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We propose and study an SU(3) trimer resonating-valence-bond (tRVB) state with C4v point-group symmetry
on the square lattice. By devising a projected entangled-pair state representation, we show that all (connected)
correlation functions between local operators in this SU(3) tRVB state decay exponentially, indicating its gapped
nature. We further calculate the modular S and T matrices by constructing all nine topological sectors on a torus
and establish the existence of Z3 topological order in this SU(3) tRVB state.
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I. INTRODUCTION

The search for topological phases of matter in realistic
systems has attracted tremendous interest in recent years [1].
The celebrated examples that have been realized in exper-
iments are the integer and fractional quantum Hall states
[2–4]. These exotic phases are not amenable to Landau’s local
order parameter description and are instead characterized by
the topological characters, such as protected ground-state
degeneracy on a torus, an energy gap above the ground-
state manifold, gapless edge excitations, and quasiparticles
with fractionalized quantum numbers and anyonic statis-
tics. The robustness to external perturbations renders topo-
logical states potential applications in quantum information
processing [5–7].

Frustrated magnetic materials form another important plat-
form for studying topological phases. Much effort in this area
has been devoted to finding spin liquids that do not order
down to zero temperature [8]. From the theoretical viewpoint,
a large fraction of spin liquids, when a gap is present, are
topological phases enriched by spin rotational and/or lattice
symmetries. Further classification of these spin liquids can be
carried out based on the type of topological order and present
symmetries. However, for a given spin model, it is usually
notoriously difficult to determine whether the ground state
is a spin liquid, let alone how it fits into the classification
scheme. In this regard, wave functions capturing the essential
physics provide an important link between the classification
and the microscopic models. One such example is the spin-
1/2 nearest-neighbor resonating-valence-bond (RVB) state on
the triangular lattice [9], which is a Z2 spin liquid realizing the
simplest Z2 topological order. The Kalmeyer-Laughlin state
is another example which is a chiral spin liquid with broken
time-reversal symmetry [10].

In recent years, rapid development in the experimental
manipulation of cold atoms with SU(N )-symmetric exchange
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interactions has attracted considerable interest [11,12], partly
because of the potential of hosting chiral spin liquids [13].
Further theoretical and numerical investigations on SU(N )
quantum magnets have found a number of magnetically or-
dered and topological phases [14–17] which do not seem
to have obvious SU(2) counterparts. For studying possible
novel phases in SU(N ) magnets, it is thus expected that the
wave function approach can provide useful information com-
plementing field theoretical and numerical approaches. How-
ever, except for the SU(N ) generalization of the Kalmeyer-
Laughlin state [18,19], wave functions for SU(N ) magnets
remain largely unexplored so far.

In this paper, we propose and study an SU(3) trimer
resonating-valence-bond (tRVB) state with C4v point-group
symmetry on the square lattice. The tRVB state, with its
elementary building block being 90◦ bent SU(3) trimer sin-
glets extending over three adjacent sites, is an equal-weight
superposition of trimer coverings on the lattice. Unlike the
SU(2) spin-1/2 nearest-neighbor RVB state which is a gapless
spin liquid on the square lattice [20,21], we show that the
SU(3) tRVB state is a gapped spin liquid with Z3 topo-
logical order. For that we devise a projected entangled-pair
state (PEPS) representation and characterize the state with
powerful PEPS techniques. We show that: (i) all (connected)
correlation functions between local operators in the tRVB
state decay exponentially; (ii) the calculated modular S and
T matrices are in agreement with the Z3 topological order.
These results demonstrate that the SU(3) tRVB state on the
square lattice is indeed a Z3 spin liquid.

II. SU(3) TRVB STATE

Let us consider a square lattice with spins on each site
transforming under the fundamental representation (denoted
by 3) of SU(3). The local spin basis is defined by |a〉, where
a = 1, 2, 3. The elementary building block of the SU(3) tRVB
state is an SU(3) trimer singlet formed among three sites:
|trimer〉ijk = ∑

a,b,c∈{1,2,3} εabc|a〉i |b〉j |c〉k , where i, j , and k

stand for lattice sites and εabc is a totally antisymmetric tensor
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical trimer
covering configuration on the square lattice. (c) Projected entangled-
pair state representation of the SU(3) tRVB state. (d) Two kinds of
projectors mapping virtual states to physical states.

with ε123 = 1. For such a trimer, it is convenient to assign an
orientation as i → j → k. For our purpose, we only consider
four kinds of “short-range” bent trimers for which both (i, j )
and (j, k) are nearest neighbors and the angle between two
orientations i → j and j → k is 90◦ [see Fig. 1(a)].

The SU(3) tRVB state of our interest is an equal-weight
superposition of trimer coverings on the square lattice; see
Fig. 1(b) for an example of the trimer covering configuration.
The relative sign of trimer covering configurations is fixed
by the local orientations of the trimers, i.e., only trimers
with orientations shown in Fig. 1(a) are allowed. It is then
straightforward to verify that the tRVB state so obtained
respects the full C4v symmetry of the square lattice. Similar to
the nonorthogonality of SU(2) valence-bond dimer coverings,
the SU(3) trimer covering configurations do not form an
orthogonal basis either. Thus, our tRVB is different from a
recent proposal [22] of a tRVB wave function which consists
of orthogonal trimer configurations in the same sense as the
difference between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due to
the nonorthogonality, there is a priori no reason to suppose
that the correlations of the SU(3) tRVB state are similar to its
classical analog [25].

III. PEPS REPRESENTATION

In order to characterize the SU(3) tRVB state, we switch
to its PEPS representation. Similar strategy has been proven
very successful in characterizing the spin-1/2 RVB [26–
30] and spin-1 resonating Affleck-Kennedy-Lieb-Tasaki loop
states [31,32] on various lattices. Following the projective
construction of PEPS, we introduce at every site four virtual
particles, each of which supports a seven-dimensional auxil-
iary Hilbert space VA with basis vectors |0〉 belonging to the
SU(3) trivial representation and {|1〉, |2〉, |3〉} ({|1̄〉, |2̄〉, |3̄〉})
transforming under the fundamental (antifundamental) rep-
resentation 3 (3̄), respectively. Each pair of virtual particles
between adjacent sites forms a maximally entangled state [see

Fig. 1(c)],

|E〉 = |00〉 + |11̄〉 + |22̄〉 + |33̄〉 + |1̄1〉 + |2̄2〉 + |3̄3〉. (1)

For later purpose we compactly write the maximally entan-
gled state (1) between sites i1 and i2 as

|E〉i1,i2 =
∑

α,β∈VA

Eα,β |α〉i1 |β〉i2 , (2)

where the nonvanishing entries of Eα,β can be obtained
from (1).

To recover the physical Hilbert space, the four virtual states
at each site are projected back to the physical state by a
projector P̂ , defined by

P̂ =
∑
a∈V

∑
α,β,η,γ∈VA

Pa
α,β,η,γ |a〉〈α, β, η, γ |, (3)

where α, β, η, and γ are assigned for the virtual states at left,
right, up, and down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pa

α,β,η,γ is a tensor to be
specified below. To reproduce the tRVB state, we decompose
the projector P̂ into two parts,

P̂ = P̂1 + P̂2, (4)

where P̂1 identifies one of the virtual states in 3 as the physical
state [the rest three virtual particles are in the trivial represen-
tation; see the upper panel in Fig. 1(d) for an example],

P̂1 =
∑
a∈V

∑
α,β,η,γ∈VA

[(δα,aδβ,0 + δα,0δβ,a )δη,0δγ,0

− δα,0δβ,0(δη,aδγ,0 + δη,0δγ,a )]|a〉〈α, β, η, γ |, (5)

and P̂2 maps two adjacent virtual states in 3̄ into the physical
state [the rest two virtual particles are in the trivial represen-
tation; see the lower panel in Fig. 1(d)],

P̂2 =
∑
a∈V

∑
α,β,η,γ∈VA

∑
M̄,N̄∈(1̄,2̄,3̄)

εaMN (δα,M̄δβ,0δη,N̄ δγ,0

+ δα,M̄δβ,0δη,0δγ,N̄ + δα,0δβ,M̄δη,N̄ δγ,0

+ δα,0δβ,M̄δη,0δγ,N̄ )|a〉〈α, β, η, γ |. (6)

The tensor Pa
α,β,η,γ in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify that
both P̂1 and P̂2 belong to the B1 irreducible representation of
the C4v point-group symmetry [33]. Here we would like to
mention that the linear trimer configuration where the three
neighboring sites forming the singlet are on a straight line
is excluded since it does not belong to the B1 irreducible
representation of C4v .

With the PEPS projector and the virtual bonds in hand, the
PEPS for the SU(3) tRVB state is obtained by applying the
product of projectors to the virtual bonds,

|ψ〉 =
N⊗

i=1

P̂ (i)
⊗
〈i1,i2〉

|E〉i1,i2 , (7)

which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P̂2 acting on the middle site
and P̂1 acting on the two end sites. Only the configurations
of trimer coverings in which each site belongs to one and
only one trimer have nonzero weight in |ψ〉, and all trimer
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FIG. 2. (a) Each of the local tensor A of infinite PEPS is con-
tracted with its complex conjugate by the physical index to form the
bilayer tensor network. (b) Schematic of the contraction of bilayer
tensor network based on boundary iMPS.

covering configurations have equal weights with sign con-
ventions consistent with the definition in Fig. 1(a). The state
will not change if there is a nonzero real coefficient λ in
P̂ = P̂1 + λP̂2.

An alternative representation of |ψ〉 that will also
be used below is obtained by eliminating the vir-
tual states in (7), and the wave-function amplitude
takes the form of a tensor network, ψ (. . . , ai, . . .) =∑

{···αi ,βi ,ηi ,γi ··· }(· · ·Aai

αi ,βi ,ηi ,γi
· · · ), where Aa

α,β,η,γ is given in
terms of the virtual bond (2) and the PEPS projector (3) as

Aa
α,β,η,γ =

∑
β ′,η′∈VA

Pa
α,β ′,η′,γ Eβ ′,βEη′,η. (8)

IV. CORRELATION FUNCTIONS

The PEPS formulation is particularly convenient for cal-
culating correlation functions characterizing the tRVB state.
The norm of the PEPS is a bilayer tensor network obtained
by contracting the physical indices of the PEPS (ket layer)
and its complex conjugate (bra layer). The expectation value
of local operators or their correlators is a similar bilayer
tensor network with local operators being inserted between
the ket and bra layers. Here we consider an infinite system and
contract the bilayer tensor networks by using the boundary in-
finite matrix-product state (iMPS) method [34]: the left (right)
environment of the bilayer tensor networks is represented by a
boundary iMPS �L (�R). One column of tensors, formed by a
bilayer element shown in Fig. 2(a), defines an infinite matrix-
product operator (iMPO). The environments, represented by
two iMPSs, are obtained by iteratively applying the iMPO
to initial boundary iMPSs. After a few iteration steps, it is
necessary to truncate the bond dimension of the iMPSs, the
maximum of which is denoted by the truncation bond dimen-
sion χ . As shown in Fig. 2(b), the iMPSs are obtained by
using the infinite time-evolving block decimation algorithm
(iTEBD) [35,36], which determines the iMPSs as fixed points
of the iteration. Once converged iMPSs �

f

L and �
f

R (f stands
for fixed point) are obtained, a transfer matrix (TM) can be
constructed as shown in the inset of Fig. 3 (note that the
iTEBD algorithm produces an enlarged two-site unit cell,
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FIG. 3. The spectrum of the transfer matrix (only the absolute
values are shown). The eigenvalues are normalized such that the
largest eigenvalue is 1. The inset defines the transfer matrix for a
two-site unit cell and shows the upper bound of the correlation length
ξ versus the truncation bond dimension χ .

and we have checked that the one-site translational symmetry
of physical observables is not broken with large enough χ ).
For the tRVB state, we find that the largest eigenvalue of
the TM is unique (normalized to unity) and there is a finite
gap between the largest eigenvalue and the second largest
eigenvalue (see Fig. 3 for the saturation of the gap when
increasing χ up to χ = 490 with the largest truncation error ∼
4 × 10−6). Thus, there is no spontaneous symmetry breaking
in the tRVB state, and all (connected) correlation functions
decay exponentially with a correlation length upper bounded
by ξ = −2/ ln(|λ|) ∼ 1.317 (estimate with χ = 490), where
the factor of 2 appears due to the two-site unit cell in the
fixed-point iMPSs and λ is the second largest eigenvalue of
the TM. Because of the C4v symmetry of the tRVB state,
the correlation lengths are the same along the horizontal and
vertical directions.

To identify dominant local correlations in the tRVB state,
we have directly calculated several spin-spin and trimer-trimer
correlation functions with the fixed-point boundary iMPSs.
The spin-spin correlation functions include |〈λ3(0)λ3(d )〉| and
|〈λ8(0)λ8(d )〉|, where λ3 and λ8 are two diagonal SU(3) Gell-
Mann matrices,

λ3 =
⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠, λ8 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠,

and d stands for the distance between the operators in
the vertical direction. As shown in Figs. 4(a) and 4(b),
these numerically obtained spin-spin correlation functions
are equal up to a high precision, which is in agreement
with the SU(3) symmetry, and decay exponentially at long
distance, |〈λ3(0)λ3(d )〉| = |〈λ8(0)λ8(d )〉| ∝ exp(−d/ξ s),
where ξ s ∼ 0.57 for χ = 147. The trimer-trimer
correlation functions that we have calculated are
C1(d ) = |〈B1(0)B1(d )〉 − 〈B1(0)〉〈B1(d )〉| and C2(d ) =
|〈B1(0)B2(d )〉 − 〈B1(0)〉〈B2(d )〉|, where B1 and B2 are
projectors (i.e., |trimer〉〈trimer|) onto two different trimers
shown in the inset of Figs. 4(c) and 4(d), respectively.
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FIG. 4. The correlation functions (a) |〈λ3(0)λ3(d )〉|, (b)
|〈λ8(0)λ8(d )〉|, (c) C1(d ) = |〈B1(0)B1(d )〉 − 〈B1(0)〉〈B1(d )〉|, and
(d) C2(d ) = |〈B1(0)B2(d )〉 − 〈B1(0)〉〈B2(d )〉| versus distance d ,
respectively. The black dashed lines correspond to the plot of the
exponentially decaying function ∝exp(−d/ξ ) with correlation
length ξ = 1.23 estimated from the gap of the transfer matrix.

These correlation functions also decay exponentially at
long distances, and the correlation lengths for χ = 147 are
ξ t

1 ∼ 1.1 and ξ t
2 ∼ 1.2, respectively. As a comparison, the

upper bound of the correlation length obtained from the
TM spectrum (with χ = 147) is given by ξ ∼ 1.23 (see the
dashed lines in Fig. 4). Thus, the correlation of one B1-type
and one B2-type trimer is dominant in the tRVB state.

V. CHARACTERIZING TOPOLOGICAL ORDER

The fact that the SU(3) tRVB state does not break C4v

and translation symmetries and has only short-range corre-
lations indicates that it is a gapped symmetric ground state
of a local SU(3) spin Hamiltonian (e.g., the parent Hamilto-
nian constructed from the PEPS representation). According
to a straightforward SU(3) generalization of the celebrated
Lieb-Schultz-Mattis-Hastings-Oshikawa (LSMHO) theorem
[37–39], the SU(3) spin model on the square lattice with
fundamental representation 3 on each site cannot have a
nondegenerate gapped ground state preserving both SU(3)
and translation symmetries. In other words, a gapped ground
state with both SU(3) and translational symmetries must be
topologically ordered. Based on this LSMHO argument, the
SU(3) tRVB state must be a topological spin liquid.

Let us now analyze the topological properties of
the tRVB state. An important observation is that the
SU(3) tRVB state has a Z3 gauge symmetry in its
PEPS representation. By defining the Z3-symmetry gener-
ator v = diag(1, ω, ω, ω, ω2, ω2, ω2) with ω = ei2π/3 (the
vectors in the virtual Hilbert space are arranged as
|0〉, |1〉, |2〉, |3〉, |1̄〉, |2̄〉, and |3̄〉 so that v plays the role
of counting the Z3 charge), the local tensor A defining the
PEPS, given by (8), satisfies the following Z3-injectivity

=

h

(a) (b)

(c) (d)

h

h h

g

ggg g−1 gh

ω·A A
gl gr

gu

gd

FIG. 5. (a) Z3 gauge symmetry of the PEPS local tensor. (b)
Constructing nine states by inserting gauge flux along two non-
contractible loops on a torus. (c) and (d) A 3 × 1 torus formed
by double tensors and the Z3 gauge symmetry elements is used to
compute modular S and T matrices.

condition [40]:

(gl ⊗ gr ⊗ gu ⊗ gd )A = ωA, (9)

where A is now viewed as a matrix mapping from physical to
virtual spaces and gl = gd = v and gr = gu = v2, indicating
that the left/down/right/up virtual space in each site has a Z3

gauge symmetry. The symmetry condition (9) is graphically
shown in Fig. 5(a). Note that, glgr = gugd = I (I is an identity
matrix in the virtual space VA), as required from the gauge
symmetry condition in PEPS [40].

The Z3 gauge symmetry, together with the absence of
any symmetry breaking order (as revealed from correlation
functions), finite correlation length, and the LSMHO argu-
ment, give an indication that the tRVB state has Z3 topo-
logical order. Indeed, when the PEPS is defined on a torus,
inserting gauge transformations (g, h) on virtual indices in
both horizontal and vertical directions [see Fig. 5(b)] leads
to nine states |ψ (g, h)〉 in total (g and h can separately
take the choice of I, v, and v2), which form the nine-fold
degeneracy of Z3 topological order on a torus. However, the
linear independence of the nine states is not guaranteed and
requires a careful numerical check, which we address below.

To verify the nine-fold ground-state degeneracy and char-
acterize the topological order, we utilize the tensor renormal-
ization group (TRG) method [41] to compute the modular S

and T matrices, which can be viewed as order parameters
for topological phases [42]. The TRG process is essentially
to compute the overlap of the nine states by first real-space
coarse graining the double tensor to a fixed-point tensor, and
then contracting a small cluster formed by the fixed-point
tensor and gauge transformations [see Figs. 5(c) and 5(d)].
At each renormalization group (RG) step, a truncation has
to be introduced to avoid the exponential growth of bond
dimensions, which is achieved by keeping χ singular values
in each RG step.

In order to compute the modular matrices, it is important to
keep track of the Z3 gauge symmetry in each layer, which can
be achieved through a simple block singular-value decomposi-
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FIG. 6. Modular matrices from TRG. With increasing RG steps,
the modular matrices converge to their fixed-point results, as seen
from their traces.

tion method [42]. After each RG step, we apply the following
formula to compute modular S and T matrices:

〈ψ (g′, h′)|Ŝ|ψ (g, h)〉 = 〈ψ (g′, h′)|ψ (h, g−1)〉, (10)

〈ψ (g′, h′)|T̂ |ψ (g, h)〉 = 〈ψ (g′, h′)|ψ (g, gh)〉. (11)

Compared to the TRG method for the Z3 deformed toric
code state [43], there is one subtlety for the tRVB case: The
site tensor carries a Z3 gauge charge 1 or 2, depending on
the number of RG steps. This arises from the fact that the
physical degree of freedom belongs to the SU(3) fundamental
representation and, in each RG step, effectively two sites are
merged together. This is different from the spin-1/2 RVB
state with Z2 topological order, where after one RG step, the
double tensor becomes charge neutral [30]. The gauge charge
not only influences how we separate the double tensor into
different blocks, but also has an important consequence in the
process of computing the wave-function overlap. In fact, we
need to compute wave-function overlaps on the 3 × 1 or 3 × 3
cluster where a charge neutral object is formed, instead of a
1 × 1 cluster which has gauge charge 1 or 2. Computationally,
contracting the bilayer tensor network on a 3 × 3 cluster on
a torus is more challenging than a 3 × 1 torus. Thus, we
utilize the 3 × 1 torus for computing the modular matrices
[see Figs. 5(c) and 5(d)]. Another point worth mentioning is
that for calculating wave-function overlaps, gauge transforma-
tion generator in the upper layer and down layer should be
complex conjugate of each other.

For the tRVB state, with χ = 49 and 70, within five RG
steps, the double tensor has flowed to its fixed point, as
revealed by the changes in modular matrices during RG (see
Fig. 6). This quick convergence is in agreement with the short
correlation length. Eventually, the converged modular S and

T matrices are found to be

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The linear independence of the nine states and the Z3 topo-
logical order are unambiguously demonstrated with above
modular S and T matrices.

VI. SUMMARY AND DISCUSSION

To summarize, we have proposed an SU(3) trimer
resonating-valence-bond state with C4v point-group symme-
try on the square lattice and have characterized it as a Z3

gapped spin liquid by using the projected entangled-pair state
representation. The gap in the transfer matrix demonstrates
that all (connected) local correlation functions decay expo-
nentially, and the dominant short-range correlation is found to
be one type of the trimer-trimer correlation. The topological
order has been established by constructing the topological
sectors and calculating the modular S and T matrices, which
are in perfect agreement with the Z3 topological order.

For the SU(2) spin-1/2 nearest-neighbor RVB state, it
is known to be a gapless spin liquid on bipartite lat-
tices [20,21] and a Z2 topological spin liquid on nonbipartite
lattices [9,27,28], so the interplay between the on-site phys-
ical symmetry and the underlying lattice symmetry plays an
important role in determining the nature of the state. For the
SU(3) tRVB state, further investigations are still needed to
characterize it on lattices other than the square lattice.

It is also natural to ask whether there is a realistic Hamilto-
nian with the SU(3) tRVB state (or its nearby Z3 spin liquid)
being its ground state. The identification of a realistic Hamil-
tonian stabilizing the Z3 spin liquid would be quite useful for
designing experimental simulation setups with cold atoms in
optical lattices. Furthermore, it would also be interesting to
study in a microscopic model the competition between the Z3

spin liquid and other candidate ground states found in SU(3)
spin models [14–17].

Note added. During the preparation of this paper, we
became aware of an article [44] on the PEPS construction of
an SU(3) spin liquid on the kagome lattice.
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