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We investigate the effect of electron-phonon coupling on low-temperature phases in metallic single-wall
carbon nanotubes. We obtain low-temperature phase diagrams of armchair and zigzag type nanotubes with
screened interactions with a weak-coupling renormalization group approach. In the absence of electron-phonon
coupling, two types of nanotubes have similar phase diagrams. A D-Mott phase or d-wave superconductivity
appears when the on-site interaction is dominant, while a charge-density wave or an excitonic insulator
phase emerges when the nearest neighbor interaction becomes comparable to the on-site interaction. The
electron-phonon coupling, treated by a two-cutoff scaling scheme, leads to different behavior in two types of
nanotubes. For strong electron-phonon interactions, phonon softening is induced and a Peierls insulator phase
appears in armchair nanotubes. We find that this softening of phonons may occur for any intraband scattering
phonon mode. On the other hand, the effect of electron-phonon coupling is negligible for zigzag nanotubes.
The distinct behavior of armchair and zigzag nanotubes against lattice distortion is explained by analysis of the
renormalization group equations.
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I. INTRODUCTION

Carbon nanotubes are intriguing (quasi-)one-dimensional
systems where a variety of electronic states emerge at low
temperatures [1–4]. Examples are superconductivity in nan-
otubes embedded in a zeolite matrix [5–9], a Mott insulat-
ing state in ultraclean nanotubes [10], and Wigner crystals
in semiconducting nanotubes [11]. These diverse physical
properties are determined by microscopic details of nanotubes
such as wrapping types (armchair, zigzag, or chiral), the num-
ber of wrapping (single-wall, multiwall, or ropes), doping, and
correlations.

In particular, correlations play an important role in pre-
sumably metallic nanotubes, since it is well known that
one-dimensional gapless systems tend to form (quasi-)long-
range order via backscattering processes [12]. The effects
of electron-electron (e-e) interactions (both long range and
short range) in carbon nanotubes have been extensively stud-
ied [13–24], and various possible phases have been pro-
posed, e.g., Mott insulators, d-wave superconductivity, and
Luttinger liquids. At the same time, electron-phonon (e-ph)
interactions are not negligible, and they may lead to different
low-temperature phases such as s-wave superconductivity
[25–30], Peierls instability [31–41], or Wentzel-Bardeen sin-
gularity [42]. When both e-e and e-ph interactions coexist, it is
not trivial which phase emerges at low temperatures; treating
both interactions on an equal footing is of crucial importance.

In this paper, in order to investigate the effect of e-ph
interactions against e-e interactions in carbon nanotubes, we
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employ a renormalization group (RG) method combined with
a two-cutoff scaling scheme. This approach enables us to
explore low-temperature phases without bias. We focus on
metallic single-wall nanotubes (SWNTs) with short-range
interactions, whose wrapping types are either armchair or
zigzag. Similar calculations have been done, for example, in
Refs. [26,39]. However, by including all the possible phonon
modes and correctly summing up one-loop diagrams for re-
tarded interactions, we reach several new conclusions. First,
we find that in armchair nanotubes, as the e-ph coupling
becomes strong, eventually Peierls lattice distortion with a
wavelength ∼1/2k0

F (k0
F is the Fermi momentum) is induced

by phonon softening. Second, this softening is driven by
intraband scattering phonon modes, i.e., stretching, radial
breathing, or transverse optical modes. We expect that the
radial breathing mode or the transverse optical mode is the
one that softens in actual nanotubes depending on the radius.
Finally, in contrast to armchair nanotubes, zigzag nanotubes
do not show a phonon softening instability; the effect of e-ph
coupling is insignificant in this case. This is rather unexpected,
since the phase diagrams of metallic armchair and zigzag
nanotubes are similar in the absence of e-ph coupling. We
explain the different behavior of these types of nanotubes
based on the RG equations. We show that the structure of RG
equations becomes especially simple for carbon nanotubes
that we consider, and that the basic analysis of the RG flows
can describe the phase diagrams well.

The paper is organized as follows. In Sec. II we derive
effective low energy models for metallic SWNTs from an
extended Hubbard model in graphene. Section III presents
the phase diagrams obtained by RG analysis with and
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without electron-phonon interactions. In Sec. IV we ana-
lyze the RG equations and discuss the consequences of the
electron-phonon coupling on low-temperature phases. Section
V is the conclusion. The complete RG equations and other
technical details are summarized in the Appendixes.

II. MODEL

In this section we present low energy effective models for
SWNTs based on an extended Hubbard model on a graphene
lattice. Particular attention is paid to connect the zone-folding
scheme, which has been used in Refs. [13,17,23], and the
radial quantization scheme in Ref. [43]. Using the latter is
important to correctly derive the electron-phonon coupling
in nanotubes, while the former gives a more straightforward
interpretation of band structures in nanotubes. The details of
the derivation are given in Appendix A.

Throughout the paper we assume weak short-range
e-e interactions: on-site repulsive interactions U , and nearest
neighbor interactions V(⊥). In free-standing nanotubes, the
long-range Coulomb interaction always exists and it is not
small. Weak short-range interactions are realized by screening
the Coulomb interaction by, for example, putting SWNTs on
a substrate [44,45] or assembling them in an array [37]. We,
however, expect that the nearest neighbor interactions capture
the essential physics induced by the long-range interaction.
Indeed, as we demonstrate in the next section, an excitonic
insulator phase, which has been discussed in a model with
the long-range Coulomb interaction [46], also appears in our
model. In experiments, the substrate must be chosen such that
the hybridization of nanotube and substrate electrons do not
occur; for instance, the surface states of the substrate must be
away from the Fermi energy of the nanotubes. Otherwise, the
critical temperatures of the ordered phases that we find below
will decrease due to the finite lifetime of quasiparticles.

A. Electronic Hamiltonian

We start from a model of a graphene sheet. A graphene lat-
tice consists of two triangular sublattices, A and B sites, with
basis vectors a± = a(±1/2,

√
3/2), where a is the distance

between neighboring equivalent sites, and the sublattice offset
vector d = a(0,−1/

√
3) [Fig. 1(a)]. The hopping Hamilto-

nian is

H0 = −J0

∑
r∈R,α

3∑
i=1

[c†Aα (r )cBα (r + δi ) + H.c.], (1)

where c
(†)
mα is the annihilation (creation) operator of the

fermion on sublattice m with spin α, and J0 is the hopping
energy between neighboring sites. The A sites are at R =
n+a+ + n−a− with integers n±, and their neighboring B sites
are at R + δi (i = 1, 2, 3) with

δ1 = d, δ2 = a− + d, δ3 = a+ + d. (2)

Fourier transforming the hopping Hamiltonian leads to band
dispersions E±(k) = ±|h(k)| [see Fig. 1(b)] with

h(k) = 2J0 cos(kxa/2)eikya/2
√

3 + J0e
−iky/

√
3. (3)

An undoped graphene sheet has pointlike Fermi surfaces at the
Dirac points, where the band dispersion is linear. The on-site

FIG. 1. (a) Graphene lattice. Filled (empty) circles represent
A(B ) sites. (b) The upper band of a graphene tight-binding disper-
sion in units of J0 in Eq. (3). The dashed horizontal line corresponds
to the gapless mode in armchair nanotubes, and the dotted vertical
lines to the ones in zigzag nanotubes.

interaction is

HU = U
∑
r∈R

[nA↑(r )nA↓(r ) + nB↑(r + d )nB↓(r + d )], (4)

and the nearest neighbor interactions are

HV =
∑

r∈R,α,β

[
V⊥nAα (r )nBβ (r + δ1)

+V
∑
i=2,3

nAα (r )nBβ (r + δi )

]
. (5)

We assume that |V |, |V⊥| < U .
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FIG. 2. Effective two-leg ladder models obtained by considering
only the gapless modes of the tight-binding Hamiltonian for armchair
and zigzag nanotubes.

We construct a single-wall carbon nanotube by rolling
up a graphene sheet. Here we consider (Ny,Ny ) armchair
carbon nanotubes, and (Nx, 0) zigzag nanotubes. The trans-
verse direction, along which the graphene is wrapped, is
the y or x axis for armchair and zigzag nanotubes, re-
spectively. This leads to quantization of momentum in the
transverse direction. We move to cylindrical coordinates r =
[R0 cos(θ ), R0 sin(θ ), z], where R0 is the radius of the nan-
otube and z is the position parallel to the tube axis. Now the
Fourier transformation is given by

cmα (r ) = 1√
NzN⊥

∑
k,n,α

ei(kz+nθ )cmknα, (6)

where Nz and N⊥ are the number of unit cells along the tube
and along the radial direction, respectively. The quantized
angular momentum n is an integer from −N⊥/2 + 1 to N⊥/2
[47]. The hopping Hamiltonian becomes [43]

H0 = −J0

∑
knα

[c†AknαcBknαγn(k) + H.c.],

γn(k) =
{

einθ1 + 2 cos(ka/2)e−inθ1/2 armchair,

e−ika/
√

3 + 2eika/2
√

3 cos(nθz/2) zigzag,
(7)

where θ1 and θz are the angles between sites along the
circumference in armchair and zigzag geometries [43]; θ1 �
a/

√
3R0 and θz � a/R0. The eigenvalues are E±(k, n) =

±J0|γn(k)|. There always exists a gapless mode for arm-
chair nanotubes, i.e., n = 0. On the other hand, the zigzag
nanotubes have gapless modes only when Nx is an integer
multiple of three, and their gapless modes are with n = n0 ≡
Nx/3. These gapless modes correspond to lines in the original
graphene dispersion, and they are depicted in Fig. 1(b).

We take into account only the gapless modes since we are
interested in low energy physics. For armchair and zigzag
nanotubes, the effective low energy models reduce to two-leg
ladder models (Fig. 2) [13,17,23]. The detail of the derivation
is given in Appendix A. For armchair nanotubes, the n = 0
mode of the diagonalized hopping Hamiltonian gives

H0 =
∑
q=±

∑
k,α

Eq (k)d†
qkαdqkα, (8)

with E±(k) = −J0 cos(kb) ∓ J0. The effective lattice con-
stant is b = a/2 [Fig. 2(a)], and the new Brillouin zone is
[−π/b, π/b]. We label the two bands with q = ±; each has
two Fermi points of right and left moving branches. For zigzag
nanotubes, the n = ±n0 modes of the diagonalized hopping
Hamiltonian give

H0 =
∑
q=±

∑
r=R,L

∑
α

Er (k)d†
rqkαdrqkα, (9)

with ER/L = ∓2J0 cos(kb′). b′ = a
√

3/4 is the average dis-
tance between neighboring sites, and the unit cell size is now
2b′ [Fig. 2(b)]. The new Brillouin zone is taken as [0, π/b′].
We have four bands labeled by (q, r ). Here q = ± correspond
to n = ±n0, and r = R,L denotes the chirality of the band
near the Fermi energy. Each band has one Fermi point near
π/b′. When the system is undoped, the two bands in the
armchair nanotubes have the same Fermi velocity, while they
are no longer the same for doped cases. Instead, the zigzag
nanotubes have always doubly degenerate bands (q = ±1),
and their Fermi velocities are the same. In the following,
we always consider either no doping or infinitesimal doping
regimes. Therefore, we ignore the velocity difference between
two bands, and the additional gapless modes that may appear
for doped systems.

We note that the curvature effect on the electronic disper-
sions becomes important for small radius nanotubes [13,47–
49]; the Dirac points are slightly shifted by an amount of order
R−2

0 . This is not a problem for armchair nanotubes, since the
Dirac points still coincide with the quantized radial momenta
keeping the system metallic. On the other hand, the Dirac
points in the zigzag nanotube shift away from the quantized
momenta inducing a small energy gap ∝R−2

0 ; the system
becomes semiconducting. However, it is possible that such a
small energy gap may not affect the following analysis in the
presence of interactions, which scales as R−1

0 [13]. Therefore
we will ignore the curvature effect in the following.

To construct low energy effective models, we take the
continuum limit

b(′) ∑
z

→
∫

dz,
1√
b(′) d(z) → ψ (z). (10)

We then linearize the dispersion around the Fermi energy.
This introduces two chiral fields ψR,L(z), which vary slowly
compared to 1/kF . The kinetic term is

H0 = v
∑
q,α

∫
dz(ψ†

Rqαi∂zψRqα − ψ
†
Lqαi∂zψLqα ), (11)

where v is the Fermi velocity. After substituting the chiral
decomposition of the low energy modes [Eqs. (A11) and
(A12)] into the interaction part of the Hamiltonian, we can
cast both cases into the following form:

Hint

2πv
= cs

qq ′ψ
†
Rqαψ

†
LqβψLq ′βψRq ′α

+ cl
qq ′ψ

†
Rqαψ

†
LqβψRq ′βψLq ′α

+ f s
qq ′ψ

†
Rqαψ

†
Lq ′βψLq ′βψRqα

+ f l
qq ′ψ

†
Rqαψ

†
Lq ′βψRqβψLq ′α

+ 1
2u+

qq ′ (ψ
†
Rqαψ

†
Rq ′βψLq̄βψLq̄ ′α + H.c.)

+ 1
2u−

qq ′ (ψ
†
Rqαψ

†
Rq ′βψLq̄αψLq̄ ′β + H.c.), (12)

where Einstein summation is implicitly assumed over q (′) =
± = 1, 2. In order to avoid double counting, we choose
fqq = 0 and u−

qq = 0. Furthermore, due to Hermiticity, we
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TABLE I. Expectation values of bosonic variables in the fully
gapped phases. We set 〈φc0〉 = 0.

Phase 〈φcπ 〉 〈φs0〉 〈φsπ 〉 〈θsπ 〉
CDW π/2 0 0
PDW 0 π/2 π/2
CCP 0 0 0
FDW π/2 π/2 π/2
S-Mott π/2 0 0
S ′-Mott 0 π/2 π/2
D-Mott 0 0 0
D′-Mott π/2 π/2 π/2

have cq ′q = cqq ′ and uqq ′ = uq̄q̄ ′ , and the parity symme-
try implies fq ′q = fqq ′ . Thus, there are nine independent
coupling constants: (cl

11, c
s
11, c

l
12, c

s
12, f

l
12, f

s
12, u

+
11, u

+
12, u

−
12).

The initial (bare) values of these coupling constants in terms
of U , V , and V⊥ are given in Appendix B. Umklapp processes,
which are described by the parameters u

+/−
qq ′ , are absent for

doped nanotubes.
Finally, using the operator product expansion [50–52], we

calculate the RG equations for these coupling constants. To
identify the emerging order, we consider the renormalized
bosonized theory, as in Refs. [12,29,52–55]. In many cases,
RG analysis combined with bosonization gives reliable results
in one dimension even when coupling constants flow to the
strong coupling limit, i.e., asymptotic free theory [56,57].
Here we only cite the final form,

Hint

2πv
= 1

(πα0)2

[
cl

11 cos(2φs0) cos(2φsπ )

− cl
12 cos(2θcπ ) cos(2φs0) − cs

12 cos(2θcπ ) cos(2φsπ )

− (
cl

12 − cs
12

)
cos(2θcπ ) cos(2θsπ )

− f l
12 cos(2φs0) cos(2θsπ ) − u+

11 cos(2φc0) cos(2θcπ )

−u+
12 cos(2φc0) cos(2φsπ ) − u−

12 cos(2φc0) cos(2θsπ )

− (u+
12 + u−

12) cos(2φc0) cos(2θs0)
]
, (13)

and the detailed derivation is given in Appendix C. When
the system is undoped, i.e., at commensurate filling, all four
modes are gapped and pinned. The possible phases and their
pinned fields are given in Table I, and also discussed in
Refs. [50,58–64]. The properties of these phases are ex-
plained in the next section. For incommensurate filling, the
total charge mode φc0 becomes massless. Then, Mott phases
become superconducting phases with the same local pairing
symmetry. At the same time, the charge-density wave (CDW)
phase and the p-wave density wave (PDW) phase become de-
generate since the Z2 symmetry (〈φc0〉 = 0 or π ) is unbroken.
Similarly, the chiral current phase (CCP) and f -wave density
wave (FDW) become degenerate.

B. Electron-phonon interactions

Since a full microscopic description of the e-ph interaction
and its parameters are not accessible, we follow the treatment
by Mahan in Ref. [43], and introduce the electron-phonon

coupling as hopping modulations,

Ve-ph = −J1

∑
r∈R,α

3∑
i=1

δ̂i · [ QB,i (r ) − QA(r )]

× [c†Aα (r )cBα (r + δi ) + H.c.], (14)

where QA(r ) and QB,i (r ) are the lattice displacement vectors
for an A site and its surrounding B sites. δ̂i is the normalized
bond vectors given in Eq. (2). Fourier transforming QA and
QB,i as Eq. (6), we obtain

Ve-ph = −J1

∑
kk′nn′α

[
M

n,n′
k,k′ c

†
A,k+k′,n+n′,αcBknα + H.c.

]
, (15)

where M
n,n′
k,k′ ’s are linear combinations of Qm,k′ . The exact

expressions can be found in Ref. [43]. Each displacement
vector consists of radial, transverse, and longitudinal (along
the tube axis) components (Qmρ,Qmθ ,Qmz). In total there
are six modes, and it is convenient to use a new basis: Qν =
(QAν + QBν )/2 and qν = QAν − QBν . The first three are
denoted as acoustic modes, and the the other three are denoted
as optical modes [65]. Three acoustic modes (Qρ , Qθ , Qz)
are often called as breathing, twisting, and stretching modes,
respectively.

For armchair nanotubes, we only consider n = n′ = 0.
Moving to the eigenstate basis, we find [43]

Ve-ph = V1 + V2, V1 =
∑
k,k′,α

∑
ν=LA,RA,TO

gνp(G)(bpν + b
†
−p,ν )

× (d†
+k′αd+kα − d

†
−,k′+π,αd−,k+π,α ),

V2 =
∑

ν,k,k′,α

∑
ν ′=TA,LO,RO

gνp(G)(bpν + b
†
−p,ν )

× (d†
+k′αd−,k+π,α − d

†
−,k′+π,αd+kα ), (16)

where V1 is the intraband scattering caused by longitudinal
acoustic (LA), radial acoustic (RA), and transverse optical
(TO) modes, and V2 is the interband scattering caused by
transverse acoustic (TA), longitudinal optical (LO), and radial
optical (RO) modes. The reciprocal vector G is taken such that
p = k − k′ + G lies within the first Brillouin zone [25,66].
The displacement vectors Qν are quantized and gν is the
coupling constants for mode ν.

For zigzag nanotubes we approximate M
n,n′
k,k′ � M

n,n′
π/2b′,0

with n, n + n′ = ±n0, since we only consider states near the
Fermi points located at or very close to the Brillouin zone
boundary. In the eigenstate basis we find

Ve-ph = V1 + V2, V1 �
′∑

k,α,q

∑
ν ′=RA,LO

gν,0(b0,ν + b
†
0,ν )

× (d†
LqkαdRqkα − d

†
RqkαdLqkα ),

V2 �
′∑

k,α,q

∑
ν ′=RA, TA, LO

gν,2n0 (b2n0,ν + b
†
−2n0,ν

)

× (d†
Lq̄kαdRqkα − d

†
Rq̄kαdLqkα ). (17)

The summation over k is restricted near the Fermi surface.
V1 is the intraband scattering, where the momentum or
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FIG. 3. Weak-coupling phase diagrams of armchair nanotubes
without e-ph interactions for undoped (left) and doped (right)
systems.

angular momentum transfer by phonons is negligible. V2 is
the interband scattering, where an electron is scattered from
one branch to the other one. We ignore an additional scattering
process by TO phonons

V3 �
′∑

k,α,q

qgTO(b0,TO + b
†
0,TO)(d†

RqkαdRqkα − d
†
LqkαdLqkα ),

(18)

since this effectively renormalizes the f s
12 term, which is

irrelevant in the renormalization group equations below.
In the next section we will derive the effective retarded

interaction among electrons by integrating out the phonons.
This treatment and the use of a two-cutoff scaling scheme
are phenomenological by nature [67]. Therefore, we do not
elaborate on the precise values of e-ph coupling constants
here.

III. RENORMALIZATION GROUP ANALYSIS

A. Without e-ph interactions

RG equations for general N -leg ladder problems with
instantaneous electronic interactions have been discussed in
Refs. [57,68]. For the sake of completeness, these equations
are cited in Appendix B.

The phase diagrams for vanishing e-ph interactions for
armchair and zigzag nanotubes are shown in Figs. 3
and 4. Corresponding order parameters are sketched in Fig. 5

FIG. 4. Weak-coupling phase diagrams of zigzag nanotubes
without e-ph interactions for undoped (left) and doped (right)
systems.

FIG. 5. Schematic presentation of phases appearing in armchair
and zigzag nanotubes at half-filling. Blue circles represent the s-wave
pairing, orange ellipses the d-wave pairing, red dots charge accumu-
lations, and arrows currents (we follow the notation of Ref. [24]).

following the notation of Ref. [24]. The phase diagrams are
obtained by integrating the RG equations with initial condi-
tions U/J0 = 10−8–10−5 until one or several of the coupling
constants reach the order of unity. We use such small initial
conditions to focus on the asymptotic diverging flows that can
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be well captured by the ansatz [50,56,57,69,70]

gi (l) ∼ Gi

ld − l
, (19)

where l gives the running ultraviolet cutoff �̃ = �0e
−l . We

analyze the effective model in bosonized form to determine
the low energy phases. The pinned values of the bosonic
fields and the corresponding phases are given in Table I. The
phase diagrams for zigzag nanotubes have been obtained in
Ref. [24]. We note that the two phase diagrams are mapped to
each other via the following transformation:

V ↔ 1
3 (V + 2V⊥), V⊥ ↔ 1

3 (4V − V⊥). (20)

This approximately exchanges V and V⊥, or equivalently the
x and y axes in Fig. 1(a). Since zigzag/armchair nanotubes
are rolled up along the x/y axis, such exchange of V and
V⊥ interchanges the phase diagrams within the bosonization
language. However, real space order parameters are different
for two nanotubes even for the same pinning fields as we
discuss below (see Fig. 5).

First, in both types of SWNTs, we find various Mott phases
for the undoped case [24,60]. These Mott phases have on
average one electron per site, and no hopping is allowed due
to repulsive interactions. They become superconducting states
when the system deviates from half-filling, and have local
pairing that resemble their partner superconducting states. In
bosonization language, the only difference between the Mott
states and their superconducting partners is whether the total
charge mode φc0 is gapped or not. The local pairing in the
s-wave Mott phases consists of on-site pairs

1√
2

(|↑↓, 0〉 + |0,↑↓〉), (21)

while the pairing in the d-wave Mott phases consists of spin
singlets

1√
2

(|↑,↓〉 − |↓,↑〉). (22)

In armchair nanotubes, the transverse and tube directions are
not equivalent, and the local pairs are on the transverse bonds
in the S- and D-Mott phases, while the S ′- and D′-Mott states
have pairing along the tube direction (Fig. 5). On the other
hand, in zigzag nanotubes, local pairs are distributed equally
on every nearest neighbor bonds in the S- and D-Mott phases,
and on every next-nearest neighbor bonds in the S ′- and D′-
Mott phase (Fig. 5).

The CDW phase appears when V, V⊥ ∼ U as observed in
Ref. [60]. For the undoped case, this corresponds to a charge
modulation on A and B sites,

nA = 1 ± δn, nB = 1 ∓ δn. (23)

In this regard, this CDW state is similar to the excitonic
insulator (EI) phase, which was proposed for metallic carbon
nanotubes with long-range interactions [46]. We expect that
long-range interactions beyond nearest neighbor repulsions
further stabilize the CDW phase. When the system is doped,
the CDW is no longer commensurate, and the periodicity of
the charge modulation along the tube axis becomes 1/(k1

F +
k2
F ) for armchair nanotubes and 1/(2kF ) for zigzag nanotubes.

Chiral current phases (CCPs) [24], where time-reversal
symmetry is spontaneously broken, appear in both phase dia-
grams. Similar chiral states have been discussed in cold atom
gases [71–74], superfluid 3He [75], or Sr2RuO4 [76]. The CCP
is mapped on the staggered flux (SF) phase in two-leg ladder
problems, which was proposed in the context of the t-J model
[60,77–79]. The SF phase has circularly flowing currents on
a plaquet of a ladder, and its chirality is spatially staggered
along the ladder. However, we note that the CCPs in the two
types of SWNTs look different in the original honeycomb lat-
tice, since there are no “staggered currents” there. In SWNTs,
the current circulates along the circumference of the tubes in
either a clockwise or anticlockwise manner; they look like a
solenoid (Fig. 5).

The new phases that appear in the armchair case, albeit in
unphysical parameter regimes, are an f -wave density wave
(FDW) and a Luttinger liquid (LL). The FDW state has a
staggered current,

J = i
∑

α

[d†
Aα (z + b)dAα (z) − d

†
Bα (z + b)dBα (z) − H.c.].

(24)

The FDW and the CCP become degenerate as the system is
doped. In the Luttinger liquid phase, all four bosonic modes
are massless until l ∼ 1010, where we stop our RG flow.

B. With e-ph interactions

In the presence of phonons, there is another energy scale
in addition to the ultraviolet cutoff, i.e., the Debye frequency
ωD. Here we employ a two-cutoff scaling scheme to treat
the problem [26,67,69,70,80,81]. We first integrate out the
phonon modes in Eqs. (16) and (17) to obtain an effective
retarded interaction among electrons [66]

Veff = −2|gνp|2 ων
p

ω
ν,2
p − ω2

. (25)

For ω � ων
p we can ignore the effective interactions. For

ω → 0 the above expression becomes nearly constant for both
acoustic and optical phonons as discussed below. Thus we can
approximate it as

Veff � −2|gνp|2ω−1
D �(ωD − ω). (26)

This resembles the treatment of the phonon-induced interac-
tion in BCS theory. For optical phonons, which are approxi-
mately dispersionless, the effective interaction in Eq. (25) is
nearly constant, −2|gνp|2/ωD, below the phonon frequency
ωD. For acoustic phonons, the coupling constant |gνp|2 van-
ishes linearly as p → 0, and thus we can approximate the
phonon frequency by the zone-boundary values [82]. By
identifying this frequency as the Debye frequency, we recover
the expression in Eq. (26). For the sake of simplicity, we use a
single Debye frequency in the following. This gives frequency
dependent coupling constants gi (ω),

gi (ω) = gi + �(ωD − ω)g̃i , (27)

where gi is the instantaneous electronic coupling and g̃i is the
phonon mediated retarded interactions from Veff above.
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FIG. 6. Phase diagrams for armchair nanotubes with e-ph cou-
pling for undoped (left) and doped (right) cases. We take κ1 = κ2 =
κ in Eq. (28).

In the two-cutoff scaling scheme, RG equations for re-
tarded interactions are given by loop diagrams, since phonon-
mediated interactions g̃i can only transfer energies ω < ωD.
These one loop diagrams must include at least one vertex
of g̃i due to the steplike energy cutoff �. The instantaneous
interactions gi are renormalized only through instantaneous
vertices and thus are independent of g̃i . The one-loop dia-
grams that we consider include not only the RPA bubbles
[26,67], but also half-bubble diagrams [69,70,80,81]. The
retarded coupling constants that enter the RG equations are
(c̃l

11, c̃
l
12, f̃

l
12, ũ

+
11, ũ

+
12, ũ

−
12). The RG equations of these are

given in Appendix B.
Since the RG equations for the instantaneous interaction

parameters gi are independent of the retarded interaction
parameters g̃i , the former still diverge at length scale ld as
Eq. (19). On the other hand, the retarded interactions g̃i

may have another length scale lp at which their RG flow
diverge. Since gi are included in the RG equations for g̃i , the
two length scales should follow lp � ld . Now what kind of
fixed point appears depends on the two length scales. Below
we investigate the effect of e-ph coupling to the physically
relevant phases for V = V⊥ > 0.

1. Armchair nanotubes

The initial conditions for the retarded cou-
pling constants are (c̃l

11, c̃
l
12, f̃

l
12, ũ

+
11, ũ

+
12, ũ

−
12) =

2(−κ1,−κ2, κ2,−κ2, κ1,−κ2), where

κ1 = 2ω−1
D

∑
ν=LA,RA,TO

|gν,2kF
|2,

(28)
κ2 = 2ω−1

D

∑
ν=TA,LO,RO

|gν,0|2.

We consider κ1 = κ2 = κ and the phase diagram in terms of κ

and V = V⊥ is given in Fig. 6. The S-Mott phase between
D-Mott and CDW phases immediately disappears as κ is
turned on. We find that when κ becomes strong, eventually
−c̃l

11 and ũ+
12 flow to +∞, or in other words κ1 → +∞. From

Eq. (28) this implies that the intraband phonons are softened
[67]. The phonon softening leads to a Peierls lattice distortion
with periodicity ∼1/2k0

F ∼ 3a/8π .
Because κ contains contributions of several phonon modes,

the divergence of κ does not indicate which of these modes
softens. Considering the coupling strength and the mode

frequencies [28], we speculate that the RA mode, i.e., radial
breathing mode, is the one that softens for a relatively small
radius ∼4 Å. Considering that the coupling strength of the RA
mode and its frequency scales as R−2

0 and R−1
0 , respectively

[43,83–85], we expect that the TO mode, i.e., in-plane optical
mode, becomes more dominant for larger radius nanotubes.
For doped nanotubes, the d-wave superconducting phase and
the CDW phase turn into Peierls states as κ becomes large,
while they are more stable than the corresponding phases at
half-filling. As we will see in the next section, κ1, which
triggers the Peierls instability, is always more relevant than κ2.
Thus, the phase diagram does not change significantly when
we deviate from κ1 = κ2.

2. Zigzag nanotubes

The initial conditions for the retarded coupling constants
are (c̃l

11, c̃
l
12, f̃

l
12, ũ

+
11, ũ

+
12, ũ

−
12) = 2(κ4, κ3, κ3,−κ3,−κ4, κ3),

where

κ3 = 2ω−1
D

∑
ν=LA,RA,TO

|gν,2kF
|2,

(29)
κ4 = 2ω−1

D

∑
ν=TA,LO,RO

|gν,0|2.

In this case, we do not find additional instabilities induced by
phonons for κ3,4 < U . This indicates that the phases induced
by electronic interactions in zigzag nanotubes are fairly stable
to phononic perturbations. We discuss why zigzag nanotubes
are much more stable than armchair nanotubes by analyzing
the RG equations in detail in the next section.

IV. DISCUSSION

In this section we analyze the RG equations for the retarded
interactions to clarify the different behavior of armchair and
zigzag nanotubes. First, we decouple these RG equations into
the following form:

ḣi = hiρi − 2h2
i , (30)

by introducing new variables h1, . . . , h6,

(
h1

h2

)
=

(
1 1

1 −1

)(
c̃l

11

ũ+
12

)
,

⎛
⎜⎜⎜⎝

h3

h4

h5

h6

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−1 1 −1 −1

−1 1 1 1

1 1 1 −1

1 1 −1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c̃l
12

f̃ l
12

ũ+
11

ũ−
12

⎞
⎟⎟⎟⎠. (31)

The parameters ρi are linear combinations of instantaneous
coupling constants,

ρ1,2 = −2
(
2cl

11 − cs
11 ± 2u+

12 ± u−
12

)
,⎛

⎜⎜⎜⎝
ρ3

ρ4

ρ5

ρ6

⎞
⎟⎟⎟⎠ = 2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

−1 1 −1 1

−1 1 1 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2cl
12 − cs

12

−2f l
12 + f s

12

u+
11

u+
12 + 2u−

12

⎞
⎟⎟⎟⎠. (32)
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FIG. 7. Parameter dependence of the asymptotic solutions in
Eq. (35). Among the three possible behaviors, only region I gives
the phonon-driven distinct phases.

Equation (30) has the same form as the RG equation
analyzed in Ref. [69]. Its formal solution is given as

hi (l) = Mi (l)

[∫ l

0
dl′2Mi (l

′) + hi (0)−1

]−1

, (33)

with Mi (l) ≡ exp[
∫ l

0 dl′ρi (l′)]. Since the instantaneous cou-
pling diverges as Eq. (19), ρi behaves as

ρi � βi

ld − l
. (34)

The RG flow of hi is roughly determined by the value of βi

and the initial value hi (0) [69]. The asymptotic behavior of
hi (l) are well captured by an ansatz

hi (l) ∼ G̃i

(lp − l)γi
. (35)

In Fig. 7 we sketch the three regimes given by βi and hi (0).
In region I the retarded coupling diverges faster than the
instantaneous coupling, i.e., lp < ld with γ = 1. On the other
hand, in region II the retarded couplings are diverging at ld
but subdominant to the instantaneous ones since 0 < γ < 1.
Finally, in region III hi are irrelevant and renormalized to zero,
i.e., lp = ld with γ < 0. Thus, only case I gives the phonon-
driven phases. We note that the precise phase boundary will be
affected by the initial part of the RG flow, where the coupling
constants do not follow the ansatz, Eq. (34).

First, let us study the undoped case. The values of βi for
the D-Mott and CDW phases are

(β1, . . . , β6) =
{(− 1

6 , 7
6 , 7

6 ,− 1
6 ,− 1

6 ,− 1
6

)
D-Mott,(− 1

3 , 1
3 , 1

3 ,− 1
3 , 7

3 , 1
3

)
CDW.

(36)

These values are extracted from the numerically integrated
RG flow by fitting the ansatz in Eq. (34) in the asymptotic
regime. For the armchair nanotubes, the only nonzero initial
values are h2(0) = −4κ1 < 0 and h3(0) = 8κ2 > 0. The fact
that h3(0) is positive indicates that h3 is subdominant in both
phases; either case II or III in Fig. 7. In contrast, since h2(0)
is negative, h2 can be dominant depending on the values
of β2. Indeed in the D-Mott phase, h2 is always dominant

(case I) since β2 > 1. On the other hand, in the CDW phase, κ1

needs to be larger than a critical value for h2 to be dominant,
since −1 < β2 < 1. Since κ1 is responsible for the Peierls
distortion, this explains why the CDW phase is more stable
than the D-Mott phase against the Peierls instability. For
zigzag nanotubes, the nonzero initial values are h2(0) = 4κ4

and h6(0) = 8κ3. Since they are both positive, the retarded
coupling are either irrelevant or subdominant to the instanta-
neous coupling (Fig. 7). This is why we do not see any effect
of e-ph coupling in zigzag nanotubes.

Now we turn to the doped case. The values of βi for the
d-wave superconducting state and the CDW are

(β1, β3, β5) =
{(

3
4 , 3

4 ,− 1
4

)
dSC,

(0, 0, 2) CDW.
(37)

For armchair nanotubes, the initial values that are nonzero
are h1(0) = −κ1 < 0 and h3(0) = 2κ2 > 0. In both phases,
h1 becomes dominant when κ1 is above a critical value since
−1 < β1 < 1, while h3 is again subdominant. Compared to
the undoped case, the absence of umklapp processes reduces
the values of β’s. This explains why the doped case is rela-
tively more stable to Peierls instability than the undoped cases.
In this sense, the Peierls instability is not simply competing,
but also assisted by the electronic scattering processes. For
zigzag nanotubes, the nonzero initial values are h1(0) = κ4

and h5(0) = 2κ3. Since they are both positive, this indicates
that the retarded coupling are again irrelevant or subdominant.

V. CONCLUSION

In this paper, using a weak-coupling renormalization group
approach, we have studied the influence of e-ph coupling
on low-temperature phases of metallic single-wall carbon
nanotubes. In armchair nanotubes we find that the phases
induced by short-range electronic correlations (e.g., a D-Mott
phase, d-wave superconductivity, and a charge-density wave)
turn into a Peierls insulator by e-ph coupling. We show that
the intraband scattering modes (stretching, radial breathing,
and transverse optical modes) cause the softening, and in
particular, the radial breathing mode or the transverse optical
mode is expected to soften first. On the contrary to armchair
nanotubes, no Peierls instability is found in zigzag nanotubes.
This suggests that the D-Mott phase or CDW is more likely
to appear in zigzag nanotubes in experiments. By analyzing
the structure of the RG equations, we clarify that the specific
forms of e-ph coupling in two types of nanotubes lead to such
distinct behavior.
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APPENDIX A: DERIVATION OF EFFECTIVE MODELS

1. Armchair nanotubes

From Eq. (7) the eigenvalues of the hopping Hamiltonian for the armchair nanotubes are E±(n, k) = ±|γn(k)| with

|γn(k)|2 = 1 + 4 cos(ka/2) cos(3nθ1/2) + 4 cos2(ka/2). (A1)

We see that only the n = 0 component is gapless near k = ±4π/3a. Since we are interested in the low energy physics, we keep
only the massless mode n = 0. In real space, the low-energy effective modes are given by partial Fourier transform along the
transverse direction [17]

cmα (r ) � 1√
NzN⊥

∑
k

eikzcmk0α ≡ 1√
N⊥

dmα (z). (A2)

For a tube with length L, Nz = L/a and N⊥ = 2Ny . Substituting this to the original Hamiltonian, we find that the effective
model is a two-leg ladder model with a lattice constant b = a/2 [Fig. 2(a)],

H0 � −J0

∑
z,α

[∑
±

d
†
Aα (z)dBα (z ± b) + d

†
Aα (z)dBα (z) + H.c.

]
,

HU � U

N⊥

∑
z,m

nm↑(z)nm↓(z),

HV � 1

N⊥

∑
z,α,β

[
V⊥nAα (z)nBβ (z) + V

∑
±

nAα (z)nBβ (z ± b)

]
. (A3)

The lattice coordinate is given by z = pb with p ∈ Z. A more natural labeling is given by using the chain index (1 or 2)

dAα (z) =
{

d1α (z) (z ∈ 2Z),

d2α (z) (z ∈ 2Z + 1),
dBα (z) =

{
d2α (z) (z ∈ 2Z),

d1α (z) (z ∈ 2Z + 1).
(A4)

Eigenstates of the hopping Hamiltonian are given by d±kα = (d1kα ± d2kα )/
√

2, and the eigenvalues are E±(k) = −J0 cos(kb) ∓
J0. We note that E−(k) is shifted by π/b compared to the one in Eq. (A1). This is due to the relabeling of the sites, Eq. (A4),
which leads to (

d+kα

d−,k+π,α

)
= 1√

2

(
1 1

1 −1

)(
dAkα

dBkα

)
(A5)

in momentum space.

2. Zigzag nanotubes

For the zigzag nanotubes we have

|γn(k)|2 = 1 + 4 cos2(nθz/2) + 4 cos(nθz/2) cos(
√

3ka/2), (A6)

from Eq. (7). The condition cos(nθz/2) = ±1/2 indicates that the gapless mode appears when Nx is divisible by three. Here we
focus on the gapless modes with n0 ≡ ±Nx/3. The low-energy modes are approximated as

cmα (r ) � 1√
NzN⊥

∑
k,n=±n0

ei(kz+nθ )cmknα ≡ 1√
N⊥

∑
q=±

eiqn0θdmqα (z). (A7)

For a tube with length L, Nz = L/
√

3a and N⊥ = 2Nx . Substituting this to the original Hamiltonian, we find [24]

H0 � −J0

∑
z,q,α

[d†
Aqα (z)dBqα (z − b′

+) + d
†
Aqα (z)dBqα (z + b′

−) + H.c.],

HU � U

N⊥

∑
z,q,m

[nmq↑(z)nmq↓(z) + nmq↑(z)nmq̄↓(z) + d
†
mq↑(z)dmq̄↑(z)d†

mq̄↓(z)dmq↓(z)],

HV � V

N⊥

∑
z,q,q ′,α,β

[2nAqα (z)nBq ′β (z + b′
−) − δq ′,q̄d

†
Aqα (z)dAq ′α (z)d†

Bq ′β (z + b′
−)dBqβ (z + b′

−)]

+ V⊥
N⊥

∑
z,q,q ′,α,β

[nAqα (z)nBq ′β (z − b′
+) + δq ′,q̄d

†
Aqα (z)dAq ′α (z)d†

Bq ′β (z − b′
+)dBqβ (z − b′

+)], (A8)
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where q̄ = −q, b′ = a
√

3/4, b′
± = b′ ± δ, and δ = a/4

√
3. The lattice coordinate is given by z = 2pb′ with p ∈ Z; the new

lattice constant is 2b′ [Fig. 2(b)]. In zigzag cases, the two species q = ± are decoupled in H0. For each species, eigenstates of
the hopping Hamiltonian are then given by (

dRqkα

dLqkα

)
= 1√

2

(
1 e−ikδ

1 −e−ikδ

)(
dAqkα

dBqkα

)
(A9)

and the eigenvalues are ER/L = ∓2J0 cos(kb′). The Fermi point is at or near π/2b′, i.e., the Brillouin zone boundary.

3. Effective theory

In order to obtain the low energy effective theory, we first take the continuum limit,

b(′) ∑
z

→
∫

dz,
1√
b(′) d(z) → ψ (z). (A10)

b(′) is a effective lattice constant for gapless modes. Then we linearize the dispersion around the Fermi energy, and introduce
two chiral fields ψR,L(z), which are slowly modulating compared to 1/kF . For armchair nanotubes we have

dqα (z)/
√

b ∼ ψRqα (z)eikF z + ψLqα (z)e−ikF z. (A11)

For zigzag nanotubes we have [17,23]

dqAα (z)/
√

b′ ∼ ψRqα (z)eikF z + ψLq̄α (z)e−ikF z, dqBα (z ± b′ − δ)/
√

b′

∼ ψRqα (z ± b′)eikF (z±b′ ) + ψLq̄α (z ± b′)eikF (z±b′ ), (A12)

where the factor e−ikδ in the Fourier transform is canceled due to Eq. (A9). We note that we use a special labeling of left-moving
fields dqLα (z) → ψq̄Lα for zigzag cases. This is more convenient since we can treat armchair and zigzag nanotubes in the same
manner. The final results do not change even if we use more natural labeling dqLα (z) → ψqLα . The kinetic term now looks

H0 = v
∑
q,α

∫
dz(ψ†

Rqαi∂zψRqα − ψ
†
Lqαi∂zψLqα ), (A13)

where v is the Fermi velocity. Finally, substituting the chiral decompositions in Eqs. (A11) and (A12) into the interaction
Hamiltonian, we obtain Eq. (12).

APPENDIX B: RENORMALIZATION GROUP EQUATIONS

The RG equations can be derived via operator product expansions [50–52,57]. The initial values of the coupling constants for
the armchair nanotubes are

cl
11 = �−1(U − V + V⊥), cs

11 = �−1(U + 2V + V⊥),

cl
12 = �−1(U − 2V − V⊥), cs

12 = �−1(U + V − V⊥),

f l
12 = �−1(U − 2V − V⊥), f s

12 = �−1(U + 2V + V⊥),

u+
11 = �−1(U − 2V − V⊥), u+

12 = �−1(U − V + V⊥),

u−
12 = �−1(−U + 2V + V⊥), (B1)

where � = 4πvN⊥. We note that initial values for the armchair and zigzag cases can be mapped to each other via the following
transformation:

V ↔ 1
3 (V + 2V⊥), V⊥ ↔ 1

3 (4V − V⊥). (B2)

The RG equations for instantaneous coupling constants are

ċl
11 = −2cl

12c
s
12 − 2

(
cl

11

)2 − 2
(
u+

12

)2 − 2u+
12u

−
12, ċs

11 = −(
cl

12

)2 − (
cs

12

)2 − (
cl

11

)2 + (
u−

12

)2
,

ċl
12 = −2cl

11c
s
12 − 2cl

12c
s
11 − 4f l

12c
l
12 + 2f l

12c
s
12 + 2f s

12c
l
12 + 2u+

11u
−
12 + 2u+

11u
+
12,

ċs
12 = −2cl

11c
l
12 − 2cs

11c
s
12 + 2f s

12c
s
12 + 2u+

11u
+
12, ḟ l

12 = −2
(
f l

12

)2 − 2
(
cl

12

)2 + 2cl
12c

s
12 − 2

(
u−

12

)2 − 2u+
12u

−
12,

ḟ s
12 = (

cs
12

)2 − (
f l

12

)2 + (
u+

11

)2 + (
u+

12

)2
, u̇+

11 = 4u+
11f

s
12 − 2u+

11f
l
12 + 2u+

12c
s
12 + 2u+

12c
l
12 − 2u−

12c
s
12 + 4u−

12c
l
12,

u̇+
12 = 2u+

12f
s
12 + 2u+

11c
s
12 + 2u+

12c
s
11 − 4u+

12c
l
11 − 2u−

12c
l
11,

u̇−
12 = −2u+

12f
l
12 − 4u−

12f
l
12 + 2u−

12f
s
12 − 2u+

11c
s
12 + 2u+

11c
l
12 + 2u−

12c
s
11. (B3)
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For the retarded coupling constants we have

˙̃cl
11 = 2c̃l

11c
s
11 − 4c̃l

11c
l
11 − 2

(
c̃l

11

)2 − 4u+
12ũ

+
12 − 2

(
ũ+

12

)2 − 2ũ+
12u

−
12,

˙̃cl
12 = −4f̃ l

12c
l
12 − 4f l

12c̃
l
12 − 4f̃ l

12c̃
l
12 + 2f̃ l

12c
s
12 + 2f s

12c̃
l
12 + 2ũ+

11u
+
12 + 4ũ+

11u
−
12 + 2u+

11ũ
−
12 + 4ũ+

11ũ
−
12,

˙̃f l
12 = −4f̃ l

12f
l
12 − 2

(
f̃ l

12

)2 − 4c̃l
12c

l
12 − 2

(
c̃l

12

)2 + 2f̃ l
12f

s
12 + 2c̃l

12c
s
12 − 4u−

12ũ
−
12 − 2

(
ũ−

12

)2 − 2u+
12ũ

−
12 − 2u+

11ũ
+
11 − 2

(
ũ+

11

)2
,

˙̃u+
11 = 2ũ+

11f
s
12 − 4ũ+

11f
l
12 − 2u+

11f̃
l
12 − 4ũ+

11f̃
l
12 + 2u+

12c̃
l
12 − 2ũ−

12c
s
12 + 4

(
u−

12c̃
l
12 + ũ−

12c
l
12 + ũ−

12c̃
l
12

)
,

˙̃u+
12 = 2ũ+

12c
s
11 − 4

(
ũ+

12c
l
11 + u+

12c̃
l
11 + ũ+

12c̃
l
11

) − 2u−
12c̃

l
11,

˙̃u−
12 = −2u+

12f̃
l
12 + 2ũ−

12f
s
12 − 4

(
u−

12f̃
l
12 + ũ−

12f
l
12 + ũ−

12f̃
l
12

) − 2ũ+
11c

s
12 + 2u+

11c̃
l
12 + 4ũ+

11c
l
12 + 4ũ+

11c̃
l
12. (B4)

APPENDIX C: BOSONIZATION

In this Appendix we summarize the bosonization formula used in the main text. The details of derivations are refereed to
Refs. [12,29,52–55]. The bosonic fields are introduced as

ψrqα = ηqα√
2πα0

e−ir�rqα , (C1)

where r = R/L = +/− is chirality, and α0 is a cutoff of the order of the lattice constant. The bosonic fields satisfy commutations
relations

[�rqα (z),�rq ′β (z′)] = irπδqq ′δαβsgn(z − z′), [�Rqα (z),�Lq ′β (z′)] = iπδqq ′δαβ. (C2)

The Majorana fermions take care of the anticommutative properties of fermions,

{ηqα, ηq ′β} = 2δqq ′δαβ. (C3)

More convenient representation is given by the nonchiral fields

φqα, θqα = (�Lqα − �Rqα )/2. (C4)

They satisfy

[φqα (z), φq ′β (z′)] = [θqα (z), θq ′β (z′)] = 0, [φqα (z), θq ′β (z′)] = iπδqq ′δαβ�(z′ − z), (C5)

where �(z) is the Heaviside step function. Finally we move to a new basis⎛
⎜⎜⎜⎜⎝

φc0

φcπ

φs0

φsπ

⎞
⎟⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

φ+↑
φ+↓
φ−↑
φ−↓

⎞
⎟⎟⎟⎟⎠, (C6)

where (c, s) represents charge and spin modes, and (0, π ) does bonding/antibonding combinations. θ ’s are transformed in the
same manner. The sign of each coupling constant is determined by products of Majorana fermions (Klein factors), and by
commutators between different chirality, [�Rqα (z),�Lq ′β (x ′)] = iπδqq ′δαβ . We take the eigenvalues of Klein factors composed
of two Majorana fermions as

i = η+sη−s = η+↑η+↓ = η+↑η−↓ = η−↑η+↓ = −η−↑η−↓. (C7)
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