapolation of physical quantities

In this section, we describe how TL values are calculated
for charge, spin and superconducting correlation functions.
As mentioned in the main text, applying first-step Lanczos
resulted in little change to physical quantities except for
the energy. Physical quantities also changed little when the
tensor-network bond dimension was increased beyond D = 2.
The physical quantities described below are therefore calcu-
lated using the variational wave function without first-step
Lanczos applied, and with the tensor-network bond dimension
set to D = 2.

a. Spin and charge structure factors and orders

In order to obtain the TL values of structure factors, we
first fix Ly and extrapolate to infinite Lx , giving the structure
factor of an infinitely long strip. This is shown for an λ = 7
stripe in Fig. 5 for Ly = 4, 8, 16. We observed that infinite
Lx-extrapolated values for spin and charge structure factor
peaks was the same when Ly was set to 8 or 16 implying
that an infinitely long Ly = 8 system is already representative
of the TL for spin and charge structure factors. We note that
taking the limit as Lx → ∞ with fixed Ly is expected to yeild
a Tomonaga-Luttinger liquid with vanishing long-range order,
i.e., Ss/Ns → 0. While this is the expected behavior when
Lx  Ly , in our calculations, where Lx ∼ Ly the value of Ss

and Sc appears largely independent of system shape when Ns

is fixed because the employed system sizes here are essentially
in the two-dimensional scaling region and the characteristic
one-dimensional size dependence is expected to appear at
much larger aspect ratio. For instance, the peak values of Ss

are close (within 0.5%) for a 28 × 16 system and a 56 × 8
system for the λ = 7 stripe. Thus, for the system sizes used in
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FIG. 5. System-size extrapolation for (a) spin structure factor
peak and (b) charge structure factor peak for a λ = 7 stripe at
δ = 0.142 and U/t = 10. Error bars are smaller than marker sizes.
Extrapolated values for infinitely long Ly = 8 systems and Ly = 16
systems are essentially indistinguishable. For these system sizes, the
one and two dimensional extrapolations with respect to Ns are nearly
identical, therefore, we have taken the one dimensional extrapolation
with fixed Ly = 8 as the TL extrapolated values of Ss and Sc.

these calculations, the one and two dimensional extrapolations
with respect to Ns are comparable, which justifies the use of
one-dimensional extrapolations. TL values in Figs. 1 and 2
were therefore obtained by extrapolation of an Ly = 8 strip.

b. Superconducting order

We now provide details on how TL values of �SC

were calculated. In Fig. 6, we plot �SC versus system
size for the charge uniform state at three dopings δ =
0.125, 0.1875, 0.2188. For δ = 0.125, four sizes were consid-
ered: 12 × 12, 16 × 16, 20 × 20 and 24 × 24. At this doping,
superconducting order �SC scales linearly with the inverse
linear dimension 1/

√
Ns , and extrapolation to the TL yields

a large nonzero value of �SC = 0.172(2).
For the other values of doping, different system sizes, in-

cluding nonsquare systems, had to be used (since the method
requires an integer number of electron pairs, a given doping
can only be supported on certain system sizes). The sizes
used in both δ = 0.1875 and δ = 0.2188 were 16 × 8, 12 ×
16, 16 × 16, 20 × 16, 32 × 16, and 24 × 24. The extrapo-
lation was performed with respect to

√
Ns which equals L

for square systems. Some fluctuation in system size was ob-
served, which was reduced by averaging over results obtained
by periodic-periodic and antiperiodic-periodic boundary con-
ditions. We observed that �SC remained robust at δ = 0.1875,
although somewhat smaller than at δ = 0.125. Superconduc-
tivity decreased rapidly to near zero at δ = 0.2188.

We have also estimated �SC in certain stripe states. We
remark that calculating superconductivity in stripe states is
challenging and different methods do not agree on the value of
�SC. For example, in Ref. [30], iPEPS found nonzero �SC in
λ = 5 and 7 stripes at δ = 0.125 and U/t = 8, while DMET

FIG. 6. Size extrapolation of �SC in charge uniform states.
Calculations were performed at U/t = 10 and the system size is
varied. At δ = 0.125, only square systems with Lx = Ly were used,
however, at other dopings, nonsquare lattices were needed (since
square systems could not support the specified doping for an integer
number of electron pairs). The system dimension is labeled for
δ = 0.1875. The same dimensions were used for δ = 0.2188. For
δ = 1875 and 0.2188, values obtained with antiperiodic-periodic
and periodic-periodic boundary conditions were averaged to reduce
finite-size effects. The tensor-network bond dimension was fixed to
D = 2, as we observed little change with increasing D beyond this.

only found nonzero �SC in λ = 9 and in a metastable excited
stripe state with λ = 5.

We obtain some evidence for nonzero SC in stripe states,
however it is not conclusive. In Fig. 7, we plot �SC measured
along a hole rich stripe as a function of system size for a λ =
6, and λ = 7 stripe, which was calculated using the mVMC
wave function without the tensor-network factor. The stripe
periods and dopings selected exibited large �SC in finite-size
calculations. As can be seen, �SC remains large for large
systems and extrapolates to a nonzero value (albeit with large
error bars). While these calculations suggest superconductiv-
ity may be present in stripe states, it is substantially less robust
than in the charge uniform state.

FIG. 7. Size dependence of �SC in stripe states at U/t = 10.
Although �SC does not vary smoothly with system size, a linear
extrapolation is plotted, providing rough approximations for the
TL values of �SC. The tensor network factor is not used in these
calculations due to computational cost. Although the TL value of
�SC is not precisely determined, it is clearly less than �SC in uniform
states in the region 0.125 � δ � 0.1875 (see Fig. 6).
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FIG. 8. Comparison of extrapolated energies for U/t = 8 at half-
filling with numerically exact QMC energies for various system sizes
in units of t . The green line is without quantum number projections
applied. The red line is obtained with LK and LS applied to ψpair (x )
and LK to M(x ). 2 × 2 unit cell is used in the calculations without
quantum number projections, while the full unit cell is used when
they are applied.

APPENDIX C: BENCHMARK CALCULATIONS

We have performed a number of benchmark calculations
to evaluate the accuracy of the method. At half-filling, we
compare our results to quantum Monte Carlo (QMC) data,
which can be regarded as exact within the statistical error
[83]. A comparison of our results with those obtained with
QMC at U/t = 8 are shown in Fig. 8. We have performed the
calculations both with and without quantum number projec-
tions applied to the variational wave function. As seen in the
benchmarks in Fig. 8, there is a discrepancy with the exact
energies which decreases with system size to around 0.005t

for a 16 × 16 system when quantum number projections are
not applied to the wave function. However, when LK and LS

are applied to ψpair (x) and LC4 to M(x), the discrepancy
decreases to less than 0.001t . Due to the large numerical
cost, we did not apply quantum number projections to obtain
the results in the main text. While the quantum number
projections improve the energy, we show in Appendix D that
they appear to have a relatively small effect on other physical
quantities.

Away from half filling, exact results are not available.
However, the 1/8 doping point at U/t = 8 was recently stud-
ied using the density matrix renormalization group (DMRG),
infinite projected entangled pair states (iPEPS), auxilliary
field quantum Monte Carlo (AFQMC), and density matrix
embedding theory (DMET) [30]. The different methods pro-
vided evidence of a stripe ground state with a near degeneracy
of stripes with periods from 5–8. We remark that, due to the
extrapolations and approximations used, none of the results
from these methods can be regarded as variational upper
bounds to the true ground-state energy. Therefore a lower
energy does not imply a more accurate method. However,
the energies obtained using the different methods are close
and varied within the range of 0.01t , indicating that the
ground-state energy is likely around −0.76t or −0.77t with
the uncertainty of 0.01t .To compare with the above methods,
we have calculated the energy of the λ = 7 stripe at U/t = 8
with δ = 0.125. The results of these calculations are included

TABLE II. Benchmark calculations of a period 7 stripe at δ =
0.125. Lowest variational energy (using tensor network correlation
factor and first-step Lanczos) and energy obtained by variance ex-
trapolation with and without quantum number projections applied
are shown per site in units of t . When quantum number projections
are applied, LK and LS are applied to ψpair (x ) and LK is applied to
M(x ). Different unit cell sizes are indicated in parentheses.

System size Energy per site Energy per site
(unit cell) TN+Lanczos Var. Extrap.

No quantum number projection
14 × 8 (7 × 2) −0.7456(2) −0.7539(4)
14 × 16 (7 × 2) −0.7446(2) −0.7547(1)
28 × 8 (7 × 2) −0.7446(2) −0.755(1)

Quantum number projection
14 × 8 (7 × 2) −0.7477(1) −0.7562(2)
14 × 16 (7 × 2) −0.7449(2) −0.7560(1)
14 × 8 (14 × 8) −0.7508(1) −0.7578(2)

in tabular form in Table II. We have included results with
various lattice and unit cell sizes, with and without quantum
number projections.

We observe a non-negligible improvement in the extrap-
olated energy when quantum number projections are applied
to the variational wave function. This improvement is around
0.0015t for the 14 × 16 system. Finite-size effects are very
small: after quantum number projections are applied, the ex-
trapolated energies of 14 × 8 and 14 × 16 systems are within
error bars. Using a full lattice for the unit cell, rather than
a 7 × 2 unit cell results in a further slight improvement of
0.002t to the energy when quantum number projections are
applied.

Comparing the energy with the results of Ref. [30] (shown
in Table III), we see that the lowest energy obtained with
our method is close but slightly higher than those obtained
with other methods (about 0.003t above the error bars of
DMRG and iPEPS). However, by considering the variation in
the energy estimate among different methods and considering
the nonvariational aspects of several methods, our energy

TABLE III. Energies per site, in units of t , obtained using four
methods in Ref. [30] for U/t = 8 at 1/8 doping for λ = 8 and
λ = 7. Results represent approximations to TL values, except for the
final two AFQMC entries, which correspond to finite-size systems
with period boundary conditions. Note that these results are not
variational, so lower does not necessarily imply more accurate.

Method Energy per site

DMRG (λ = 7) −0.762(1)
DMRG (λ = 8) −0.762(1)
iPEPS (λ = 7) −0.763(2)
iPEPS (λ = 8) −0.767(2)
DMET (λ = 7) −0.7704(3)
DMET (λ = 8) −0.7706(1)
AFQMC (λ = 8) −0.7656(4)
AFQMC (λ = 8, 16 × 8 PBC) −0.7668(2)
AFQMC (λ = 7, 14 × 8 PBC) −0.7653(2)
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FIG. 9. Comparisons of different physical quantities with and
without quantum number projections LK and LS applied to ψpair (x ),
which are denoted by ‘‘S = 0, k = 0” and “no proj” in the graph
legends, respectively. Structure factor for (a) charge, (b) spin and (c)
superconducting correlations in the x direction for a period 7 stripe at
U/t = 8 at δ = 0.125 on a 14 × 8 system. (d) Spin structure factor
at half filling on a 8 × 8 system at U/t = 8.

estimate is within the uncertainty range, 0.01t in the previous
study. In addition, the severe competition of the stripe states

with the period of 5 to 8 lattice spacing is also consistent.
Direct comparison of finite-size systems for benchmarking is
difficult due to, for instance, the different boundary conditions
required by different methods and other possible biases (e.g.,
the constrained path bias for AFQMC). We have, nevertheless,
included finite-size results of AFQMC for comparison in
Table III. Additional benchmarks of the method at different
U/t can be found in Ref. [54].

APPENDIX D: QUANTUM NUMBER PROJECTIONS

For finite-size systems, applying quantum number projec-
tions, which restore translational symmetry, SU(2) symme-
try and space group C4 symmetry can improve the energy
of the wave function. This improvement is computationally
expensive, so we have not used it in most of our calculations.
While we have observed an improvement in energy when
these projections are applied (see benchmarks in Appendix C),
the quantum number projections result in very little change in
other physical quantities. The biggest improvement in energy
was obtained by applying LK and LS to ψpair (x), which
we test here. We have plotted charge structure factor, spin
structure factor and superconducting correlations in stripe and
uniform states with and without quantum number projections
in Fig. 9. As can be seen, the values of the physical quantities
change little when quantum number projections are applied to
the variational wave function.
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