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Graphite under high magnetic field exhibits consecutive metal-insulator (MI) transitions as well as reentrant
insulator-metal (IM) transitions in the quasiquantum limit at low temperature. In this paper, we identify the low-T
insulating phases as excitonic insulators with spin nematic orderings. We first point out that graphite under the
relevant field regime is in the charge neutrality region, where electron and hole densities compensate each other.
Based on this observation, we introduce interacting electron models with electron pocket(s) and hole pocket(s)
and enumerate possible umklapp scattering processes allowed under the charge neutrality. Employing effective
boson theories for the electron models and renormalization group analyses for the boson theories, we show that
there exist critical interaction strengths above which the umklapp processes become relevant and the system
enters excitonic insulator phases with long-range order of spin superconducting phase fields (“spin nematic
excitonic insulator”). We argue that when a pair of electron and hole pockets gets smaller in size, a quantum
fluctuation of the spin superconducting phase becomes larger and destabilizes the excitonic insulator phases,
resulting in the reentrant IM transitions. We also show that an odd-parity excitonic pairing between the electron
and hole pockets reconstructs surface chiral Fermi arc states of electron and hole into a 2-dimensional helical
surface state with a gapless Dirac cone. We discuss field and temperature dependencies of in-plane resistance by

surface transport via these surface states.
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I. INTRODUCTION

Graphite under high magnetic field exhibits a metal-
insulator transition at low temperature (H > H.; ~30T)
[1,2]. The transition has been often considered as a prototype
of one-dimensional Peierls density-wave instability associated
with the 2k logarithmic singularity in the Lindhard response
function [3-12]. A transition temperature 7, of the density
wave ordering is determined by a BCS-type gap equation,
InT, &« —1/p(0). The density of states at the Fermi level
p(0) is proportional to the magnetic field H, so that T,
increases monotonically in the magnetic field [3-6]. Further
experiments discovered that graphite shows another metal-
insulator transition (H > Hy >~ 53 T) [13-21] as well as an
insulator-metal reentrant transition at higher magnetic field
(H = H.»>=75T) [17-21]. So far, there exist at least two
distinct low-temperature insulating phases in graphite under
high magnetic field: one insulating phase in the range H, | <
H < Hj and the other in the range Hy < H < H.,. The reen-
trant transition at H = H, , indicates the presence of a normal
metal phase with pristine electron and hole pockets above
the transition field, bringing about a skepticism against the
density wave scenarios. Namely, the transition temperature of
the density wave phase would increase monotonically in the
field, until the electron and hole pockets that would form the
Peierls density wave leave the Fermi level [3-6].

Theoretically, stabilities of the Peierls density wave phases
against random single-particle backward scatters depend cru-
cially on a commensurability condition of an electron fill-
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ing [22-25]. From preceding ab initio band calculations of
graphite under high magnetic field [8,19], a sequence of spe-
cific values of the field in the range 30 T < H < 50 T satisfies
the commensurability condition. Nonetheless, experimental
transition temperatures of the two insulating phases do not
show any dramatic sensitivities on certain values of the field in
the range. Both of the insulating phases range rather broadly
in field (over 20 T) [17-21].

In this paper, we explain these two low-T insulating phases
in graphite under the high field as manifestation of excitonic
insulators with spin nematic orderings (Fig. 1). We first argue
that graphite under high magnetic field (H =20 T) is in
the charge neutrality region, where electron density and hole
density compensate each other. Based on this observation, we
begin with interacting electron models with electron pockets
and hole pockets, to enumerate possible umklapp scattering
processes allowed under the charge neutrality condition. Us-
ing perturbative renormalization group (RG) analyses on their
effective boson theories, we show that the umklapp terms have
critical interaction strength above/below which they become
relevant/irrelevant on the renormalization. Above the critical
interaction strength, the umklapp term locks the total displace-
ment field as well as spin superconducting phase field. The
former locking causes the insulating behavior along the field
direction, while the latter results in a long-range order of spin
quadrupole moment. We explain the reentrant insulator-metal
transition in graphite, through a quantum fluctuation of the
spin superconducting phase field. We characterize the spin
nematic excitonic insulator phases by out-of-plane (infrared
optical) conductivity as well as in-plane transport property
(out-of-plane current is parallel to the field). The field and
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FIG. 1. Theoretical phase diagram for graphite under high mag-
netic field. The phase diagram is obtained from the RG equations,
Eqs. (42)—(44) for H < H, and Eqgs. (67)—(69) for Hy < H < H,.
“SNEI-I” and “SNEI-II” stand for two distinct spin nematic excitonic
insulator phases (strong-coupling phase). For H < Hy, the electronic
state near the Fermi level comprises two electron pockets (n = 0 LL
with 1 spin and | spin) and two hole pockets (n = —1 LL with
1 spin and | spin). At H = H,, the outer two pockets (n =0 LL
with 4 spin and n = —1 LL with | spin) leave the Fermi level. For
Hy < H < H,, the electronic state has one electron pocket (n =0
LL with |) and one hole pocket (n = —1 LL with 1). We choose
Hy = 50T and H, = 120 T. For a detailed parameter set of the RG
equations, see Appendix C4. Our theory may not be able to predict
much about a transition between SNEI-I and SNEI-II phases (the
shaded area around H = H,); see the discussion in Sec. X B. T =0
metal-insulator transition at H = H,; and insulator-metal transition
at H = H,, are the quantum phase transition with the dynamical
exponent z = 1.

temperature dependencies of the transport properties are con-
sistent with experimental observation in graphite.

A. Issues to be addressed in this paper
1. Direct metal-insulator transition

Under the magnetic field H (]| z), kinetic energy part of
the three-dimensional semimetal takes the form of decou-
pled one-dimensional quantum chains (or quantum wires).
Namely, the kinetic energy within the xy plane is quenched
by the Landau quantization, while the kinetic energy along
the field direction remains intact, forming one-dimensional
momentum-energy dispersion. As a result, density correlation
function calculated within the random phase approximation
(RPA) is characterized by the Lindhard response function in
the one dimension [3,4]. The function has the logarithmic
singularity at k, = 2k, where 2k is a distance between the
left and right Fermi points in the same energy band [26].
Thereby, the system has a generic instability toward the charge

density wave ordering, that breaks the spatially translational
symmetry along the field direction [3—12].

Meanwhile, graphite under the relevant field regime has
four bands that run across the Fermi level (two electron pock-
ets and two hole pockets; H < Hy =~ 53 T) or two bands (one
electron pocket and one hole pocket; Hy < H) [8,19]. When
each of these four (or two) bands would undergo the Peierls
density wave (DW) instabilities individually, the respective
instabilities would appear at different critical temperatures
or critical fields. In other words, a graphite transport exper-
iment would observe a stepwise increase of the (out-of-plane)
resistance R,, on lowering temperature or on increasing the
magnetic field.

Nonetheless, the graphite experiment observed a direct
phase transition from high-7 normal metal phase to the low-T
insulating phase [16-18,20,21]. Around the transition, the
resistance along the field direction R,, continuously increases
[16-21] and it increases by 100 times within windows of
several kelvins or teslas [16-18,21]. These experimental ob-
servations clearly dictate that all the energy bands (pockets) at
the Fermi level are gapped out simultaneously at the transition
point. Thereby, the key question to be asked here is, What
is a “talking channel” among these four (or two) bands that
enables this direct metal-insulator transition?

In this paper, we consider this channel as umklapp scat-
tering terms and construct a mean-field theory that explains
this direct metal-insulator transition. To be more specific,
all the excitonic insulator phases discussed in this paper are
stabilized by the umklapp terms that lock a fotal displacement
field along the field direction, a sum of the displacement fields
of the four (or two) bands. When the umklapp terms become
relevant in the standard RG argument sense, the total displace-
ment field (electric polarization) is locked, resulting in the
electrically insulating behavior along the field direction. By
calculating an optical conductivity along the field direction,
we explicitly demonstrate the presence of finite mobility gaps
in the excitonic insulator phases.

2. Reentrant insulator-metal transition

The second issue is the reentrant insulator-metal transition
observed at the higher field region in the graphite experiment
[14-21], which can hardly be explained by the conventional
Peierls DW scenarios. Namely, the RPA density correlation
function at finite temperature suggests that the transition
temperature of the Peierls DW phase increases monotonically
in the field, until the electron and/or hole pockets that would
form the DW leave the Fermi level. When they leave the
Fermi level, however, the electronic state simply ends up in
a semiconductor phase rather than metallic phase. Contrary
to this, the graphite experiments clearly observe the insulator-
metal reentrant transition in the higher-field region. The low-
T electric transport along the field direction above the critical
field (H > H,, ~ 75 T) is as metallic as the electric transport
in the high-7" normal metal phase [17,18,21]. The experiment
clearly indicates the presence of pristine electron and hole
pockets at the Fermi level above the critical field.

In this paper, we explain this reentrant insulator-metal
transition as a consequence of quantum spin fluctuation
enhanced by raising the magnetic field. To be more specific,
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we first point out that the umklapp terms lock not only the
total displacement field but also a spin superconducting phase
field, a difference between a superconducting phase field of
an electron/hole pocket with 1 spin and hole/electron pocket
with | spin. The higher magnetic field makes the electron
and hole pockets to be smaller in size in the k, space. In
the presence of the repulsive electron-electron interaction, the
smaller pockets make their Luttinger parameters smaller than
the unit. Smaller Luttinger parameters mean larger quantum
fluctuation of superconducting phase field as well as the spin
superconducting phase field. Thus, we can naturally argue that
in the presence of such smaller electron and hole pockets,
the umklapp terms suffer from the enhanced quantum spin
fluctuation, and become irrelevant in the RG argument sense.
When the umklapp terms become irrelevant, the spin super-
conducting phase field as well as the total displacement field is
unlocked, resulting in the reentrant insulator-metal transition.
Importantly, the electronic state still possesses electron and
hole pockets above the critical field, though their sizes in the
k. space might be small.

3. Field dependence of in-plane resistance

The third issue to be addressed in this paper is an unusual
field dependence of the electric transport in the directions
transverse to the magnetic field [14-21]. Generally, the bulk
electric transport perpendicular to the field is quenched in
the clean limit at low temperature (T < hwy; hwg is the
cyclotron frequency). Nonetheless, the system still has low-T
electric transport perpendicular to the field through the so-
called surface chiral Fermi arc (SCFA) states [27,28]. The
associated surface resistance is inversely proportional to a
length of the arc in the k, space. The length is approximately
equal to the size of the respective electron (or hole) pocket
in the bulk. The size of the pocket generally decreases in the
field. Thereby, the surface resistance perpendicular to the field
is expected to increase in the field.

Contrary to this theory expectation, the in-plane resistance
R, in graphite under the field (H || z) shows an unusual field
dependence. The low-T resistance R, shows a broad peak
around 15T < H <30T [1,2,5,6,13-21]. From H =30T
to H= Hy~ 53T, Ry, typically reduces by half [14-21].
Inside the high-field-side insulating phase (Hy < H < H,, =~
75 T), the low-T in-plane resistance R,, stays nearly constant
in the field [17-21]. For H.» < H, Ry, starts increasing in
the field again [21].

Field (nearly) independent and metallic R,, in the high-
field-side insulating phase can be naturally explained by a
surface reconstruction of the SCFA states due to the excitonic
pairing in the bulk. To be more specific, we will show that
an odd-parity excitonic pairing between electron and hole
pockets in the bulk reconstructs the SCFA state of the electron
and that of the hole into a (2 + 1)-d helical surface state with
a gapless Dirac cone. R,, through such a Dirac-cone surface
state is determined by carrier density doped in the surface
region, which is typically independent of the magnetic field.
Namely, unlike “decoupled” SCFA states of electron and hole,
the reconstructed Dirac-cone surface state barely changes its
shape as a function of the magnetic field. At the zeroth-order
approximation, the field only changes the “depth” of the

band inversion between electron and hole pockets, while the
shape of the Dirac-cone surface state is mainly determined
by the excitonic pairing strength inside the inverted band gap.
Thereby, one can naturally expect that the surface resistance
due to the reconstructed Dirac-cone surface state is much less
field-dependent than that of the decoupled SCFA states of
electron and hole.

B. Structure of the paper

The structure of the paper is as follows. In the next section
with the help of Appendix A, we argue that the graphite under
the relevant field regime (20 T < H) is in the charge neutral-
ity region, where electron and hole densities compensate each
other. Based on this observation, we enumerate in Sec. III
possible umklapp terms that are allowed under the charge
neutrality condition in the four-pocket model (a model with
two electron pockets and two hole pockets; H < Hy ~ 53 T).
Employing a Hartree-Fock approximation, we construct ef-
fective field theories for possible insulating phases that can
be stabilized by these umklapp terms (Sec. IV). There are
three such phases: spin nematic excitonic insulator, magnetic
Mott insulator, and plain excitonic insulator phases. Using
renormalization group (RG) analyses, we argue for typical
field dependencies of the respective transition temperatures
of these three phases and conclude that the spin nematic
excitonic insulator (SNEI-I) phase could naturally fit in the
phenomenology of the low-field-side out-of-plane insulating
phase (H.1 < H < Hp) in the graphite experiment (Sec. V).
In Sec. VI, we enumerate possible umklapp terms that are
allowed under the charge neutrality condition in the two-
pocket model (one electron and one hole pocket; Hy < H).
We construct effective field theories for the possible insulating
phases that can be stabilized by the umklapp terms. We find
two such phases: a phase with two superposed charge den-
sity waves and a spin nematic excitonic insulator (SNEI-II)
phase. Using the RG analyses, we conclude that the SNEI-II
phase can naturally explain the high-field-side out-of-plane
insulating phase (Hy < H < H.5). In Secs. VII and VIII,
we discuss the field dependencies of the in-plane resistance
in the graphite experiment by the surface electric transports.
Especially, we show in Sec. VIII that the odd-parity excitonic
pairing in the two-pocket model reconstructs the surface chiral
Fermi arc (SCFA) states of electron and hole into a (2 + 1)-d
helical surface state with a gapless Dirac cone. The surface
Dirac-cone state could naturally explain the field (nearly)
independent and metallic behavior of the in-plane resistance
inside the high-field-side insulating phase. After a brief sum-
mary in Sec. IX, we give a discussion with a complementary
viewpoint (Sec. X).

II. CHARGE NEUTRALITY REGIME IN GRAPHITE
UNDER HIGH MAGNETIC FIELD

Low-temperature transport properties of graphite are dom-
inated by four m-orbital bands around zone boundaries of the
first Brillouin zone [29-31]. Graphite is a three-dimensional
AB stacking of graphene layers. A unit cell has two graphene
layers and it has four inequivalent carbon sites. Call them
A, A’, B, and B’. A and B share the same layer, and so
do A’ and B’. A comes right above A’ in the cell. The
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FIG. 2. Schematic picture of electronic states of graphite un-
der high field (H < Hy). Solid/dotted lines describe Fermi sur-
faces of two electron/hole pockets in both bulk and edge regions.
Two electron/hole pockets in the bulk region are terminated by
electron/hole-type surface chiral Fermi arc states in edge regions,
respectively. Namely, Eo,(k;, y;)/E_i,(k;, y;) goes higher/lower
in energy, when y; goes from the bulk region to the edge regions (see
Appendix A).

electronic band structure near the Fermi level of graphite is
composed of 7 orbitals of carbon atoms that are odd under the
mirror with respect to the layer—for example, the 2 p, orbital
[29-31]. 7 orbitals of A and A’ carbon atoms hybridize rather
strongly, forming two m-orbital bands at the zone boundaries
that have large momentum-energy dispersions along the ¢ axis
(4000 K). Call these 7 orbitals w4 and w4, respectively. &
orbitals of B and B’ hybridize much more weakly, as B and
B’ are located right above the centers of the hexagon in their
neighboring layers. These two, which we call 75 and 7p
henceforth, form two degenerate bands at the zone boundaries
that have a weaker energy-momentum dispersion along the ¢
axis (400 K).

Under the field along the ¢ axis, the four bands in the zone
boundaries are split into Landau levels (LLs) [8,19,31-34].
For H 2 30 T, the n = 0 LLs with 1 spin and | spin form
two electron pockets around k, =0, and the n = —1 LLs
with 4 spin and | spin form two hole pockets around k, =
m/co (Fig. 2). Here ¢y is a lattice constant along the ¢ axis.
According to the band calculation, the outer electron pocket
(n = 0 LL with 1 spin) and the outer hole pocket (n = —1 LL
with | spin) leave the Fermi level at H = Hy >~ 53 T.

The Hall conductivity measurements in a regime of 20 T <
H < 60 T [18,35-37] suggest that the number of the electron
states and that of the hole states compensate each other almost
completely. An estimation gives N, — Nj, : L. /co = 107*: 1,

where L, is a linear dimension along the ¢ axis, and N, and N,
are numbers of the k, points within the electron pockets and
hole pockets, respectively (k; is a crystal momentum along the
c axis) (see Appendix A for the validity of the estimation).

III. FOUR-POCKET MODEL (H < H,)

Based on this observation, we consider an electron model
with two electron pockets (n = 0 LL with 1 spin and that with
J spins) and two hole pockets (n = —1 LL with 4 spin and
that with | spins) with the charge neutrality condition (N, =
Nh):

Hin=Y Y Y Enok)ch o) ik jk:). (1)

k.,j n=0,—1o=2,]

The two electron pockets encompass k, = 0 and the two hole
pockets are around the zone boundary k, = +m/c¢ (Fig. 2),

En,a (kz) = _ZVZ[COS(szO) - COS(kF,n,oCO)]v (2)
with 0< kp’()ﬁ < kp,(),l < 7'[/(26‘()) < kF,—l,T < kF,—l,i <
w/co [4]. An index j [=1,2,..., (LxLy)/(anz)] counts
degenerate electron states within each LL. [ denotes the
magnetic length, I = /fic/(eH). Since the kinetic energy part
takes exactly the same one-dimensional momentum-energy
dispersion along the k, direction for different j, we regard the
system as coupled chains and call j a “chain index” [38—40].
The charge neutrality condition takes the form of

2
kros +kroy +kr 14 +kp_1,) = o 3)

For low-temperature electric transports at those tempera-
ture much below the bandwidth (2y, ~ 400 K), the kinetic
energy part can be linearized around the Fermi points of each
pocket (k, >~ tkp ,.0):

Hin =33 tur, / 2!, (D @)+ (@)
j art

A chirality index t specifies left mover (r =—1) or
right mover (r = +1). vp, is the bare Fermi velocity
of each pocket with a = (n, o). For simplicity, we label
(n,0)=1(0,1),(0,]), (=1, 1), and (=1, ]) as a = 1,2, 3,
and 4, respectively, throughout this paper, e.g., kr, =
kF,n,a, Ca,j(kz) = C(n,a),j(kz), and wa,i,j(z) = 1ab(n,a),:l:,j(z)'
Ya+,j(z) is a slowly varying Fourier transform of those
Cq,j(k;) around k; >~ tkp 4:

1
Varj(2) = ﬁ . Z

—Tkpql<A

Ca,j(ky)e! bTHr o (5)

A short-ranged repulsive interaction is considered:

Hipe = Z Z /dr/dr/V(r —r)

0,0’ ¢,d=A,A’",B,B’

<Yl W@ e dy,(r.c).  (©6)

where

22
R

0.z 0,x 0y, (7)

2
8
Vir)= —————
(V 2 )SIO,XIO,)'ZO,Z
r=(x,y,2),0,0 =1,],and g > 0. I, denotes an inter-
action length along the w direction. ‘ﬁi (r, ¢) denotes the elec-
tron creation at 7 orbital . (c = A, A’, B, B) of a carbon
atom at r with spin o. The creation field can be expanded in
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terms of single-particle bases of the n = 0 and n = —1 LLs in the Landau gauge:
Vo(r, A) Ya,0 Y0, () 0
Yo (r, A" ekix Yaro Yo, () iTkp 0oz itk
=) = o ) + Y o @ ®)
Yo (r, B) 2]: Lx;t VB,aYl,j(y) O] T’B,UYO’j(y) (“Lo)m
Yo (r, B") ve o Y1,i(y) ne .o Y0, (y)
[
where another at the one-loop level; they have larger chances to
become relevant upon renormalization than those scattering
Yo (y) = 1 e,<)';;‘2f>2 (9)  terms omitted.
0.74) = Jrl ’ Under the charge neutrality condition [Eq. (3)], the in-
d V2(y — y;) _omy? teraction allows the following four umklapp terms and their
Yy (y) = «/El—Yo,j(y) =" 2" | (10) Hermitian conjugates:
dy; NZAE

with y; = k;I* and k; = 27j/L,. The slowly varying field
Y(n,0),1,j(2) = Yar,j(z) was defined in Eq. (5) with a =
(n,0). Yo (c=A,A’, B, B’) comprises an eigenvector of
a4 x 4 SWM (Slonczewski-Weiss-McClure) Hamiltonian at
k, = £kpo, [30-34]. 5.+ (c = B, B") comprises the eigen-
vector at k, = +kr _;,. L, is the linear dimension of the
system size along the x direction. A substitution of Eqgs. (8)—
(10) into Eq. (6) and expansion in V¥, o)z, ;(2) = ¥4, j(2)
lead to scatterings between different pockets (interpocket
scattering) and scatterings within the same pocket (intrapocket
scattering).

In this paper, we take into consideration only umklapp
scattering terms that are allowed under the charge neutral-
ity condition (Fig. 3), interpocket scattering terms between
opposite chiralities (Fig. 4), and intrapocket scatterings H;.
This is because, in fermionic functional renormalization group
analyses [12,41,42], these scatterings are coupled with one

----------------- “"-" _l’l:R

1 LR

0,7,R

0.1,L

A Oal«:R
|

|

|

|

|

' 0,],L
|

.——1——-———
.
.
|
—
—
S
—

----------------- ~1,LL

FIG. 3. Schematic pictures of one of the umklapp scatterings,
H, . As in Fig. 2, the vertical axis denotes the momentum along the
field direction (k,), while the horizontal axis denotes the chain in-
dex y; = k;I> withk; =2nj/L, [j =1,2,...,L,L,/2nI*)]. The
two-particle scatterings with solid/dotted arrows are the exchange
processes (m = n) of the first/fourth terms in Eq. (11) with (0, 1) =
1,0,{)=2,(-1,1)=3,and (-1, ) =4.

1//:{,+,nw§.+,j+m—n¢l,—,m1”2,—,j,

Hu: Z w%,+,nl//%,+,j+m7n¢1,—,zn 4,—,js
j.m.n w4,+,nwl,+,j+m7nIl/3,—,mw2,—,j,
wg,-hnw:,+,j+m7nw3,—,m¢4,—,j-

Due to the translational symmetry along x in the Landau
gauge, the scattering processes conserve a momentum k; =
2rj/L, that is conjugate to x. In Eq. (11), integrals over
the spatial coordinate z and the scattering matrix elements
that depend on z and j,m,n =1,2,..., (LxLy)/(2Jle) are
omitted for clarity. For example, the first and fourth terms in
Eq. (11) take the following explicit form with their Hermitian
conjugates:

an

[1st and 4th terms in Eq. (11)]

=2
_ (12) r
=2 Z : men,jfn/dZ/dZ e 0.2

J.m,n

x {e_iijZ—ikFAZ/—ikF,ZZ/—ikF.]Z

x (wiA—,n I//;L,-&-A,j-&-m—nwlv*smwzq*»j
F UV W3 Wi ) + Hee) (12)

The matrix elements in Eq. (12) are given by a dimensionless
function 1 (x, y) as

a_ 8 1
Viw = g /Ol Ll D (13)
The function f'?(x, y) can be calculated by the direct sub-
stitution of Eqgs. (7)—(10) into Eq. (6). g is from Eq. (7).
In addition to H,, we consider the interpocket scatterings
between the opposite chirality (Hy) as well as the intrapocket
scatterings (Hy). They are

T T

I/f4,:t,n wl JF, j+m—n I/fqu;,m w4~,i~j ’
T T

I/f3,:i:,n wz.q:,j-ﬁ-m—n I/Q,:F,m wS,:I:,j s

T i
w4,j:,n Wz,;,ﬁm_” wZ,:F,m w4,;t,j’ (14)

Hy= )"

T T
j.m,n 1»03,:i:,n‘”1,$,j+mfn1»0]FF»mwlis./"

T T
1104,:i:,n w3,¥,j+mfn w?),q:,m w4,i,j ’

T T
wZ,i,n wl,I,jerfn wl,:F.,m WZ,i.j ’
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and
- Z Z wi,nw}:,ﬂ—m—nwa,mwﬂ,ja (15)
a jmn
with  0(2) = €y, 40 (2) + e ey, () o=

1,2,3,4; see Eq. (B1) for an actual form of H;]. We do
not take into account the interpocket scatterings between
the same chirality, because, at the one-loop level of the
fermionic renormalization group equations [12,41,42], they
are decoupled from H,, Hy, and Hy, and do not grow into
larger values upon the renormalization.

IV. EFFECTIVE BOSON THEORY

In this section, we construct effective field theories of
possible insulating phases that are stabilized by the umklapp
scattering terms in Eq. (11). To this end, we first assume that
the low-T insulating phases in the graphite experiment do
not break the translational symmetries within the graphene
plane [the graphene plane is perpendicular to the field (z)].
The assumption apparently does not contradict any exper-
imental observations in the literature [1,2,5,6,13-21]. We
thus introduce as “mean fields” the pairings among electron
creation/annihilation operators within the same chain, and
treat the interchain electron-electron interactions within a
Hartree-Fock approximation. To be more specific, we keep
only the direct process (Hartree term: j = n) and exchange
process (Fock term: m = n) in Egs. (11), (14), and (15).
Within such effective theory framework, the metal-insulator
transitions in the graphite experiment are described by a phase
transition between a phase with the mean fields being zero and
a phase with the mean fields being finite. The former phase
corresponds to the high-7 normal metal phase and the latter
corresponds to the low-T insulating phases.

To do this construction transparently, we first bosonize
the slowly varying fermion field in terms of two phase vari-
ables defined for each pocket a = (n, 0) and each chain j =
..., (L:Ly)/Q2mI?) [2543]:

Vi j(2) = —oed pilén; =000,
o V2o
(16)
Vo j(2) = —2d_ il =60, )]

V2o

Here (n,o0)=(0,1),(0,]),(—1,1), and (-1, |) are ab-
breviated as a = 1,2, 3, and 4, respectively. « is a short-
range cutoff for the spatial coordinate z. ¢, ;(z), 0, ;(z), and
0.0,,j(z) are the displacement field along the field direction
(z), superconducting phase field, and current density field
along the field, respectively. They are associated with the
pocket a and the jth chain. The displacement field and su-
perconducting phase field cannot be simultaneously definite;
they are canonically conjugate to each other:

[¢a,j(z)v 31/9}).171(1/)] = i(Sa,ij.ma(Z - Z/)-

Na,j and 71z ; in Eq. (16) are Klein factors ensuring the
anticommutation relation among fermion fields on different
chains (j), pockets (a), and chiralities (t = %); {14,j, p,m} =
{Ma.j» Mym} = 8a.p8jm» and {naj, 1M, } = 0. Due to the Klein
factor, the interaction parts given in Eqgs. (11), (14), and (15)
cannot be fully bosonized without approximation.

7)

To obtain the effective boson theories of the insulating
phases, we thus employ the Hartree-Fock approximation for
the interchain interactions in Eqs. (11), (14), and (15), to keep
only the direct process (j = n) and exchange process (m = n)
in Egs. (11), (14), and (15). This leads to a fully bosonized
Hamiltonian

Hyin + Hy +Hy + Hy = Ho+ZHuz+ZHbz e

i=1 i=1

(18)
ZZ/dz{ 7 (M (0P
m a=1
e

and w11, ;(z) = 0.0, ;(z). K, and u,, are the Luttinger param-
eter and Fermi velocity of a pocket with a = (n, o) that are
renormalized by the intrapocket forward scatterings Hr (see
Appendix B for details). As in the standard bosonization, the
renormalizations are given by two parameters g, , (> 0) and
84.a (> 0)as

2 2
Uy _ 1+ 84.a _ 82.a ’ (20)
VF.q 2 vE, 2nvE

277 VUF.a + 84,a — g2,a
K, = .
2 VFq + 84a + 824

2n

See also Appendix B for expressions of g, , and g4 , in terms
of g in Eq. (7). The Hartree and Fock terms in the umklapp
scatterings of Eq. (11) are bosonized as

ZMJ“),ﬂ/dZ o031 ;0 mcos[OF , + 0%, ]
j,m
+0*,.1}.

2
U2 - ZM(3111de 033, 1041 m €08 [Q i+ Q}:m]

+ 03, ;045 COS [Qljj (22)

+ 073, ;071 COS [szj + Qljm]} (23)
Has = YoM, [ dzfoy o cos[0F, + 0]

Jj.m

+ 03, ;034 COS [Qljj + Qﬁm]}’ (24)

Hoa =3 MO, / dz{og 05 mcos [0+ 02, ]

Jj.m
+ 034,071 COS [ij +0"2,1}. (25)
where
QY i = Gaj + bv.j £ Oaj — 0b.)). (26)

with a,b =1,2, 3, 4. Oup,j and oz, are Ising variables as-
sociated with the Klein factors within the same chain, o, j =
ing,j M5, js and ogp ;m = iNa.mNp.m- The Ising variables take £1.
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The Fock term (m = n) of the interpocket scatterings,
Eq. (14), is bosonized as

13
Hyi3 =Y H{") / dz{051 ;037 ,, COS[ A O]
j.m

+ 031 031, COS[A jm o1

(13)
+ ZH /dz{a42]o42mcos[Aij ]
+ 055 ;02 COS[A 1w 71}, 27

Hb~2 = Z Hj(z—)m / dZ{G3§,jo-3§,l11 COS[A]’” Q?:]

j.m

+ 05 ;05 COS[A 1 71}

(2)
+ ZH /dZ{‘741 04, m COS[A 1, Q1]
+011,j011,m COS[Ajm Q1_4]}7 (28)

Hya=Y HY / dz{osg j033,, COS[A 1y 03]

Jam

+034,;934.m cos[A jm 14]}
(4)
+ ZHJ m/dZ{%T,jazim COS[Aijf]

+ 031, ;031 m COS[A jm 0, (29)

with A, f = f; — fin. The Hartree term (j = n) of the in-
terpocket scatterings in Eq. (14) could also renormalize the
Luttinger parameters and Fermi velocities. For simplicity,
however, we consider the renormalizations of K, and u, only
by the intrapocket scatterings Hy as given in Appendix B.
Figures 3 and 4 schematically show the interpocket scattering
processes that lead to H, » and Hy,», respectively.

The interchain interactions in H,; and Hy ; range over the
magnetic length:

(n) __ 8 (n) .
Mjfm = mM ((yj - Ym)/l), (30)
m _ & )
H;, = m’H ;= ym)/ D), (3D
', == — /D), (32)

withn = 1,2, 3,4, and 13. M(y) and H(y) as well as H(y)
are dimensionless functions. For example, Egs. (22), (23),
and (30) are obtained from the direct (j = n) and exchange
processes (m = n) of Eq. (12), respectively, with

(12)
- % (kp1+kr3—kra —kF,4)213Az —f (.X i O) (33)
22

M(z)(x) = efé(kFJ*kF-ko,l*kFA)z[(%.:m (34)
Nz Z 2

For the repulsive interaction case (g > 0), integrals of
Eqgs. (31) and (32) over y = (y; — ym)/! give negative values
forany n = 13, 2, 4.

MD(x) = —e

------------- £ TLLR s SR

---------------------- SR ey LR

0.1,k i 0.1,k

0 0,1,R | : 0.1,k
P I :

E i Y o1l : : 0.1,L

— 0,1,L : : L 0,1,L

----- :L: Il et Y gL

----- s X P A §

FIG. 4. Schematic pictures of one of the interpocket scatterings,
Hy,». They are the exchange processes (m = n) of the first two terms
in Eq. (14) with (0, 1) =1,(0, ) =2,(—1,4)=3,and (-1, }) =
4. As in Fig. 2, the vertical axis denotes the momentum along the
field direction (k,), while the horizontal axis denotes the chain index
y; =k withk; =2rj/L, [j =1,2,...,L,L,/2xI?)].

In the next section, we will use a perturbative renormal-
ization group (RG) analysis on the effective boson model,
Ho+ Y, Hyi+ Y ; Hy;, where H,; and H,; are treated
perturbatively (Appendix C). We show that, at the one-loop
level of the perturbative RG equations, Hy 13, Hy 1, and Hy 3
are coupled with one another and stabilize (what we call)
the plain excitonic insulator phase. Meanwhile, H, > and Hp 2
stabilize the spin nematic excitonic insulator phase, and H, 4
and Hy, 4 stabilize the magnetic Mott insulator phase.

V. RENORMALIZATION GROUP ANALYSES

A. Spin nematic excitonic insulator (SNEI-I) phase

We begin with the spin nematic excitonic insulator phase
stabilized by Hy,, and H, . The RG equations for the inter-
chain interaction functions in H,, and H,, take following
forms at the one-loop level:

dM?, Ay + A
j—m __ A23 14 5 (2) 2) @)
oy = 2 M. —20m ) MTH?D,
—2cl4§ MO H?D, (35)
dH?®
Jj—m 2) (2) (2)
= ApH? — - § (ClaM® M
dinp U T2 i
+4CH? H?,). (36)
=5 2)
dH' _ 1
Jom @ @ @
= AuH;, — 5> (CsMP M
dinp ~ "I T L (CoaM = M
+4C L H D HY). 37
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Here Inb > 0 is a scale change of the RG equations (see Ap-
pendix C for their derivations). The temperature T increases
monotonically on renormalization; d7/dInb = T. A3, A4,
and their linear combination are the scaling dimensions of

H;_,,H;_,,and M;_, atthe tree-loop level:

1 -1 u-A

Ay =23 C_zﬂ:b (K. + K. ") coth ( o7 ) <0. (38
a,b=1,2,3,4 are the pocket indices, where 1 = (0, 1),
2=(0,]),3=(—1,1),and4 = (—1, |). A is a short-range
cutoff in the momentum space, A = a~'. C,; in Egs. (35)—
(37) is always a finite positive definite constant for any
a,b=1,2,3,4 (see Appendix C3). We assume that C,;, has
no dependence on temperature and magnetic field. Equa-
tions (35)—(37) are functional RG equations under which
interchain interactions change their functional forms. To gain
a simpler idea of these functional RG equations, we take a
sum of the interchain interactions over their chain indices. The
sum reduces the interchain coupling functions into coupling
constants as follows:

mey =27 Y M = & / MOy, (39)
J
hoy=27>Y H = % / HP(y)dy <0,  (40)
j
- () 77(2)
hoy = ZJTZZZH]- = %/’H (»dy < 0. 41)

J

As mentioned above, the inequalities in Egs. (40) and (41)
hold true for the repulsive interaction case. Considering the
repulsive interaction case, we assume the negative bare values
of h(z) and E(z) in the following.

The RG equations for the coupling constants take forms of

dma)  Axp+ A14m

1 _
@ — ﬁm(z)(czzh(z) + Cish(p),

dinb 2
(42)
dh) 1 , )
Tinp = Anhe = =5 (Cumpy +4Cuhgy).  (43)
dh) - 1 s .
dinb Aahe) = 4712 (Casmiy) +4C1ahgy)). (44)

The equations dictate that the umklapp term as well as the
interchain backward scattering are irrelevant at the tree-loop
level, as A,, is negative semidefinite [Eq. (38)]. Smaller
m ), h), and h(y) are always renormalized into zero (“weak-
coupling phase”; normal metal phase).

C,p is positive definite. Thus, the bare repulsive interaction
g has a critical strength, above which m), he), and h)
help one another to grow into larger values (“strong-coupling
phase”). The critical strength decreases not only on increasing
the magnetic field through a dependence of the one-loop terms
on the magnetic length [, but also on decreasing the temper-
ature through a dependence of A,;, on the temperature. This
suggests that the strong-coupling phase generally appears on
the low-temperature side and the transition temperature of the
strong-coupling phase increases in larger magnetic field (e.g.,
see the field dependence of the transition temperature of the
SNEI-I phase in Fig. 1 in the region H < 40 T).

The transition temperature can also decrease when the
Luttinger parameters K, (a = 1, ..., 4) deviate largely from
the unit. |A,| has a global minimum at K, = K, = 1 and
T = 0. When K, deviates away from 1, A,, becomes nega-
tively larger and thus the critical strength of g increases; the
transition temperature decreases. Physically speaking, K, be-
ing greater/smaller than the unit means stronger quantum fluc-
tuation of the displacement field/superconducting phase field
of the ath pocket [Eqgs. (19) and (17)]. The enhanced quantum
fluctuations generally destabilize the strong-coupling phase.

This observation readily lets us propose a microscopic
mechanism for the reentrant transition from the strong-
coupling to weak-coupling phases: the transition induced by
raising the magnetic field. The higher magnetic field generally
makes the electron pocket (a) and hole pocket (b) smaller in
size in the k; space. This makes their bare Fermi velocities,
VF.q4» VF,p, smaller with respect to the electron interaction en-
ergy scale. Thus, in the presence of the repulsive interaction,
82.a- 82.» > 0 in Eq. (21), the smaller Fermi velocities make
their Luttinger parameters smaller than the unit, K,, K;, <
1. Especially, for H < Hy, K| and K4 are expected to be
much smaller than the unit near H = H,, where the electron
pocket with a = 1 [(n, 0) = (0, 1)] and the hole pocket with
b=41[(n,o0)=(—1,])] are about to leave the Fermi level.
Thus, the transition temperature of the strong-coupling phase
reduces dramatically near H = H, through an enhancement
of Kfl and K;l in Eq. (38) (e.g., see the field dependence of
T, of the SNEI-I phase in Fig. 1 in the region 40 T < H <
50 T). Physically speaking, this reduction is nothing but a
consequence of the enhanced quantum fluctuation of the spin
superconducting phase variable.

When the bare repulsive interaction is greater than the
critical value (strong-coupling phase), the umklapp and inter-
pocket backward scattering terms grow into larger values:

h(z), E(z) — —00, mp) —> +o0.

The following argument does not depend on the sign of m ),
so that we set m() > 0 henceforth. In the strong-coupling
regime, H, » and H, , are maximally minimized by

Bomtdrm = Guntia= |
3,m 2.m — —> 4, m 1m — (21’! + 1)7‘[ _ CI)_’
(45)
@n+1)r —06_,
em_etn:@—’ em_em:
3, 2, 4, 1 {Znn —e.
(46)
with
03§,m = U4T,m = G§2,m = GZI,m =o. (47)
The locking of the total displacement field, ¢3,, +

Gom + Pan +G1m =2nm  or (2n+ 1)z, dictates that
the system is electrically insulating along the field
direction. Meanwhile, any electron densities, (o(r,c)) =
Yot L (WIr, Yo (r, ) with ¢=A, A, B, B, do not
break the translational symmetry along the field direction (z),
because

(Uhorr i @Vo)7.(2) =0,
Voo @V Loy, j(2) =0,
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FIG. 5. Theoretical calculation results of the optical conductivity
0,.(w) in the SNEI-I phase (H = 40, 45, 49.5 T). Inset: 0,;(w) in
the SNEI-II phase (H = 55 T). We use the same parameter sets as
in Fig. 1. For details, see Appendix D. Unlike its appearance in
the figures, the delta function at @ = w, is the most prominent in
amplitude, while the continuum spectrum is much less significant.
The renormalized gap w, is on the order of / Eiy Evy, Where Ejy, is
an interaction energy scale, Ej, ~ &? /(€l), and E,,, is a bandwidth
energy scale (see Appendix C4).

with n =0,-1, 1,7/ =4, T=—1, 0 =4, |. Due to the
charge neutrality condition, the mean electron density is 2 per
two LLs, n = 0 and n = —1 LLs, and per the unit cell along
the ¢ axis. Besides, the insulating phase is associated with
particle-hole pairings between the n = 0 LL (electron pocket)
and n = —1 LL (hole pocket). Thus, we regard this phase as
an excitonic insulator [18,20,41,42,44,45] instead of charge
density wave phase.

An insulating property is manifested by the optical conduc-
tivity along the ¢ axis, o,.(w) (Fig. 5). In the strong-coupling
phase with large m 2y, we may employ a Gaussian approxima-
tion for the cosine terms in H, . 0,.(w) is calculated within
the linear response theory as o,,(w) = (€*uK)/2nl*)s(w —
w,), where uK =3 u,K,. a)§ =2nuk Zj M;2> defines a
gap for collective particle-hole excitation associated with a
fluctuation of the total displacement field. An inclusion of a
short-ranged dielectric disorder renormalizes the gap into a
smaller value w, with a smaller spectral weight for the delta
function (see Appendix D). Meanwhile, it adds a continuum
spectrum in higher-energy regions. The continuum spectra
compensate the reduced spectral weight of the delta function.
The observation concludes that the excitonic insulator phase
is robust against any small dielectric disorder, provided that
the renormalized gap size and the spectral weight of the delta
function remain finite (see Appendix D).

The long-range order of the spin superconducting phases
such as 63 — 6, 4 — 0; in Eq. (46) breaks the U(1) spin
rotational symmetry around the field direction. The breaking
of the continuous spin rotational symmetry is manifested
by a long-range ordering of spin quadrupole moment (“spin
nematic excitonic insulator”). The quadrupole moment that
exhibits the order is the symmetric part of the 2nd-rank spin
tensor composed of two spin-1/2 moments (see Appendix E).

One spin-1/2 is from the 7 orbital of the A or A’ carbon atom,
while the other spin-1/2 is from the 7 orbital of the B or B’
carbon atom. The 2nd-rank spin tensor is defined as

Q% (1) = (e (r)San(r) + Se(r)Su,u(r))
— 8,0 (Sl (r) - Sq.L(r)), (48)

W]th c = Av A/’ d = Bs B/9 ,bL, V= -x7 y; SC,J_ = (SC,X7 SC,y)$
28.,(F) = Yl (r, Ol0ulow Yor(r,¢), and o’ 0" =1, |.
The order of the spin superconducting phase [Eq. (46)] leads
to a ferro-type as well as density-wave-type ordering of the
2nd-rank spin tensor, e.g.,

088 (r) + ifo(r) =¥ [u +ucos(AKz —2d_)),

where AK =kps+krr—kpa—kp1. u is a complex-
valued coefficient. Symmetry-wise, the long-range order
given in Eq. (46) can be also accompanied by a helical
magnetic order whose magnetic moment lies in the xy plane.
The helical order has two spatial pitches along the ¢ axis,
2m)/(kr3+ kpo) and (2)/(kp1 + kr.4). Microscopically
speaking, however, an amplitude of the magnetic moment is
tiny and, if any, it appears only in those spatial regions in the
cell where two neighboring 7 orbitals in the same graphene
layer overlap (Appendix E).

On increasing the magnetic field, the outer electron pocket
with (n, o) = (0, 1) and hole pocket with (—1, |) leave the
Fermi level at H = H,. Ab initio electronic band structure
calculations evaluate Hy around 53 T [8]. For H — Hy (H <
H,), the bare Fermi velocities of the two pockets vg ; and vp 4
become smaller. So do the Luttinger parameters of the two
pockets K| and K4 [Eq. (21)]. The reduction of the Luttinger
parameters makes the tree-level scaling dimension A4 nega-
tively very large [Eq. (38)]. Thus, according to Egs. (42), (44),
my) and h ) are renormalized into smaller values at an early
stage of the RG flow for H < Hy, irrespective of bare values
of m() and E(z). Meanwhile, Ayz as well as vp, and vp3
remain rather constant around H = Hy. Thus, according to
Eq. (43), h(2) grows to a larger value and eventually diverges,
provided that its bare (initial) value is greater than a critical
value (see below for the critical value). Larger /) then helps
m ) and h(y) grow at a late stage of the RG flow, by way of
the one-loop terms in Egs. (42), (44). The argument so far
concludes that, for H < Hy, the transition temperature of the
strong-coupling phase is determined only by Eq. (43) with
meaoy = 0:

dh) Cx3

2
dinp ~ Anho = 2phe) “9)

At zero temperature, Eq. (49) gives the critical value for Ay,
as

h ”IZ(A ) nl’ 2 § (Ke+K")| <0
c = — 3 ) = — — ¢ Rk < 0.
(2), C23 23)|T=0 C23 5, c

(50)

When A2y < h@),. < 0, the spin nematic excitonic insulator
phase always appears below a finite critical temperature 7,
at H < Hy (Fig. 3). The situation is consistent with the ex-
perimental phase diagram of graphite under high field. Mean-
while, RG phase diagrams of the other insulators stabilized
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by H, i, Hy3, or H,4 are not consistent with the graphite
experiment.

B. Magnetic Mott insulator and plain excitonic insulator phases

To see this, let us next consider the nature and the RG phase
diagram of the magnetic Mott insulator phase stabilized by
H, 4 and H, 4. By exchanging 2 and 4 in Eqgs. (42)—(44), we
can readily obtain the corresponding one-loop RG equations
for their coupling constants:

dm Ay + A 1 _
@ oA lzm(4)——m(4>(c34h(4) + Ci2hwy),

dinb 2 i
b
dh(4) 1 2 2
JInb = A34h(4) - W(Cnm@) + 4C34h(4))a (52)
dﬁ(4) — 1 2 -2
Tinb = Apnha) — W(CM’“@) +4Cihy).  (53)

Here, the coupling constants are integrals of the interchain
coupling functions in Hy, 4 and H, 4:

8
may =2l Y MY = = / MD(y)dy,
J

ho =202 Y1 = £ [uomay <o,
J

- =@ =@
hay = 271122Hj = %/H (»)dy < 0.
J

The inequalities hold true for bare values of /4, and Ay in
the presence of the repulsive interaction g (> 0).

The RG equations tell us that the bare value of the repulsive
interaction g has a critical strength above/below which m 4,
as well as h() and () become relevant/irrelevant on the
renormalization. In the strong-coupling phase with m 4y —
+oo and h(4),ﬁ(4) — —00, Hp4 and H,4 are maximally
minimized by

n _® n . 2nm — d_,
¢3,/ ¢4,j — ¥ ¢2,/ ¢1,/ == (21’1 + 1)7‘[ _ q>_,
(54
Qn+ 1w —6_,
03,; — 04, =0_, 0,;—01;= {2n7‘[—®_, (55)

J

with

(56)

GBZ,m = O-ZT,m = Ué4,m = O—El,m =0,

for m@uy > 0. The locking of the total displacement field
results in an electrically insulating behavior along the field
direction, while the long-range order of the spin supercon-
ducting phases leads to a long-range helical magnetic order,

e.g.,
(Sax(r)) +i(Sa,(r)) = v'e® cosl(kr + kr2)zl,
(Spx(r)) +i(Sp,y(r)) = v"e'® cos[(kr, + kr2)z]

+w"e'® cos[(kp3 + kr.4)z].
As for the charge degree of freedom, the insulating phase
does not break the translational symmetry; (p(r, c)) always
respects the translational symmetry forc = A, B, A’, B'. The
phase is stabilized by the pairings with the same LL but
between the different spins, so that we call this phase the
magnetic Mott insulator [46].

Unlike the spin nematic excitonic insulator, the transition
temperature of the magnetic Mott insulator goes to zero at
a certain critical field below Hy. For H — Hy (H < Hp),
where K| and K4 become very small, both Aszs and Aj, in
Egs. (51)-(53) become negatively very large. Accordingly,
unlike in the spin nematic excitonic insulator case in the
previous section, all of the three coupling constants, m ), f4),
and /4, are renormalized to zero for those H sufficiently close
to Hy (H < Hp). In other words, the transition temperature of
the magnetic Mott insulator always goes to zero at a certain
critical field below Hy. This is also the case with the plain
excitonic insulator stabilized by H, , H, 3, and H, 3. These
RG phase diagrams are not consistent with the experimental
phase diagram of graphite under the high field [13-18,20].

Besides, the helical magnetic order in the Mott insulator
is expected to be weak against magnetic disorders. Consid-
ering the anisotropy of the g factor in graphite [47], it is
natural to assume that the high magnetic field allows the
system to have single-particle backward scatterings between
two electron pockets with (n, o) = (0, 1) and (0, | ), and also
between two hole pockets with (n, o) = (—1, 1) and (—1, |).
The backward scatterings do exist, especially when graphite
contains those graphene layers whose normal vectors (c axis)
have nonzero angles with respect to the field direction. Such
graphene layers can appear anywhere and randomly along
the ¢ axis, so that the backward scatterings are generally
accompanied by random U(1) phases A 1 (z):

Hy, = Z/dzA_f,+(z){e"*f*(”x/rh,j(Z)Iﬂz,_,_,-(z) +H.c}+ Z/dzA_f,_(z){e“f’*mllff',,,(Z)Iﬂz,+,_/(z) +Hel}+---.
j j

When bosonized, these single-particle backward scatterings add random U(1) phases into ®_ £+ ®_ in Egs. (54) and (55),

respectively:

Hiy = Z/dZAj,Jr(Z)Uﬁ,j cos[¢j + 1 — 02 + 601 + Ay j(2)]
J

+ Z/dZAj,—(Z)GTZ,j cos[paj+ 1 +62; —01; +A_j(2)]+---.
J
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Since ®_ and ®_ comprise gapless Goldstone modes in
the magnetic Mott insulator, the added random U(1) phases
readily kill the long-range orders of ®_ and ®_, however
small the amplitudes A; 4 (z) are [22-25]. Likewise, the plain
excitonic insulator phase stabilized by H, 1, H, 3, and Hp 13
is expected to be weak against short-ranged charged disor-
ders. The short-ranged disorder causes single-particle-type
backward scatterings between (0, 1) and (—1, 1) pockets and
between (0, |) and (—1, |) pockets. From this reasoning as
well as the inconsistency between the RG phase diagrams and
the experimental phase diagram of graphite, we conclude that
the magnetic Mott insulator and the plain excitonic insulator
can hardly explain the graphite experiment coherently.

One may expect that the spin nematic excitonic insulator
could also suffer from random single-particle backward scat-
terings between (0, 1) and (—1, | ) pockets or between (0, | )
and (—1, 1) pockets. Nonetheless, these scatterings unlikely
exist in the real system. Or, if any, they are much smaller
than the others, because the relativistic spin-orbit interaction is
needed for them, and it is extremely small in graphite [33,47].
Without the spin-orbit interaction, these backward scatterings
need both the magnetic scatter and the short-ranged charged
scatter on the same spatial point. Microscopically, however,
these two types of the scatters are of different origins and they
have no correlation at all. From this reasoning as well as the
generic consistency between the RG phase diagram (H < Hj
in Fig. 1) and the experimental phase diagram, we conclude
that an insulating phase in graphite at H < Hj is the spin
nematic excitonic insulator stabilized by the interplay between
Hu,2 and Hb,2~

VI. TWO-POCKET MODEL (H > H,)

For H > Hj, both the electron pocket with (n, o) = (0, 1)
and hole pocket with (n, o) = (—1, |) leave the Fermi level
[8,19]. The low-energy electronic system for H > Hy com-
prises only the electron pocket with (n,0) = (0, ) and
the hole pocket with (n,0) = (—1, 1). As before, we call
(n,o)=(0,})asa=2and (n,0) =(—1,1)asa = 3. The
charge neutrality condition is given by kro |, +kr_14 =
7 /co. Under this condition, the interaction allows the follow-
ing umklapp term:

=Y Wl Vi e V2w +He  (5])

J.m,n

where the integrals over z and scattering matrix elements are
omitted. Other two-particle interaction terms that are linked
with the umklapp term at the one-loop level of the fermionic
RG equations are interpocket and intrapocket scatterings be-
tween different chiralities [42]. They are

=Y VW Y2z m¥any. (58)

j.m,n
and
T 1
’r_ I/f2,:l:,n I/IZ,:F,j-&-ln—nI//ZFqu I/IZYZ‘LJ"
Hi= 77" (59)
J.m,n 1'”3,:I:,nI//3,:F,j-',-m—n1'[/3,:F,m1)03,:i:,j,
respectively.

To construct effective boson theories of possible insulat-
ing phases stabilized by H, we first assume the in-plane

Ilt’«.l Ill’l.7
R WA Wi LTR Hy, Hy,
3 P R R SLAR e ~LLR
| o 1
o OJR
3 o | 0.LR 0.LR
I
! 1 ! 1
i I i
r — — 0,l,L
i o ! 0.l.L 0,1.L
N
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! o ! L — SLAL e el “L1L

FIG. 6. Left: Schematic pictures of two-particle umklapp scat-
terings that are allowed in the two pocket model under the charge
neutrality condition, H;, and H,,. They are direct (j =n) and
exchange (m = n) processes of Eq. (57), respectively. Middle: Two-
particle intrapocket scatterings Hj ;: exchange processes (m = n)
of Eq. (59). Right: Two-particle interpocket scatterings Hy ,: ex-
change processes (m = n) of Eq. (58). As in Fig. 2, the vertical
axis denotes the momentum along the field direction (k,), while the
horizontal axis denotes the chain index y; = k;I*> with k; = 27j/L,
[j=1,2,...,L,L,/Q27xI*)].

(graphene-plane) translational symmetry of the insulating
phases, consider electron pairing within the same chain,
and treat the interchain electron-electron interactions by the
Hartree-Fock approximation. Specifically, we keep only the
direct process (Hartree; j = n) and the exchange process
(Fock; m =n) in Egs. (57)-(59), and bosonize them into
cosine terms:

H,+H,+H;=H,, +H, 2+Hd1+Hb2+

o = Z N(l) /dzog,jazg’m cos[2¢3 j + 2¢2.m1, (60)

j.m

H,, = Z N, / dzo,3 ;053 mcos [QF; + 07, ]. (61)

Hé | = Z O](l)m / dzos3 033, COS[2¢3 j — 2¢3 ]

+ Z 0] o / 205 053, COS[262,; — 2¢2.], (62)

/ @ 3 23
H, = Z ijm/dzazg‘jaﬁm cos [Q_’j -07%,]

j.m

5@ 23 23
+ Z ijm/dzoﬁ,jaﬁ’m cos [Qﬁj - 07,1

j.m

(63)

Here H’1 is from the Hartree process (j = n) of Eq. (57),
while H; ,, H} |, and Hj; , are from the Fock processes (m =
n) of Eq. (57), Eq. (59), and Eq. (58), respectively (Fig. 6).
The Hartree processes of H; and H; renormalize the Luttinger
parameters and Fermi velocities in Hj [Eq. (19)]. Especially,
the Hartree term of Hj gives rise to positive g, (a = 2, 3)
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in Egs. (20) and (21) in the presence of the repulsive electron
interaction (g > 0).

As in the previous section, we carried out the perturbative
RG analyses on these effective boson models, Hy + H; | +
Hy,+ Hg, + Hb »- At the one-loop level of the perturbatlve
RG equations, H, , and Hg , are coupled with each other, and
so are H;, and Hb,2 When the bare interaction strength g
is greater than critical interaction strength, respective pairs
of the cosine terms grow to have larger amplitudes and the
system enters strong-coupling phases. In the following two
subsections, we argue that H;; and Hj stabilize a plain
superposed charge density wave (CDW) phase, while H, , and
Hy , stabilize the spin nematic excitonic insulator phase’.

A. Superposed CDW phase

When H; | and H ; become relevant, the cosine terms in
Egs. (60) and (62) are maximally minimized by the CDW
phase, where a displacement field of the electron pocket and
that of the hole pocket exhibit long-range orders individually:

2¢5j = P2, 2¢3; = D3, (64)
2nm (nay < 0),
@) 4 B3 = 65
2+ P {(Zn +Dr (g > 0), (65)
with
0p3,j =033,; =0 (66)

Such CDW is a plain superposition of a charge density wave
of the electron pocket with |, spin and 7 /kF | spatial pitch
and that of the hole pocket with 1 spin and 7 /kr _; 4 spatial
pitch. Since this strong-coupling phase is not accompanied
by any long-range order of spin superconducting phase fields,
the transition temperature of the superposed CDW phase in-
creases monotonically in the magnetic field in the presence of
the repulsive electron-electron interaction: g, ,—», g2.p=3 > O.
Such behavior of the transition temperature is not consistent
with graphite’s experimental phase diagram; the experiment
shows the reentrant insulator-metal transition at H = H,, =~
75 T.

Besides, the long-range order of the relative displace-
ment between the two charge density waves, &, — ®3, is
weak against random charged impurities, unless their spatial
pitches are commensurate to the underlying lattice constant ¢
[22-25]. Namely, the impurity potentials induce single-
particle backward scatterings within the same electron pocket
and/or within the same hole pocket. The impurities appear
spatially randomly as a function of the coordinate z. Thus,
the scatterings add random U(1) phases into 2¢» ; and 2¢3 ;,
unless @, and @3 in Eq. (64) have finite mass in the CDW
phase. When 2kro or 2k _;4 is incommensurate with
respect to 2m/cy, the long-range ordering of ®; — &3 in
Eq. (64) is generally accompanied by a gapless phason exci-
tation. Thereby, even small random charged impurities wipe
out the long-range order of the relative phase between the
two density waves. Meanwhile, being locked into the discrete
values by the cosine potential in the umklapp term (H ),
the total displacement field, &, 4 ®3, always has a ﬁnlte
mass in the superposed CDW phase. The locking is therefore
robust against the random charged impurities, as far as their
amplitudes are small.

B. Spin nematic excitonic insulator (SNEI-II) phase

When H; , and H{ , become relevant, the cosine terms in
Egs. (61) and (63) are maximally minimized by the excitonic
insulator phase with broken U(1) spin rotational symmetry. To
see the nature and RG phase diagram of this strong-coupling
phase, let us first reduce the interchain coupling functions in
H, , and Hy , into coupling constants:

2
ne = 2n122Nj 2

(2)
poy=2rl*Y P2 P =21l Z P;
J

For the repulsive interaction case (g > 0), bare values of these
three coupling constants are negative; the cosine terms in H ,
and H, , are all from the exchange processes. The one-loop
RG equations for these coupling constants take the following
forms:

dl’l(z)

Cx
T = Avne) — —Sne(pe +Pe). (67)
dpe Cy
dlnl)y =AnpPe) = —5 (1) + PG), (68)
dﬁ@) Cu, , —
dlnb = AnPe) ~ T2 —5 (%) +P)- (69)

Negative semidefinite A3 and positive definite C,3 have al-
ready been defined in Eq. (38) and Appendix C3, respectively.
Thanks to an inversion symmetry (Q Q“b ), the cou-
pled equations as well as the bare values of the coupling
constants are symmetric with respect to an exchange between
P and p(,). This decouples the RG equations into

dfs Cxy
Tnb = 23f:|::|: fi,

where fi =np) £ pe) =ne) ﬁ(z). At zero temperature,
Assz and Cy3 have no dependence on the scale change Inb.
Thereby, the equations immediately give an RG flow diagram
as in Fig. 7. The strong and weak coupling phases at T = 0
are defined by

(70)

[noy| — p)y > x. (strong-coupling phase),

[noy| — pe) < x. (weak-coupling phase),

with
2

Xe = ——A23 > 0.
Ca3

(72)

On the strong-coupling side, the cosine terms in the
bosonized Hamiltonian are maximally minimized by

ng,j — 0‘31]. fd 0‘, (73)
02’1. — 63’1» = @, (74)
2nmw (n@) < 0),
N 75
(¢2,j + #3,) {(2” + D (n@ > 0). )

The locking of a sum of the two displacement fields leads to an
electrically insulating property along the field direction. The
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FIG. 7. Renormalization group flow at 7 =0 in the two-
dimensional parameter space subtended by np) and po) = D).
Weak/strong-coupling phases stand for normal metal phase/spin
nematic excitonic insulator (SNEI-II) phase, respectively. Quantum
criticality of the quantum phase transition between these two is
controlled by a fixed point named “FP1”. The scaling dimension of
the relevant parameter at FP1, v,, is given in Eq. (77).

optical conductivity calculated within the Gaussian approxi-
mation shows a gap behavior, o, () = (e*uK)/(2m1*)8(w —
wg) with uK =3, _, yu,K, and wg =2ruK ), N}z) (see
also the inset of Fig. 5). The long-range order of the spin
superconducting phase 6, — 65 in Eq. (74) breaks the global
U(1) spin rotational symmetry. The strong-coupling phase is
accompanied by particle-hole pairing between the electron
pocket with | spin and the hole pocket with 1 spin, so that
we name the phase also as the spin nematic excitonic insu-
lator phase. Nonetheless, the phase could be symmetrically
distinct from the spin nematic excitonic insulator discussed in
the previous section, depending on the spatial parity of the
excitonic pairing (see also Sec. VIII A and Sec. X B). We thus
distinguish these two by calling them SNEI-I for H < Hj and
SNEI-II for H > H, respectively.

The phase boundary condition, Egs. (71) and (72), explains
the metal-insulator transition at a lower field regime. For
simplicity, we assume that the bare values of n() and p) =
P2y as well as (Cp3)7=0 have no H dependence. For a low-H
regime, the magnetic length [ is large; so is the critical value
x. in Eq. (72). Thereby, a given bare value of [n¢)| — p(2) can
be below the critical value x, in the lower-H regime (weak-
coupling phase; normal metal phase). On increasing H, the
magnetic length / decreases and so does the critical value x,.
Thus, the bare value of |n(2)| — p(2) exceeds the critical value
X, at a certain critical magnetic field (H = H). For H} < H,
the system enters the strong-coupling phase (SNEI-II phase).
From a comparison with the graphite experiment [17,18,20],
we assume that H* is smaller than Hy. In this case, the system
at T = 0 undergoes a phase transition from SNEI-I to SNEI-IT
at H = H,.

The phase boundary condition Egs. (71) and (72) also
explains the 7 = O insulator-metal reentrant transition at a
higher-field regime. When the field H increases further, both
electron and hole pockets become smaller in size in the k,
space. This makes their bare Fermi velocities vr, and v 3 as

well as Luttinger parameters K, and K3 smaller. The smaller
Luttinger parameters can increase the critical value x. through
the dependence of A3 on K{l and K;l [Eq. (38)]. To be
more precise, suppose that the electron pocket withn = 0 LL
with | spin and the hole pocket with n = —1 LL with 1 spin
leave the Fermi level at H = H;. When H gets “close” to H,
from below (H < H;), the increase of —A,3 can overcome
the decrease of /% in Eq. (72), such that x. increases again.
Namely, for H < H,, [? is always bounded by (ic)/(eH;)
from below, while K5 ! and K5 ' as well as —A,; have no
upper bound in principle. Thus, for some magnetic field H, >
with HY < Hy < H.» < Hj, x. exceeds the bare value of
|n@2)| — p(2) again and the system falls into the weak-coupling
phase (normal metal phase) again. From the set of reasonable
parameter values used in Fig. 1 (see Appendix C4 for the
set of parameters used in Fig. 1), we obtain H., = 82 T and
H;, =120T.

C. Critical natures of the MI and reentrant IM transitions

The reentrant transition point at H = H., is a zero-
temperature continuous phase transition with dynamical expo-
nent z = 1. Toward this quantum critical point, the correlation
length along the field direction &, diverges as

& o |H — Heo| ™™ (76)

The critical exponent v, is given only by the Luttinger param-
eters at the critical point (H = H, ),
1
= - K,+K')—2. 77
=7 2 (e ”

Since z = 1, the correlation length is inversely proportional to
the gap w, in the optical conductivity along the field direction,
o (w):

wg & (Hen — H)¥"™ = (H.» — H)'™, (78)

for H < H, ;. By measuring how the gap vanishes toward
H = H., as a function of the field, one can determine the
values of the Luttinger parameters at the quantum critical
point. By seeing how much the Luttinger parameters thus
determined deviate from 1, one could also test the validity of
our theory of the reentrant insulator-metal transition.

The low-H metal-insulator transition between the normal
metal and SNEI-I phases is also a quantum critical point.
Toward this point, H = H_ ;, the gap w, in the SNEI-I phase
also vanishes,

wg o (H — He )™, (79)

for H.; < H. The critical exponent v; is given by the
Luttinger parameters at H = H, |,

1 -
vlzi;(l(u—i—l(al)—Z (80)

where the summation in the pocket index a is taken over
a=1,4 (|A14lCxsh@) > |An|Cishe), 81
a=2,3 (JA14|Cxhoy < |An|Ciah)).

Meanwhile, the gap in o,,(w) reaches finite constant values

at H = Hy £ 0, when the phase transition from the SNEI-I
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phase to the SNEI-II phase is of the first order. This is the
case when the spatial parities of the excitonic pairings in the
two phases are different from each other (see also Sec. VIIT A
and Sec. X B).

VII. IN-PLANE RESISTANCE IN THE FOUR-POCKET
MODEL (H < H,)

Generally, in-plane current operators in the clean limit
have finite matrix elements only between neighboring
Landau levels. When the temperature is much lower than the
cyclotron frequency hwy, the in-plane resistance increases on
increasing magnetic field H. Contrary to this expectation,
the low-temperature in-plane resistance in graphite under
high magnetic field shows an unexpected H dependence
[14,15,17,18]. It shows a broad peak around 15T ~ 30 T,
and then decreases slowly on further increasing H. From
H =30Tto H= Hy > 53T, the resistance reduces by half
or more. Besides, when the system enters the low-field-side
out-of-plane insulating phase (H,; < H < Hp), the in-plane
resistance shows an additional steep increase by 15% to 30%
[14,15,18]. Unlike the out-of-plane resistivity, the additional
increase amount becomes smaller for lower temperature.

A. H dependence of R, at H < H,

The H dependence of the in-plane resistance in 30 T <
H < Hy >~ 53 T can be explained by charge transport along
the surface chiral Fermi arc (SCFA) states. To see this, notice
first that the electron/hole pockets in the bulk are terminated
with SCFA states of the electron/hole type around the bound-
ary regions of the system (see Fig. 2 and Appendix A). The
SCFA state of the electron/hole type is a bundle of N, chiral
edge modes of electron/hole type, respectively, where N,
is the number of k, points within the electron/hole pocket
(a =1,2,3,4). Here a denotes the pocket index: 1 = (0, 1),
2=(,]),3=(—1,1), and 4 = (—1, ). The chiral edge
mode enables unidirectional electric current flow along the
boundary in the xy plane. The chiral directions of the electric
current flows of the electron-type and hole-type edge modes
are opposite to each other.

In the presence of short-ranged charged impurities, the
current flow along the electron-type edge mode with o spin
can be scattered into the hole-type edge mode with the same
o spin. In this respect, the SCFA state with (—1, o) (hole
type) and that with (0, o) (electron type) cancel each other
by the intrasurface backward scatterings due to the charged
impurities. In the absence of any backward scatterings be-
tween (0,0)and (—1,0) [(o,0) = (1, }), (I, 1); see the last
paragraph in Sec. V for the reasoning of the absence], both
N, — N4 anticlockwise (electron-type) chiral edge modes
with | spin and N3 — N; clockwise (hole-type) chiral edge
modes with 1 spin individually contribute to the two-terminal
conductance within the xy plane:

&2 2¢?
G, = E(Nz — N4+ N3 — Np) = 7(N3 —Np).  (82)

From the first line to the second line, we used the charge
neutrality condition: N; + N, = N3 + N4. Importantly, the
in-plane conductance given by Eq. (82) usually increases on

increasing H for H < Hy. This is because a variation of
N with respect to H is larger than that of N3: dN/dH <
dNs3/dH < 0. For N3 =[L;/(2¢co)l(1 — H/H,) and N; =
[L,/(2co)I(1 — H/Hy), the H dependence of the resistance
due to the surface charge transport is given by

_ h Co HOH1

" e2L, H(H, — Hy)’
The resistance is on the order of 1 2 at H =30T (L, =
50 um, co = 0.67 nm, Hy=50T, and H; = 120 T). The

value is on the same order as the experimental value (2  ~
3Q)[17].

(83)

N

B. T dependence of R, at H < H,

The T dependence of the in-plane resistance inside the
low-field-side insulating phase (H.,; < H < Hp) can be ex-
plained by a coupling between the SCFA states and gapless
Goldstone modes associated with the spin nematic order in
the bulk. The spin nematic excitonic insulator (SNEI-I) phase
breaks two global U(1) symmetries. They are the U(1) spin
rotational symmetry around the field direction and the trans-
lational symmetry associated with the spatial polarization of
the spin (4 or |) and pseudospin (n =0 LL orn = —1 LL)
densities.

Such SNEI-I phase has two low-energy gapless excitations.
They are space-time fluctuations of the following two phase
variables [Eqgs. (45), (46)]:

[i(2)=163,(z) — 65, j(2)] — [64(z) — 01,j(2)] —20_,
(84)

8i(2) =[¢3,j(z) + ¢2,j(2)] — [¢s,j(2) + P1,j(2)] — 2D _.
(85)

When they vary slowly in z/co and y;/l = 2mlj/L,, their
energy dispersions become linear in the momenta:

1
" 2L.N

1
2L.N

How > (Bik* + Cik2) £tk £ (k)

k

+ Y (Bok® + Cak)g (kg k), (86)
k

with positive B; and C; (t = 1,2), and k = (k,, k). k, and k
are conjugate to z and y; = 2m1% j/L,, respectively:

1 o
fj(Z) = — elklzﬁky/f(k)’
L,N -

1 ik.z+iky;
ik z+iky; k .
LN Xk:e g(k)

gi(x) =

The gapless modes couple with the SCFA states through a
simple density-density interaction, e.g.,

H/ — LL Z ZZ/dzAf;?;b)()’m ym)

a,t,b n m

X Paen @D} W (D], (87)
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with bulk density operator p,;,(z) = wg’r’n(z)l/faqryn(z)
(Iynl € Ly/2).a,b = 1,2, 3, 4 denote the pocket indices, and
T = =% is the chirality index. By definition, the summations
over the chain indices n and m in Eq. (87) are restricted within
the bulk region and edge region, respectively; L, /2 < |yl

When bosonized, the density operator in the bulk region
is given by a linear combination of the phase variables,
2704,:.0(2) = 0,¢4.0(2) — 10,0,,(2). Such phase variables
generally contain the two low-energy gapless excitations with
the linear dispersions. Thus, the situation becomes precisely
analogous to the electron-phonon interaction in metal [48,49].
The coupling endows the SCFA electrons with finite transport
life times [49]. When the temperature is on the order of the
bandwidth of the gapless Goldstone modes (but smaller than
the transition temperature of the SNEI-I phase), the transport
lifetime of the SCFA states is linear in temperature T'; so is the
resistivity due to the surface charge transport. This can explain
the T dependence of the in-plane resistance in the insulating
phases in graphite [14,15,18].

VIII. IN-PLANE RESISTANCE IN THE TWO-POCKET
MODEL (H > H,)

The in-plane resistance of graphite under the high mag-
netic field stays almost constant in the field inside the high-
field-side out-of-plane insulating phase (Hy < H < H, )
[17-21]. Above the reentrant insulator-metal (IM) transition
field (H., < H), the resistance shows the normal behavior:
R, increases in the field [21].

In the following, we will argue that the SNEI-II phase in
H > Hy can be either topological [50-52] or topologically
trivial, depending on the spatial parity of the excitonic pairing
between electron pocket (n =0, |) and hole pocket (n =
—1,1). When the excitonic pairing field is an odd function
in the momentum k_, the SNEI-II phase becomes topological
and thereby the SCFA state of electron type (n = 0, | ) and the
SCFA state of hole type (n = —1, 1) are reconstructed into a
helical surface state with a gapless Dirac cone. The electric
transport through such Dirac-cone surface state is primarily
determined by carrier density doped in the surface region,
which has little field dependence. Thus, the reconstructed
Dirac-cone surface state may provide a simple explanation for
the field (nearly) independent and metallic behavior of the in-
plane resistance observed in the high-field-side out-of-plane
insulating phase (Hy < H < H,»).

Topological SNEI phase

The strong-coupling phase discussed in Sec. VI (SNEI-II
phase) consists of two topologically distinct phases, depend-
ing on the sign of the umklapp term n(;). A mean-field one-
dimensional electronic Hamiltonian of the strong-coupling
phase can be schematically described by the 2 x 2 Pauli
matrices as

H(q,) = [M — 2y, c08(¢,c0)103 + Agi(g.€0)a
= Eri(g:){Ni(g;)o3 + Na(q;)o 1}, (88)
with M < 2y,, and

Eei(q:) = \/[M — 2y2¢08(¢:€0)1* + Ay(geco).  (89)

(@)

FIG. 8. (a) Single-particle electronic states in normal metal phase
(two-pocket model). The electron pocket (blue curve) is formed by
the n = 0 LL with | spin, and the hole pocket (yellow curve) is by the
n = —1 LL with 4 spin. (b) Single-particle electronic states with the
excitonic pairing. (c) Single-particle electronic states in the vacuum
region.

The first and second elements of the 2 x 2 matrices corre-
spond to the n = 0 LL with | spin and n = —1 LL with 1
spin, respectively [Fig. 8(a)]. For clarity, the electron pocket
around k, = 0O is shifted by 7 /c¢ in Eq. (88): ¢, =k, — f—o
Agi(g;co) stands for an excitonic pairing between the electron
and hole pockets [Fig. 8(b)]. The pairing is induced by the
umklapp H; , and interpocket scattering terms Hy, ,. The func-
tion form of Agj(g.co) is determined by the value of the total
displacement field, such as in Eq. (75).

For the negative umklapp term, n() < 0, the excitonic
pairing field Agi(g.co) is an odd function in g, while, for the
positive case, n¢) > 0, it is even in g;. These two cases rep-
resent two topologically distinct phases. In the former/latter
case, the following topological winding number defined for
the bulk 1-dimensional Hamiltonian Eq. (88) takes +1/zero
respectively [53-55]:

w dq; - o
Z= /_1 57 (N X 0N, (90)

c

with N = (Ni(q:), N2(q2), 0).

The nonzero bulk winding number reconstructs the SCFA
state of the electron type and that of the hole type into a
2-d surface state with a gapless Dirac cone at side surfaces.
The side surface is subtended by z (|| H) and either x or
y [Fig. 9(a)]. To be concrete, impose the periodic boundary
conditions along z and x, and put a confining potential along
the y direction. The mass term M in Eq. (88) depends on
the coordinate y. In the vacuum regime, |y| > L, /2, the elec-
tron/hole pocket goes above/below the Fermi level [Fig. 8(c)].
Thereby, Eq. (88) enters a normal 1-dimensional semiconduc-
tor regime, M > 2y,: the winding number takes zero in the

(a) (b)

N H Z||H e

1

FIG. 9. Schematic pictures of (a) side surfaces (gray area) with
the two-dimensional helical surface state with a gapless Dirac cone,
and (b) top surface (gray area) with the two-dimensional Chalker-
Coddington network model.
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FIG. 10. Schematic picture of energetically degenerate SSH end
states within the bulk excitonic band gap (blue dotted line). In a
generic situation, the degeneracy is lifted by an electrostatic potential
(black solid curve). An associated spatial gradient of the end-state
eigenenergy with respect to y leads to a chiral electric current along
the —x direction.

vacuum. In the bulk region, |y| < L, /2, the gapped mean-
field Hamiltonian with the negative ny) is in the band-inverted
regime, M < 2y;: the winding number takes £1. Such two
topologically distinct 1-dimensional gapped systems are in-
evitably separated by a 1-d gapless Dirac Hamiltonian, which
should come somewhere around |y| = L, /2. In other words,
the side surface has a 2-d helical surface state that forms a
gapless Dirac cone as a function of k. and y = k,I? [Fig. 9(a)].

The reconstructed surface state has the helical velocities
not only along the z direction but also along the x direction.
To see this, notice that the velocity along the x direction is
given by a derivative of the single-particle energy with respect
to the spatial coordinate y: v, = /?dEg;/dy. Such velocity
changes its sign around y = L, /2, where Eg;(g;) forms the
1-d gapless Dirac dispersion: v, < Ofory < Ly/2and v, > 0
for y > L, /2 [see also Figs. 8(b) and 8(c)].

Quantitatively, the Dirac cone is highly anisotropic in its
velocity within the side surface. Namely, the velocity along
the x direction is determined by a work function in the edge
region: v, = ol*aM /9y). Conventionally, the work function
varies in energy on the order of eV within a length scale of A:
dM/dy = O(eV/A). Thus, the velocity along the x direction
is much faster than that along the z direction, the latter of
which is given by the energy scale of the bandwidth (2y,) or
the excitonic pairing (Agy).

The 2-d helical surface state in the side surface is continu-
ously connected to a 2-d critical wave function sitting on a top
(bottom) surface. The top (bottom) surface is subtended by x
and y coordinates [Fig. 9(b)]. Theoretically, the critical wave
function belongs to the 2-d quantum Hall universality class,
while it is generically off the Fermi level.

To see this, impose the open boundary condition along z
(|| H) direction. The nonzero bulk winding number leads to an
in-gap end state called the SSH (Su-Schrieffer-Heeger) state
within the bulk excitonic gap (left panel of Fig. 10). The end
states are localized at the two open boundaries along z direc-
tion, top and bottom surfaces. Due to the Landau degeneracy

associated with the in-plane coordinate degree of freedom,
each boundary has an extensive number of such end states.
In the clean limit, they are energetically degenerate. In the
presence of charged impurities on the surface, the degeneracy
is lifted by an electrostatic potential created by the impurities
(right figure of Fig. 10). The potential depends on x and y,
causing a finite spatial gradient of the end-state eigenenergy.
The gradient in x or y gives rise to a chiral electric current
(one-dimensional chiral mode) along y or —x direction, re-
spectively. Such chiral mode encloses a region with higher
electrostatic potential. An uneven potential landscape gives
rise to a group of chiral modes on the surface [Fig. 9(b)],
where two spatially proximate (and thus counterpropagating)
modes have finite intermode hoppings. Electronic states of
such surface can be described by the Chalker-Coddington
network (CCN) model [56,57]. The previous studies on the
CCN model [56,58] conclude that a phase diagram as a func-
tion of the chemical potential has two localized regimes and
the 2-d quantum Hall critical point intervenes between these
two localized regimes. Thus, in-gap surface electronic states
sitting on the top (bottom) surface are generally localized
within the in-plane direction, unless the chemical potential is
fine-tuned to the critical point.

IX. SUMMARY

Graphite under high magnetic field exhibits mysterious
metal-insulator (MI) transitions as well as insulator-metal
(IM) reentrant transitions. We discuss these enigmatic elec-
tronic phase transitions in terms of perturbative RG analyses
of effective boson theories. We argue that the two insulating
phases in graphite under high field are excitonic insulators
with spin nematic orderings. Similar conclusions were sug-
gested by experimental works both for H < Hy [20] and
H > Hj [18]. This paper enumerates possible umklapp terms
allowed under the charge neutrality condition, clarifies the
nature of insulating states stabilized by each of them, and
argues that excitonic insulators with long-range orderings of
spin superconducting phases can give a possible explanation
to the graphite experiments.

Based on this, we propose the following mechanism for
the reentrant IM transition: When a pair of electron and hole
pockets gets smaller in size, strong quantum fluctuation of
the spin superconducting phase destabilizes the spin nematic
excitonic insulator, causing the reentrant IM transition. The
strength of the quantum fluctuation is quantified by the Lut-
tinger parameters of the electron and hole pockets. We relate
the Luttinger parameters with the critical exponent of the 7 =
0 reentrant IM transition point. We show that the exponent
can be experimentally determined from the infrared optical
spectroscopy. By determining the Luttinger parameters at the
transition point, experimentalists can test the validity of our
theory for the reentrant IM transition.

We attribute the “unexpected” field and temperature depen-
dencies of the in-plane electric transport in graphite under the
high field to surface charge transports through surface chiral
Fermi arc (SCFA) states and reconstructed Dirac-cone surface
states. We first argue that a metallic temperature dependence
of the in-plane transport observed in the low-field-side insu-
lating phases is due to bulk-edge couplings between the SCFA
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states and gapless Goldstone modes associated with the spin
nematic orderings. Being gapless excitations, the Goldstone
modes in the spin nematic excitonic insulator phases could
be experimentally detected through ultrasound measurements
[59]. We also argue that the odd-parity excitonic pairing
in the bulk reconstructs SCFA states of electron and hole
into a (2+ 1)-d helical surface state with a gapless Dirac
cone. Based on this finding, we discuss the field (nearly)
independent and metallic behavior of the in-plane transport
inside the high-field-side insulating phase [14,15,17,18].

X. DISCUSSION

A. Nature of the ‘“normal’” metal phase and criticality
of metal-insulator transition

Our theory regards the ‘“normal” metallic phase in the
graphite experiment as the decoupled Luttinger liquid (LL)
phase, where we assume that interchain electron-electron
interactions only renormalize the Luttinger parameters and
Fermi velocities as in Egs. (20), (21), (B6), and (B7).
Nonetheless, it could be possible that a fixed point of the
decoupled LL phase [the Gaussian theory given by Eq. (19);
schematically denoted by “FP0” in Fig. 11] is unstable
against a certain perturbation associated with the interchain
interactions (denoted by X in Fig. 11) and, as a result, the
“normal” metal phase is characterized by a new stable fixed
point (schematically denoted by “FP3” in Fig. 11). The stable
fixed point could be the Fermi-liquid fixed point [60-65]
or the sliding Luttinger liquid fixed point [66,67]. One of
the experimental pieces of evidence that could support our
theory’s assumption of the decoupled Luttinger liquid is a
T-linear behavior (or at least non-Fermi-liquid behavior) in
the out-of-plane resistivity in the high-7 “normal” metal
phase. To our best knowledge, however, no comprehensive
experimental studies have been carried out so far for the
temperature dependence of the resistivity in the ‘“normal”
metal phase in graphite under high magnetic field [17,20].

When the metal phase is characterized by a new free theory
instead of the free theory of the decoupled LL phase [the
Gaussian theory given by Eq. (19)], critical properties of
the metal-insulator (MI) and reentrant insulator-metal (IM)
transitions are characterized by a new saddle-point fixed point
(schematically denoted by “FP4” in Fig. 11), rather than by
the FP1 that leads to the argument in Sec. VIC. Meanwhile,
having a finite charge gap, a fixed point of the excitonic
insulator (EI) is expected to be locally stable against the small
perturbation. Thereby, the primary features of the two EI
phases discussed in the paper will not change dramatically
even in the presence of such perturbations. These features
include the finite mobility gaps in o,,(®) in the two SNEI
phases, an overall structure of the H-T phase diagram, as
well as the topological Dirac-cone surface state in the SNEI-II
phase and in-plane electric transport due to the surface state.

B. Excitonic BCS-BEC crossover and nature of the transition
between SNEI-I and SNEI-II phases

Our theory does not include the effect of excitonic con-
densation, as emphasized in Ref. [20]. When H approaches
H, from above (H > H,), electron-hole bound states formed

R

N

FP2(Els) Y

FPO(LL) FP1

FIG. 11. Schematic picture of a possible RG phase diagram in
the presence of a relevant perturbation (denoted by X) around the
decoupled Luttinger liquid (LL) fixed point (denoted by “FP0”). In
the presence of such relevant perturbation, the LL fixed point is
unstable; the normal metal phase is characterized by a new stable
fixed point (denoted by “FP3”). The horizontal axis (Y) denotes the
umklapp and interpocket scattering terms that drive the system into
the excitonic insulator (EI) phases. FP2 represents a stable fixed
point characterizing the EI phases. The critical properties of the
metal-insulator (MI) and reentrant insulator-metal (IM) transitions
are characterized by a new saddle fixed point (denoted by “FP4”)
instead of by the FP1. In this schematic picture, we assume that the
fixed point for the EI phases (FP2) is locally stable against the small
perturbation X.

by an electron in the (n,0) = (0, 1) LL and a hole in the
(n,0)=(—1, ) LL can undergo Bose-Einstein condensa-
tion. Such condensation further assists electron-hole BCS
pairings between (n,0) = (0, |) and (n,0) = (—1, 1) LLs,
through the umklapp term H, . This leads to a phase with
electrically insulating behavior along the field direction; the
phase is essentially same as the SNEI-I phase discussed in the
paper. When the exciton BEC effect is included in our theory,
the phase boundary between SNEI-I and SNEI-II phases (say
H = H.3) will presumably go above Hy (Hy < H.3).

For H > H_ 3, the long-range phase coherences defined by
94_j — Ql_j =nmw — O_ and ¢4,j + (f)l,j =(m+1Dmx —d_in
Eqgs. (45) and (46) fade away, while the other long-range phase
coherences defined by 63 ; — 6, ; =O_ and ¢3; +¢» ; =
®_ may survive, leading to a phase similar to the spin nematic
excitonic insulator phase discussed in Sec. VIB. From this
viewpoint, the SNEI-II phase could be regarded as a “partially
ordered phase” derived from the SNEI-I phase. Nonetheless,
it can be entirely possible that these two SNEI phases are sym-
metrically distinct from each other, depending on the spatial
parities of the excitonic pairings in the two phases, whose
importance was emphasized in Sec. VIII A. The qualitative
nature of the phase transition between these two excitonic
insulator phases needs further theoretical studies.
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APPENDIX A: CHARGE NEUTRALITY CONDITION

Transverse conductivity oy, gives precise information on
electron carrier density n, and hole carrier density nj, in any
given metal and semimetal under high magnetic field through
the following formula:

onH = ec(n, — ny). (A1)

e (> 0) and c¢ are the electron charge and the speed of
light, respectively. In the main text, we use the formula and
evaluate the total number of k, points in the electron/hole
pockets N,/Nj, in graphite under the field. With the formula,
the previous Hall conductivity measurement in the regime
of 20T < H <55T [18,35-37] gives (N, — Nj) : L;/co =
1074 : 1. Usmg the Kubo formula of the Hall conductivity,
Aklba discussed the validity of the formula in the quasi-
quantum limit in graphite [18]. In the following, we employ
Buttiker’s theory of Hall conductivity [68,69] to demonstrate
the validity of the formula in a generic three-dimensional
metal and semimetal under high field.

Use the Landau gauge and assume that a given three-
dimensional system is translationally symmetric along the x
and z directions. Electrons are confined along the y direction
within |y| < L,/2 by a confining potential. A single-particle
Hamiltonian comprises two parts:

Hr = Holkske) + Viks ke, $), (A2)

with kg = (—idy) £i(—k, + eHy) H, is a bulk Hamiltonian

that depends on the coordinate y through & and &_. 1%
describes the effect of the confining potential; V = 0 when
ly| < Ly/2. V depends on y explicitly. Hy in Eq. (A2) is
already Fourier-transformed with respect to x and z: they are
functions of the conjugate momenta k, and k. In a system
with multiple energy bands, 7 takes a matrix form. For the
spinless graphite case, H7 is a 4 x 4 matrix; the four bases
are from the 7 orbitals in the A, A’, B, and B’ carbon atoms
within the unit cell. Using the k - p expansion, Slonczewski,
Weiss, and McClure derived H, around the zone boundary of
the first Brillouin zone of graphite.

In the following, we only assume that H(k,; x+) as well
as V(k;;k+,y) are given by finite-order polynomials in k4
and y. Under this assumption, the explicit y dependence of
V can be rewritten into the y. dependence by use of y =
(—i)(?/2) (ks —Kk_) + y. and y. = k,I*:

Hr ks ka, §) = Hy(kyy yei ka).

(A3)

Eigenstates of such H; are localized in the y coordinate
at y = y.. Eigenvalues depend on k., y., and the Landau
index n:

7:LT¢n,k:,yc(y —ye) = E,(k,, yc)¢n,kz,y(.(y = Ye)-

A single-particle velocity operator along x is given by a
k, derivative of 7:{,7. With &,/ = Ye, an expectation value
of the velocity with respect to the eigenstate is given by
a y. derivative of the eigenvalue. Besides, the eigenstate is

(A4)

uniformly extended along x. Thus, an electric current carried
by the eigenstate is given by
( 6)12 0L, (kZa ))c)

hL, dy.

The total current density from the nth Landau level is the sum
of Jx n.k..y, Over all the filled k; and k, = y./ 2 points:

Jx nk.,ye (AS)

jx L L x,n,k; nyT(E (k71 yc))

& dk, /+°° dy. 0E,
27 0y,

(6)

Vo). (A6)

-z 27
fr(E) is a Fermi distribution function. At zero temperature,
this reduces to a step function,

9(M+ - En(ku yc)) (YC = Ly/2)»
9(#— - En(kzv yc)) (yc = _Ly/2)~

i+ are Fermi levels around y = £L, /2, respectively. In the
presence of the Hall voltage Vg in the +y direction, 4 —
n_ = —eVy.

In graphite under the high field, the two electron/hole pock-
ets in the bulk region (n = 0/n = —1 LLs with 1 and |, spins)
end up with two electron/hole surface chiral Fermi arc (SCFA)
states in the boundary region. Namely, E,—o/—{ s (k;, y.) in-
creases/decreases in energy, when y. goes from the bulk
region to the boundary region (Fig. 2):

En—o.o(kzsye) /' (Iyel 7,
Epe1o(kzs ye) N (yel .

Accordingly, the current density induced by the finite Hall
voltage comprises two parts that cancel each other:

R ) /"‘&+/"2&
Jx = h Ly —ky 2 —k, 2

e (uo—py) /’Pﬁ—k»* &Jr/—’w 4\ a0y
]’l Ly k3 27T ks 27'[

The first part is from the two electron surface states that sub-
tend chiral arcs from k, = —k; to k, = k; and from k, = —k;
to k, = ky, respectively. The other part is from the two hole
surface states that subtend chiral arcs from k, = k3 to 27 /co —
k3 and from k, = kg to k, = 2w /cy — k4, respectively (Fig. 2).
To have Eq. (A9), we assume that the hole pocket energies are
the same in the vacuum,

fr=o(E,) = { (A7)

(A8)

Ey—1o(kz, ye = —00) = Epe—y o (kz, ye = +00). (A10)
Equation (A9) gives the Hall conductivity as
21 ec
Oxy = ﬁL_(Nl + N2 = N3 = Na) = - (ne =), (AlD)

with (Ny 4+ N»)/L, = 2nl’n, and (N3 + Ny)/L. = 27l’n,,.
From the previous Hall conductivity measurement [18], we

typically have

n, —ny =5x 10" ecm™3,

for H =30T, and

ne —np = —10 x 10° cm ™
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for H =55 T. With ¢y = 6.7 x 107'%m, this gives the ratio
between N, — N, and L, /cg as

Ne—Ny:L,Jco=23x107*:1 (A12)

for 30T < H <55T. From this very small number, we
conclude that graphite under this field regime safely satisfies
the charge neutrality condition.

APPENDIX B: RENORMALIZATION OF LUTTINGER
PARAMETERS AND FERMI VELOCITIES

In the main text, we use the Hartree-Fock approximation
for the four-pocket model or two-pocket model, to introduce
effective boson Hamiltonians, such as Egs. (18)—(21) with
Egs. (22)—(25) and (27)—(29) or with Egs. (60)—(63). Thereby,
the bare kinetic energy part takes a quadratic form in the phase
variables, Eq. (19), whose coefficients (Luttinger parameters
and Fermi velocities) are further renormalized by intrapocket
forward scattering terms. In the following, we summarize
how the intrapocket forward scattering terms renormalize the
Luttinger parameters and Fermi velocities.

The electron interaction within the same pockets is given
by

=Y Y [farfare v

Jj.m,na=1,2,3,4(2,3)
%n(z)llfaﬁm 2@ Wam(@Wa j(2), (BD)

with ¥,,(2) = %2, 1 (2) + e, _ ,(z). The ma-
trix element V(l) % (a=1,2,3,4) is obtained by the substi-
tutions of Eqs (7) —(10) into Eq. (6). In the limit of short
interaction length (Ip, <« /), the matrix element takes the
form of

ya =

(l)a

Dimensionless functions f“)’“(x,y) decay quickly for
|x], |y] > 1. With the Hartree-Fock approximation, H; is
bosonized into the following:

Hy = ZZ[dZV wly.(V
X (pa,+,jpa+,m + pu,—,jpa,—,m)
+Y > / dz/2mly (Vi —

a jm

X (Ioa+ jPa—,m +pu —jpa+m)

(l)a (1),a
Jj— mO_VOJ m)

V(l)a

72(](17,1:10,1)2)
0,j—m

a — 2 a
2% / dz/3tly (VO e 2raloc _ y Dt )
a jm
X Na,+,jNa,—,jNa,—.mNa,+,m 008{2[¢a,j(2) - d’a,m(z)]}s
T (B3)

where p, + j(z) stands for an electron density in the right (+)
or left (—) branch in the ath pocket (a = 1, 2, 3, 4) of the jth

chain(j=1,2,...,2ﬂ%):

1
Pact (@) = Vg s Vo) = =5~ (Beuj F 0:60).

The third term in Eq. (B3) represents a rigidity between two
displacement fields in different chains in the same pocket.
When the corresponding interchain interaction is negative
definite, this could result in charge density wave orders with
broken translational symmetry along the field direction. An
interplay between this interchain rigidity term and one of the
umklapp term is discussed for the two-pocket model case (see
Sec. V).

The first two terms in Eq. (B3) lead to the renormalizations
of the Luttinger parameters and Fermi velocities. To quantify
them, we employ a gradient expansion with respect to the
chain index,

Pa,t,m = Pa,r,j + (ym - yj)ayjpu,rﬁj
+3Gm =)0 pacj+--,  (BA)

to keep only the leading order. This leads to

H; = ZZf {ng;)‘i““(azm,»z

—82a + 84 2
————(0,0,; cee, B5
+ 2n 2 (0;04,;) } + (BS)

with

82.a = 2+ 2]'[1()“7‘ Z (Vrfll())a Vo(lnz” —2(kr.alo.2)* )

m

28 a a - :
:\/;ﬁ/dx[f(l)’ (X,O)—f(l)’ (0, x)e 2(kF.alo.z) ]’

v B6
840 =2V2mlo Y (Vo' = Vo) (B6)

- \/g z% / dx[fP(x,0) = fP40, 01 (B

When combined with the bare kinetic energy part,

Hin = 3 / {060V + (0.60,7),  (BS)
a,j

Eq. (BS) gives Eq. (19) with Egs. (20) and (21).

APPENDIX C: DERIVATION OF RENORMALIZATION
GROUP EQUATIONS

In the main text, we employ one-loop RG equations,
Egs. (35)—(37), and clarify possible insulating phases as well
as the nature of 7 = 0 metal-insulator and insulator-metal
transition points in graphite under high field. We solve the
RG equations numerically to obtain a finite-temperature phase
diagram as in Fig. 1. The RG equations are derived pertur-
batively by use of the standard momentum-shell renormal-
ization method [43]. In the following, we briefly summarize
how to derive the one-loop RG equations for H, > and H,»,
Eqgs. (35)-(37).

We begin with a partition function of the effective field
theory:

7 = Z / DpDP e~ 50l9-01=5118.01 (C1)
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An action S comprises a Gaussian part Sy and non-Gaussian
part S:

S() /dr/dz

+ g Ko[0:04, () + [3 Ga,j(r)] }

{ 218 Ga ](r)a ¢a /(r)

(C2)

B
5 = f dTHys + Hys + ). (©3)
0
Here a is the pocket index (a =1,2,3,4). The summa-
tion over Ising variables o.. represent traces over the two-
dimensional spaces subtended by two Klein factors associated
with the bosonization. With r = (z,t), ¢ = (k;, iw,), and
Matsubara frequency w, = 2nm /B, the Fourier transforms of
¢j.a(z, 7)and 6, ,(z, T) are given by

¢]u( )— _Z Z ek"—lw,,r a(q)~

z iw, lk;|<A

(C4)

A is a cutoff in momentum space. We decompose the field
operators into a slow mode and a fast mode in momentum
space,

$ja(r) = ¢;a(r> + 67, (),
¢j<,a(r) = lqr a(q)
iw, |k |<A’
B, (r) = Z > €4(q),
Cdw, AN <lk|<A

with A’ = Ab~'. b (> 1) denotes a scale change.
First integrate out the fast mode ¢~ and 6~ in the partition
function and rescale spatial and temporal length scales as

IBnew = ﬂoldbil- (CS)

This gives a partition function for the slow mode. The par-
tition function takes essentially the same form as Egs. (C2)
and (C3), while the interchain interactions in Eq. (C3) are
renormalized. The renormalization is calculated with respect
to an infinitesimally small scale change In b (< 1). This gives
the RG equations for the interactions as in Egs. (35)—(37).

We derive the partition function for the slow mode per-
turbatively in the non-Gaussian part S;. We do so up to the
second order in S;:

-1 -1
Znew = Zoldb P Thew — roldb P

7 = ZO> f rD¢<rD9<e*Sn<g7<SU)> + O(S?)’ (C6)

where

—(S1)2) (C7)

(Su)> = (S1)> = 3((ST).

and

1 _s»
— | Dp"DO” - ™%,

<>> Z

<
0 =

2,6L

a,j iy k<A

S—mrLy ¥ -

“oa,j iw, N<lk|<A

with ZZ = (1)-. “--” on the right-hand sides of S;/” is a
Fourier transform of the integrand in Eq. (C2). The first term
in Eq. (C7) gives a tree-level renormalization to the interchain
interactions, while the second term gives a one-loop level
renormalization.

1. Tree-level renormalization

(S1)> in Eq. (C7) gives the tree-level renormalization to the
interchain interactions:

([ i) =3 [er X5

j,m e=tn==%

Mj(z)majnrn ieM},* (r)e—%( )

/fzzzwmj

Jj#me=xn==%

. (C8)

)

ieH (1) = L (H] ().

X o,le

—2 1
LAY, e L0 (o)

where
M], (r)= 07 ,(r)+ Q)% (),
H) (r)= 07(r)— 07, (r),
H,\,(r)= 0,(r) — Q)4,(r),
and
af =03, 0; =03, r;' =041, Tj =073

As the leading order in the infinitesimally small Inb, we
obtain

. 1 1 Bug A
(M7 (r)?). = Z §<Ka + K_a> coth 5 Inb,

a=1,2,3,4
oA
(K + —> coth ﬂuz Inb,

(H (), =2 Z

a=2,3
oA
(H ). =2>" = (K +—)coth’6”2 Inb.
a=1,4

This leads to the tree-level RG equation as

am® T 1 A
S _ 12— Z K,+ — coth a2 M(-z,)m,
dinb a=1,2,3,4 Ka 2T '
dH® [ 1 1 ug A
Jzm _ o _ 2 K, +— th -2~ H(z) s
iy 5 a§3< + K. co T j—m
(2) r
dH 1 1 UgA | =)
Jinb 2u_21:4( “+Ka) ZT} ]_m

2. One-loop level renormalization

(82). . = (S}~ — (S1)2 in Eq. (C7) gives the one-loop
level renormalization to the interchain interactions. The one-
loop renormalization comprises products between different
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interactions:
Si=Su+Su+Sg+---,
St =Sy + Sy + S2+28uSk +28uSg + 2SSy + -+

(C10)
where Sy, Sy, and Sz are defined as follows:
=3 [ ST T e
Jj#m e=E n==%
x e'€lin (1) giel}, (), (C11)

with I = M, H, H. The products of two interaction terms
take forms of

($187)>.c = /d2 /d2 SN 1202,
i#j m#n €€ n,n

X (- )zn( ) (-- )r] (-- ) ( 15[’7(r) i€ Jm,l(r )>

>c’

(C12)

where (AB). .= (AB). — (A).(B)~. When i # m,n and
j #m,n in Eq. (C12), the right-hand side vanishes identi-
cally. The terms with i =m and j = n or those with i =n
and j = m are negligibly smaller than the others in the larger
L, limit. We thus consider only those terms in Eq. (C12) with
i =m,n and j # m, n and/or those terms with i # m, n and
j=m,n.

The one-loop renormalization in Eq. (C12) generates Sy,
Sw, and Sz as well as other types of cosine terms. Nonethe-
less, tree-level scaling dimensions of all the other cosine terms
thus generated are negatively much larger than those of Sy,
S#, and Sz. Namely, they are much more irrelevant than Sy,
Sw, and S7; at the tree-level renormalization group flow. Thus,
we only keep those terms in Eq. (C12) that generate Sy,
Sy, and Sg. S2, withe = —€¢’, n = ', and i =m (or j = n)
generates Sz (or Sy), respectively. S%I (Szﬁ) with € = —¢/,
n=mn'andi =mor j=norwithe =¢,n=n',andi =n
or j = m generates Sy (Sg), respectively. Sy Sy (Sy Sz) with
e=¢,n=n,and i =n (j =n) or with e = —¢/, n =17/,
and i = m (j = m) generates Sy. Sy Sy does not generate
any of Sy, Sy, or Sz. In the following, we only demonstrate
how S2, generates Sz

Withe = —€’,n = n/,andi = m, Eq. (C12) with I = J =
M reduces to

j#Fn

b [ S e,

j.noi=m €71

% eie(Mﬁf(r)—M;;<(r’))<eieM;}'> (r)efieMi'if (r’))
>.c

Jj#n

e [ S S S e,

Jj.n o i=m €n

x cos [MJ=(r)—ML= () |(M]E™ (ML~ ().,
(C13)

where

cos [M;=(r) — M}~ (r")]

m

=cos [0, (1) — Q)4 =] cos [0~ (r) — 07 ()]
= sin[0,57(r) = 0,57
x sin[Q7=(r) — 07 ()], (C14)

The largest part of the contribution comes from r = r’. In
this case, the second term in Eq. (C14) vanishes (see the next
subsection for a justification of this approximation). For the
first term with j # n, we replace cos[Q23 “(r) — Qf]?f(r’)]
by its normal ordering with use of a formula cos® =:cos P :
exp[—(®?)/2] [43,70]. Within the normal order, we employ a
Taylor expansion with respect to small r' — r. At the leading
order expansion, Eq. (C14) becomes

cos [M[;=(r) — M{,=(r")] = cos [ Q= (r) — Q)= (r)]

23,< 23,<

—HIOP (-0 (P <
(C15)
Thereby, we have
Jj#n
(SH). e /derZr 7/ cos [ ]n ()]
jono €n
@) 270
x Ca3 ZMHMH Inb, (C16)
where
Coglnb = l/d,/e—%<[Q§,”,r<<r>—Q;f1;<<r’>12><
: 2
x (%= (rQh ()., (C17)

with ¢,d =1, 2, 3, 4. Note that the integrand in Eq. (C17)
is short-ranged in r — r’ and C,, is a positive-definite real-
valued quantity (see the next subsection). Equation (C16) in
combination with Egs. (C7) and (C10) dictates that ﬁ;z_)n
acquires the following one-loop renormalization,

72

dH -, _C

dh-ib -2 2 M2 M2 + (C18)
Since Mi(z) M;z)l, this is nothing but the first term of

the one—loop renormalization in Eq. (37). Similarly, one can
show all the other terms of the one-loop renormalizations in
Egs. (35)—(37). A factor 4 in the second term of the one-loop
renormalization in Eq. (37) is due to the four distinct contribu-
tions to Sz from S%: De=—€,n=7n",i=m;@{) e =—¢,
n=n,j=nGi)e=¢,n=n,i=n@{v)e=¢€,n=10,
j =m in Eq. (C12). Likewise, 28y Sy (2Su Sz) has two
distinct contributions to Sy, giving rise to the first (second)
term of the one-loop renormalization in Eq. (35): (i) € = €/,
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n=n,i=n(j=n)@()e=—€,n=n,i=m(( =m)in 3. Evaluation of C,4

Eq. (C12). This completes the derivation of Egs. (35)—(37). C,p is defined in Eq. (C17). Let us first calculate the
integrand in Eq. (C17):

|

Z Zelll(r r) ab >(q) Q;l]bl>(q)) ([Qab <(r)_ Qiz]’bi,<(r/)]2)<

(%= ah). =

(BT 2
('BL ) AN <|k;|<A iw,
m 7D D2 =0T @) 00 @)
lk.|<A iwy
where
(007 =@) 037" @). . = DAL @i @)=/« + (07900 (@)~ <
c=a,b
+n(=1)UD;(@)0c.i(q))>/< + (07 ;(q)e.i (q))><1}, (C19)
with (—1)* = 1 and (—1)? = —1. We used the Fourier transform in Eq. (C4). The Gaussian integrals over the fast/slow modes
lead to
BL.tu.K, BL.mu.K_ BL itw,

(@2 (@bei(@)s)< = —

s or, 90[ >/< =
2K+ (6::(q)0c,i(q))>,

< £ *' 9(‘[ >/< = T T a4 . A\
prrean % L@@ =

Accordingly, we have

1
(=0t ). = 3 Y (Ke+ K )M(r =1y + Y n(=1YF} (r = 1),

c=a,b c=a,b
ab, < ap, < / 1 — / C /
([02=r) — Qb="]). = 3 :Zb (Ke+ K)Fror —r') + :an(—l) Fro(r — 1), (C20)

with

1 u.e'ar
M. (r)= / dk.— Y ——— =cos(Az)e “ Tl np,
ki<a B Za)5+”3kz2,

iwy,

1 iw eiqr
F/ r)= —/ dk — L S = —isen(t Sln AZ e_u‘A‘Tllnb,
2.6(r) k<A ‘B % k. wﬁ—i—ugkf gn(t)sin(Az)

_ l 2[1 —cos(gr)lu. 2 N/ 2
Fio(r)= /|kz|<A' dkzﬁ iz—wngugkg =In[(x* +y2) /o],

n

Ran=[ gy 2 diArgly. + ix] = 206.(r)
(r)= = ————— =2iArg[y. +ix] = 2i6.(r),
> k. |<A' Qﬂ o kz 0),21+M%k12 gLy ¢

and y, = u.t + asgn(r). On the right-hand side, M.(r), Fz’,c(")’ Fy.(r), and F,.(r) are evaluated at zero temperature.
Substituting these into Eq. (C17), we obtain C,, at T = 0 as

Aa a2 Ap
Cup.T7=0 = dt dz
PT=0 Z/ / <z +ya) <z2+y§)

c=a,b

x e ATl {Ac cos(Az) cos[ Ay, (r)] + g<—1>c sin(Az)sgn(t) sin[Aab(r)]}

%) Ol2 Aq Ol2 Ap
Z [ dre” uéAlTl[de<z2+y2) (Z2+y§> cos(Az), (C21)

c=a,b

12

(

with yCZ = (uclt| + a)?, Ay = %(Ka + Kafl), and A (r) = ranged in r, justifying a posteriori the approximations
6,(r) — 0p(r). The integrand on the first line is short- ~ made in Egs. (C14) and (Cl15). Based on the same spirit,

205121-22



THEORY OF METAL-INSULATOR TRANSITIONS IN ...

PHYSICAL REVIEW B 98, 205121 (2018)

we approximate A,,(r) by zero, to obtain the second
line.

C,p 1s positive definite. One can show this by carrying out
the z-integral formally,

Canr=o= ) * / dtG(r)e M, (C22)
c=a,b
and
G(r)s/ dE F,(£:7)Fy(A — &:7)dE, (C23)
[ee) " Ol2 Aa
Fa(S;f)E/_mdze (—22+y3> )
_ o (18] VT Ky (yallED
=2/ (2|ya|> ro Y

with the Bessel function K,(x) and the Gamma function
I'(x). Since A, > 1/2, F,(&, 1) is positive definite and so is
G (7). With Eq. (C22), this assures the positive definiteness of
Cap,7=0-

Cab.7=0 in Eq. (C21) depends on the Luttinger parameters
K, and K. Nonetheless, the dependence is much weaker than
that of A, in Eq. (38). One can see this by evaluating an upper
bound of Cyp 79,

AaFAp
Cap,r=0 < Z /dz(z Tt ) /dte_““["”

c=a,b
ahe T()T (g + 2 — 1)
Ag F(k +2p)

Cy.

c=a,b

A¢ denotes a finite high-energy cutoff in the energy scale,
Ag = A X max.—q »(u.). When the Luttinger parameters get
much smaller/larger than 1, A, 4+ A, — 400, the upper
bounds of Cyp, r—¢ as well as |A,p r—o| diverge:

Cy — A_F< )()» +Ap)7, [Aap,7=0] = 2(Ag + Ap).
(C25)

Meanwhile, Cyp 7—0/|Aap.7=0| goes to the zero in the limit
of A, + Ap — +o00. For simplicity, we assume that Cyp 7-0
does not depend on the magnetic field H in the main text.
A typical value of C,p 7= is evaluated in a simple case with
K,=Ky,=1and u, = u, = u:

Cab,T:O,K,,y,,:l,u,,,bzu

aZ
:/dfe_”Altlfdz—eiAz
22+ (u|t| + «)?

—2Ax Aa 2(){2
M B 2AQ). (C26)
u

202 [*® e
= e Aa— X =

u Jo X+ o

E(x) is the exponential integral. « is a lattice constant along
the z direction while A is a high-energy cutoff in momentum
space: Aa = O(1).

4. Parameters used in Fig. 1

To obtain the theoretical phase diagram at finite temper-
ature as in Fig. 1, we solved numerically the RG equations
Eqgs. (42)-(44) for H < Hj and Egs. (67)—(69) for Hy < H <
H,. Thereby, a set of parameters in the RG equations is chosen
in the following way.

C,» has an engineering dimension of (length)/(energy).
From Eq. (C26), we set

Cup = 2_05’
Ag
for any a,b=1,2,3,4. o is the lattice constant of the
graphite along the c axis, @ = ¢y = 6.7 A. A¢ is a high-energy
cutoff in the energy scale. We set this to be the bandwidth of
the four pockets, Ag = 40 meV.

According to EqS. (39)—(41), m), ]’l(z), E(z), nwy, P2, and
P2 have the same engineering dimension as § = g/ a?, where
g represents an interaction strength as in Eq. (7). For initial
values of m(y), ..., P in the RG flow, we set

(mey, hoy hey) = § (3, —1.25, —1.25),
(M Py Piay) = & (—1.1, —1.25,—1.25).  (C28)

A value of g is set in the following way. We consider that the
interaction is from the Coulomb interaction and therefore its
typical interaction energy scale is given by

62

el’
The magnetic length [ depends on the magnetic field and the
relative permittivity € is set to 13 for graphite. We regard that
the Coulomb interaction ranges over the magnetic length in
the xy plane, and ranges over the Thomas-Fermi screening
length along the z direction Apr. We thus compare Ej, with
g/ () 1g) [see Eq. (7)]. This leads to

g e I?

g=2 =
& a2 el

(C27)

Ein = (C29)

(C30)

The screening length along the ¢ axis is set to Atp = ¢o/ V6.

Agp in the RG equations is given by Eq. (38). u A in
Eq. 38) (¢ =1, 2,3,4) is set to the high-energy cutoff in
the energy scale, Ag = 40 meV. For the Luttinger parameters
K, in Eq. (38), we use Eq. (21). The intrapocket forward
scattering strengths in Eq. (21) are set as

84,a=1 = 84,a=4 = g,
8ract = 8r.aes = §/1.6,

84,a=2 = 84a=3 = &,
82.a=2 = &2.4=3 = §/1.1,
where g is given in Eq. (C30). The bare Fermi velocity in
Eq. (21) vp, is a k; derivative of the energy dispersion of the
four pockets given in Eq. (2):
8En,tf (kZ)

Ok:  mtp,

with a = (n,0); 1=(0,1), 2=(0,{), 3=(-1,1), and
4 = (-1, ). We set 2y, = 40 meV, and

Vpgq = = —2ycosin(27§, ) (C31)

b 1 H b 1 H
%"= 4 2001 ™ T 4 480T

(C32)
e L, H . 1
=3 o ST 1T 00T

Equation (C32) reahzes Hy =50 T and H1 =120T.
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APPENDIX D: CALCULATION OF OPTICAL
CONDUCTIVITY o, ()

In the main text, we describe how the longitudinal optical
conductivity along the field direction behaves in the SNEI
phases as well as the metal-insulator transition points at H =
H. ) and H = H,,. According to the linear response theory,
the conductivity is given by a retarded correlation function
between an electron polarization operator P. and current
operator J.. In the bosonization language, the former is a sum
of the displacement fields over the pocket index (@) and the
chain index (j),

N e
P=—— szdwa,j(z). (D1)
J a
The latter is a sum of the current density fields,
(D2)

jz = EZZuaKa/dzazea,j(Z)
j a

The correlation function is calculated with respect to the
mean-field action for the SNEI phases. For the mean-field
action, we employ a Gaussian approximation for H,, and

H; ,, to replace their cosine terms by proper quadratic terms,

Hoa = Yo M2, [ dz (@ + 62+ Grn -+ ban)
j.m

+ (02, — 03, + 01w — Oam)?),
J

1
H@Zg}iwifﬁu@m+@J+mm+@mz
Jom

+ (02, — 03, — Orm + 03.m)%).

This in combination with Hj in Eq. (19) gives a Gaussian
(“mean-field”) action that takes the form of

1 L bk
Swuzzﬁ;vé;@% f&HMud<@), (D3)

with K = (k;, k, iw,). The Fourier transform is taken with
respect to the spatial coordinate z, imaginary time t, and the
chain index j (y; = 271?j/L,):

E :ezkzzﬂky,vfzw,lr(pa’K.

K

¢a,j(za T) =

BLN (D4)

In the following, we briefly summarize how to calculate
the retarded correlation function with respect to Sy in the
SNEI-I phase with/without disorder.

For the model with two electron pockets and two hole
pockets, the Gaussian action is described by an 8 x 8 matrix,

By

Dk |
A 4 x 4 matrix Ak is for the displacement fields of the four
pockets ¢, (a =1,2,3,4), and 4 x 4 matrix Dg is for the

superconducting phase fields of the four pockets 6, (a =
1,2, 3, 4). They are given by

Ak

Cy (D5)

(Mo k] = |:

n"1'<] kf +2M(0) 2M(0) 2M*(k) 2M*(k)
A 2M(0) N”Ia kz2 +2M(0) 2M*(k) 2M* (k) D6
= 2M (k) 2M (k) 22 k2 +2M(0) 2M(0) ’ (Do)
2M (k) 2M (k) 2M(0) n“—,g}kz +2M(0)
u K * *
T‘kzz +2M(0) —2M(0) 2M* (k) —2M*(k)
—2M(0) uskap2 4 2M(0) —2M*(k) 2M*(k)
Dg = T (D7)
2M (k) —2M (k) ’”TKZkZZ +2M(0) —2M(0)
—2M (k) 2M (k) —2M(0) ”;ikz +2M(0)
where M(k) = > ; M;z)eikyf_ The other 4 x 4 matrices B and C g connect the four ¢ fields and the four 6 fields,
ik,
Bk =Cx = =140, (D8)
14,4 stands for the 4 x 4 unit matrix.
For later convenience, we introduce a new basis with respect to the pocket index:
D, 1 1 1 1 b1
- ) 1{1 1 -1 -1 -
d=| ' |== 2l =14,
Dy 211 —1 1 1|
Dy 1 -1 -1 1 P3
O =Té. (DY)
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On the right-hand side, we omitted the subscript K for the ¢,
6, @, and O fields. With the new basis, the Gaussian action is
given by

1 U Pk
Swr = t IOIM k1| =
F zﬂLzN;(ch O ,K]<®)

K

and

(D10)

TAxT B
[MC,K]E[ K K}

Ck TDgT)|

We consider that the total displacement field & couples with
a disorder potential through

iy =3 / dze; ()P (2).
J

Physically, such disorder potential €;(z) is nothing but a local
fluctuation of the dielectric constant. We take a quenched
average over the local fluctuation as

(D11)

__ [de e D450
de (2)e” g‘ Y, Jdzei (@)

gy stands for the disorder strength associated with spatially
(but not temporally) fluctuating dielectric constant.

We first calculate an imaginary-time time-ordered correla-
tion function between P, and J., and then take an analytic
continuation, iw, — w + in. This gives the retarded correla-
tion function. The real part of the retarded correlation function
is nothing but the optical conductivity o,,(w):

(D12)

Oz ((,()) = Re{azz (iwn )|iwn =w+in}’

(D13)

U,Z(la),,)— -ir Q‘,(la),,)TeJr,

with ;. = (1, 1, 1, )" U™" and Q¢ (iw,) [Q,(iw,) is the
quenched average of ng(i w,)] as well as T are 4 X 4 matri-
ces,

u Ky

M4K4

U= (D14)

ur Ky
u3 K3

Q:_(iw,) is a Fourier transform of the imaginary-time time-
ordered correlation function between four & fields and four ®
fields,

B
0° (i) = / dr Q°.(v) e,

o fef s,

fdcbd@e MY By (2, T)Ppm(z, 0)
[ d®dBe S

[05.(D],

(RS, (7. 210,2D)],
(D15)

with o, 8=+, 1,11l and the chain
. 8/@ni?).

index j,m =

With the use of a Born approximation [25], we can take the
quenched average of Q7 (iw,),

Yy 2¢? ” —ik.Z"—ikyn ;
0% (—iwn) =m;fdzze FT k)

X{14><4— 1]¢,®»

(D16)

[M ko PG00} [M

where [M;}(]q)@, [M;}(]q;@, and [P (iw,)] are 4 x 4 matri-
ces. [M;}(]q,q, and [M;}(]q,@ are 4 x 4 blocks of an inverse
of the 8 x 8 matrix [M. k] that connects ® and & and that
connects ¢ and O, respectively:

=T(A-BD'O)'T,

M. k]oo (D17)

M kloo=T(A—-BD'C)"'BD™'T.  (DI8)

4 x 4 matrices A, B, C, D, and T on the right-hand sides are
given by Egs. (D6)-(D9). [P(iw,)] is a4 x 4 diagonal matrix
that represents the effect of the disorder,

gym(iwy,)
0

[Pliw,)] = 0 (D19)

0
m(iwy) is the sum of the (¥, &) component of the inverse

of the 8 x 8 matrix [M, k] over k = (k,, k):

2 —1

m(iwy) = —L ¥ (M xlo, o, (D20)

Note that m(iw, ) is an even function of w, (see below).
One may rewrite Eq. (D16) into

0%.(— zwn)T

dzl/ —ik:z”—ikym(_wn)T

2 —1
x [Z—Z(DA — DTPT) + wﬁ14x4} T
Z

2 2

~1
=27 | T(DA-DTPT) + L | T
w22 k2 " k=0

(D21)

From the first to the second line, we took the sum over the
chain index m and the integral over z”:

1 o
1 d7" e ik —ikym — _— 52
v / ) 2t HE

Substituting Eq. (D21) into Eq. (D13), we obtain the
imaginary-time optical conductivity as

(D22)

-1

[ ezwn o
o(io) = —5 I|:k2 (DA—DTPT) +o 14X4]|H
xU 'e,. (D23)
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The k = 0 limit in the integrand is well defined. To see this, use Taylor expansions of A and D in small k:

Ag =2M(0)Ag + k2A; + O(k),

Dk =2M(0)Dy + k2D + O(k),

with
1 1 1 1 1 -1 1 -1
N 1 1 1 1 Do — -1 1 -1 1
L 16 U RS TS O A (NS NS R (R )
1 1 1 1 —1 1 -1 1
and
;([—ll ulK]
1 A 1 K
A =— Ky . . D =-— Uslyq
T A T u K,
z u3 K
Since DoT P = 0 and DyA( = 0, the integrand in the k = 0 limit takes a finite value:
1 gymiwy) |,
khmo%m%)_(DKAK — DgTPT)=2M(0)(DyA, + D1Ayg) — DITPT =2M(0)DyA, —+— 2M(0) — 1 U ' A.
From the second to the last line, we used T PT = WAO andwD, =U"".
The imaginary-time optical conductivity is further calculated from Eq. (D23) as
2 . —1
o Gon) = < 2“;’2’ é7 [anM(O)DoAl +7r<2M(O) M)UW +wﬁl4x4} vz,
Con st (am©) — 2O\ g1z 5T o] Uz, = 4K @
= e w ey, = )
71’212 €y 4 ere n14x4 + 212 w2 + JTuK[zM(O) g\m(lwn)]
(D24)
[
withuK =3, , 3 4UsK,. From the first to the second line, ~ where
we used AgDy = _0’ elDy= OiTan(LéO = é,e!. From the R X X,
second to the last line, we used e U™ ey = uK. In the clean g(w) = —o"+w, — == + ,
limit (g, = 0), this gives 0,.(w) = (*uK)/2n*)8(w — wy) 4 2 \/a)% — w? \/w% — w?
with w, = 27uK )", M;z) after the analytic continuation. and
The effect of the disorder average is included in m (i w, ). To )
see this effect in o, (w), let us take u; = uq, K| = Ky, up = 41(@) = o + o — & T ukK K
us, and K, = K3 for simplicity. With the use of M (k) = 0 for : o & 4 2 w2 — a)2’
k > 1/1[25], we obtain the following expression for m (i w, ), 2
by(@) = gy 2uK K,
4 2 6()2 _ w%
miie,) = LD g
\/a)z + w? \/wz + w?
a(w) = -+ a);,
with @? =47 MO)u1K; < 4n M(0)u K, = w3. After the by(w) = &7 "uk Ki + K>
analytic continuation, we finally obtain the optical conductiv- 4 2 \/ ? — o} \/ ? — }

ity as follows,

uK |,

0 ‘g/(w*)@(a) —wy), O0<w<ow,
2uK wby (W)

O'ZZ(O()) = %m, w <ow<w, (D26)
e*uk wbs (w)

TP ) hi@)’ W) <w <w,

Note that w = w,(< w,) in Eq. (D26) is one and only one
solution of g(w) = 0 within 0 < w < w;. The renormalized
gap w, becomes progressively smaller, when the disorder
strength increases. There exists a critical value of the disorder,

1 8w? 20102

(D27)
n2ukK Kiwy + K2w1

8y, =

205121-26



THEORY OF METAL-INSULATOR TRANSITIONS IN ... PHYSICAL REVIEW B 98, 205121 (2018)

When g, approaches the critical value, the renormalized gap (gy < gy,c) to a disorder-driven phase (g, > g, .). To obtain

w, reduces to zero continuously. At g, = g, ., the system Fig. 5, we use the same parameter sets as in Appendix C4. We

undergoes a quantum phase transition from the SNEI-I phase set u; = u4 and uy = uz by Eq. (20). We set g, to be smaller
than g, ..

J
APPENDIX E: MAGNETISM AND SPIN NEMATICITY IN SNEI PHASES

SNEI phases introduced in the main text are characterized by particle-hole pairings between n = 0 LL with 4 (]) spin and
n = —1 LL with | (1) spins. The phases break the U(1) spin rotational symmetry around the field direction. Nonetheless, neither
the A-carbon-site r-orbital electron spin nor the B-carbon-site electron spins exhibit magnetic order in the SNEI phases:

(Sa+(r) = (Yl Ay, (r, A) =0,
(Sp.4+(r) = (Yl(r. By, (r. B)

—Z[Y1,<y>Yo,<y>]Z[meB pe ket ey Ty )

=%

+ nz,Tyg,w-"(“l*"ﬁ“z<w;,, W2 )1 =0, (E1)

because

lim —ZY1,(y)Yo,(y) o lz/delj(y)Yo,(y)—O

Ly—oo L,

Magnetism of the SNEI-I phase is most exphcltly manifested by the long-range order of the symmetric part of the 2nd-rank
spin tensor composed of the spin-% moment of the A-carbon-site 7 -orbital electron and that of the B-carbon site. Such 2nd-rank
spin tensor has two components,

018 (r) = (Sa+(1)Sp.—(r), QY5 (r) = (Sa1(r)Sp1(r)).
In the SNEI-I phase, Qﬁlj (r) vanishes identically, while Qﬁﬁ (r) exhibits both a ferro-type and a density-wave-type order:

1 )
048 (r) = (Yl(r, Ay, (r, AWl (r. BYY,(r, B)) = ZYO,( ) L—[Z Yo%m(y)}{yz,¢yA,¢nB,¢n;,Te‘2’®

—2i0_ AKz —i2d_—-2i0_ —iAKz i2¢_—-2i0_
+ VA vauns g e +VX,TVA,MB,U7}§,¢€’ ‘e T yaavans g e 0T 10-y,

with AK = kpy + kr3 — kp,1 — kp4. Here we used Eqgs. (45)—(47) and
<1/fir,+yj(z)w4,7,m(z)> — ajmio,zl,mei(‘bl+¢4)+i(04—01), (WIT,—,‘]' (Z)¢4,+,m(z)> — (Sjml'o—41me—i(¢l+¢4)+i((94—91)’

(V2,4 @V _ (@) = 8jmin, , e " @HITO -y @] (2)) = 8jmicny e PTOTIO),

The spatial inversion symmetry generally allows

VArVALNB AN = U. (E2)
This gives
—2i0_
0% (r) = PR ———[u+ucos(AKz —2d_)]. (E3)

Note also that the SNEI phases could be accompanied by a long-range ordering of small magnetic moments within the xy
plane. Nonetheless, the moment does exist only in those spatial regions in the unit cell where two 7 orbitals of the A-carbon site
and B-carbon site overlap. This statement is suggested by Eq. (E1) and finite expectation values of the following two quantities
in the SNEI phases:

2iv
(Wl Ay (r. B) = ‘nfl e cos[(kp.1+kp4)z+®_],
A 21 .
(Y| (r, A)yy(r, B)) = */;l’zw ¢'® cos[(kratkr3)z—P_],

with

v=yianeo;) #0, w=yy npqloys;) #0.
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