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Connecting higher-order topological insulators to lower-dimensional topological insulators
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In recent years, the role of crystal symmetries in enriching the variety of TIs has been actively investigated.
Higher-order TIs are a new type of topological crystalline insulators that exhibit gapless boundary states whose
dimensionality is lower than those on the surface of conventional TIs. In this paper, relying on a concrete
tight-binding model, we show that higher-order TIs can be smoothly connected to conventional TIs in a
lower dimension without the bulk-gap closing or symmetry breaking. Our result supports the understanding
of higher-order TIs as a stacking of lower-dimensional TIs in a way respecting all the crystalline symmetry.
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I. INTRODUCTION

Recently a new class of topological crystalline insulators,
the so-called higher-order topological insulators (HOTIs),
have attracted growing research interest [1–17]. Their defin-
ing feature is, like the standard topological insulators (TIs),
the appearance of gapless boundary states, but, unlike the
TIs, the dimensionality of the gapless modes is reduced to
less than d − 1 for a d-dimensional (dD) insulating bulk
(d = 1, 2, 3, . . .). For example, Fig. 1(a) illustrates the case
of inversion symmetric 3D HOTI with broken time-reversal
symmetry, which hosts an equatorial 1D chiral edge mode
on the surface [1,2]. Although the fundamental group π1 of
a sphere is trivial, there is no way to shrink the 1D ring to
a point without breaking the assumed inversion symmetry.
Depending on the specific symmetry settings and dimensions,
there is a variety of HOTIs, exhibiting 0D corner states [e.g.,
Fig. 1(d)] or 1D helical edge modes [e.g., combination of
Fig. 1(a) and its time-reversal copy], for example.

The chiral edge mode in Fig. 1(a) is reminiscent of the
2D Chern insulator with the unit Chern number. Then a
fundamental question arises: Is the physical property of the 3D
HOTI essentially the same as that of the 2D Chern insulator?
In other words, are these two insulators smoothly connected
to each other without closing the bulk gap or breaking the
symmetry, despite the apparent difference in their dimension-
ality? One can imagine squishing the ball in Fig. 1(a) into
the disk in Fig. 1(b) in such a way that the equator of the
ball coincides with the boundary of the disk, as illustrated by
the blue arrow in between Figs. 1(a) and 1(b), and see if the
bulk excitation gap and the assumed symmetries are preserved
during the process. Similarly, one can ask if the 2D HOTI with
0D zero-energy modes can be smoothly deformed into a 1D TI
with the same edge states. In this paper, we explicitly perform
this analysis using a cube, a square, and a line segment instead,
since these are much easier to handle on a lattice.

The possible equivalence between the 3D HOTIs and the
2D Chern insulators and that between the 2D HOTIs and the
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1D TIs are just a particular instance of more general connec-
tion between HOTIs with TIs in lower dimensions. Depend-
ing on the concrete symmetry settings, the Chern insulator
should be replaced with an appropriate 2D topological phase.
In fact, the coupled-layer construction of HOTIs proposed
in Refs. [9,18,19] supports their equivalence. For example,
one can form a staggered stacking of Chern insulators with
C = ±1 in an inversion symmetric manner. Suppose that the
inversion center is included in one of the Chern insulators
with C = +1. Then, keeping the inversion symmetry, gapless
chiral edge modes with opposite chirality can be gapped out
in pairs as illustrated in Fig. 1(c), leaving only the single
chiral mode. The 3D insulator constructed as such gives rise
to a particular instance of a HOTI protected by the inversion
symmetry. Since the z = 0 layer is completely decoupled
from others, at least the low-energy property, insensitive to
gapped layers in z �= 0, must be identical to the 2D Chern
insulator. However, this observation should not be taken as the
general proof of the equivalence, since, in principle, there can
be a HOTI that cannot be constructed via the coupled-layer
construction. (In fact, searching for a concrete case of such
HOTIs would also be a subject of an independent study.)

In this paper, we provide an alternative argument that
connects HOTIs to a lower-dimensional TIs without relying
on the coupled layer construction. Our analysis is based on
two concrete tight-binding models, whose thickness will be
systematically controlled to bridge the dD and d − 1D limit
for d = 3 and 2. This is just a model-dependent argument and
hence is no more general than the above understanding via
the coupled layer construction. However, we still believe the
explicit analysis presented below helps to grasp the generic
nature of HOTIs.

II. 3D HOTI TO 2D CHERN INSULATOR

A. Tight-binding model for a topological insulator

In order to construct a concrete tight-binding model of
a HOTI with chiral hinge modes, we start from a time-
reversal invariant 3D topological insulator, which has gapless
Dirac surface states on each surface. Let us take a four-band
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FIG. 1. A schematic illustration of (a) a 3D HOTI, (b) a 2D Chern insulator, (c) a staggered stacking of Chern insulators, (d) a 2D HOTI, (e)
a 1D TI in class AIII, and (f) a staggered stacking of 1D TI in class AIII. O is the inversion center. Red (blue) circles represent a right-moving
(left-moving) chiral edge mode, while red (blue) dots represent a zero-energy edge mode corresponding to the index +1 (−1).

tight-binding model [20]

H (�k) = −t
∑

j

sin kj τx ⊗ σj−
⎛
⎝m−c

∑
j

cos kj

⎞
⎠τz ⊗ σ0,

(1)

where the sum of j is over j = x, y, z, τj , and σj are Pauli
matrices, and τ0 and σ0 are the 2 × 2 identity matrix. To
simplify the analysis we set t = c = 1 in the following. This
model has the inversion symmetry I = τz ⊗ σ0 and the time-
reversal symmetry T = −iτ0 ⊗ σyK , where K represents the
complex conjugation.

The value m = 2 at the half filling falls into one of the
topological phases protected by the time-reversal symmetry.
Figure 2(a) shows the inversion parity of two valence bands
at each time-reversal invariant momentum. Only the � point
[�k = (0, 0, 0)] has the odd parity and others have the even
parity. According to the Fu-Kane formula, this combination of
the inversion parity implies the nontrivial strong index, while
all weak indices vanish [21]. To confirm the appearance of
the surface Dirac dispersion we compute the band dispersion
under the periodic boundary condition (PBC) in x and y and
the open boundary condition (OBC) in z with Lz = 2lz + 1 =
25 layers, as shown in Figs. 2(b) and 2(c). As expected,
bulk states have a band gap of the order 1 and the gapless
surface states, localized near z = ±lz, have a Dirac-like linear
dispersion around (kx, ky ) = (0, 0).

B. Weak uniform magnetic field

When the time-reversal symmetry is explicitly broken by
perturbations, the Dirac surface modes may acquire a mass
gap without closing the bulk gap. Below we discuss the

effect of a uniform magnetic field �B = B(0,− sin θ, cos θ ) by
adding a term −τ0 ⊗ �B · �σ everywhere both on the surfaces
and in the bulk. Note that the inversion symmetry stays
unbroken even in the presence of �B and the bulk gap does
not close as far as �B is sufficiently small.

As an example, Fig. 2(e) shows the energy dispersion for
the case θ = 0 and B = 1

2 . The magnitude of the mass gap
of the Dirac surface modes is proportional to the magnitude
of the normal component B⊥ ≡ �B · �n as long as |B⊥| is
small. (In this particular setting, when |B⊥| exceeds 1

2 , the
gap at kz = π becomes smaller than that at kz = 0.) Now
that two-dimensional surfaces are completely gapped by the
time-reversal breaking perturbation, one might think the band
insulator became completely trivial. However, as long as the
inversion symmetry is respected, this is not the case—in fact,
the topological insulator under an external magnetic field can
be regarded as a HOTI exhibiting a 1D chiral edge state on its
surface [1] and as we will see in Sec. II C. This is hinted at
by the combination of the inversion parity. Since the bulk gap
did not close by the applied magnetic field, the resulting band
insulator still has the same inversion parity as in Fig. 2(a).
According to Refs. [22,23], this inversion parity falls into the
class (0,0,0,2) in the Z2 × Z2 × Z2 × Z4 classification for the
space group P 1̄ generated by the inversion and the 3D lattice
translation.

One way of understanding this nontrivial topology is
through the bulk Chern number. When the z component of the
magnetic field is positive, the gapped surfaces at the top and
bottom can independently be thought of as a Chern insulator
with C = + 1

2 as a single Dirac cone opened a gap on each
surface. [Here, the normal direction is set to be (0,0,1) for
both the top and the bottom surface.] Consequently, the 2Lz

bands in total below the Fermi energy μ = 0 (as a function
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FIG. 2. (a) The parity eigenvalue of the valence bands of the
model (1) for m = 2 and t = c = 1. (b),(c) The top and bottom
surfaces host gapless Dirac states protected by the time-reversal
symmetry. (d),(e) A uniform magnetic field �B = (0, 0, 1

2 ) opens an
excitation gap. In panels (c) and (e), the number of layers in z is set
to be Lz = 25, and 30 different values of ky are overlaid.

of kx and ky) in Fig. 2(e) has the net Chern number C = +1,
which we confirmed explicitly using our tight-binding model.
This is in a sharp contrast to the vanishing Chern number of
the purely 3D insulating bulk in the model (1) under the PBC
in every direction. The nonzero Chern number is generated in
the process of making a finite-thickness slab and opening a
gap to its surfaces. This Chern number implies the presence
of protected gapless states on the side surface.

C. Chiral hinge mode

To make a concrete connection to the HOTI with a chi-
ral hinge mode, let us examine the surface property more
carefully by taking the OBC in both y and z directions with
ly = lz, while keeping the PBC in x. We set θ = π

4 for the
uniform magnetic field �B = B(0,− sin θ, cos θ ) (B = 1

2 ) so
that every 2D surface has a nonzero normal component B⊥.
See the illustration in the leftmost panel of Fig. 3(a). We
find the appearance of gapless modes localized to the hinge
(y, z) = ±(ly, lz) as demonstrated in Figs. 3(b) and 3(c). This

confirms that the TI under the magnetic field is indeed a HOTI
at least for this choice of the uniform magnetic field.

D. Moving the position of the chiral mode

As the first step toward addressing our original question on
the equivalence of the 3D HOTI and a 2D Chern insulator, let
us adiabatically rotate the direction of the external magnetic
field from θ = π

4 to θ = 0. This step is not at all inevitable, but
makes it easier to reduce the number of layers in z in Sec. II E.

If we natively set θ = 0, the side surfaces lose the nor-
mal component of the magnetic field and becomes entirely
gapless. To avoid this, we introduce a term −by (�x)τ0 ⊗ σy

describing an additional Zeeman field normal to the side
surfaces. Here, by (�x) is applied only to the surface in such
a way that (i) the inversion symmetry and the translation
symmetry in x are preserved and (ii) the absolute value of the
y component of the total magnetic field on each side surface
becomes independent of θ . Specifically,

by (�x) =

⎧⎪⎨
⎪⎩

B
(

sin θ + 1√
2

)
(lz tan θ < z � lz)

B sin θ (z = lz tan θ )

B
(

sin θ − 1√
2

)
(−lz � z < lz tan θ )

(2)

on the surface y = ly and

by (�x) =

⎧⎪⎨
⎪⎩

B
(

sin θ + 1√
2

)
(−lz � z < −lz tan θ )

B sin θ (z = −lz tan θ )

B(sin θ − 1√
2

) (−lz tan θ < z � lz)
(3)

on the other surface y = −ly , as illustrated in Fig. 3(a).
Figure 3(b) shows the density profile of the gapless modes

for different values of θ . Clearly they move smoothly as θ

changes. In this process, the bulk gap does not close as demon-
strated in Fig. 3(c). The fact that (d − 2)-dimensional states of
HOTI can move away from hinge or corner is pointed out in
Ref. [6]. They can be moved but cannot be removed without
breaking the protecting symmetry (the inversion symmetry in
our model).

E. Bridging the 3D and the 2D limit

We are ready to address our original question whether the
3D HOTI can be adiabatically connected to the 2D Chern
insulator. To this end, we start from the θ = 0 case in the
previous section and reduce the system size in the z direction
one by one as illustrated in Fig. 5. Since we are treating a
model on a lattice, the number of layers in z can be reduced
only discretely, but as far as the gapless edge modes and
the band gap are concerned we find a smooth deformation
as illustrated in Fig. 4. The smoothness in the deformation
will be further checked by continuously reducing the coupling
between z = lz and z = lz + 1 layers, instead of abruptly
switching it off in Sec. II F. The only change occurred in
the process of reducing the number of layers is that the band
structure corresponding to the bulk states becomes more and
more sparse. Most importantly, we did not observe any drastic
change in the chiral edge mode and the bulk gap.

The resulting single-layer insulator is described by the
model in Eq. (1) (but the sum of j is now restricted to j = x
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FIG. 3. 3D TI under a uniform magnetic field �B = 1
2 (0, − sin θ, cos θ ) for θ = π

4 , π

8 , 0, − π

8 , and − π

4 . For |θ | < π

4 , an additional surface
Zeeman field [defined in Eqs. (2) and (3)] is applied as illustrated in (a). The boundary condition in x is PBC and that for y and z is OBC. The
red and green color in (a) indicate the sign of the mass gap. The panel (b) is the density plot of the weight of the zero-energy states in the band
structure (c).

and y) plus the magnetic field −Bzτ0 ⊗ σz:

H0(�k) = −
∑

j=x,y

sin kj τx ⊗ σj

−
⎛
⎝2 −

∑
j=x,y

cos kj

⎞
⎠τz ⊗ σ0 − 1

2
τ0 ⊗ σz. (4)

In this four band model, the two valence bands have the
Chern number +1. The minimal model for a Chern insulator
requires only one filled band (together with other unfilled

FIG. 4. The band dispersion computed under the OBC in y and
z and PBC in x for different numbers of layers: Lz = 25, 15, 9, 5, 3,
and 1.

bands), and we found no obstruction to induce an additional
band gap between the bottom two bands in this model. This
concludes the adiabatic deformation of the 3D HOTI to the
most elementary Chern insulator.

F. Smooth reduction of layers

In the previous section, the system size is reduced one by
one. Here we perform a more smooth deformation by contin-
uously switching off the interlayer coupling. As an example,
we discuss reducing the number of layers from 2lz + 1 = 5
to 2lz + 1 = 3 as illustrated in Figs. 5(a) and 5(b). Each
layer contains four bands as a 2D system and the full tight-
binding model we discuss contains 4(2lz + 1) = 20 bands in
total.

(a) (b) (c)

FIG. 5. The parity eigenvalue of the valence bands of the model
in Eq. (1) for five layers (a), three layers (b), and one layer (c).
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The interpolating Hamiltonian reads

H (lz=2)
α = (1 − α)H (lz=2)

0 + αH
(lz=2)
1 , (5)

H
(lz=2)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H0(�k) Hz 0 0 0

H
†
z H0(�k) Hz 0 0

0 H
†
z H0(�k) Hz 0

0 0 H
†
z H0(�k) Hz

0 0 0 H
†
z H0(�k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

H
(lz=2)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

HI 0 0 0 0

0 H0(�k) Hz 0 0

0 H
†
z H0(�k) Hz 0

0 0 H
†
z H0(�k) 0

0 0 0 0 HI

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where H0(�k) is given in Eq. (4),

Hz = −1

2
τz ⊗ σ0 + i

2
τx ⊗ σz (8)

is the interlayer coupling originating from the nearest-
neighbor hopping term in z in Eq. (1), and

HI = −2 τz ⊗ σ0

describes the trivial layers after decoupling. The layer at z = j

(−2 � j � 2) corresponds to the (3 − z)-th block in H
(lz=2)
α .

The inversion symmetry I is implemented as

I =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 τz ⊗ σ0

0 0 0 τz ⊗ σ0 0

0 0 τz ⊗ σ0 0 0

0 τz ⊗ σ0 0 0 0

τz ⊗ σ0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

satisfying IH (α; �k) = H (α; −�k)I .
The parameter α ∈ [0, 1] interpolates the original five layer

system [Fig. 5(a)] and the three layer system together with
the two decoupled layers at z = ±2 [Fig. 5(b)]. The band
gap remains almost unaffected as α is increased from 0 to 1.
We also performed the same analysis connecting 2lz + 1 = 3
layers to 2lz + 1 = 1 layer [Fig. 5(c)] and the result was
the same. These results support the discussion in Sec. II E
that the 3D HOTI can be smoothly connected to the Chern
insulator.

III. 2D HOTI TO 1D TOPOLOGICAL INSULATOR

Now we move on to the relation between the 2D HOTI and
the 1D TI. Our discussion follows completely the same steps
as in the previous section.

We start from the time-reversal invariant 2D topological
insulator with 1D helical edge states. We reuse the same
tight-binding model (1) but in the 2D limit. The sum of j is
hence restricted to j = x and y. In addition to the inversion
symmetry I = τz ⊗ σ0 and the time-reversal symmetry T =
−iτ0 ⊗ σyK , the 2D model has the chiral symmetry � =

τx ⊗ σz. The full internal symmetry of this model is thus class
DIII of the Altland-Zirnbauer symmetry classes.

The inversion parities of two valence bands for the choice
of parameters t = c = m = 1 are shown in Fig. 6. This combi-
nation of parity eigenvalues implies the nontrivial Z2 quantum
spin Hall index [21] and thus helical edge states protected by
the time-reversal symmetry should appear. Figure 6(c) shows
the density of states under the PBC in x and the OBC in y with
Ly = 2ly + 1 = 25 layers illustrated in Fig. 6(b). We indeed
observe the in-gap states that are localized around y = ±ly .

Next we break the time-reversal symmetry by applying a
uniform magnetic field �B = B(− sin θ, cos θ, 0) with θ = 0
and B = 1

2 as shown in Fig. 6(d). The corresponding density
of states is shown in Fig. 6(e). As expected, the edge state
acquires a mass gap of the order of |B⊥|.

FIG. 6. (a) The parity eigenvalue of the valence bands of the
model in Eq. (1) for t = c = m = 1. (b),(c) Two edges at y = ±ly
host a helical edge state protected by the time-reversal symmetry.
(d),(e) The uniform magnetic field �B = (0, 1

2 , 0) opens an excitation
gap. In panels (c) and (e), the number of layers in y is set to be
Ly = 2ly + 1 = 25 and 120 different values of kx are overlaid.
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FIG. 7. 2D TI with chiral symmetry under a uniform magnetic field �B = B(− sin θ, cos θ, 0) for θ = π

4 , π

8 , 0, − π

8 , and − π

4 . An additional
Zeeman field [defined in Eqs. (9) and (10)] is applied as illustrated in (a). The boundary condition is OBC in both the x and y directions. Panel
(b) is the density plot of the weight of the zero-energy modes in panel (c).

Since the chiral symmetry remains unbroken, our 2D
model under the magnetic field belongs to the class AIII.
When a suitable boundary condition is taken, it exhibits 0D
zero-energy modes protected both by the inversion symmetry
and the chiral symmetry. To see this, we take the OBC both
in the x and y direction. We introduce the uniform magnetic
field �B = B(− sin θ, cos θ, 0) together with the Zeeman field
−bx (�x)τ0 ⊗ σx localized to the side edges. We set

bx (�x) =

⎧⎪⎨
⎪⎩

B
(

sin θ + 1√
2

)
(ly tan θ < y � ly )

B sin θ (y = ly tan θ )

B
(

sin θ − 1√
2

)
(−ly � y < ly tan θ )

(9)

on the edge x = lx and

bx (�x) =

⎧⎪⎨
⎪⎩

B
(

sin θ + 1√
2

)
(−ly � y < −ly tan θ )

B sin θ (y = −ly tan θ )
B

(
sin θ − 1√

2

)
(−ly tan θ < y � ly )

(10)

on the other edge x = −lx , as illustrated in Fig. 7(a).
Figure 7(b) shows the density profile of the zero-energy

state in panel (c). The zero modes are well separated from 2D
bulk bands and are at (x, y) = ±(lx, ly tan θ ). In particular,
when θ = ±π

4 , they are localized at corners and the state is
HOTI. This confirms our construction of 2D HOTI in class

AIII by applying symmetry-respecting magnetic fields to 2D
Z2-quantum spin Hall insulator in class DIII.

Now we deform the 2D HOTI to the 1D TI in class AIII.
We first rotate θ from π

4 to 0 then reduce the system size in the
y direction one by one as in Sec. II E. Figure 8(d) shows the
density of states under the OBC in x and y with reduced layers
in the y direction: Ly = 2ly + 1 = 25, 15, 9, 5, 3, 1. The zero
modes in the gap remain unaffected in this process; only the
bulk density of states is reduced. The resulting 1D insulator
is described by the model in Eq. (1) with j = x plus the
magnetic field −Byτ0 ⊗ σy . Therefore, we conclude that the
2D HOTI in class AIII can be smoothly connected 1D TI in
the same symmetry class.

IV. CONCLUSION

In this paper, we presented two concrete models, one
connecting a 3D HOTI to a 2D Chern insulator and the other
relating a 2D HOTI to a 1D TI in class AIII, which exem-
plify a general understanding of HOTIs in terms of lower-
dimensional conventional TIs protected by internal symme-
tries. Although our analysis is based on simple specific tight-
binding models, it has broader implications because it covers
all Hamiltonians of HOTIs that can be smoothly interpolated
to our models.
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FIG. 8. The density of states under the OBC in x and y for
different numbers of layers: Lz = 25, 15, 9, 5, 3, and 1.

Our 3D HOTI model has a conventional bulk topology (the
π -axion angle) because we started from a Z2 strong TI and

the bulk topology cannot change without closing a bulk gap or
breaking the protecting symmetry. If one wants to do a similar
analysis without such a bulk topology, one can prepare a TR
copy of our model and form a a class AII HOTI model with
a 1D helical mode out of them whose axion angle vanishes.
We can then perform the same analysis independently for the
original model and for its TR copy, connecting the class AII
HOTI to a 2D quantum spin Hall insulator. In this way, our
simple models can serve as building blocks for the discussion
of other symmetry classes.

Although HOTIs are a novel class of topological crystalline
insulators recently studied extensively, their physical prop-
erties may be fully captured by the conventional insulators.
The HOTI story might still be useful in the material design
perspective—it might give us an easy way of realizing mate-
rials with 1D edge states in our 3D space. Also, it is important
to ask if all HOTIs can be constructed by the coupled-layer or
coupled-wire type construction or not—the latter possibility
will give us a truly new instance of topological crystalline
insulators.
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