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We present an approach for carrying out nonadiabatic molecular dynamics simulations of systems in which
nonadiabatic transitions arise from the coupling between the classical atomic motions and a quasicontinuum of
electronic quantum states. Such conditions occur in many research areas, including chemistry at metal surfaces,
radiation damage of materials, and warm-dense-matter physics. The classical atomic motions are governed by
stochastic Langevin-like equations, while the quantum electron dynamics is described by a master equation for
the populations of the electronic states. These working equations are obtained from a first-principles derivation.
Remarkably, unlike the widely used Ehrenfest and surface-hopping methods, the approach naturally satisfies
the principle of detailed balance at equilibrium and therefore can describe the evolution to thermal equilibrium
from an arbitrary initial state. A practical algorithm is cast in the form of the widely used fewest-switches
surface-hopping algorithm but with switching probabilities that are not specified ad hoc like in the standard
algorithm but are instead derived.
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I. INTRODUCTION

Mixed quantum-classical dynamics methods are exten-
sively used for simulating systems in many areas of the
physical and chemical sciences [1]. These methods give a
classical treatment to atomic motions while retaining a de-
tailed quantum-mechanical description of electrons. This con-
siderably reduces the formidable computational cost entailed
by a complete quantum-mechanical description. The develop-
ment of mixed quantum-classical dynamics methods beyond
the Born-Oppenheimer approximation, by which electrons
follow adiabatically the classical atomic motions, has been a
topic of continuous research interest for several decades [2].
In general, atomic motions can induce transitions between
electronic states, which, in turn, can alter the forces acting
on the classical particles. Such nonadiabatic effects are ubiq-
uitous and diverse [2], and the self-consistent incorporation
of feedback between the quantum and classical degrees of
freedom is highly nontrivial [3,4]. A well-known difficulty
is to ensure that the principle of detailed balance, according
to which transitions between any two states take place with
equal frequency in either direction at equilibrium, is satisfied
[2,5]. Failure to satisfy detailed balance introduces a bias
and systematically skews the dynamics away from thermal
equilibrium.

In this paper, we present an approach for carrying out nona-
diabatic quantum-classical molecular dynamics simulations
of systems in which nonadiabatic transitions arise from inter-
actions between the motion of the classical degrees of freedom
and a quasicontinuum of quantum states. Unlike the popu-
lar Ehrenfest method and Tully’s trajectory surface-hopping
method [5,6], this scheme naturally satisfies detailed balance.
The atomic motions are governed by stochastic Langevin-like
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equations, while the electron dynamics is described by a mas-
ter equation for the populations of the electronic states. The
scheme can thus properly describe the irreversible evolution
of an isolated system from an arbitrary initial state to a state
of thermal equilibrium. At equilibrium, the transition rates
between electronic states satisfy the detailed balance relations,
while the nonadiabatic forces acting on the ions satisfy the
fluctuation-dissipation relation.

There exists a large number of systems in which nona-
diabatic effects can arise as a consequence of the coupling
between the atomic motions and a quasicontinuum of elec-
tronic states [2]. The situation, which differs from the more
commonly discussed case of a handful of strongly coupled
energy levels, is in clear conflict with the Born-Oppenheimer
criterion that the states be widely separated in energy. Here
excitations of arbitrarily low energy are available to couple
with the classical motions. Such couplings are known to
significantly affect dynamical processes such as adsorption,
dissociation, and catalytic reaction at metal surfaces [7,8].
In solids, atomic diffusion of impurities in metals [9] and
the radiation damage processes induced by energetic particles
[10,11] involve important nonadiabatic couplings with host
electrons. In warm dense matter [12], not only is there a
quasicontinuous density of electronic states at the Fermi level,
but the volume of available, unoccupied states can be large
since electrons are partially degenerate. Nonadiabatic cou-
plings could potentially affect dynamical ionic properties even
at equilibrium; without doubt, nonadiabatic couplings must be
accounted for to calculate quantities of current experimental
interest, such as temperature equilibration rates [13,14]. The
list is not limited to bulk systems, as finite systems can also
display a dense manifold of electronic states [15] (see [2] for
an extensive list).

Our scheme results from a fairly long mathematical deriva-
tion. To ease the presentation, in Sec. II, we first outline
the scheme, enumerate its salient properties, and propose an
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algorithm. We then proceed in Sec. III with the complete
derivation. For readers who plan to skip the proofs given in
Sec. III, we remark that, unlike other derivations of mixed
quantum-classical schemes such as that of Ehrenfest, ours
does not treat from the outset the atomic positions and mo-
menta as classical parameters in the equations of electrons;
this is indeed known to be at the origin of the breakdown of
detailed balance [16,17]. Instead, it ensures that the canonical
commutation relations of atomic variables in these equations
are satisfied.

II. OUTLINE OF THE SCHEME

A. The scheme

Definitions and assumptions. Following standard notations,
let r designate the three-dimensional Cartesian positions of
electrons (mass m) and R denote the atomic positions (mass
M) [18]. Below, N denotes the total number of atoms, and
R = {Rα}α=1,...,3N denotes the set of all atomic positions. The
total Hamiltonian describing the system is

Ĥ (r, R) = − h̄2

2M
∇2

R + Ĥe(r, R), (1)

where Ĥe(r, R) is the electronic Hamiltonian for fixed atomic
position and ∇R = ∂/∂R. For simplicity of exposition, we
assume that there is no external time-dependent potential
acting on the system; we consider situations in which the
system is either in thermal equilibrium or initially excited
and then let to freely evolve and relax. We also assume
that m �M and that the atomic velocities are large enough
that the atomic de Broglie wavelengths are smaller than the
characteristic variation length scales of interactions; thus, the
atomic motions can be described by classical-like trajectories.
If at time t the atomic positions are R(t ), we define the basis
of adiabatic wave functions |i(R(t ))〉 as the eigenfunctions of
Ĥe(r, R(t )) [1], i.e.,

Ĥe(r, R(t ))|i(R(t ))〉 = εi (R(t ))|i(R(t ))〉. (2)

From now on, we often omit writing explicitly the dependence
on R(t ) of the adiabatic basis and related quantities in order
to avoid cluttering the mathematical expressions. We define
the nonadiabatic couplings dij = 〈i|∇R|j 〉 = −d∗

ji and fij =
〈i| − ∇RĤe(r, R(t ))|j 〉 = εij dij with εij = εi − εj [1].

As discussed above, we consider physical systems in which
the electronic energy states εi (R) form a continuum or a
manifold of infinitesimally separated electronic excitations.
A large number of electronic states implies the existence of
a short timescale τc (discussed below) arising from the rapid
fluctuations of coherences ρij (t ) = Tr[ρ̂(t )|i〉〈j |] with i �= j

(with ρ̂ being the total density operator of the system), which,
in turn, affect the atomic motions in the form of a rapidly
fluctuating force. In our scheme, coherences are not treated
explicitly; their influence is treated statistically and is respon-
sible for the stochastic nature of the classical atomic motions
discussed below. Instead, our approach describes the evolution
of the atomic positions R(t ) and of the electronic populations
Pi (t ) = Tr[ρ̂(t )|i〉〈i|] on a timescale coarse-grained over τc.

Working equations of the scheme. Each atomic position Rα

satisfies the stochastic equation

MR̈α (t ) = FBO
α (t ) − M

3N∑
β=1

γα,βṘβ (t ) + ξα (t ), (3)

with initial conditions Rα (0) and Ṙα (0) at initial time t = 0.
In these equations, dropping the time variable,

FBO
α = −

∑
i

Pif
α
ii (4)

is the adiabatic Born-Oppenheimer force defined with respect
to the adiabatic states (2) at time t , i.e., the average over all
states i of the forces −f α

ii weighted by the occupation number
Pi . The remaining two terms result from the nonadiabatic
couplings: a sum of friction forces −M

∑3N
β=1 γα,βṘβ (t ) with

friction coefficients

γα,β = − π

M

∑
i �=j

Pi − Pj

εij

f α
ij f

β

ji L(εij ,�ij ), (5)

which describes the systematic effect of nonadiabatic transi-
tions on the atomic motions and damps the velocities over
a characteristic time Tγ = 1/γ , and a δ-correlated Gaussian
random force ξα (t ) satisfying [19]

〈〈ξα (t )〉〉 = 0, 〈〈ξα (t )ξβ (t ′)〉〉 = Bα,βδ(t − t ′), (6)

with

Bα,β = π
∑
i �=j

(Pi + Pj )f α
ij f

β

jiL(εij ,�ij ), (7)

which describes the fluctuations of nonadiabatic forces around
their average values and varies over a short timescale of the
order of τc (see below). The Lorentzian

L(εij ,�ij ) = 1

π

h̄2�ij

(εij )2 + (h̄�ij )2
(8)

describes the energy conservation, corrected by the broaden-
ing of the transition due to the finite lifetime of the coherence
between states i and j [recall that L(ε,�) ∼ δ(ε/h̄) as � →
0]. The inverse lifetime �ij is found from the self-consistency
equation,

�in = 2h̄2

M|din · V |2
∑
j �=j ′

|din · fj ′j |2�jj ′ Pj

(εjj ′ )2 + (h̄�jj ′ )2
, (9)

where V (t ) = Ṙ(t ) are the atomic velocities [20].
We thus recover that the effect of nonadiabatic couplings

is analogous to that of collisions undergone by a heavy
Brownian particle immersed in a fluid of light particles. In the
latter, the Brownian motion appears erratic over a timescale
τc of several successive collisions, while a much longer
timescale Tγ = 1/γ , or, equivalently, a significant number
of collisions, is required to move appreciably the Brownian
particle from its inertial motion. In our case, τc and Tγ can
be identified as follows. For simplicity of notation, consider
the case of a system at thermal equilibrium at temperature T

and one atomic degree of freedom. The friction coefficients
(5) are then given by the Green-Kubo formula (13) below
in terms of the time correlation functions of the adiabatic
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forces. In the presence of a quasicontinuum of state, it is
easily seen that these correlations decay very rapidly with
time: 〈δF̂ (t )δF̂ (0)〉 ≈ 〈δF̂ 2〉e−t/τc , where τc is the correlation
time of the nonadiabatic force; this implies Tγ = 1/γ =
M2v2

th/〈δF̂ 2〉τc, with the thermal velocity vth = √
kBT /M .

The time Tγ 
 τc characterizes the time necessary for the
cumulative effect of nonadiabatic electron-ion interactions to
damp the atomic velocities. The condition τc �Tγ on which

our treatment relies writes
√

〈δF̂ 2〉 τc/Mvth �1. It expresses
that the evolution due to nonadiabatic couplings has a very
weak effect during the correlation time τc, in analogy with the
weak effect of individual collisions on a classical Brownian
particle.

In the past, several mathematical derivations of Eqs.
(3)–(7) were published at different levels of mathematical
rigor [21–25]. These works, however, treated the electronic
subsystem as a reservoir; that is, they assumed that the elec-
tronic subsystem is not modified by its coupling with atoms
and remains in a steady state. The present work goes beyond
this limitation and, as described below, gives an explicit
treatment of the modifications of the state of electrons result-
ing from the nonadiabatic couplings between the electronic
and atomic degrees of freedom. In the equilibrium limit, the
present results are in perfect agreement with previous works.

Our approach describes the electronic dynamics in terms
of the evolution of populations of adiabatic states according
to the master equation

dPi

dt
=

∑
a

{WiaPa − WaiPi}. (10)

The first sum describes both the gain of state i due to nona-
diabatic transitions induced by the atomic motions from other
states a and the loss due to nonadiabatic transitions from i into
other states a. The corresponding transition rates are

Wia = 2π |dia · V |2 e
− εai d

2
ia

2M[dia ·V ]2 L(εia,�ia ). (11)

The term 2π |dia · V |2L is similar to the expression that one
would obtain with a Fermi’s golden rule calculation by treat-
ing the atomic subsystem as an external disturbance on the

electronic subsystem. The exponential term e
− εai d

2
ia

2M|dia ·V |2 results
from the careful treatment of the quantum commutation re-
lations of atomic variables in the equation of evolution of
electronic populations; when the atomic positions are treated
purely classically from the outset, as in the Ehrenfest method,
this term equals unity. As we shall discuss below, with this
term, the rates (11) satisfy the principle of detailed balance.

B. Salient properties

We now discuss the key properties of the scheme.
(i) Equilibrium limit, detailed balance, and

fluctuation-dissipation relation. Given a temperature
T , the classical and quantum Boltzmann distributions
feq (R,V ) = exp{− 1

kBT
[MV 2

2 + φB0(R)]}/Zcl and P
eq

i (R) =
e−εi (R))/kBT /Zq , with partition functions Zcl =∫∫

dRdVfeq (R,V ) and Zq = ∑
i e

−εi (R)/kBT and BO
potential φBO = −kBT lnZq , constitute an equilibrium
solution of the dynamics governed by Eqs. (3)–(10).

Indeed, Eqs. (5) and (7) with Pi = P
eq

i give the celebrated
fluctuation-dissipation relation

〈〈ξα (t )ξβ (t ′)〉〉 = 2MkBT γα,βδ(t − t ′), (12)

with

γα,β = 1

2MkBT
Re

∫ ∞

−∞
〈δFα (t )δFβ (0)〉dt, (13)

where δFα = Fα − F 0
α , with the electron-ion force Fα =

∂Ĥe(r, R)/∂Rα and its diagonal part F 0
α in the adiabatic

basis. Equation (3) reduces to the traditional Langevin
equation, which is known to yield the stationary distribu-
tion function feq (R,V ) [26]. This in turn implies ˜VαVβ ≡∫∫

dRdV VαVβfeq (R,V ) = kBT /Mδαβ , which, when used in
Eq. (11), yields

W̃iaP
eq

i = W̃aiP
eq
a ∀ i, a. (14)

Indeed, Eq. (11) implies

W̃ia = 2πkBT

M
diad

∗
iae

− εia
2kB T L(εia,�ia ). (15)

This is obtained using exp(x) ≈ 1 + x ≈ for |x| < 1 and the
small magnitude of the exponent in Eq. (11). Equation (14)
is nothing but the detailed balance conditions, which say that
the rates of the forward and backward nonadiabatic transitions
between any pair of adiabatic electronic states, weighted by
the probabilities of the initial and final states, are equal to
each other. With this relation, the right-hand side of the
master equations (10) vanishes, and the quantum Boltzmann
distribution P

eq

i is stationary.
(ii) Conservation properties. The Langevin equation im-

plies the conservation over time of the number of classical
particles and of the average momentum. Similarly, the master
equation implies the conservation of the normalization

∑
i Pi

over time. As proved in Sec. III E, the scheme conserves
the total energy E(t ) = M

2

∑3N
α=1 Vα (t )2 + ∑

i Pi (t )εi (t ) is
conserved in the sense d

dt
〈〈E(t )〉〉 = 0.

(iii) Relation to other schemes. The scheme reduces to
the Born-Oppenheimer approximation when all terms re-
lated to nonadiabatic couplings are dropped, which amounts
to setting γ, ξ , and {Wia} to zero in Eqs. (3) and (10).
When in our mathematical derivation the atomic degrees of
freedom are treated classically, as is the case, e.g., in the
Ehrenfest method, the transition rates (11) become W̃ia =
2π kBT

M
diad

∗
iaL(εia,�ia ) (i.e., the exponential term disap-

pears). In this case, Wia = Wai is satisfied, which violates
the expected detailed balance relations (14). Finally, we shall
see that our scheme can advantageously be cast in the form
of the widely used fewest-switches surface-hopping method
proposed by Tully [3], but with switching probabilities that
are not specified ad hoc and are instead derived.

C. An algorithm

Different algorithms can be envisioned to integrate the set
of coupled equations (3) and (10). Here we find it interesting
to introduce an algorithm that is closely related to the pop-
ular “fewest-switches” surface-hopping method of Tully [3].
Below we assume that we have a practical way of generating
all of the matrix elements dij . For convenience, we closely
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follow Tully’s original presentation (see steps 1 through 4 on
p. 1065 of [3]) and adapt it to our purpose. The algorithm
propagates an ensemble of trajectories (R(t ), V (t ), Pi (t )).
Each trajectory moves on a weighted average potential energy
surface, weighted by the occupation probabilities Pi , inter-
rupted only by the possibility of sudden stochastic switches
between electronic states. Practically, the dynamics proceeds
as follows:

(1) Initial conditions {Rα (0), Vα (0), Pi (0)} at time t = 0
are assigned consistent with the physical conditions to be
simulated (e.g., a thermal ensemble).

(2) The classical equation of motion MR̈α = FBO
α is inte-

grated over a small time interval δt .
(3) The population Pi of each state i is then updated

as follows. A uniform random number ξi, 0 < ξi < 1, is
selected to determine whether a switch to any state j will
be invoked. A switch between a state i and a state j occurs
if Wijδt < ξi < Wi,(j+1)δt . In the notations of Tully (see Eq.
(19) in [3]), the switching probabilities in accordance with
our scheme are gij = Wijδt , which differ from the original
ad hoc prescription. Note that the effective width of the “δ”
function L(εia,�ia ) in the expression for the rate in Eq. (11)
is calculated on the fly according to Eq. (54).

(4) If a switch between a state i and a state j has occurred,
an adjustment �V of atomic velocities V must be made as
follows in order to conserve energy:

MV 2

2
+ εi = M (V + �V i )2

2
+ εj . (16)

Taking the distribution of states into account, the veloc-
ity V must be adjusted to V + ∑

i Pi�Vi . As in [3], the
adjustment �V is made in the direction of the nonadiabatic
coupling dij (here we assume that we work with real-valued
eigenstates |i〉, as can always be done in the absence of mag-
netic fields). After the velocity adjustments have been made
(if needed), return to step 2. We observe that an advantage
of this algorithm is that it does not necessitate the direct
calculation of the coefficients γα,β and Bα,β and requires only
the calculation of the nonadiabatic couplings dij needed to
evaluate the switching probabilities Wia and the adjustments
�V i . We refer the reader to the extensive literature on the
calculation of nonadiabatic couplings dij ; for example, for
widely used independent particle formulations such as density
functional theory, see [27,28] and references therein.

That this algorithm achieves a numerical solution of
the scheme (3)–(10) can be seen as follows. Let K (t ) ≡
M

∑
i Pi (t )�V i (t )/δt denote the force change on the atoms

described in step 4. The force K (t ) is a stochastic quantity,
which results from the random switches between electronic
states governed by the random numbers ξi . Let 〈· · · 〉ξ denote
the average with respect to the uniform random numbers ξi

used in step 3. The energy conservation constraint (16) gives

�V i = − εij

Mdij · V

[
1 + εij

2M

dijdij

|dij · V |2
]
dij

+O((εij /MV 2)3).

With this expression, we find by straightforward alge-
bra that K (t ) has the following statistical properties: with

δKα = Kα − 〈Kα〉ξ ,

〈Kα (t )〉ξ = M

3N∑
β=1

γα,βVβ (t ), (17a)

〈δKα (t )〉ξ = 0, (17b)

〈δKα (t ) δKα (t ′)〉ξ = Bα,βδ(t − t ′). (17c)

These properties hold provided δt is small enough that
Wijδt �1, which is consistent with the primary motivation
of Tully’s fewest-switches method that the electronic popu-
lations change with the minimum number of hops [3]. The
relations (17) justify the proposed algorithm as the sudden
stochastic switches and associated velocity “kicks” reproduce,
on average over the trajectories, the effect of the friction and
random forces in the Langevin equation (3); indeed, 〈Kα (t )〉ξ
equals the friction force in Eq. (3), while δKα (t ) has the
same statistical properties as the stochastic force ξα (t ) given
in Eq. (6).

III. MATHEMATICAL DERIVATION AND PROOFS

A. Effective Hamiltonian

As remarked in the Introduction, in order for a mixed
quantum-classical scheme to satisfy the principle of detailed
balance, it is essential to ensure that the canonical com-
mutation relations of atomic variables be respected [16,17].
This is not the case in the Ehrenfest method, for the atomic
positions are treated classically in the equations of electrons.
Instead, our derivation treats the atomic variables quantum
mechanically before proceeding to the reductions leading to
equations of evolution of the averaged atomic positions (3)
and electronic populations (10). We assume that the total wave
function of the system can be written

�(r, R, t ) = φ(r, R, t ; R0(t )), (18)

where the slow variations are carried by the parametric func-
tion R0(t ) that is self-consistently set to equal the average
atomic trajectory

R0(t ) =
∫∫

R |�(r, R, t )|2drdR. (19)

The ansatz (18) recognizes that, as a consequence of the
large atom-to-electron mass ratio and of the quasicontinuum
of the density of electronic states, one can identify two
well-separated timescales in the system: the slow, adiabatic
timescale Tγ of the classical atomic motion described by
Eq. (19) and the fast timescale τc � Tγ that characterizes the
fluctuations of the interactions between electrons and atoms.
The ansatz (18) nevertheless retains the quantum character
of atomic variables R. However, in order to account for
the nearly classical character of ions, we assume that the
dependence on R of φ is strongly peaked around the averaged
position R0(t ), i.e.,

〈�(t )|[R̂ − R0(t )]2|�(t )〉 �R0(t )2. (20)

An illustrative example of a wave function like Eq. (18) is
the product of an electronic wave function times a Gaussian
wave packet narrowly centered around R0(t ) and of average
momentum MṘ0(t ). Extension to a statistical ensemble of
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states ρ̂, e.g., a canonical ensemble, is straightforward and
will be considered below.

The equations of motion for the atomic positions R0 and
electronic state populations outlined in Sec. II are obtained
by considering the propagation in time of the state � on an
intermediate timescale τc � t � Tγ over which the electronic
coherences vary (oscillate) widely, while the adiabatic atomic
positions do not move appreciably. Substituting Eq. (18) in the
Schrödinger equation ih̄ ∂

∂t
� = Ĥ�, we obtain the evolution

equation of φ over the fast timescale,

ih̄
∂φ

∂t
= P̂ 2

2M
φ + Ĥe(r̂ , R̂)φ − ih̄Ṙ0(t )

∂φ

∂R0(t )
. (21)

The assumption (20) of spatially localized atomic positions
atomic positions allows one to approximate Ĥφ by the Taylor
expansion,

Ĥe(r̂ , R̂)φ ≈ Ĥe(r̂ , R0(t ))φ + (R̂ − R0(t ))
∂He

∂R
(r̂ , R0(t ))φ,

(22)

so that Eq. (21) can be rewritten as the effective Schrödinger
equation

ih̄
∂

∂t
φ = Ĥeffφ, (23)

with the effective Hamiltonian [29]

Ĥeff = P̂ 2

2M
+

∑
n

εn|n〉〈n| − ih̄
∑
n,m

Ṙ0(t ) · dnm|n〉〈m|

+
∑
n,m

fnm[R̂ − R0(t )]|n〉〈m|. (24)

Here we conveniently express the effective Hamiltonian in
the orthonormal basis of adiabatic wave functions |n[R0(t )]〉
defined above by Eq. (2) for R(t ) = R0(t ). Below we shall
often omit writing explicitly the dependence on R0(t ) of the
adiabatic basis and related quantities. Our scheme is obtained
by considering the dynamics of R0 and of the electronic state
populations that result from the effective Hamiltonian (24).

B. Initial conditions and statistical averaging

It will be convenient to describe the electron dynamics in
terms of the electron density matrix ρ̂e(r; R0(t )),

〈r|ρ̂e(t ; R0(t ))|r ′〉 =
∫

dR φ(r, R, t ; R0(t ))φ∗(r ′, R, t ; R0(t )),

and to expand the latter in terms of the adiabatic basis func-
tions

ρ̂e(t ; R0(t )) =
∑
i,j

cji (t )|i[R0(t )]〉〈j [R0(t )]|. (25)

For convenience, we introduce the notation (dropping depen-
dencies)

ĉij = |i〉〈j |,
so that ρ̂e = ∑

i,j cji ĉij . The coefficient cij in the expansion
(25) is given by

cij = 〈j |ρ̂e|i〉 = Tr[ρ̂eĉij ] = 〈�|ĉij |�〉. (26)

The diagonal elements cii are the electronic state populations,
and the off-diagonal elements cij define the coherences. Our
scheme outlined in Sec. II describes the dynamics of the
complete system in terms of the evolution of the averaged po-
sition R0(t ) and of the populations cii . The temporal evolution
of initial coherences cij to the next time step is not treated
explicitly. Indeed, as we shall see below, coherences fluctuate
rapidly on a timescale smaller than the adiabatic time. In
the presence of a quasicontinuum of states, it is legitimate
to neglect their influence on the evolution of the quantum
population: this is the basis of the so-called secular approx-
imation. The remaining effect of coherences is on the atomic
motions in the form of a rapidly fluctuating force that depends
on only the initial values of coherences ρij (t ). Here our lack
of knowledge of the initial coherences is treated statistically:
we assume that they are of the form cij (0)ei(φi−φj ), where the
phase factor φi is uniformly distributed in the interval [0, 2π ].
If 〈〈· · · 〉〉 denotes the average of all phases {φi},

〈〈cij (0)〉〉 = 〈〈cii (0)〉〉δij ,

〈〈cij (0)ckl (0)〉〉 = 〈〈cii (0)〉〉δi,lδj,k.

C. Evolution of atomic positions

On the fast timescale, the effective Hamiltonian (24) yields

dR̂

dt
= P̂

M
, M

d2R̂

dt2
= dP̂

dt
= −

∑
i,j

fij ĉij . (27)

Tracing over the total quantum state, Eq. (27) gives the
equation of motion of R0,

M
d2R0

dt2
= −

∑
i,j

fij cij (t ). (28)

The forces driving R0(t ) are found by determining the tempo-
ral evolution of cij . The latter are obtained by integrating the
evolution equations for ĉij over the fast timescale driven by
the effective Hamiltonian (24),

ih̄
dĉij

dt
= [ĉij , Ĥeff ]

= −εij ĉij − ih̄
∑

n

(Ṙ0 · djnĉin − Ṙ0 · dni ĉnj )

+
∑

n

(fjnX̂in − fniX̂nj ), (29)

where we defined X̂ij = [R̂ − R0(t )]|i〉〈j |. Averaging
Eq. (29) as in Eq. (26) to obtain the equation satisfied by cij

and integrating over time, we find

cij (t ) = eiεij t/h̄cij (0) − Ṙ0(t )
∫ t

0
dt ′eiεij (t−t ′ )/h̄

×
∑

n

[djncin(t ′) − dnicnj (t ′)]. (30)

In deriving Eq. (30), we have neglected the last term in
Eq. (29) since its contribution to the nonadiabatic forces on
the classical atoms is completely negligible. As we will see
in the next section, this is justified because the relevant
states n in Eq. (29) satisfy the condition 3NkBT 
 εin, εjn.
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Substituting the solution (30) in Eq. (28), the force driving the
motion of R0 is conveniently split into three parts, such as

M
d2R0

dt2
= FBO (t ) + F friction(t ) + ξ (t ). (31)

The first term

FBO (t ) = −
∑

i

cii (t )fii = −
∑

i

cii

∂εi

∂R0

is the traditional Born-Oppenheimer force. The remaining two
terms originate from the off-diagonal elements cij (t ), i �= j

and are given by

F friction(t ) =
∑
i,j �=i

fij Ṙ0

∫ t

0
dt ′eεij (t−t ′ )/h̄

×
∑

n

[djncin(t ′) − dnicnj (t ′)] (32)

and

ξ (t ) = −
∑
i,j �=i

fij e
iεij t/h̄cii (0).

They correspond, respectively, to the friction force and noise
term of Eq. (3) that we discussed in Sec. II. Indeed,

F friction(t ) �
∑
i,j �=i

fij Ṙ0dji

∫ t

0
dt ′eεij (t−t ′ )/h̄[cii (t

′) − cjj (t ′)]

(33)

�
∑
i,j �=i

fij [cii (t ) − cjj (t )]Ṙ0 · dji

∫ t

0
dt ′eεij (t−t ′ )/h̄

(34)

� π
∑
i,j �=i

fij [cii (t )−cjj (t )]Ṙ0 · djiδ(εij /h̄) (35)

= −M γ
↔ · Ṙ0(t ), (36)

where we defined the matrix γ
↔ of friction coefficients

γαβ = −πh̄

M

∑
i,j �=i

f α
ij f

β

ji

εij

(cii − cjj )δ(εij ),

with α, β = 1, . . . , 3N . In deriving Eq. (36), we have per-
formed the following standard steps. First, in going from
Eq. (32) to Eq. (33), we have used the secular approximation.
The approximation consists of neglecting the off-diagonal
terms i �= n (and j �= n) in Eq. (33) that, unlike the diagonal
terms, oscillate rapidly at frequency εin/h̄ [see Eq. (30)], and
their overall contribution nearly cancels out as they interfere
destructively for large enough finite times t . The cancellation
is most effective for a denser density of states. Second, in
going from Eq. (33) to Eq. (34), we have replaced cii (t ′)
and cjj (t ′) by the values cii (t ) and cjj (t ) at time t . Indeed,
in the contribution

∫ t

0 dt ′[
∑

j �=i fij (Ṙ0 · dji )eεij (t−t ′ )/h̄]cii (t ′)
[with similar notation for the term involving cjj (t ′)], the only
values of cii (t ′) to contribute significantly to the integral are
those which correspond to t ′ very close to t since the sum in
the square brackets practically interferes destructively for a
quasicontinuum of states as soon as t − t ′ 
 h̄/�, where �

is the energy “width” of F (εi ) = ∑
j �=i fij (Ṙ0 · dji )eεij (t−t ′ )/h̄,

i.e., the order of magnitude of the variation in εi needed for
F (εi ) to change significantly. Last, in going from Eq. (34) to
Eq. (35), we have used∫ t

0
dt ′eiεin(t−t ′ )/h̄ = eiεint/2 sin (εint/2)

εin/2

≈ πh̄δ(εin) + ih̄P 1

εin

(37)

at large enough t . Note that it is not necessary to let t approach
infinity in order to use (37) in Eq. (34), but it suffices for h̄/t

to be smaller than the energy width of F (εi ) discussed above.
As for the term ξ (t ), it corresponds to a δ-correlated Gaussian
random force characterized by the relations (6). Indeed, the
properties (6) imply

〈〈ξα (t )ξβ (t ′)〉〉
=

∑
a,b

′∑
k,l

′
f α

abf
β

kl e
i(εabt+εkl t

′ )/h̄〈〈cab(0)ckl (0)〉〉

=
∑
a,b

′
f α

abf
β

bae
iεab (t−t ′ )/h̄caa (0)

≈ Bα,βδ(t − t ′), (38)

with

Bα,β =
∫

d(t − t ′)
∑
a,b

′
f α

abf
β

bae
iεab (t−t ′ )/h̄caa (0)

= π
∑
i �=j

(Pi + Pj )f α
ij f

β

jiδ(εij /h̄).

More generally, Eq. (38) can be written as 〈〈ξα (t )ξβ (t ′)〉〉 =
Bα,βg(t − t ′), where g(t ) is an even, normalized function
of width τc. If, as assumed here, the atomic motions are
integrated over time steps δt > τc, g can be approximated by
a delta function as in Eq. (38).

D. Evolution of electronic populations

We consider again the evolution equations (29) of the
operators ĉij over the fast timescale governed by the effec-
tive Hamiltonian. In order to get the rate equations for the
electronic populations 〈ĉii〉 we iterate Eqs. (29). That is, we
formally solve Eqs. (29) for operators ĉij (t ),

ĉij (t ) = ĉij (0) e−iεij t/h̄ +
∫ t

0
dt ′ eiεij (t−t ′ )/h̄

×
∑

n

[djnV̂in(t ′) − dniV̂
†
jn(t ′)], (39)

where

V̂in = iṘ0ĉin + (1/h̄)εij ĉin δR̂,

δR̂ = R̂ − R0(t ), and the dagger stands for Hermitian con-
jugation, and we substitute these expressions back into
Eqs. (29). In doing so we should keep in mind that the
order of operators δR̂ and ĉin matters. While these operators
commute at the same time, they do not commute when taken
at different t due to the noncommutativity between δR̂ and P̂ .
Then, applying the same approximations as we did in deriving
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equations of motion for the ions in the previous section, i.e.,
dropping the rapidly oscillating terms as well as the terms
linear in δR̂ (which average to zero), we arrive at the following
equation of motion for the electronic populations cii = 〈ĉii〉:

dcii

dt
=

∑
n�=i

(Wincnn − Wnicii ) + 〈ηi (t )〉, (40)

with the rates

Win =
∑
α,β

dα
ind

β

in

∫ t

0
dt ′{2Re[Ṙ0α (t )Ṙ0β (t ′) eiεin(t−t ′ )/h̄]

+ (εin)2[〈δR̂α (t )δR̂β (t ′)〉eiεin(t−t ′ )/h̄

+〈δR̂β (t ′)δR̂α (t )〉eiεin(t ′−t )/h̄]} (41)

and the noise terms

ηi (t ) =
∑

n

{din[iṘ0 + (1/h̄)εin δR̂]ĉin(0) e−iεint/h̄

− dni[iṘ0 + (1/h̄)εni δR̂]ĉin(0) eiεint/h̄}. (42)

The first contribution to the rates on the right-hand side of
Eq. (41) is the dominating term associated with the classical
motion of atoms. The second term is smaller but plays an
important role. To see this, let’s integrate this second term
by parts (over t ′). The boundary terms vanish: the t ′ =
t contribution exactly cancels, while t ′ = 0 contributions,
〈δR̂α (t )δR̂β (0)〉eiεint/h̄ and 〈δR̂α (0)δR̂β (t )〉e−iεint/h̄, vanish in
the limit of sufficiently large t . The remaining term is

i
(
dα

ind
β

inεin/M
) ∫ t

0
dt ′[〈δR̂α (t )δP̂β (t ′)〉eiεin(t−t ′ )/h̄

−〈δP̂β (t ′)δR̂α (t )〉eiεin(t ′−t )/h̄], (43)

where we have used dδR̂/dt = δP̂ /M . Furthermore, since
this term is small compared to the first “classical” term
in Eq. (41), we can set t = t ′ in the correlation functions
〈δR̂α (t )δP̂β (t ′)〉, etc. Then, by virtue of the coordinate-
momentum commutation relation [P̂α, R̂β] = ih̄ δαβ , the
above expression is written as

(
dα

ind
α
inεin/M

) ∫ t

0
dt ′{h̄ Re[eiεin(t−t ′ )/h̄]

+ i〈{δR̂α (t ), δP̂β (t )}〉 Im[eiεin(t−t ′ )/h̄]}. (44)

The anticommutator {δR̂α, δP̂β}, when averaged relative
to a spatially localized atomic state, is small. For in-
stance, for normalized Gaussian wave functions �(R) =
e−(R−R0 )2/2σ 2

eiP0·(R−R0 )/h̄/π1/4√σ (written here in one di-
mension for simplicity), it is equal to zero. Also, its contri-
bution, unlike that for the first term in Eq. (44), is imaginary,
so it can contribute to only the renormalization of energy
differences, e.g., εin, and not to the rates. Thus, we get

Win =
∑
α,β

2 dα
ind

β

inRe

{∫ t

0
dt ′

[
Ṙ0α (t )Ṙ0β (t ′)

+ δαβ

εin

2M

]
eiεin(t ′−t )/h̄

}
. (45)

The Ṙ0α (t )Ṙ0β (t ′) term on the right-hand side of Eq. (45)
can be transformed to

Ṙ0α (t )Ṙ0β (t ) − (t − t ′)Bα,β/M2, (46)

where Bα,β is given by Eq. (38). Indeed, by writing

Ṙ0α (t ′) = Ṙ0α (t ) +
∫ t ′

t

R̈0α (t1) dt1

and taking into account that on the short timescale the clas-
sical atomic coordinate obeys MR̈0α = ξα (t ), we can average
(1/M )

∫ t ′

t
Ṙ0α (t )ξβ (t1) dt1 over the white noise, obtaining the

second term in Eq. (46). Furthermore, exponentiating (t ′ −
t )Bα,β/M2 + εin/(2M ), we obtain

Win =
∑
α,β

2[din · Ṙ0(t )]2 e
εind2

in

2M[din ·Ṙ0 (t )]2

× Re

{∫ t

0
dt ′ e(iεin/h̄−�in )(t ′−t )

}
, (47)

where

�in =
∑
α,β

dα
ind

β

inBα,β (t )/[Mdin · Ṙ0(t )]2. (48)

We remark that the exponentiation of the perturbative cal-
culation is done on the physical grounds that the exact rates
should satisfy the detailed balance and that the linewidths of
the transitions between states are finite.

Thus, we can write the rate as

Win = 2π [din · Ṙ0(t )]2 e
εind2

in

2M[din ·Ṙ0 (t )]2 L(εin,�in), (49)

with the δ function having finite width due to the noise
induced by the electrons on the atomic motions.

The additive noise ηi (t ) in Eqs. (41) and (42) has zero
average over the ensemble of initial conditions ĉin(0), and
it is δ correlated on the atomic timescale. A straightforward
calculation analogous to the derivation of expression (49)
leads to

〈ηi (t )ηj (t ′)〉 =
⎡
⎣∑

n�=i

(Win + Wni )

⎤
⎦ δij δ(t − t ′). (50)

Equations (40) and (50) imply that the electronic dynamics
is Markovian, with the electronic subsystem spontaneously
“hopping” between states with gradually varying energies εi .
Upon averaging the stochastic rate equations (41) over the
noise configurations one obtains the master equation (10) with
Pi = 〈cii〉 ≡ 〈〈ĉii〉〉.

E. Proof of energy conservation property

The total energy of the system at time t in the state
φ(r, R, t ; R0(t )) along a trajectory R0(t ) is

Etot (t ) = MṘ2
0

2
+

∑
i

εiPi .

We will show that the ensemble-averaged energy 〈〈Etot (t )〉〉
is conserved over time, i.e.,

d〈〈Etot (t )〉〉
dt

= 0.
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First, taking the dot product of the equation of motion (31)
by the vector Ṙ0(t ) of atomic velocities, we obtain

M

2

d

dt
Ṙ2

0 +
∑

i

dεi

dt
Pi = 2πh̄

∑
i,j

′
Pi

|Ṙ0 · fij |2
εij

δ(εij )

+ Ṙ0 · ξ. (51)

Second, multiplying the rate equation (40) by the electronic
energy εi and summing over all states i, we find∑

i

εi

dPi

dt
= −2πh̄

∑
ij

′
Pi

|Ṙ0 · fij |2
εij

δ(εij ) − 1

2M

∑
ij

′
Bij .

(52)

Summing the previous two equations yields

dEtot

dt
= − 1

2M

∑
ij

′
Bij + Ṙ · ξ.

This equation averages out to zero upon averaging over the
initial phases to yield the desired result. Indeed, using the
stochastic equation (31) and the property (38), we find

〈Ṙ(t ) · ξ (t )〉 =
〈∫ t

0
dt ′

ξ (t ′)
M

ξ (t )

〉
= 1

2M

∑
ij

′
Bij

for τc � t � Tγ .

F. Linewidth

The equations for the rates derived in this section, e.g.,
Eq. (49), contain a broadened δ function of the energy dif-
ference εin = εi − εn with the width given by Eq. (48). The
latter equation contains the atomic noise correlator Bα,β ,
which gradually varies with time due to the changing atomic
positions in the course of the evolution. The instantaneous (on
the timescale of atomic motions) value of Bα,β is given by
Eq. (7), which, in turn, contains a sum over δ functions. In
our derivation in Sec. III C the values for the width of the
δ functions in Eq. (7) were not specified for two reasons:
first, it cannot be easily derived within the framework of
the calculation presented in this paper. Presumably, it can be
carried out by analyzing the dynamics of higher correlators,
〈R̂ĉij 〉, 〈P̂ ĉij 〉, etc., which lies beyond the scope of this
calculation. Second, since the δ functions in Eqs. (5) and (7)
are effectively under the integrations over the energies, their
precise widths should not matter [unless the sums in Eqs. (5)
and (7) contain a finite number of terms].

The energy conservation property derived in the previous
section, however, dictates that the widths of the δ functions
in Eqs. (5) and (7) and in Eq. (49) should be the same ([as
was saliently implied in Eqs. (48) and (49), where we used
the same �in as in Eqs. (5), (7), (8)]. Indeed, had �in in these
expressions been different, the first terms on the right-hand
sides of Eqs. (51) and (52) would not cancel each other in
Eq. (53) (again, for a finite number of electronic states).
Therefore, Eq. (48) can be rewritten as a self-consistency
equation for determining �in, e.g., Eq. (9).

The right-hand side of Eq. (9) can be easily estimated if we
assume that the number of atomic degrees of freedom is large.
Then the expression (Mdin · V )2 in Eq. (9) self-averages to

give M2d2
in〈V 2

α 〉 = Md2
inTi , where Ti is the temperature of the

atomic degrees of freedom. Furthermore, the sum over j, j ′,
i.e., Bα,β , by virtue of the fluctuation-dissipation theorem can
be estimated to give ∼2MγTeδαβ , where γ is the typical
atomic friction coefficient and Te is the electronic temperature.
Thus, we obtain

� ∼ 2
Te

Ti

γ, (53)

so in the equilibrium, i.e., for Te ∼ Ti , the linewidths �in are
of the order of the atomic friction coefficient.

In the surface-hopping algorithm described in Sec. II C the
values of �in should be calculated on the fly, i.e., when the
electronic subsystem is in a particular state i0. In that case
we should replace Pj in Eq. (9) by δi0j , which leads to the
following self-consistency equation for �i0n:

�i0n = 2h̄2(
Mdi0n · V

)2

∑
j �=i0

(
di0nfi0j

)2
�i0j(

εi0j

)2 + (
h̄�i0j

)2 . (54)

It should be pointed out that � evaluated according to
Eqs. (9) and (54) are not the actual electronic linewidths. The
latter should include effects related to the disorder caused by
the randomness in atomic positions and thus the fluctuations
in the energies εi of the electronic states. Such disorder effects
can be accounted for by running a bundle of trajectories with
different initial conditions (rather than a single trajectory).
Averaging the fluctuations in εi over the ensemble of these
trajectories will produce the linewidths of the order of τ−1

c

discussed in Sec. II A. These linewidths define the rate of
decay of electronic correlations or coherences as well as
the transport time. On the contrary, the partial widths �in

(� ∼ T −1
γ ) are associated with the atomic jittering around a

single trajectory and therefore define the linewidths for the
transitions associated with this trajectory.

IV. SUMMARY

In summary, we have presented a scheme for carrying
out nonadiabatic molecular dynamics simulations of systems
where a quasicontinuum of electronic excitations of arbitrarily
low energy is available to couple with the ionic motions.
The scheme, which is derived from first principles and does
not rely on ad hoc parameters, naturally satisfies the princi-
ple of detailed balance and therefore can properly describe
nonequilibrium dynamics. A numerical algorithm was pro-
posed in the form of the widely used fewest-switches surface-
hopping algorithm but with switching probabilities that are
not specified ad hoc like in the original algorithm but are
instead derived. The present approach could greatly increase
the number of processes amenable to realistic simulation by
molecular dynamics in several research areas.
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