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Variational cluster approach to thermodynamic properties of interacting fermions at finite
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We formulate a finite-temperature scheme of the variational cluster approximation (VCA) particularly suitable
for an exact-diagonalization cluster solver. Based on the analytical properties of the single-particle Green’s
function matrices, we explicitly show the branch-cut structure of logarithm of the complex determinant functions
appearing in the self-energy-functional theory (SFT) and whereby construct an efficient scheme for the finite-
temperature VCA. We also derive the explicit formulas for entropy and specific heat within the framework
of the SFT. We first apply the method to explore the antiferromagnetic order in a half-filled Hubbard model
by calculating the entropy, specific heat, and single-particle excitation spectrum for different values of on-site
Coulomb repulsion U and temperature T . We also calculate the T dependence of the single-particle excitation
spectrum in the strong coupling region, and discuss the overall similarities to and the fine differences from
the spectrum obtained by the spin-density-wave mean-field theory at low temperatures and the Hubbard-I
approximation at high temperatures. Moreover, we show a necessary and sufficient condition for the third law of
thermodynamics in the SFT. On the basis of the thermodynamic properties, such as the entropy and the double
occupancy, calculated via the T and/or U derivative of the grand potential, we obtain a crossover diagram
in the (U, T ) plane, which separates a Slater-type insulator and a Mott-type insulator. Next, we demonstrate
the finite-temperature scheme in the cluster-dynamical-impurity approximation (CDIA), i.e., the VCA with
noninteracting bath orbitals attached to each cluster, and study the paramagnetic Mott metal-insulator transition
in the half-filled Hubbard model. Formulating the finite-temperature CDIA, we first address a subtle issue
regarding the treatment of the artificially introduced bath degrees of freedom which are absent in the originally
considered Hubbard model. We then apply the finite-temperature CDIA to calculate the finite-temperature
phase diagram in the (U, T ) plane. Metallic, insulating, coexistence, and crossover regions are distinguished
from the bath-cluster hybridization-variational-parameter dependence of the grand-potential functional. We find
that the Mott transition at low temperatures is discontinuous, and the coexistence region of the metallic and
insulating states persists down to zero temperature. The result obtained here by the finite-temperature CDIA is
complementary to the previously reported zero-temperature CDIA phase diagram.
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I. INTRODUCTION

The first successful foundation of the perturbative treat-
ment for finite-temperature many-particle quantum systems
was constructed in 1950s by Matsubara, who introduced the
imaginary-time Green’s function to formulate the many-body
perturbation theory [1]. Soon after this proposal, the physical
and mathematical aspects of the formulation, including the
Fourier expansion of the imaginary-time Green’s function
with discrete (Matsubara) frequencies [2], have been quickly
developed and these are summarized in the classic textbooks
[3,4]. Although there have been continuous efforts in develop-
ing many-body techniques along this line, the application to
strongly correlated systems beyond the perturbative treatment
is still one of the most challenging issues in many-particle
quantum physics [5].

Recently, a novel variational principle for many-fermion
systems, based on the Luttinger-Ward formalism for the grand
potential [6] in a nonperturbative way [7] using a functional
integral form [8], has been formulated. This formalism, called

self-energy-functional theory (SFT) [9–11], provides a unified
perspective for constructing different quantum cluster approx-
imations [12,13] such as the dynamical mean-field theory
(DMFT) [14] and its cluster extension (CDMFT) [15,16],
the cluster perturbation theory (CPT) [17–20], the variational
cluster approximation (VCA) [21], and the cluster dynamical
impurity approximation (CDIA) [22–24]. In particular, the
VCA and the CDIA calculate the grand potential and thus
the thermodynamic quantities can be readily derived. Further-
more, these methods allow one to calculate the translation-
ally invariant single-particle Green’s function by combining
with, for example, the CPT [25]. Until now, the SFT and
related methods have been extended to fermion systems with
long-range interactions [26], interacting boson systems [27–
31], localized quantum spin systems [32,33], nonequilibrium
fermion systems [34–36], and quantum chemistry calculations
[37].

Although the SFT is formulated at finite temperatures by
its nature [6–10], the VCA and CDIA are applied mostly at

2469-9950/2018/98(20)/205114(37) 205114-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.205114&domain=pdf&date_stamp=2018-11-07
https://doi.org/10.1103/PhysRevB.98.205114


KAZUHIRO SEKI, TOMONORI SHIRAKAWA, AND SEIJI YUNOKI PHYSICAL REVIEW B 98, 205114 (2018)

zero temperature, with some exceptions [10,32,33,35,38–47].
One of the reasons is because the main interest lies in
the ground state where quantum fluctuations are usually
strongest. Another reason is because of lack of a systematic
description of an efficient algorithm for finite-temperature
calculations, especially when either the full diagonalization
of the Hamiltonian or the Lanczos-type method [48,49] is
employed as a cluster solver. In fact, recent developments
of experimental techniques have revealed many intriguing
aspects of temperature dependent properties of strongly
correlated systems, some of which will be described
below. The development of an efficient algorithm at finite
temperatures is thus highly desired.

A series of 5d transition metal oxides has attracted much
attention because of its rich physics induced by the inherently
strong relativistic spin-orbit coupling, which entangles spin
and orbital degrees of freedom. For example, a novel effective
total angular momentum Jeff = 1/2 antiferromagnetic insulat-
ing (AFI) state has been observed in Sr2IrO4 [50–57]. Further-
more, because of its similarity to the cuprate superconductors,
this material is expected to show a pseudospin singlet d-wave
superconductivity if mobile carriers are introduced [58–61].
Although no direct evidence for superconductivity has been
observed, there are several experiments showing precursors
of d-wave superconductivity or electronic structures similar
to cuprates [62–71].

Recently, it has been under the debate whether the AFI
state in Sr2IrO4 is a weak-coupling Slater-type insulator or
a strong-coupling Mott-type insulator [72,73]. Since 5d elec-
trons are less localized than 3d electrons, the effects of elec-
tron correlations in 5d transition metal oxides are expected
smaller than those in 3d transition metal oxides. Therefore it
is more likely that the Slater-type insulator might occur in 5d

electron systems. Indeed, 5d transition metal oxides NaOsO3

and SrIr1−xSnxO3 have been the only accepted Slater-type
insulators so far [74,75]. The resistivity measurements for
Sr2IrO4 have found no indication of change through the Néel
temperature TN [76]. Furthermore, the temperature depen-
dent scanning tunneling microscopy/spectroscopy measure-
ments for Sr2IrO4 have revealed a pseudogap behavior even
above TN [77]. These behaviors can not be reproduced by
DMFT calculations [77] because the DMFT does not take
into account spatial magnetic fluctuations which develop near
the phase transition. It is also remarkable that the recent
angle-resolved photoemmision spectroscopy experiment has
observed the Slater to Mott crossover with decreasing temper-
ature in the metal-insulator transition of another 5d electron
system Nd2Ir2O7 [78]. It is therefore highly desirable to
develop theoretical methods which can treat spatial magnetic
fluctuations and allow one to calculate finite-temperature
quantities, including single-particle excitation spectra, down
to sufficiently low temperature T , typically in a range of
0 < T � t2/U for a Hubbard model.

The major difficulty of the conventional finite-temperature
VCA is the increase of the number Npole of the single-particle
excitation energies which must be summed up to calculate
the grand-potential functional [10,79]. The rapid increase of
Npole at finite temperatures compared to zero temperature is
simply because one has to consider the single-particle-excited
states not only from the cluster’s ground state but also from

the several lowest or all cluster’s excited states. Since the
Npole × Npole Hermitian matrix has to be diagonalized at each
momentum to obtain the single-particle excitation energies
[79], the large Npole severely limits the finite-temperature
VCA calculations, even if the full diagonalization of the
cluster’s Hamiltonian can be performed without any difficulty.

To overcome this difficulty, here we provide an effi-
cient scheme of the finite-temperature VCA with the exact-
diagonalization method as a cluster solver. We carefully an-
alyze the analytical properties of logarithm of the complex
determinant functions, which appear when the grand-potential
functional is calculated in the SFT, and treat the exponentially
increasing number of poles without actually summing them.
Our scheme is based on the same idea proposed earlier in
Ref. [43], but simplifies the integrand of the grand-potential
functional as in the zero-temperature scheme described in
Ref. [13]. We also derive the analytic formulas for entropy
and specific heat within the framework of the SFT for which
the exact-diagonalization method is easily applied.

For demonstration, we apply this method to the single-
band Hubbard model on the square lattice at half filling
and calculate various thermodynamic quantities as well as
the single-particle excitation spectra at finite temperatures.
Based on the temperature and the interaction dependence
of the thermodynamic quantities, we discuss the crossover
from a Slater-type insulator to a Mott-type insulator in the
paramagnetic state. We also apply this method to the finite-
temperature CDIA, i.e., the finite-temperature VCA with bath
orbitals attached to each cluster, and examine the Mott metal-
insulator transition in the paramagnetic state at half filling.
We construct the finite-temperature phase diagram from the
analysis of the grand-potential functional, and also investigate
the single-particle excitations in the finite-temperature CDIA.

The rest of this paper is organized as follows. After
introducing the single-band Hubbard model in Sec. II, a
finite-temperature VCA with the exact-diagonalization cluster
solver is described in depth in Sec. III. The block-Lanczos
method for cluster single-particle Green’s functions is de-
scribed in Sec. IV. The method is applied in Sec. V to the
single-band Hubbard model and calculate various quantities
at finite temperatures, including grand potential, entropy, spe-
cific heat, and single-particle excitation spectra within the
VCA. The paramagnetic Mott metal-insulator transition at
half filling is also investigated within the CDIA in Sec. VI.
In deriving the formalism of the CDIA, we address an issue of
how to appropriately treat the contribution of the bath degrees
of freedom to the grand-potential functional. Section VII is
devoted to the summary of this paper and the discussion
on other applications and further extensions. More technical
details are provided in Appendixes A–D.

II. MODEL

We consider the two-dimensional single-band Hubbard
model on the square lattice defined as

Ĥ = −
∑
〈i,j〉

∑
σ

tij (ĉ†iσ ĉjσ + H.c.)

+U
∑

i

n̂i↑n̂i↓ − μ
∑

i

∑
σ

n̂iσ , (1)
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where ĉiσ (ĉ†iσ ) denotes the annihilation (creation) operator of
an electron with spin σ (=↑,↓) at site i and n̂iσ = ĉ

†
iσ ĉiσ .

Notice that operators are indicated with hat. The hopping
integral tij = t is between the nearest neighbor sites i and
j on the square lattice and the sum in the first term denoted
as 〈i, j 〉 runs over all independent pairs of sites i and j . The
on-site Coulomb repulsion between electrons is represented
by U and the chemical potential μ is determined so as to
keep the average electron density n at half filling, i.e., n = 1.
Hereafter, we set h̄ = kB = 1 and we use t as the energy unit
unless otherwise stated. We also set the lattice constant to
be one. We refer to z and ω as complex and real numbers,
respectively. Although here we choose this particular model,
the formulation described below is readily applied for any
fermion systems with intrasite interactions, including multi-
band Hubbard models.

III. VARIATIONAL CLUSTER APPROXIMATION
AT FINITE TEMPERATURES

In this section, we describe a formalism of the finite-
temperature VCA with the exact-diagonalization cluster
solver. The VCA is one of the self-consistent quantum-cluster
methods based on the SFT, which by its nature is formulated
at finite temperatures [9–11].

A. Self-energy-functional theory

In the SFT, the grand-potential functional �[�] as a func-
tional of the self-energy � is given as

�[�] = F[�] − 1

β
Tr ln

( − G−1
0 + �

)
, (2)

where

F[�] = �[G[�]] − 1

β
Tr(G[�] �) (3)

is the Legendre transform of the Luttinger-Ward potential
�[G] and the single-particle Green’s function G[�] is given
as the functional of � [6,9]. β = 1/T is the inverse tem-
perature and G0 is the noninteracting single-particle Green’s
function. Tr represents the functional trace which runs over
all (both spatial and temporal, either discrete or continuous)
variables of the summand. For example, when the system is at
equilibrium, the summand becomes diagonal with respect to
the Matsubara frequency

iων = (2ν + 1)π iT , (4)

where i = √−1 and ν = 0,±1,±2, . . . [2], as explicitly
shown below in Eq. (12). The stationary condition

δ�[�]

δ�

∣∣∣∣
�=�∗

= 0 (5)

gives the Dyson’s equation

G−1[�∗] = G−1
0 − �∗, (6)

and the functionals �[�∗] and G[�∗] at the stationary point
are the grand potential and the single-particle Green’s function
of the system, respectively [6,9]. Therefore the self-energy �

is considered as a trial function for the variational calculation.

The VCA is an approximate but nonperturbative method to
calculate the grand potential [7], and is based on the fact that
the functional form of F[�] depends only on the interaction
terms, but not the one-body terms, of the Hamiltonian Ĥ .
In the VCA, the lattice on which the Hamiltonian Ĥ is
defined is divided into disconnected finite-size clusters with
no intercluster terms, and each cluster is described by Hamil-
tonian Ĥ ′. Although the clusters are not necessarily identical
with each other, here we assume for simplicity that they are
identical. The reference system is introduced as a collection
of these disconnected clusters forming a superlattice. The
cluster Hamiltonian Ĥ ′ must have the same interaction terms
as the original Hamiltonian Ĥ but the one-body terms can
be different. Therefore the functional form of F[�] for the
reference system is exactly the same as that for the original
system.

The exact grand potential of the reference system is

�r[�r] = F[�r] − 1

β
Tr ln

( − G−1
r0 + �r

)
, (7)

where �r and Gr0 are the exact self-energy and the non-
interacting single-particle Green’s function of the reference
system, respectively. Since F[�] shares the same functional
form in the original and reference systems, we can eliminate
the unknown F[�] from Eq. (2) by assuming that the trial
self-energy � space of the original system is restricted within
the self-energy �r space of the reference system, which is
parametrized with a set of one-particle parameters λ, appear-
ing as the one-body terms in the Hamiltonian for the reference
system. The resulting approximate grand-potential functional
for the original system is thus

�[�r] = �r[�r] − 1

β
Tr ln (I − V Gr[�r]), (8)

where I is a unit matrix,

V = G−1
r0 − G−1

0 (9)

represents the difference of the one-body terms between the
original and reference systems, and

Gr[�r] = (
G−1

r0 − �r
)−1

(10)

is the exact Green’s function of the reference system [13].
Because a set of one-particle parameters λ is considered as
the variational parameter [11], the variational principle in
Eq. (5) is now regarded as the stationary condition for these
variational parameters, i.e.,

∂�[�r,λ]

∂λ

∣∣∣∣
λ=λ∗

= 0, (11)

where λ∗ is a set of optimal variational parameters.
Since the reference system is composed of the discon-

nected clusters on the superlattice, Tr in Eq. (8) is now
explicitly given as

Tr[· · · ] =
∞∑

ν=−∞

∑
k̃

eiων0+
tr[· · · ], (12)

where k̃ is a wave vector belonging to the Brillouin zone
of the superlattice (i.e., the reduced Brillouin zone) and tr
in the right-hand side represents trace over the remaining
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indices such as spins, orbitals, and sites within the cluster.
The convergence factor eiων0+

with 0+ being infinitesimally
small positive is due to the causality at an equal imaginary
time [6] and allows us to convert the Matsubara sum into
the contour integral involving the Fermi-distribution function
in the complex z plane. In particular, the convergence factor
plays a role if the integrand decays slowly as 1/z for large
|z| and the path of the contour integral reaches to the infinity
in the left-half plane. However, as shown in the following,
the contour proposed here for the VCA at finite temperatures
is within a finite range. Therefore we omit the convergence
factor hereafter.

B. Grand-potential functional

Using the relation tr ln[· · · ] = ln det[· · · ], the grand-
potential functional � (:=�[�r]/NLc) per site is now given
as

�= 1

Lc
�′ − T

NLc

∞∑
ν=−∞

∑
k̃

ln det[I −V (k̃)G′(iων )], (13)

where �′ and G′(iων ) are respectively the grand potential
(i.e., �r[�r]/N ) and the single-particle Green’s function of
the single cluster containing Lc sites, and N is the number of
clusters. V (k̃) is the Fourier transform of Eq. (9) with respect
to the superlattice. For simplicity, the functional dependence
on �r is omitted in Eq. (13). The exact grand potential �′ of
the single cluster is evaluated as

�′ = − 1

β
ln

smax∑
s=0

exp(−βEs ), (14)

where Es is the sth eigenvalue of Ĥ ′ with E0 � E1 � E2 �
· · · � Esmax . Note that the chemical-potential term is also
included in the Hamiltonian Ĥ ′ [see Eq. (1)]. In practical
calculations, the sum in Eq. (14) is terminated at smax for a
given temperature T in order to save the computational cost.
This is a legitimate approximation because the contribution
from excited states with larger Es becomes exponentially
smaller. We choose smax to satisfy

exp
( − βEsmax

)
/ exp(−βE0) � ε, (15)

where E0 is the ground state energy of Ĥ ′ and ε is a threshold
for thermal fluctuations [80]. We typically set ε = 1 × 10−6

for all the clusters (see Fig. 4). This ε value small enough to
safely ignore the contribution from high-energy excited states
in all quantities studied here.

The single-particle Green’s function G′(z) of the cluster is
given as

G′σσ ′
ij (z) =

smax∑
s=0

eβ(�′−Es )
(
G

σσ ′,+
ij,s (z) + G

σσ ′,−
ij,s (z)

)
, (16)

where

G
σσ ′,+
ij,s (z) = 〈�s |ĉiσ [z − (Ĥ ′ − Es )]−1ĉ

†
jσ ′ |�s〉, (17)

G
σσ ′,−
ij,s (z) = 〈�s |ĉ†jσ ′[z + (Ĥ ′ − Es )]−1ĉiσ |�s〉, (18)

and |�s〉 is the sth eigenstate of Ĥ ′. Notice that (i) the sum in
Eq. (16) is terminated at smax and (ii) the same expression for

FIG. 1. Complex z plane for the contour integral appearing in
Eqs. (19) and (23). The fermionic Matsubara frequencies are denoted
by solid dots on the imaginary axis, where the Fermi-distribution
function nF(z) displays singularities. The contour CR , on which the
complex frequency is represented as z = Reiθ , is shown by a red
solid line with arrow. The branch cuts and branch points of ln det[I −
V (k̃)G′(z)] (see Sec. III C) are also indicated by red dotted lines and
crosses on the real axis, respectively.

the single-particle Green’s functions of a cluster is employed
in the CDMFT with exact-diagonalization impurity solvers
[81–83]. It is apparent in Eq. (16) that G′(iων ) ∈ CL×L and
thus V (k̃) ∈ CL×L in Eq. (13), where Cm×n represents a set
of m × n complex matrices and L = 2Lc denotes the number
of the single-particle labels in the cluster, including the spin
degrees of freedom for the single-band Hubbard model in
Eq. (1). Equations (17) and (18) are calculated efficiently
by employing the block-Lanczos method. Since the efficient
calculation of the cluster’s single-particle Green’s function
is crucial for the efficient calculations of VCA in particu-
lar at finite temperatures, the block-Lanczos method for the
single-particle Green’s function will be described separately
in Sec. IV.

In the calculation of the grand-potential functional at fi-
nite temperatures, there appears the infinite sum over the
Matsubara frequencies, which cannot be performed directly.
In addition, the contribution from the high-frequency part
is not negligible because the integrand decays in frequency
as ∼−tr[V (k̃)]/z [13]. Therefore the sum over Matsubara
frequencies in Eq. (13) is evaluated by the combination of
the direct summation and a contour integral [43,84,85]. The
low-frequency part (|ων | � ωνmax ) is summed explicitly, while
the high-frequency part of the sum is replaced by the contour
integral along the closed path CR as shown in Fig. 1, i.e.,

T

∞∑
ν=−∞

[· · ·] = T

νmax∑
ν=−νmax−1

[· · ·] +
∮

CR

dz

2π i
nF(z)[· · ·], (19)

where

nF(z) = [exp(βz) + 1]−1 (20)
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is the Fermi-distribution function. On the path CR , the com-
plex frequency z is represented as z = R exp(iθ ) where R > 0
is a fixed radius and θ is a variable angle. The radius R must be
larger than the cutoff Matsubara frequency ωνmax and smaller
than the next-higher one ωνmax+1, i.e., ωνmax < R < ωνmax+1. In
addition, since nF(z) in the integrand exhibits poles at the
fermionic Matsubara frequencies, it is better to choose R to
be a bosonic Matsubara frequency, which is the midpoint of
the two successive fermionic Matsubara frequencies. There-
fore we choose

R = ωνmax + πT = 2(νmax + 1)πT . (21)

Since the second term on the right-hand side of Eq. (19) is
the contour integral of the complex logarithmic function, the
location of branch cuts of the integrand must be examined
carefully. It is shown in Sec. III C that the contour integral in
Eq. (19) can be safely performed as long as the radius R of the
contour CR is large enough to enclose the poles of det G′(z)
and det G̃(k̃, z), where

G̃(k̃, z) = [G0(k̃, z)−1 − �r (z)]−1

= [G′(z)−1 − V (k̃)]−1 (22)

is the approximate single-particle Green’s function of the
original system Ĥ within the CPT, as discussed in Sec. III F,
and G0(k̃, z) is the Fourier transform of G0(z), i.e., the
noninteracting single-particle Green’s function of the original
system Ĥ , with respect to the superlattice of the clusters. Note
also that Eq. (9) is used for the second equality in Eq. (22).

The cutoff Matsubara frequency ωνmax can be estimated
as follows. Since G̃(k̃, z) is the approximate single-particle
Green’s function of the original system Ĥ [see Eq. (48) in
Sec. III F], we can assume that the largest pole is approx-
imately given as a(ω′

max + W ), where a is a dimensionless
constant of the order of 1, ω′

max is the largest (in absolute
value) single-particle excitation energy of the cluster, and W

is the noninteracting bandwidth of Ĥ . Therefore we can safely
chose ωνmax as the minimal fermionic Matsubara frequency
which satisfies ωνmax > a(ω′

max + W ). We typically set a = 2
and find that this performs efficiently. Note also that the
largest single-particle excitation energy ω′

max of the cluster
can be readily calculated by the Lanczos method for the
single-particle Green’s function.

Equation (19) now reduces to

T

∞∑
ν=−∞

[· · · ] = 2T

νmax∑
ν=0

Re[· · · ]

+ Re
∫ π

0

dθReiθ

π
nF(Reiθ )[· · · ]. (23)

Here the symmetry of the integrand with respect to the real
axis is employed to halve the range of the sum and the integral.
The justification for this is essentially for the same reason
in the zero-temperature calculation [13] [also see Eq. (32)].
The integral in Eq. (23) can be readily evaluated because
the exact-diagonalization method allows one to compute the
single-particle Green’s function G′(z) for an arbitrary com-
plex frequency z (see Sec. IV and Appendix C).

Finally, we leave a note on the summation over k̃ in
Eq. (13). In order to achieve a desired accuracy, the coarser
k̃ grid is adapted for the larger frequencies (in absolute value)

because the integrand, i.e., G′(z), becomes smoother for the
frequency away from the real axis. Therefore the summation
over k̃ should be performed with the different number of k̃
points adapted separately for each frequency. This can be
applied not only for the calculation of the grand-potential
functional in Eq. (13) but also for the calculation of other
thermodynamic quantities such as entropy and specific heat as
well as for the expectation value of single-particle operators.

C. Remarks on branch cuts

In order to justify Eq. (19) with the properly chosen cutoff
Matsubara frequency in Eq. (21), we examine the branch-cut
structure of ln det [I − V (k̃)G′(z)]. For this purpose, it is
useful to rewrite ln det [I − V (k̃)G′(z)] as

ln det[I − V (k̃)G′(z)] = ln
det G′(z)

det G̃(k̃, z)
(24)

=
Npole∑
p=1

ln

(
z − ωk̃,p

z − ωp

)
, (25)

where ωp and ωk̃,p are poles of det G′(z) and det G̃(k̃, z),
respectively, and Npole is the number of poles of the deter-
minants. The second equality follows from the fact that the
entries of each matrix are the rational function of z and thus
the determinant can be written as a fraction of polynomials
[86], i.e.,

det G′(z) =
∏Nzero

r=1 (z − ζr )∏Npole

p=1 (z − ωp )
(26)

and

det G̃(k̃, z) =
∏Nzero

r=1 (z − ζr )∏Npole

p=1 (z − ωp,k̃ )
. (27)

Here, ζr is the real frequency at which the determinants
become zero, e.g., det G′(z = ζr ) = 0, and Nzero is the number
of zeros of the determinants in the complex z plane. Recalling
that G′(z) ∈ CL×L and G̃(k̃, z) ∈ CL×L, Npole and Nzero must
be related with

Npole − Nzero = L (28)

because the diagonal elements of the Green’s function decay
in frequency as 1/z and the offdiagonal elements decay faster
than 1/z for large |z| to satisfy the anticommutation relation
of the fermion operators [see Eq. (85)]. Further analytical
properties of the single-particle Green’s function matrix can
be found, for example, in Refs. [43,86–88].

Notice in Eqs. (26) and (27) that det G′(z) and det G̃(k̃, z)
become zero at the same frequencies z because they share the
same self-energy �r (z) of the cluster [see Eq. (22)]. Therefore
the contributions of Nzero zeros in Eq. (24) cancel out and
only the contributions of Npole poles remain in Eq. (25). It is
thus clear from Eq. (25) that ln det [I − V (k̃)G′(z)] has Npole

branch cuts on the real-frequency axis with finite intervals,
as schematically shown in Fig. 2. Therefore, as long as CR

in Eq. (19) is chosen to enclose all these poles of det G′(z)
and det G̃(k̃, z), i.e., R > max(|ωp|, |ωk̃,p|), the branch cuts
of ln det [I − V (k̃)G′(z)] are all included inside the contour

205114-5



KAZUHIRO SEKI, TOMONORI SHIRAKAWA, AND SEIJI YUNOKI PHYSICAL REVIEW B 98, 205114 (2018)

FIG. 2. The branch cuts of ln det [I − V (k̃)G′(z)] with Npole =
4 in the complex z plane [see Eq. (25)]. The crosses represent
the poles of det G′(z) and det G̃(k̃, z). The thick red dotted lines
represent the branch cuts across which Im ln det [I − V (k̃)G′(z)]
changes discontinuously by ±2π . The branch cuts are all on the
real-frequency axis in a finite range bounded by the largest and
smallest poles of det G′(z) and det G̃(k̃, z).

path and hence do not influence the calculation of the grand-
potential functional �.

This preferable analytical property of ln det[I −
V (k̃)G′(z)] for the contour integral in Eq. (19) results from
the cancellation of the zeros of det G′(z) and det G̃(k̃, z). The
cancellation occurs because the exact self-energy �r (z) in
G′(z) for the cluster Hamiltonian Ĥ ′ is used in G̃(k̃, z) for
the original system Ĥ , which is the essential point of the SFT
for deriving the practical quantum cluster approaches [21].
Basically the same argument is applied for the cancellation
of “R′′

� in Ref. [10]. However, it should be reminded that,
according to the SFT, the sharing of the same self-energy
is not sufficient to eliminate the Legendre transform of the
Luttinger-Ward potential, i.e., F [�]. In order to do so, the
original system of interest and the reference system must
share the same “interaction term” and the self-energy.

On the other hand, Eqs. (26)–(28) indicate that the
branch-cut structure of ln det G′(z) and ln det G̃(k̃, z)
is different from that of ln det [I − V (k̃)G′(z)] because
Npole �= Nzero. The branch-cut structure of these two functions
is better understood in the extended complex plane or the
Riemann sphere, consisting of the complex number C and
the point at infinity ∞. In the extended complex plane, the
number of poles (N ext.

pole) must be the same as that of the zeros
(N ext.

zero) because the infinity is included [89]. In the present
case, the multiple L zeros of det G′(z) and det G̃(k̃, z) locate
at ∞, and thereby N ext.

zero = Nzero + L = Npole = N ext.
pole. Thus L

branch cuts must lie between some points on the real axis and
∞ for ln det G′(z) and ln det G̃(k̃, z). Therefore the contour
integrals of ln det G′(z) and ln det G̃(k̃, z) along CR should
not be performed separately because the integral variable
z may cross the different branch cuts. Instead, the contour
integral should be performed for the logarithm of the ratio
of these two functions as in Eq. (24), because the integrand
remains on the principal branch and thus it is single valued
through the contour integral along CR for sufficiently large R

[Eq. (21)].
To better understand the analytical properties of these

logarithm-determinant functions appearing in the SFT, Fig. 3
shows the imaginary parts of these functions, i.e.,

φ1(z) = Im ln det G′
σ (z), (29)

φ2(z) = Im ln det G̃σ (k̃, z), (30)

FIG. 3. Intensity plots of (a) φ1(z) = Im ln det G′
σ (z), (b) φ2(z) = Im ln det G̃σ (k̃, z), and (c) φ3(z) = Im ln det [I − V σ (k̃)G′

σ (z)] in the
complex z plane for the Hubbard model on the square lattice with Lc = 2 × 2 and k̃ = (0, 0). The other parameters are U/t = 8, μ/t = 4,
and T/t = 0.1. (d) Enlarged figure of (c) near the real axis. The phases φ1(z), φ2(z), and φ3(z) are plotted in the range of −π < φi � π , as
indicated by the color bar.
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FIG. 4. Clusters used in this study are indicated by solid lines.
The size of each cluster is also indicated. The primitive translational
vectors of each cluster is summarized in Table I. The red (blue)
circles represent sites on sublattice A (B) of the square lattice.

and

φ3(z) = Im ln det[I − V σ (k̃)G′
σ (z)], (31)

numerically calculated for the single-band Hubbard model Ĥ

on the square lattice with a reference system of Lc = 2 × 2
site cluster (see Fig. 4) at U/t = 8, μ/t = 4, T/t = 0.1,
and k̃ = (0, 0), assuming the same one-body terms as in
Ĥ (i.e., no variational parameters) for the reference system.
Here, G′

σ (z), G̃σ (k̃, z), and V σ (k̃) denote the block-diagonal
elements of G′(z), G̃(k̃, z), and V (k̃) with respect to the spin
index σ , respectively, e.g., G′(z) = G′

↑(z) ⊕ G′
↓(z). Thus

their matrix dimension is Lc × Lc. The range of phases is
−π < φi (z) � π for i = 1, 2, and 3, as indicated in Fig. 3.
The branch cuts are therefore located at the boundaries where
a sudden change of the color from blue to red (from −π to π )
and vice versa occurs in Fig. 3.

It is first noticed in Fig. 3 that the phases φ1(z), φ2(z), and
φ3(z) are antisymmetric in the complex z plane with respect
to the real axis, i.e.,

φi (z
∗) = −φi (z). (32)

This is readily shown from the fact that G′(z∗) = G′(z)†,
V (k̃) = V (k̃)†, and det A† = (det A)∗ for a regular matrix
A. The antisymmetry with respect to the imaginary axis, i.e.,
φi (−z) = −φi (z), found in Fig. 3 is due to the particle-hole
symmetry for this example.

More interestingly, Figs. 3(a) and 3(b) show clearly that
both ln det Gσ (z) and ln det G̃σ (k̃, z) have branch cuts lo-
cated in the complex z plane off the real axis, in addition
to branch cuts on the real axis. In particular, we can find
the four (=Lc) branch cuts connecting branch points on the
real axis and the infinity. On the other hand, the branch
cuts of ln det [I − V σ (k̃)G′

σ (z)] are all on the real axis, as
shown in Figs. 3(c) and 3(d). Therefore the contour integral of

ln det [I − V σ (k̃)G′
σ (z)] is well defined as long as the radius

of the path CR is large enough, while the contour integrals of
ln det G′

σ (z) and ln det G̃σ (k̃, z) are not well defined in gen-
eral. The analytical properties of the logarithm-determinant
functions examined here are also essential for the analysis of
the grand-potential functional � in Appendix A, where the
application of the kernel-polynomial method (KPM) [90] for
the VCA is also discussed.

D. Entropy and specific heat

Thermodynamic quantities such as entropy S and specific
heat C are derived from temperature derivatives of the grand
potential. It should be noted however that the grand potential
depends on the temperature both explicitly and implicitly.
The explicit dependence is from the Boltzmann factor in the
grand potential and the single-particle Green’s function of the
reference system [see Eqs. (13), (14), and (16)]. The implicit
dependence is due to the fact that the optimal variational
parameters λ∗(T ) depend on the temperature. This is because
the stationary condition

∂�(T ,λ)

∂λ

∣∣∣∣
λ=λ∗

= 0 (33)

gives the temperature dependent optimal variational param-
eters λ∗(T ) (for example, see Fig. 6), despite the fact that
the variational parameters λ themselves are independent of
the temperature. Therefore the temperature dependence of the
grand potential should be considered as � = �(T ,λ∗(T )).
The implicit dependence on the external magnetic field of the
grand-potential functional have already been pointed out in
Refs. [91,92].

The entropy S is the first derivative of the grand potential
with respect to the temperature and is given as

S = −d�

dT
= −∂�

∂T
− dλ∗

dT
· ∂�

∂λ∗ . (34)

The second term of the right-hand side of Eq. (34) is zero
because near the stationary point λ∗ at a fixed T the grand
potential has a quadratic form

�(λ∗ + h) ≈ �(λ∗) + 1

2

∑
i,j

∂2�

∂λi∂λj

∣∣∣∣
λ=λ∗

hihj , (35)

where h = λ − λ∗, and therefore ∂�(T ,λ∗)/∂λ∗ = 0. The
entropy per site is thus

S = 1

Lc
S ′ + 1

NLc

∞∑
ν=−∞

∑
k̃

(
1 + 1

β
DT

)

× ln det[I − V (k̃)G′(iων )], (36)

where S ′ = −∂�′/∂T is the exactly calculated entropy of the
cluster. Equation (36) can be derived from the T derivative
of Eq. (13) by taking into account the T dependence of
the Matsubara frequencies. In Appendix B, we also show
that Eq. (36) can be derived by converting the sum over
Matsubara frequencies into the contour integral involving the
Fermi-distribution function. In the above equation, we have
introduced the following temperature derivative operator [also
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see Eqs. (B8) and (B9)]

DT := ∂

∂T
+ iωνβ

∂

∂ (iων )
. (37)

The last term of Eq. (36) is then given as

DT ln det(I − V G′) = −tr[(I − V G′)−1V (DT G′)], (38)

where ∂T ln det A(T ) = tr[A(T )−1∂T A(T )] is used for any
regular and differentiable matrix A(T ). The infinite sum of
Matsubara frequencies in the right-hand side of Eq. (36) can
be decomposed into the finite sum of Matsubara frequencies
and the contour integral, as in Eq. (19), because the frequency
derivative of ln det [I − V (k̃)G′(iων )] simply results in the
sum of discrete poles distributed within a finite range on the
real-frequency axis [see Eq. (25)].

The specific heat C is obtained by the second derivative
of the grand potential with respect to the temperature and is
given as

C = −T
d2�

dT 2
= −T

∂2�

∂T 2
− T

dλ∗

dT
· ∂2�

∂λ∗∂T
. (39)

The first term in the right-hand side of Eq. (39) is expressed
as

−T
∂2�

∂T 2
= 1

Lc
C ′ + 1

NLc

∞∑
ν=−∞

∑
k̃

(
2

β
DT + 1

β2
D2

T

)

× ln det[I − V (k̃)G′(iων )], (40)

where C ′ = −T ∂2�′/∂T 2 is the exactly calculated specific
heat of the cluster. The last term in the right-hand side of
Eq. (40) is given as

D2
T ln det(I − V G′) = −tr[{(I − V G′)−1V (DT G′)}2]

− tr[(I − V G′)−1V (D2
T G′)], (41)

where ∂T A(T )−1 = −A(T )−1[∂T A(T )]A(T )−1 is used. Note
that, in contrast to the entropy, the second term in the right-
hand side of Eq. (39) does not vanish in general. Since the
variational parameter dependence of the grand potential is not
analytically known, the specific heat can be calculated much
easier by numerically differentiating the entropy or the grand
potential with respect to T .

Before ending this subsection, three remarks are in order.
First, derivatives of G′(z) with respect to T and z are required
for DT G′(iων ) and D2

T G′(iων ). Since G′(z) depends on T

only through the Boltzmann factor [see Eq. (16)], ∂T G′(z)
and ∂2

T G′(z) are easily obtained. More specifically, ∂T G′(z)
and ∂2

T G′(z) are obtained by replacing the factor eβ(�′−Es ) in
Eq. (16) with

∂T eβ(�′−Es ) = eβ(�′−Es )(Es − E′)β2 (42)

and

∂2
T eβ(�′−Es ) = eβ(�′−Es ){(Es − E′)2β4

−C ′β2 − 2(Es − E′)β3}, (43)

respectively, where

E′ = �′ + T S ′ (44)

is the internal energy of the cluster. Note that from our
definition of the Hamiltonian in Eq. (1) the internal energy
E′ includes the chemical-potential term. ∂zG′(z) and ∂2

z G′(z)
can be easily evaluated when G′(z) is given in the Lehmann
representation (see Sec. IV A). However, if the single-particle
Green’s function G′(z) is evaluated by the continued-fraction
expansion, the evaluation of ∂zG′(z) and ∂2

z G′(z) is slightly
involved and the detail is summarized in Appendix C.

Second, one may tempt to rewrite [I − V (k̃)
G′(iων )]−1V (k̃) = [V −1(k̃) − G′(iων )]−1 in Eqs. (38)
and (41), assuming that V (k̃) is a regular (invertible) matrix
for arbitrary k̃. However, this is often not the case because
several eigenvalues of the Hermitian matrix V (k̃), which
describes the intercluster hopping terms as defined in Eq. (9),
are often zero and thus V −1(k̃) does not always exist.

Third, we have regarded that the chemical potential μ is in-
dependent of temperature T as in the grand canonical ensem-
ble, i.e., � = �(T ,μ,λ∗(T )). However, generally one would
fix the particle density n by tuning the chemical potential at
a given T . In this case, the implicit dependence on the tem-
perature of the grand potential through the chemical potential
should also be considered, i.e., � = �(T ,μ(T ),λ∗(T )).

E. Reference system

As described in Sec. III A, the reference system is com-
posed of disconnected clusters and the Hamiltonian in each
cluster is described as

Ĥ ′ = Ĥ + Ĥh′ , (45)

where Ĥ is the same Hamiltonian as in Eq. (1) but is defined
only within the cluster with open boundary conditions, and

Ĥh′ = h′ ∑
i

eiQ·r i (n̂i↑ − n̂i↓). (46)

The second term Ĥh′ introduces the variational magnetic field
h′ in order to investigate the antiferromagnetism in the Hub-
bard model. Here, Q = (π, π ) and r i represents the location
of site i in a cluster. Since we consider the particle-hole
symmetric case, the particle density can be kept at half filled
(n = 1) without introducing the variational site-independent
energy [93].

Although the variational magnetic field is applied along the
z direction in Eq. (46), the solutions for in-plane and out-of-
plane antiferromagnetism are degenerated. We consider the
out-of-plane antiferromagnetism because the z component of
spin is conserved in Ĥh′ .

The optimal variational parameter h′∗ is determined so as
to satisfy the stationary condition

∂�

∂h′

∣∣∣∣
h′=h′∗

= 0. (47)

A solution with h′∗ �= 0 corresponds to an antiferromagnetic
state. The clusters used here are shown in Fig. 4. The corre-
sponding primitive translational vectors R1 and R2 for each
cluster are given in Table I.
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TABLE I. The primitive translational vectors R1 and R2 of the
clusters shown in Fig. 4.

Cluster R1 R2

2 × 2 (2,0) (0,2)
3 × 2 (3,1) (0,2)
4 × 2 (4,0) (0,2)
8 (2,2) (−2, 2)
5 × 2 (5,1) (0,2)
10 (3,1) (−1, 3)

F. Cluster perturbation theory

The quantum-cluster methods including the VCA break the
translational symmetry and thus an appropriate prescription
is necessary to obtain the translationally invariant single-
particle Green’s functions [20,94]. For this purpose, here, we
employ the CPT [18–20], in which the single-particle Green’s
function is given as

Gσσ ′
(k, z) = 1

Lc

Lc∑
i,j

[G̃
σσ ′

(k, z)]ij e−ik·(ri−rj ), (48)

where ri is the position of site i within a cluster and G̃
σσ ′

(k, z)
is the (σ, σ ′) element of G̃(k, z) defined in Eq. (22). The CPT
is readily extended to finite temperatures by using the single-
particle Green’s function of a cluster at finite temperatures
given in Eq. (16) [80,95].

The CPT is exact both in the noninteracting limit (U =
0) and in the atomic limit (t = 0), and is expected to be
a good approximation in strongly interacting regime since
it is derived originally from the strong coupling expansion
for the single-particle Green’s functions. The CPT approx-
imation is practically improved with increasing the cluster
size Lc and becomes exact for Lc → ∞, independently of
U/t [18]. When the exact-diagonalization cluster solver is
employed, the size of clusters which can be treated is rather
limited, typical clusters being shown in Fig. 4, especially at
finite temperatures where higher excited states are required.
However, the CPT can treat spatial fluctuations exactly within
a cluster and is expected to be a better approximation at
high temperatures (e.g., T � t2/U for the Hubbard model)
for a given finite-size cluster because the spatial fluctuations
generally become short-ranged at high temperatures. Indeed,
quantum Monte Carlo studies for relatively large system sizes
[96–98] has shown that at high temperatures the dispersion re-
lation which can be identified in the single-particle excitation
spectrum of the single-band Hubbard model resemble those
obtained by the Hubbard-I approximation [98–100], which
neglects the spatial correlations and corresponds to the CPT
approximation with Lc = 1.

G. Comparison with previous formalism

Here we briefly summarize the previous VCA studies
at finite temperatures and compare those finite temperature
schemes with our formalism developed here. The VCA with
a single bath-impurity cluster was first applied for the single-
band Hubbard model to study metal-insulator transitions at

finite temperatures [10] and later for a particle-hole asymmet-
ric Hubbard model away from the half filling [41]. The ex-
tension to multi-band Hubbard models has also been reported
[39,40]. The thermodynamics and the single-particle excita-
tions at finite temperatures for a periodic Anderson model
[42] and the multiband Hubbard models for 3d transition-
metal oxides combined with the realistic band-structure cal-
culation have also been reported [43,46]. Moreover, a finite-
temperature VCA algorithm for Hubbard-like models with
a continuous-time quantum Monte Carlo (CTQMC) cluster
solver has been proposed to examine the temperature de-
pendence of thermodynamic quantities for the single-band
Hubbard model [44].

From the technical point of view, these previous finite-
temperature VCA methods except for Ref. [44] are based on
the analytical expression of the grand-potential functional at
finite temperatures [10], which requires the explicit evaluation
of the poles of G′(z) and G̃(k̃, z) (aslo see Appendix A).
The poles of the single-particle Green’s functions can be
obtained either by numerically solving the nonlinear equa-
tions of det G′(z)−1 = 0 and det G(k̃, z)

−1 = 0 [39,40,42] or
employing the Q-matrix method [79]. The Q-matrix method
gives the poles of the single-particle Green’s functions as
eigenvalues of a momentum-dependent Hermitian matrix.
Since solving the nonlinear equation is in general less stable
than the eigenvalue problem, the Q-matrix method can be
considered as a preferable method to solve det G′(z)−1 = 0
and det G(k̃, z)

−1 = 0. Although the Q-matrix method gives
accurate results, the dimension of the Hermitian matrix is as
large as the number of the pair of the excited states in the
cluster and thus the method rapidly becomes unfeasible at
finite temperatures [101]. For example, the number of poles
of the single-particle Green’s function for the single-band
Hubbard model on an eight-site cluster at half filling, which
can be fully diagonalized without difficulties, exceeds O(105)
at T/t = 0.35 even if the truncation scheme in Eq. (15)
is employed. Since the number of poles corresponds to the
dimension of the momentum-dependent Hermitian matrix to
be diagonalized in the Q-matrix method, the diagonalization
of the Hermitian matrix is difficult to be performed in the
realistic computational time. This is the main reason why
the previous finite-temperature VCA studies have been lim-
ited for relatively small clusters, especially, when the exact-
diagonalization cluster solver is employed.

In this paper, we propose another scheme for the finite-
temperature VCA with the exact-diagonalization cluster
solver, which is a natural extension of the scheme at zero
temperature [13]. The main advantage of our method is that
it requires neither the explicit evaluation of the poles of
G(z) nor G̃(k̃, z). Instead, the grand-potential functional is
calculated with the simple matrix operations of G′(z) and
V (k̃) and the simple numerical line integrals in the complex
plane, by taking full account of the analytical properties of
the finite-temperature single-particle Green’s functions. This
has a significant advantage in saving computational time,
which thus allows one to treat the larger clusters as compared
with the previous studies. Our scheme is based on the same
idea which has been proposed earlier in Ref. [43] but the
integrand of the grand-potential functional in our scheme is as
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simple as that in the zero-temperature calculation [13]. This
simplification is indeed justified by analyzing the analytical
properties of the integrand in Sec. III C. Our method should
be considered to be complementary to the finite-temperature
VCA with the CTQMC cluster solver, which often encounters
difficulties at low temperatures [44].

Recently, a method for the finite-temperature VCA on
quantum computers has been reported [102]. They have con-
sidered a two-site Hubbard cluster as an example and shown
that the grand-potential functional varies in a large energy
scale of ∼20t with the change of the variational parameters
(within the energy scale of ∼t) even for the noninteracting
case [102]. However, the self-energy should vanish in the
noninteracting limit and therefore no variational-parameter
dependence of the grand-potential functional is expected.
Although there may be some issues to be solved, the finite-
temperature VCA on quantum computers is certainly an inter-
esting direction for the future research.

IV. BLOCK LANCZOS METHOD FOR A
SINGLE-PARTICLE GREEN’S FUNCTION

Since the single-particle Green’s functions of the cluster
have to be calculated repeatedly in Eqs. (17) and (18), the
finite-temperature VCA is computationally smax + 1 times
more demanding than the zero-temperature VCA. Therefore
an efficient evaluation of the single-particle Green’s functions
of the cluster is crucial. This section is devoted to describe the
block-Lanczos method to evaluate the single-particle Green’s
functions in the Lehmann representation. First, we summarize
the following three points (i), (ii), and (iii) to explain why the
block-Lanczos method is preferable to the finite-temperature
VCA.

(i) As described in details in this section, the block-
Lanczos method can be faster than the standard Lanczos
method to calculate the single-particle Green’s functions of
the cluster at the expense of additional memory storage for
the block-Lanczos vectors.

(ii) The block-Lanczos method is robust against the loss
of orthogonality of Lanczos vectors as compered to the stan-
dard Lanczos method. This is because the Lanczos vectors
are explicitly orthonormalized within the block size L at
each block-Lanczos step [see Eq. (68)]. Therefore the block-
Lanczos method can describe the excited states and hence
compute the excitation spectrum more accurately than the
standard Lanczos method. This advantage of block-Lanczos
method holds also for solving the eigenvalue problem of the
cluster Hamiltonian. We employ the block-Lanczos method to
compute low-lying eigenvalues and eigenstates {Es, |�s〉} of
the cluster Hamiltonian when the dimension Ns of the Hilbert
space of the cluster for a given subspace (labeled by, e.g.,
particle number, z component of total spin, and point-group
symmetry) is large (typically when Ns � 10 000). Otherwise,
we use the LAPACK routines [103] to find all or selected
{Es, |�s〉}, according to the truncation scheme in Eq. (15).

(iii) The block-Lanczos method can be even more efficient
than the band-Lanczos method [104] in computational time.
This is because the block-Lanczos method can be imple-
mented on the basis of the level-3 BLAS and LAPACK
routines [103] due to the block-wise extension of the Krylov

space. For example, the block-diagonal entries Aj and the
block-subdiagonal entries Bj of the Hamiltonian matrix T k

can be constructed by a matrix-matrix multiplication and a QR
factorization, respectively [see Eqs. (66)–(68) and (73)]. The
matrix-vector multiplication required for the block-Lanczos
method in Eq. (66) can also be implemented efficiently as the
sparse-matrix by tall-skinny-matrix multiplication, where the
sparse matrix is the Hamiltonian matrix H ′ and the tall-skinny
matrix is the set of the block-Lanczos vectors Qk .

The block-Lanczos method coincides with the band-
Lanczos method if the deflation (i.e., deletion of almost
linearly dependent vectors during the process of extending
the Krylov space) does not occur [104]. In our experience,
the deflation may occur when noninteracting orbitals are
introduced as in the CDIA. However, in the VCA, we have
not met the necessity of the deflation so far. Therefore the
block-Lanczos method is still useful for the VCA.

In the following, we describe the block-Lanczos method.
Sections IV A and IV B are devoted to preliminaries, while
Secs. IV C–IV E are devoted to technicalities for a practical
implementation of the block-Lanczos method.

A. Lehmann representation

Inserting the identity operator 1̂ = ∑N±
st

r=1 |�±
r 〉〈�±

r | into
Eqs. (17) and (18) yields the Lehmann representation of the
single-particle Green’s function

G+
ij,s (z) =

N+
st∑

r=1

〈�s |ĉi |�+
r 〉〈�+

r |ĉ†j |�s〉
z − (E+

r − Es )
(49)

for the particle-addition part and

G−
ij,s (z) =

N−
st∑

r=1

〈�s |ĉ†j |�−
r 〉〈�−

r |ĉi |�s〉
z + (E−

r − Es )
(50)

for the particle-removal part, where i (= 1, 2, . . . , L) repre-
sents the generalized single-particle index, including the site
and spin indices, and |�s〉 (|�±

r 〉) is the eigenstate of the
cluster Hamiltonian Ĥ ′ in the N (N ± 1) electron subspace
with its eigenvalue Es (E±

r ) [105]. The dimension of the
Hilbert space for Ĥ ′ in the (N ± 1)-electron subspace is
denoted as N±

st . The exact single-particle Green’s functions in
the Lehmann representation given in Eqs. (49) and (50) are
evaluated when the full diagonalization of the Hamiltonian
matrix is possible with a reasonable amount of computational
time.

However, the exponential growth of the dimension of the
Hilbert space for Ĥ ′ restricts the full diagonalization to,
e.g., Lc � 8 for the half-filled single-band Hubbard model in
practice. Therefore the Lanczos method is often applied to
calculate the single-particle Green’s functions of the cluster
with Lc � 10 by taking advantage of the sparsity of the
Hamiltonian matrix [49,106,107]. Since the CPT and the
VCA prefer the open-boundary clusters to better approximate
the infinite system [19,21], the momentum of the cluster is not
a good quantum number. Moreover, in the VCA, variational
parameters which break point-group, time-reversal, or gauge
symmetry of the cluster Hamiltonian are often introduced
to examine possible symmetry-breaking states. Thus, in the
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standard Lanczos method with a single Lanczos vector, at
most O(L2) Lanczos procedures are required to obtain all
elements of G+

s (z) and G−
s (z).

On the other hand, in the block-Lanczos method, two
block-Lanczos procedures are sufficient, each for G+

s (z) and
G−

s (z), to calculate the single-particle Green’s functions. The
number of matrix-vector multiplications, which are the most
numerically demanding, is then reduced by a factor of L in
the block-Lanczos method, as compared with the standard
Lanczos method, at a cost of the memory workspace for
keeping two sets of L Lanczos vectors.

As in the standard Lanczos method for the single-particle
Green’s function [108], Eqs. (49) and (50) are approximately
computed in the block-Lanczos method by truncating the
intermediate (single-particle excitated) states as

G+
ij,s (z) ≈

M+∑
l=1

〈�s |ĉi |ψ+
l 〉〈ψ+

l |ĉ†j |�s〉
z − (ε+

l − Es )
(51)

and

G−
ij,s (z) ≈

M−∑
l=1

〈�s |ĉ†j |ψ−
l 〉〈ψ−

l |ĉi |�s〉
z + (ε−

l − Es )
, (52)

where ε±
l and |ψ±

l 〉 are approximate (Ritz) eigenvalue and
eigenstate of Ĥ ′ in the (N ± 1)-electron subspace obtained
by the block-Lanczos method and M± is the number of
the excited states calculated for the particle-addition/removal
spectrum.

This approximation can be considered as an approximation
for the Hamiltonian in the (N ± 1)-electron subspace. The
exact spectral representation of the Hamiltonian is given as

Ĥ ′ = P̂EigĤ
′P̂Eig =

N±
st∑

r=1

E±
r |�±

r 〉〈�±
r |, (53)

where P̂Eig = ∑N±
st

r=1 |�±
r 〉〈�±

r | (=1̂) is the projection operator
with the exact eigenstates |�±

r 〉. Accordingly, the resolvent is
given as

[z ∓ (Ĥ ′ − Es )]−1 =
N±

st∑
r=1

|�±
r 〉〈�±

r |
z ∓ (E±

r − Es )
, (54)

On the other hand, the spectral representation of the
Hamiltonian is approximated in Eqs. (51) and (52) as

Ĥ ′ ≈ P̂RitzĤ
′P̂Ritz =

M±∑
l=1

ε±
l |ψ±

l 〉〈ψ±
l |, (55)

where P̂Ritz = ∑M±
l=1 |ψ±

l 〉〈ψ±
l | is the projection operator with

the Ritz states |ψ±
l 〉 [49,109]. Accordingly, the resolvent is

approximated as

[z ∓ (Ĥ ′ − Es )]−1 ≈
M±∑
l=1

|ψ±
l 〉〈ψ±

l |
z ∓ (ε±

l − Es )
. (56)

As described below, the Ritz states should be obtained from
the block-Lanczos procedure starting with appropriate initial
states as in Eqs. (61) and (84).

For simplicity, we shall focus on the particle-addition part
of the single-particle Green’s functions G+

ij,s (z) in Eq. (51)
and describe how the block-Lanczos method can be applied to
accelerate the calculation. However, the following argument
is applied straightforwardly to the particle-removal part of the
single-particle Green’s functions G−

ij,s (z) in Eq. (52).

B. Numerical representation of operators and states

In the exact diagonalization method, the second-quantized
operators and many-body states are represented in the many-
body configuration basis |x〉, e.g., direct products of local
electron configurations [110], which form the complete or-
thonormal system, i.e., ∑

x

|x〉〈x| = 1̂ (57)

and

〈x|x ′〉 = δx,x ′ . (58)

For example, an operator Ô = ∑
x,x ′ |x〉〈x|Ô|x ′〉〈x ′| is repre-

sented as a matrix O with the matrix element

[O]xx ′ = 〈x|Ô|x ′〉, (59)

and a many-body state |φ〉 = ∑
x〈x|φ〉|x〉 as a vector φ with

the vector component

[φ]x = 〈x|φ〉. (60)

C. Initial vectors for block-Lanczos method

On the analogy of the standard Lanczos method for dy-
namical correlation functions [49,106,107], we consider a set
of one-electron added states

ĉ
†
1|�s〉, ĉ

†
2|�s〉, . . . , ĉ†L|�s〉, (61)

and represent them as a single rectangular matrix S ∈ CN+
st ×L

with the matrix element

[S]xi = 〈x|ĉ†i |�s〉. (62)

Note that the L column vectors contained in S are not or-
thonormalized in general. Since the block-Lanczos algorithm
requires the initial vectors to be orthonormalized [111], we
apply the QR factorization to obtain the orthonormal vectors,
i.e.,

S = Q1 B0, (63)

where Q1 ∈ CN+
st ×L is composed of L orthonormal column

vectors,

Q†
1 Q1 = IL (64)

with IL being the (L × L) unit matrix, and B0 ∈ CL×L is an
upper-triangular matrix. For the QR factorization in Eq. (63)
and also later in Eq. (68), we employ the Cholesky QR2 algo-
rithm [112,113], which is found faster than the Householder
QR or the modified Gram-Schmidt methods for most cases
studied here.

The static correlation function can be calculated as

〈�s |ĉi ĉ
†
j |�s〉 =

∑
x

〈�s |ĉi |x〉〈x|ĉ†j |�s〉 = [S†S]ij

= [B†
0 B0]ij . (65)
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This is analogous to the standard Lanczos method [see
Eq. (C4)].

D. Block Lanczos method

The block-Lanczos method first prepares the L column
vectors Q1 defined in Eq. (63) for the initial block-Lanczos
vector and constructs successively the block-Lanczos vectors
Q2, Q3, · · · , Qk+

max
by iterating the following procedures:

Ak := Q†
k H ′ Qk, (66)

Xk := H ′ Qk − Qk Ak − Qk−1 B†
k−1, (67)

Xk =: Qk+1 Bk, (68)

for k = 1 to k+
max [111]. Here, Q0 := 0 and [H ′]xx ′ =

〈x|Ĥ ′|x ′〉 is the matrix representation of the cluster Hamil-
tonian Ĥ ′ given in Eq. (45). The procedure in Eq. (68) should
be read as the QR factorization of Xk ∈ CN+

st ×L yielding the
(k + 1)st block-Lanczos vector Qk+1 ∈ CN+

st ×L and an upper-
triangular matrix Bk ∈ CL×L. The procedure in Eq. (66)
requires L matrix-vector multiplications to construct H ′ Qk .
Note also that Ak ∈ CL×L is Hermitian since H ′ ∈ CN+

st ×N+
st

is Hermitian. As shown in the following, M+ = k+
maxL is the

number of poles in the particle-addition part of the single-
particle Green’s function for |�s〉 [see Eq. (51)]. We typically
take M+ � 300 as in the zero-temperature calculations [13].

Let us define QL := [ Q1, . . . , Qkmax
] ∈ CN+

st ×M+
in which

M+ Lanczos vectors are contained. The Lanczos vectors are
orthonormalized, i.e.,

Q†
L QL = IM+ . (69)

Defining the Lanczos state |qm〉 by

〈x|qm〉 = [ QL]xm, (70)

Eq. (69) is simply rewritten as

〈qm|qn〉 = δm,n. (71)

Thus the Lanczos states are orthonormalized. However, since
M+ � N+

st in practice, the Lanczos states may not form a
complete set for the (N + 1)-electron Hilbert space. In other
words, the Lanczos method allows one to approximate many-
body states within the limited number M+ of the orthonor-
malized basis states |qm〉.

After the procedure (66) of the kth block-Lanczos iteration,
a matrix representation T k of the cluster Hamiltonian Ĥ ′ in
the Lanczos basis

[T k]mn = 〈qm|Ĥ ′|qn〉 (72)

can be constructed. It is readily found from Eqs. (66)–
(68) that Q†

j ′ H ′ Qj = Aj δj ′,j + Bj δj ′,j+1 + B†
j ′δj ′,j−1 and

thus the reduced Hamiltonian matrix T k ∈ CkL×kL is a
Hermitian-band matrix with a bandwidth L containing Aj

with j = 1, 2, . . . , k in the diagonal and Bj (B†
j ) with j =

1, 2, . . . , k − 1 in the subdiagonal (superdiagonal) blocks,

i.e.,

T k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 B†
1 0 · · · 0

B1 A2 B†
2

. . .
...

0
. . .

. . .
. . . 0

...
. . . Bk−2 Ak−1 B†

k−1
0 · · · 0 Bk−1 Ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (73)

The Ritz state can be obtained as follows. Let us define
T := T k+

max
. Since T is Hermitian, there exist a unitary matrix

U and a diagonal matrix D such that

D = U†TU = diag(ε+
1 , . . . , ε+

M+ ). (74)

Recalling in Eq. (72) that T is a matrix representation of Ĥ ′ in
the Lanczos states, i.e., [T ]mn = ∑

xx ′ 〈qm|x〉〈x|Ĥ ′|x ′〉〈x ′|qn〉,
or equivalently

T = Q†
L H ′ QL, (75)

we find that

D = ( QLU )†H ′( QLU ). (76)

Therefore the Ritz state |ψ+
l 〉 which satisfies Ĥ ′|ψ+

l 〉 =
ε+
l |ψ+

l 〉 is given by

〈x|ψ+
l 〉 = [ QLU]xl . (77)

In terms of the Lanczos states |qm〉, the Ritz state |ψ+
l 〉 can be

represented as

|ψ+
l 〉 =

∑
x

|x〉〈x|ψ+
l 〉 =

M+∑
m=1

[U]ml|qm〉, (78)

i.e., the linear combination of the M+(�N+
st ) Lanczos states

|qm〉 with the coefficients being the eigenvectors [U]ml of the
reduced Hamiltonian matrix T . It is readily found from the
orthonormality of the Lanczos states in Eq. (71) that

〈ψ+
l |ψ+

m 〉 = δlm. (79)

Since the Ritz states are orthonormalized, we can define a
projection operator

P̂Ritz =
M+∑
l=1

|ψ+
l 〉〈ψ+

l |, (80)

which satisfies P̂ 2
Ritz = P̂Ritz and acts as an identity op-

erator for linear combinations of the Ritz states, e.g.,
P̂Ritz(

∑
l al|ψ+

l 〉) = ∑
l al|ψ+

l 〉 with al being complex num-
ber. Inserting this projection operator into Eq. (17), we fi-
nally obtain the approximated single-particle Green’s function
given in Eq. (51). The Ritz values ε+

1 , ε+
2 , . . . , ε+

M+ of T thus
correspond to the poles of the single-particle Green’s function
in Eq. (51).

E. Spectral-weight sum rule and high-frequency expansion
of single-particle Green’s function

Now we consider the spectral weight of the single-particle
Green’s function which appears in the numerator of Eq. (51).
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From Eqs. (57), (62), and (77), we find that

〈ψ+
l |ĉ†j |�s〉 = [U† Q†

L S]lj = [U† Q†
L Q1 B0]lj

=
L∑

n=1

[U†]ln[B0]nj . (81)

Therefore the spectral weight does not require the set of
Lanczos vectors QL to be stored but instead only rather
smaller matrices U and B0. The upper bound L of the sum
over n in Eq. (81) can be replaced by j because B0 is the
upper-triangular matrix.

Here we show that the spectral-weight sum rule is satisfied
for the single-particle Green’s function [8,114] represented
with the block-Lanczos basis in Eqs. (51) and (52). For the
numerator of the particle-addition part of the single-particle
Green’s function in Eq. (51), we find from Eqs. (65) and (81)
that

M+∑
l=1

〈�s |ĉi |ψ+
l 〉〈ψ+

l |ĉ†j |�s〉 = 〈�s |ĉi ĉ
†
j |�s〉. (82)

Similarly, for the particle-removal part of the single-particle
Green’s function in Eq. (52), we can find that

M−∑
l=1

〈�s |ĉ†j |ψ−
l 〉〈ψ−

l |ĉi |�s〉 = 〈�s |ĉ†j ĉi |�s〉, (83)

provided that the initial block-Lanczos states are chosen as

ĉ1|�s〉, ĉ1|�s〉, . . . , ĉL|�s〉, (84)

instead of those given in Eq. (61). We thus find for a high
frequency |z| → ∞ that the single-particle Green’s function
in Eq. (16) is

G′
ij (z) = 1

z

smax∑
s=0

eβ(�′−Es )〈�s |{ĉi , ĉ
†
j }|�s〉 + O

(
1

z2

)

= δij

z
+ O

(
1

z2

)
, (85)

where {ĉi , ĉ
†
j } = ĉi ĉ

†
j + ĉ

†
j ĉi = δij is used. Therefore the

block-Lanczos method respects the spectral-weight sum rule
of the single-particle Green’s function.

Next, we show that the high-frequency expansion of
the single-particle Green’s function can also be easily ob-
tained when the Lehmann representation of the single-particle
Green’s function is available. The high-frequency expansion
of the single-particle Green’s function can be written as

G′
ij (z) =

∞∑
k=0

M(k)
ij

zk+1
, (86)

where

M(k)
ij =

∮
dz

2π i
zkG′

ij (z) (87)

is the kth moment of the single-particle Green’s function
[19,94,115,116]. The contour in Eq. (87) should enclose in
a counter-clockwise manner all poles of the single-particle
Green’s function, which are on the real frequency axis dis-
tributed within a limited range of frequency. Since G′

ij (z) is

given by Eqs. (16), (51), and (52), the contour integral in
Eq. (87) can be performed readily as

M(k)
ij =

smax∑
s=0

eβ(�′−Es )

⎡
⎣M+∑

l=1

(ε+
l − Es )k〈�s |ĉi |ψ+

l 〉〈ψ+
l |ĉ†j |�s〉

+
M−∑
l=1

(Es − ε−
l )k〈�s |ĉ†j |ψ−

l 〉〈ψ−
l |ĉi |�s〉

⎤
⎦. (88)

Equation (88) thus shows that matrixM(k)
ij is Hermitian, i.e.,

M(k)
ji = (

M(k)
ij

)∗
, (89)

and the single-particle Green’s function satisfies

G′
ji (z) = (G′

ij (z∗))∗. (90)

Note that M(0)
ij = δij due to the anticommutation relation of

the fermion operators as shown in Eq (85).
The high-frequency expansion in Eq. (86) can signifi-

cantly reduce the computational cost for G′
ij (z) especially

at high temperatures. This is because M(k)
ij is independent

of the frequency z and therefore the “once and for all”
calculation of M(k)

ij is sufficient, while the calculation from
Eqs. (16), (51), and (52) requires O(Npole ) operations for
each complex frequency z. For example, even for the Lc =
8 cluster, the number Npole = (smax + 1) × (M+ + M−) of
poles with nonzero spectral weight reaches ∼O(107) if all
the excited states (smax + 1 = 48) are necessary, e.g., at high
temperatures. The high-frequency expansion of G′

ij (z) is
useful to evaluate the contour-integral part, i.e., the second
term of the right-hand side in Eq. (19), of the grand-potential
functional. In general, the value of the integral evaluated using
the high-frequency expansion of G′

ij (z) up to the 15th-order
in Eq. (86) agrees with that calculated using the full Lehmann-
represented G′

ij (z) in Eqs. (16), (51), and (52) within the
accuracy of approximately ten digits.

Finally, it should be emphasized that the selection of the
initial block-Lanczos vectors in Eqs. (61) and (84) for the
particle-addition and particle-removal spectra, respectively,
is crucial to justify the approximations in Eqs. (51) and
(52), as in the Lanczos method for dynamical correlation
functions with a single initial vector [49,107]. The importance
of the selection of the initial block-Lanczos vectors also re-
sembles the recently proposed block-Lanczos density-matrix-
renormalization-group method, where the block-Lanczos
transformation maps general multiorbital multi-impurity An-
derson models to quasi-one-dimensional models with keeping
the two-body interactions local if the initial block-Lanczos
states are properly chosen [117].

V. APPLICATION OF FINITE-TEMPERATURE VCA

In this section, we demonstrate the finite-temperature
scheme of the VCA proposed here by exploring the finite-
temperature properties of the two-dimensional single-band
Hubbard model on the square lattice described by the Hamil-
tonian in Eq. (1) at half-filling with considering the antiferro-
magnetic order in the reference system [Eqs. (45) and (46)].
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FIG. 5. The Néel temperature TN obtained by the VCA with
various clusters indicated in the figure (also see Fig. 4 and Table I).

A. Néel temperature

The U dependence of the Néel temperature TN for various
clusters is shown in Fig. 5. Although the Mermin-Wagner
theorem prohibits any continuous symmetry breaking at finite
temperatures in two dimensions [118], the VCA finds TN > 0
for the clusters studied here. This is because the VCA neglects
the longer-range correlations beyond the cluster size. The
VCA can describe the quantum fluctuations exactly within a
cluster, while the antiferromagnetic correlations beyond the
cluster are treated in a mean-field level by introducing the
variational parameter which explicitly breaks the symmetry
as in Eq. (46). Indeed, a systematic study for the finite-size
scaling of TN in the dynamical-cluster approximation with a
QMC solver at U/t = 8 has shown that TN approaches to zero
logarithmically with increasing the size of clusters [119]. We
also note that the magnitude of TN reasonably agrees with a
CDMFT study for the Hubbard model on the square lattice
[120]. As expected in Fig. 5, the larger clusters tend to show
smaller TN, although this is not the case for U/t � 2 where
the finite-size effect on TN seems significant.

Nevertheless, as shown in Fig. 5, TN shows a maximum
around U/t ∼ 6, independently of the size of clusters in

the reference system, and decreases as TN ∝ J = 4t2/U ,
expected in the large U regime where the half-filled Hub-
bard model is approximated by the spin 1

2 antiferromagnetic
Heisenberg model with the exchange interaction J = 4t2/U .
We also find that the U dependence of TN is rather similar
to that of the optimal variational parameter h′∗ at T = 0 (see
Fig. 6 in Ref. [13]) than the order parameter m at T = 0 times
U , the latter being expected in the spin-density-wave (SDW)
mean-field theory.

B. Grand-potential functional

Figure 6 shows the results of the grand-potential functional
as a function of variational parameter h′ at U/t = 8 with
μ = U/2 for various temperatures using Lc = 2 × 2, 4 × 2,
and 10 site clusters. Each dot indicates the optimal variational
parameter h′∗ for a given temperature, which satisfies the
stationary condition [see Eq. (47)] with the lowest grand
potential. Therefore, for example, from Fig. 6(c), we can
estimate that TN/t ≈ 0.285 for the Lc = 10 site cluster at
U/t = 8. Similarly, we can estimate TN for other clusters with
varying U/t to eventually obtain the results shown in Fig. 5.

We notice in Fig. 6 that the larger cluster tends to show the
shallower minimum of the grand potential [i.e., the smaller
�(0) − �(h′∗)] for the antiferromagnetic solution with h′∗ �=
0. We also find in Fig. 6 that h′∗ at the lowest temperature
becomes smaller for the larger cluster, indicating that the
smaller magnetic field can stabilize the symmetry-broken state
for the larger cluster. It is expected that, with increasing the
cluster size, h′∗ would approach to the “true” Weiss field, i.e.,
an infinitesimally small field, which induces the symmetry-
broken state at T = 0 in the thermodynamic limit, as already
shown in Ref. [25].

C. Entropy and specific heat

The temperature dependence of the grand potential is
weaker for the antiferromagnetic solutions with h′∗ �= 0 than
for the paramagnetic solutions with h′∗ = 0, irrespectively
of the size of clusters. Since S(T ) = −∂T �, the weaker

FIG. 6. The grand-potential functional � as a function of variational parameter h′ for U/t = 8 at temperatures T/t = 0.01, 0.02, . . . , 0.34,
and 0.35 (from violet to red lines). The chemical potential is set at μ = U/2. The clusters used are (a) 2 × 2, (b) 4 × 2, and (c) 10 sites. Each dot
indicates the variational parameter h′∗ where the stationary condition is satisfied with the lowest grand potential for a given temperature. The
solution with h′∗ �= 0 indicates the antiferromagnetic state, while h′∗ = 0 corresponds to the paramagnetic state. Notice that the grand-potential
functionals for T/t � 0.04 are almost degenerate in the cases studied here.
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FIG. 7. Temperature dependence of (a) entropy S(T ) and (b)
specific heat C(T ) at U/t = 8 for the paramagnetic solution and the
antiferromagnetic solution with the clusters of Lc = 2 × 2, 4 × 2,
and 10 sites. In (b), C(T ) for the antiferromagnetic solution just
below TN is connected to that for the paramagnetic solution just
above TN. All the results are obtained for the insulating phase in the
sense that the single-particle gap at the Fermi level is finite (see also
Fig. 8)

dependence on the temperature of the grand potential indi-
cates the smaller entropy in antiferromagnetic phase com-
pared to the paramagnetic phase. As shown in Fig. 7(a), this is
indeed the case. Figure 7 shows the temperature dependence
of the entropy S(T ) and the specific heat C(T ) for U/t = 8
calculated using the clusters of Lc = 2 × 2, 4 × 2, and 10
sites. The results are obtained both for the paramagnetic and
antiferromagnetic solutions.

The entropy in Fig. 7(a) is calculated from Eq. (36) and
it is confirmed that the results agree with those obtained by
numerically differentiating the grand potential with respect
to T . The specific heat shown in Fig. 7(b) is calculated from
the numerical differentiation of the entropy with respect to T

and it is confirmed that the results for the paramagnetic states

agree with those obtained from Eq. (40). The reason is simply
because the optimal variational parameters are (h′∗, ε∗) =
(0, 0) for the paramagnetic states and therefore dλ∗(T )/dT =
0 in the second term of the right-hand side in Eq. (39), while
dλ∗(T )/dT �= 0 for the antiferromagnetic states in general.

The entropy shows a kink and correspondingly the specific
heat exhibits a jump at TN, indicating that the phase transition
is of the second order. The entropy for the antiferromagnetic
solution is suppressed below TN as compared to that for
the paramagnetic solution because the spin fluctuations are
reduced in the ordered phase. Both the entropy and the specific
heat decay exponentially at low temperatures even in the
antiferromagnetic phase, where a gapless magnon excitation
is expected. The gapful behavior found here is due to the
finite-size effect where the VCA fails to incorporate the
long-range spin fluctuations and thus to describe the gapless
magnon excitations. Indeed, as shown in Appendix A, the
thermodynamic quantities in the SFT are expressed only in
terms of the exact quantities of the (small) cluster and approx-
imate single-particle excitation energies of the infinitely large
system. The temperature dependence of the entropy and the
specific heat in a high-temperature region is further discussed
in Sec. V F.

D. The third law of thermodynamics in SFT

The entropy S(T ) shown in Fig. 7(a) becomes zero in
the zero-temperature limit, implying that the third law of the
thermodynamics,

lim
T →0

S(T ) = 0, (91)

is satisfied. Here, we show that the third law of the thermody-
namics is fulfilled in the SFT if and only if the entropy S ′(T )
of the cluster becomes zero in the zero-temperature limit.

Let us consider the internal energy E per site defined as

E = � + T S. (92)

It should be noted again that the internal energy E includes
the chemical-potential term because of the definition of the
Hamiltonian in Eq. (1). From � in Eq. (13) and S in Eq. (36),
we obtain that

E = 1

Lc
E′ + 1

NLcβ2

∞∑
ν=−∞

∑
k̃

DT ln det[I − V (k̃)G′(iων )],

(93)

where E′ = �′ + T S ′ is the internal energy of the cluster.
Since limT →0 E = limT →0 � as in Eq. (92), the comparison
between the internal energy E in Eq. (93) and the grand
potential � in Eq. (13) in the zero-temperature limit leads

− lim
T →0

Tr ln(I − V G′) = lim
T →0

β−1Tr[DT ln(I − V G′)].

(94)
Substituting this into Eq. (36) in the zero-temperature limit
yields to

lim
T →0

S(T ) = 1

Lc
lim
T →0

S ′(T ), (95)

where limT →0 E′ = limT →0 �′ is also used. Therefore the
third law of the thermodynamics is fulfilled if and only if
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FIG. 8. Single-particle excitation spectrum A(k, ω) [(a)–(e)] and the imaginary part S(k, ω) of the self-energy [(f)–(j)] for the half-filled
Hubbard model with U/t = 8 calculated using [(a) and (f)] the self-consistent SDW mean-field theory at T/t = 0 in the antiferromagnetic
state, [(b) and (g)] the VCA at T/t = 0.001 in the antiferromagnetic state, [(c) and (h)] the VCA at T/t = 0.3 in the paramagnetic state,
[(d) and (i)] the VCA at T/t = 0.5 in the paramagnetic state, and [(e) and (j)] the Hubbard-I approximation in the paramagnetic state. The
horizontal line at ω = 0 denotes the Fermi level. The Lorentzian broadening of η/t = 0.2 is used. The Lc = 10 cluster is used for the VCA in
(b)–(d) and (g)–(i). The results for the Hubbard-I approximation in (e) and (j) are independent of the temperature. Note that different figures
use different intensity scales as indicated in the color bars.

the entropy S ′(T ) of the cluster becomes zero in the zero-
temperature limit, i.e.,

lim
T →0

S ′(T ) = 0. (96)

Two remarks are in order. First, Eq. (96) is satisfied
whenever the ground state of the cluster is unique even
for a paramagnetic insulating state. This is the reason why
limT →0 S(T ) = 0 for the paramagnetic state in Fig. 7(a),
instead of limT →0 S(T ) = ln 2 found in the single-site DMFT
[121] and in the dynamical impurity approximation [10].
Second, the condition to satisfy the third law of the thermo-
dynamics in the SFT resembles the condition to guarantee
the Luttinger theorem at zero temperature in the SFT [122].
Indeed, it has been shown that the Luttinger theorem is valid
in the SFT if and only if the single-particle Green’s function
G′(iων ) of the cluster respects the Luttinger theorem, where
the Luttinger theorem for a small and open-boundary cluster
is defined in terms of the singularities of the single-particle
Green’s function G′(iων ) [122].

E. Single-particle excitation spectrum

The single-particle excitation spectrum A(k, ω) for the
original system of interest is calculated from the single-
particle Green’s function Gσσ ′

(k, z) in Eq. (48) as

A(k, ω) = − 1

π
ImGσσ (k, ω + iη), (97)

where η is real positive infinitesimal. The typical results for
the Hubbard model with U/t = 8 in the antiferromagnetic
state at T/t = 0.001 and in the paramagnetic states at T/t =
0.3 and 0.5 are shown in Figs. 8(b)–8(d) (also see Fig. 5).
Here, the single-particle Green’s function is averaged over
the two sublattices A and B within the cluster, and therefore
A(k, ω) does not depend on spin σ even in the antiferromag-
netic state.

To further analyze the single-particle excitations, we also
show in Figs. 8(g)–8(i) the imaginary part of the self-energy

S(k, ω) = − 1

π
Im�σσ (k, ω + iη), (98)

where the self-energy �σσ (k, z) for the original system is
defined as

�σσ (k, z) = z − εk − Gσσ (k, z)−1 (99)

with εk = −2t (cos kx + cos ky ) being the noninteracting band
dispersion. Note that S(k, ω) � 0 because A(k, ω) � 0. The
divergence of S(k, ω) corresponds to the zero of A(k, ω),
thus implying the presence of the single-particle gap [88,123–
125]. In practice, the divergence of S(k, ω) appears as the
peak due to the finite η.

Figure 8(b) shows the single-particle excitation spectrum
for the antiferromagnetic phase at T/t = 0.001, where the
temperature is low enough so that thermal excitations are
negligible. Since the mean-field approximation is expected to
be relevant in a symmetry-broken state, we compare the result
with the SDW mean-field theory in which the single-particle
Green’s function can be given as

GSDW(k, z) = [z − εk − �SDW(k, z)]−1 (100)

and

�SDW(k, z) = U 2m2

z − εk+Q
(101)

with m being the staggered magnetization per site and Q =
(π, π ) [126,127]. The single-particle excitation spectrum for
the SDW mean-field theory is shown in Fig. 8(a). Indeed,
the SDW spectrum very much resembles the VCA result
for the antiferromagnetic phase at T/t = 0.001, including
both the spectral weight and the dispersion. The most char-
acteristic feature is the next-nearest-neighbor-hopping-like
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dispersion [128,129]. Namely, the dispersion bends down-
ward (upward) in the second (first) antiferromagnetic Bril-
louin zone along (π/2, π/2) → (π, π ) and (π, 0) → (π, π )
[(π/2, π/2) → (0, 0) and (π, 0) → (0, 0)] for the occupied
(unoccupied) states. It is tempting to conclude that the overall
agreement of the VCA and the SDW results is due to the
mean-field-like treatment of the symmetry-broken state in
the VCA. However, the QMC study has also found that the
single-particle excitation spectrum is in good agreement with
the SDW dispersion [98]. Moreover, it should be noted that
even when the antiferromagnetic long-range order is absent,
the single-particle excitation spectrum shows the dispersion
folding downward along (π/2, π/2) → (π, π ) and (π, 0) →
(π, π ) for the occupied states, similarly the upward-folding
dispersion along (π/2, π/2) → (0, 0) and (π, 0) → (0, 0) for
the unoccupied states, in the presence of the short-range anti-
ferromagnetic spin fluctuation at zero temperature [123,130].

Although the overall features are similar, the details of
the single-particle excitation spectra are different between the
VCA and the SDW mean-field theory. The main characteristic
feature of the single-particle excitations for the VCA is found
in the low-energy dispersion. Since A(k, ω � 0) = A(k +
Q,−ω � 0) for the particle-hole symmetric case, we focus
only on the occupied spectrum in the following. As shown in
Fig. 8(b), we can find a less-dispersive dispersion in a range
of −4t < ω < −3t around k = (0, 0). This can be assigned
to the single-particle excitations associated with the antifer-
romagnetic fluctuation of the energy scale of J = 4t2/U .
Such renormalized dispersion has also been observed in exact-
diagonalization studies of the Hubbard model as well as the
t-J model and can be well described by the spin-bag picture
[131,132]. Therefore the short-range antiferromagnetic fluctu-
ations, which are absent in the SDW mean-field theory, make
the fine but important difference in the low-energy excitations.
We also note that the other less-dispersive dispersion around
k = (0, 0) and ω ∼ −6.5t found in the VCA for the antifer-
romagnetic phase at T = 0.001t [Fig. 8(b)] is absent in the
SDW mean-field theory [Fig. 8(a)]. Since this less-dispersive
dispersion remains even above TN in the paramagnetic state,
as shown in Figs. 8(c) and 8(d), the origin can be assigned to
localized holes.

The single-particle gap remains finite at high temperatures
above TN in the paramagnetic state. This is in sharp contrast
to the SDW mean-field theory. The dispersion relation in
the single-particle excitation spectrum is also quite different
from that for the SDW mean-field theory, but rather resem-
bles the dispersion relation for the Hubbard-I approxima-
tion, as shown in Figs. 8(c)–8(e). In particular, the charac-
teristic feature of the dispersion found in the antiferromag-
netic state, i.e., the dispersion bending downward (upward)
in the second (first) antiferromagnetic Brillouin zone along
(π/2, π/2) → (π, π ) and (π, 0) → (π, π ) [(π/2, π/2) →
(0, 0) and (π, 0) → (0, 0)] for the occupied (unoccupied)
states, is now absent. The overall feature of the dispersion
at high temperatures in the paramagnetic state is instead well
reproduced by the Hubbard-I approximation.

The single-particle Green’s function GH-I(k, z) in the
Hubbard-I approximation is given by

GH-I(k, z) = [z − εk − �H-I(z)]−1, (102)

where the self-energy

�H-I(z) = U 2nσ (1 − nσ )

z
(103)

corresponds to that of single-site Hubbard model and nσ is the
electron density with spin σ (=↑,↓) [99,100]. At half-filling
in the paramagnetic phase, n↑ = n↓ = 1/2. The self-energy
�H-I(z) of the Hubbard-I approximation is spatially local
because the Hubbard-I approximation takes into account the
local electron correlations at a single site but neglects the
spatial correlations. Therefore the self-energy is independent
of the momentum and S(k, ω) exhibits a flat dispersion,
as shown in Fig. 8(j). It is also interesting to observe in
Figs. 8(g)–8(i) the gradual reduction of the bandwidth of
the dispersion in S(k, ω) with increasing T , implying the
crossover from �SDW(k, z)-like self-energy to �H-I(z)-like
one. The qualitative agreement between the single-particle ex-
citation spectra for the Hubbard-I approximation and the VCA
at high temperatures above TN is understood because the
thermal fluctuations are strong enough to destroy the spin cor-
relations but not high enough to unfreeze the charge degrees of
freedom for the temperatures shown in Figs. 8(b)–8(d). This
is consistent with the entropy S(T ) at T/t ∼ 0.5, where S(T )
is comparable to ln 2 = 0.693, not ln 4 = 1.386, as shown in
Fig. 7(a).

We now remark on the substantial difference in the inten-
sity of S(k, ω) between the VCA and the Hubbard-I approx-
imation. It is noticed in Fig. 8 that the single-particle gap as
well as the intensity of S(k, ω) near the Fermi level in the
VCA at high temperatures above TN in the paramagnetic state
is quite smaller than that in the Hubbard-I approximation.
The difference of the single-particle gap can be understood by
analyzing the moments of the single-particle Green’s function
for the Hubbard model up to the second order [115,116], i.e.,

∫ ∞

−∞
dωA(k, ω) = 1, (104)

∫ ∞

−∞
dωωA(k, ω) = εk − μ + Unσ , (105)

and ∫ ∞

−∞
dωω2A(k, ω) −

[∫ ∞

−∞
dωωA(k, ω)

]2

= U 2nσ (1 − nσ ). (106)

Note that n↑ = n↓ = 1/2 at half filling. Equation (104) im-
plies that the spectral function A(k, ω) can be considered
as a distribution function with respect to ω. Equation (105)
indicates that the center of gravity of A(k, ω) with respect
to ω is given by that in the noninteracting limit εk − μ with
the correction of the Hartree potential Unσ [123], which
cancels the chemical potential μ = U/2 in the present case.
Equation (106) indicates that the variance of the spectral
function is U 2nσ (1 − nσ ), and thus A(k, ω) is distributed
along the ω axis with the standard deviation U

√
nσ (1 − nσ )

around the center of gravity εk. It has been shown by the
high-frequency expansion that Eq. (106) can also be related
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to the spectral-weight sum rule for the self-energy [116,133]

∫ ∞

−∞
dωS(k, ω) = U 2nσ (1 − nσ ) = U 2

4
, (107)

where we set n↑ = n↓ = 1/2 in the last equality. The to-
tal amount of the imaginary part of the self-energy is thus
determined solely by U and the electron density nσ . From
Eq. (103), we can show that the Hubbard-I approximation
satisfies the sum rule but all the intensity is concentrated on
the single “band” of S(k, ω), as shown in Fig. 8(j). Therefore
there exist only the upper and lower Hubbard bands with
no incoherent spectra in the Hubbard-I approximation. On
the other hand, S(k, ω) in the VCA is distributed over the
energy scale of ≈U in the ω axis to generate not only the
Hubbard gap accross the Fermi level but also the incoherent
single-particle excitations at the high energy. Therefore the
intensity of S(k, ω) near the Fermi level is necessarily smaller
in the VCA than in the Hubbard-I approximation.

Finally, we comment on the results for the single-particle
excitation spectrum of the Hubbard model at half filling
obtained by other methods such as the DMFT and the QMC.
In the DMFT, a quasiparticle band with the narrow bandwidth
appears near the Fermi level for U/t = 8, even when the
nonlocal correlations are included [134]. On the other hand,
in the VCA, the single-particle excitation spectrum does not
show such a coherent excitation near the Fermi level at any
temperature, as shown in Figs. 8(b)–8(d). This is because,
unlike the DMFT, the VCA treats open-boundary clusters
without bath orbitals and hence the Kondo-resonance-like
peak and the coherent quasiparticle excitation near the Fermi
level [135,136] may not be represented. According to the
numerically exact QMC studies, the coherent quasiparticle
excitations near the Fermi level are hardly observed for U/t =
8 [98] and even for U/t = 4 [137] at half filling. In this sense,
the VCA better agrees with the QMC than the DMFT for the
single-particle excitations near the Fermi level at half-filling.

F. Slater to Mott crossover

It has been demonstrated recently that the weak-coupling
Slater-type antiferromagnet and the strong-coupling Mott-
type antiferromagnet can be well characterized by the energy-
gain mechanism of the antiferromagnetic state, i.e., whether
the antiferromagnetic ordered state gains the interaction en-
ergy or the kinetic energy relative to the paramagnetic state,
for the three-orbital Hubbard model analyzed using the varia-
tional Monte Carlo method [73] and for the single-band Hub-
bard model using the variational Monte Carlo method [138]
and the CDMFT method [139]. In the CDMFT study, the evo-
lution of the density of states as functions of T and U has also
been studied [139]. The energy-gain mechanism of the anti-
ferromagnetic phase of the double perovskite La2NiTiO6 has
been studied based on the DMFT for an ab initio-derived
multiorbital model [140] with predicting the realization of
a spin-1 strong-coupling antiferromagnet. These theoretical
approaches of quantifying the energy-gain mechanism for
the antiferromagnetic state over the paramagnetic state at
T = 0 in two-dimensional systems or at low temperatures in
three-dimensional systems are quite valuable to distinguish

the Slater-type antiferromagnet and the Mott-type antiferro-
magnet.

Here, we attempt to characterize the Slater-to-Mott
crossover by calculating the thermodynamic quantities includ-
ing the entropy, the specific heat, and the double occupancy
in the paramagnetic state in the (U, T ) plane. We note that
the crossover of the two-dimensional Hubbard model in the
(U, T ) plane can also be explored experimentally, because
the double occupancy and the entropy of the two-dimensional
Hubbard model from a weak to a strong coupling region,
0 � U/t � 20, has been measured recently in ultracold atoms
in an optical lattice [141,142]. Therefore the results obtained
here can be tested by the ultracold-atom experiment.

1. Entropy and specific heat

Figure 9 shows the entropy S(T ) and the specific heat
C(T ) in 0 � T/t � 8 for U/t = 1, 2, 4, 8, 16, and 32. The
increment of T/t is set to be 0.01. The highest temperature
T/t = 8 is comparable to the band width W/t = 8 of the
square lattice, which might be too high for realistic materials
to keep their lattice structures but we consider such high
temperatures to be comparable with the previous study [44].
For U/t = 16 and 32, a plateaulike temperature dependence
of S(T ) ≈ ln 2 can be found around temperature T ≈ t . Since
J � t � U with J = 4t2/U being the superexchange inter-
action between the neighboring spins, the plateau-like tem-
perature dependence indicates the existence of the localized
but thermally disordered spin 1/2 at each site. For the smaller
values of U/t , the plateau-like temperature dependence is
hardly observed.

The specific heat C(T ) shows a two-peak structure. The
high-temperature peak shifts towards the higher temperature
with increasing U/t , indicating that the peak corresponds
to the energy fluctuation due to the charge excitation which
involves the energy scale of ∼U − W for large U . Therefore
we refer to the temperature at which C(T ) exhibits the high-
temperature peak as Tcharge, even in a small U/t regime since
the peak in a large U/t regime is smoothly connected to
that in a small U/t regime with decreasing U . On the other
hand, the position of the low-temperature peak moves non-
monotonically with U and the U dependence is rather similar
to that of TN [see Fig. 5 and also Fig. 10(c)]. Indeed, for large
U/t , the entropy almost reaches to the maximum entropy ln 2
of a localized free spin at Tdip, i.e.,

S(Tdip) =
∫ Tdip

0
dT

C(T )

T
≈ ln 2, (108)

where Tdip is the temperature at which C(T ) takes the mini-
mum between the two peaks. Therefore the low-temperature
peak of C(T ) corresponds to the energy fluctuation due to
the spin excitation. We thus refer to the temperature at which
C(T ) exhibits the low-temperature peak as Tspin, even in
a small U/t regime since the peak in a large U/t regime
is smoothly connected to that in a small U/t regime with
decreasing U .

2. Thermodynamic quantities in (U, T ) plane

Thermodynamic quantities in the (U, T ) plane is sum-
marized in Fig. 10. Here, the results include the entropy
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FIG. 9. Temperature dependence of (a) the entropy S(T ) and (b) the specific heat C(T ) for U/t = 1, 2, 4, 8, 16, and 32. The horizontal
dashed lines in (a) represent S(T ) = ln 2 = 0.693 and S(T ) = ln 4 = 1.386. (c) and (d) are enlarged plots of (a) and (c) for 0 � T/t � 1,
respectively. The results are for the paramagnetic solution with the cluster of Lc = 4 × 2 sites.

S, the specific heat C, the mixed derivative −∂U∂T �, the
double occupancy 〈D̂〉, and the double-occupancy suscep-
tibility χD , the latter two quantities being defined below.
The increment of U/t (T/t) is set to be 0.5 (0.01) and
the derivatives are evaluated by quadratically fitting �(U, T )
first.

The entropy is an increasing function of T but not a mono-
tonic function of U . Indeed, the entropy takes extrema ∂US =
0 at certain U values for a fixed temperature, as indicated by
lines with open circles in Figs. 10(a), 10(b), and 10(e). The U

derivative of the entropy is related to the T derivative of the

double occupancy 〈D̂〉 through the Maxwell relation,

∂S

∂U
= − ∂2�

∂U∂T
= −∂〈D̂〉

∂T
, (109)

where D̂ = 1
NLc

∑NLc
i D̂i , D̂i = n̂i↑n̂i↓, and 〈· · · 〉 denotes the

thermal average. In the parameter regions surrounded by these
lines, ∂US > 0 or equivalently ∂T 〈D̂〉 < 0 [see Fig. 10(e)],
except for U = 0. This behavior has been observed previously
in several approximate or unbiased methods [143–151]. It has
also been suggested that this can be utilized for the adiabatic

FIG. 10. The contour plots of (a) the entropy S/ ln 2, (b) the double occupancy 〈D̂〉, (c) the specific heat C, (d) the double-occupancy
susceptibility χD , and (e) the mixed derivative −∂U∂T � in the (U, T ) plane with a range of 0 � U/t � 16 and 0 � T/t � 3. The results
are obtained for the paramagnetic state with the cluster of Lc = 4 × 2 sites. The black lines with open circles in (a), (b), and (e) indicate
the contours on which ∂U∂T � = 0. The black dashed line in (a) indicates S(U, T ) = ln 2. The black line with open triangles (squares) in (c)
indicates the peak of C(U, T ) at low (high) temperatures, and the black line with inverted open triangles indicates the dip of C(U, T ). The
black line with open diamonds in (d) indicates the contour on which χD takes the maximum at finite U .
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FIG. 11. The double occupancy 〈D̂〉 as a function of T for
U/t = 2, 4, 6, 8, 10, 12, 14, and 16 (from top to bottom). The results
are for the paramagnetic state with the cluster of Lc = 4 × 2 sites.
The increment of T/t is set to be 0.01. For comparison, the double
occupancy, 〈D̂〉 = 1/[2 + 2 exp(U/2T )], of the single-site Hubbard
model (i.e, in the atomic limit) at half-filling is also shown by dashed
lines for the same values of U/t .

cooling of cold atoms by tuning U/t [144]. Note that the T de-
pendence of the double occupancy is counterintuitive because
the increase of T is expected to increase the charge fluctuation
and thus increase the double occupancy. Indeed, in the atomic
limit, the double occupancy increases monotonically with
increasing T , as shown in Fig. 11. Interestingly, we observe
a nonmonotonic behavior of ∂T 〈D̂〉 at low temperatures with
increasing U : the sign of ∂T 〈D̂〉 is negative, positive, and
negative again with increasing U at a fixed temperature [see
Fig. 10(e)].

We now discuss the counterintuitive sign of ∂US =
−∂T 〈D̂〉 > 0 for a small U regime by considering the double-
occupancy susceptibility χD defined as a dimensionless sec-
ond derivative of � with respect to U :

χD = −T
∂2�

∂U 2
= −T

∂〈D̂〉
∂U

. (110)

The result of χD (U, T ) is shown in Fig. 10(d). It is found that
the (U, T ) domain in which χD increases with U , surrounded
by the line with open diamonds in Fig. 10(d), well agrees with
the domain in which ∂US > 0 for the small U/t regime. Since
the local spin moment squared, ŝ = 1

NLc

∑
i (n̂i↑ − n̂i↓)2, is

related to D̂ as ŝ = 1 − 2D̂ at half-filling, the decrease of
the double occupancy implies the larger fluctuation of the
local spin moment. Therefore the increase of the entropy as
a function of U can be assigned to the increase of the spin
fluctuation due to the electron correlation. It should be noted
that the (U, T ) domain where the spin fluctuation increases
with U obtained here qualitatively agrees with the domain
where the spin-fluctuation theory is expected to be appropriate
[152] and also with the interaction region where the nonlinear
sigma model finds the Slater-type antiferromagnet [153].

For sufficiently large U and at T ∼ J � U , the energy
scale of the thermodynamic quantities is expected to be de-
termined by J , because the Hubbard model at half filling
with large U/t is effectively described by the Heisenberg
model with the superexchange interaction J . Therefore, in this
parameter region, the increase of U results in the decrease of

FIG. 12. A finite-temperature crossover diagram for the half-
filled Hubbard model in the paramagnetic state obtained by the
VCA with the cluster of Lc = 4 × 2 sites. Tspin (red line with solid
triangles) denotes the temperature where C(T ) shows the low-
temperature peak, Tcharge (orange line with solid squares) denotes
the temperature where C(T ) shows the high-temperature peak, and
Tdip (grey line with solid inverted triangles) denotes the temperature
where C(T ) shows the dip between Tspin and Tcharge. The violet
dashed line indicates T and U , where S(T , U ) = ln 2. The blue line
with open diamonds denotes the value of U on which χD takes a
maximum with increasing U for a given T . The green lines with
circles denote the parameters across which ∂S/∂U changes the sign.
The antiferromagnetic correlations are expected to develop below
Tspin. The large spin fluctuations are expected in the region around
the blue line with open diamonds. Local moments are formed in the
region below the green line with open triangles for U � 6.

J = 4t2/U , which is the only energy scale of the Hamilto-
nian, and hence ∂US > 0 is expected. Indeed, we can show
that

∂S(T/J )

∂U
= 1

U
(T/J )

∂S(T/J )

∂ (T/J )
= 1

U
C(T/J ) > 0. (111)

On the other hand, for sufficiently large U but at much higher
temperatures, i.e., T � J , the spin correlation of the energy
scale of J is negligible and the system can be considered as
a collection of Hubbard atoms. Therefore, in this parameter
regime, ∂US = −∂T 〈D̂〉 < 0 (see Fig. 11), as intuitively ex-
pected from the atomic limit of the Hubbard model.

3. Crossover diagram

Figure 12 summarizes the finite-temperature crossover di-
agram of the half-filled Hubbard model in the (U, T ) plane,
featuring the thermodynamic quantities. Here, Tspin and Tcharge

are the temperatures at which C(T ) takes the maximum
at low and high temperatures, respectively, and Tdip is the
temperature at which C(T ) takes the minimum between Tspin

and Tcharge. The antiferromagnetic correlation is expected
to develop below Tspin. Above Tspin, the formation of local
moments is expected for U/t � 10 (referred to as a “local
moment” region in Fig. 12), while the large spin fluctuations
without the formation of local moments are expected for
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FIG. 13. Schematic figures of (a) original, (b) auxiliary, and (c) reference systems considered in the CDIA. (a) The original system consists
of the correlated sites (blue circles). (b) The auxiliary system consists of the correlated sites and bath orbitals (red squares) but they are
decoupled. (c) The reference system is composed of a collection of the disconnected small clusters, each of which consists of the correlated
sites and bath orbitals with hybridization (solid lines between blue circles and red squares). The corresponding actions of the original system
S in Eq. (115), the auxiliary system Saux in Eq. (125), and the reference system Sref in Eq. (122) are also indicated.

U/t � 4 (referred to as a “spin fluct.” region in Fig. 12).
These parameter regions characterize the Mott-Heisenberg-
type and the Slater-type antiferromangets, respectively. The
parameter region between these two regions is referred to as a
“crossover” region in Fig. 12. From the high-temperature side,
this crossover region can be signaled as a shallow dip of the
specific heat C(T ) with relatively high Tdip and relatively high
entropy S(Tdip) � ln 2 (note the crossing of the two lines Tdip

and S = ln 2 near the crossover region in Fig. 12), which can
also be measured in the ultracold-atom experiment [142].

VI. FINITE-TEMPERATURE CDIA STUDY OF
PARAMAGNETIC MOTT METAL-INSULATOR

TRANSITION

In this section, we investigate the paramagnetic Mott
metal-insulator transition at finite temperatures using
the CDIA with the exact-diagonalization cluster solver
developed in Secs. III and IV. Our study in this section can
be considered as a counterpart of the preceding CDMFT
study [154], whore the phase diagram has been revisited in
combination with various DMFT-related methods including
the zero-temperature CDIA [155] and also extended for
doped cases with the CDMFT [156]. Our study here can
also be considered as a finite-temperature extension of the
previous zero-temperature CDIA study [22], which calculated
the zero-temperature metal-insulator phase diagram and also
gave a U -T phase diagram schematically based on their
zero-temperature snalysis [22].

In the following, we first review the formalism of the
finite-temperature CDIA and show how the bath degrees of
freedom should be treated in the grand-potential functional
calculations. We then use the finite-temperature CDIA to
calculate the U -T phase diagram and the single-particle ex-
citation spectra.

A. Formalism of CDIA

1. Subtlety regarding the bath degrees of freedom

As shown schematically in Fig. 13(c), the reference system
in the CDIA has the bath orbitals, which are absent in the

original system of interest [Fig. 13(a)]. Therefore the degrees
of freedom in the reference system differ from those in the
original system. This causes a difficulty that �[�r] − �r[�r]
cannot be defined in the CDIA because the definition of the
trace in Eq. (12) for the reference system differs from that
for the original system. This subtlety due to the presence of
the bath degrees of freedom has been briefly mentioned in
Sec. VI A of Ref. [13].

In order to address how the grand-potential functional of
the original system should be calculated in the CDIA, we
reexamine the formalism by considering the ratio between
partition functions [157,158] of the original and the reference
systems in the fermion-coherent-state path-integral formalism
[7,8,159,160]. The strong-coupling expansion [161,162] in
the lowest order [19] is applied to derive an approximate grand
potential relevant to the CDIA. Interpreting the result in terms
of the SFT, we finally show how the grand-potential functional
should be calculated in the CDIA.

2. Original system

The original system of interest is described by the follow-
ing Hamiltonian:

Ĥ = Ĥt + ĤU , (112)

where

Ĥt =
∑
i,j

(tij ĉ
†
i ĉj + H.c.) (113)

represents the single-particle term with i and j being the
generalized single-particle indices and ĤU is the interaction
term. We assume that Ĥt includes the chemical-potential term.
The partition function Z of the original system is given in a
path-integral form as

Z =
∫
D[c†c]e−S, (114)

where

S = St + SU (115)
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is the action of the original system Ĥ with

St =
∫ β

0
dτ

[∑
i

c
†
i (τ )

∂

∂τ
ci (τ ) + Ht (c

†(τ ), c(τ ))

]
(116)

and

SU =
∫ β

0
dτHU (c†(τ ), c(τ )). (117)

Here, c
†
i (τ ) and ci (τ ) are the Grassmann fields at imaginary

time τ , defined as the left and right eigenvalues of the fermion
operators ĉ

†
i and ĉi with respect to the fermion-coherent state,

respectively. Note that HU (c†(τ ), c(τ )) is obtained by normal
ordering the interaction Hamiltonian ĤU and also replacing ĉ

†
i

and ĉi by c
†
i (τ ) and ci (τ ), respectively. The same applies for

Ht (c†(τ ), c(τ )). In the following, we refer to lattice sites of
the system as correlated sites to distinguish from bath orbitals.

3. Reference system

As shown schematically in Fig. 13(c), the reference system
is composed of a collection of disconnected clusters (i.e.,
no hopping between clusters), each of which consists of the
correlated sites and bath orbitals, and it is described by the
following Hamiltonian:

Ĥref = Ĥt ′ + ĤU + Ĥbath + Ĥhyb, (118)

where

Ĥbath =
∑

k

εkb̂
†
kb̂k (119)

is the bath Hamiltonian with b̂
†
k being the fermion creation

operator for a bath of single-particle index k and

Ĥhyb =
∑
ik

(vikĉ
†
i b̂k + H.c.) (120)

represents the hybridization between the correlated sites and
the bath orbitals. The partition function of the reference
system can be written as

Zref =
∫
D[c†c]D[b†b]e−Sref , (121)

where

Sref = St ′ + SU + Sbath + Shyb (122)

is the action of the reference system with

Sbath =
∫ β

0
dτ

[∑
k

b
†
k (τ )

∂

∂τ
bk (τ ) + Hbath(b†(τ ), b(τ ))

]

(123)

and

Shyb =
∫ β

0
dτHhyb(c†(τ ), c(τ ), b†(τ ), b(τ )). (124)

Here, b†(τ ) and b(τ ) are the Grassmann fields of the bath
electrons at imaginary time τ .

4. Auxiliary system

Let us now introduce an auxiliary system defined by an
action

Saux = S+ Sbath. (125)

The partition function of the auxiliary system is given as

Zaux =
∫
D[c†c]D[b†b]e−Saux (126)

= Z · Zbath, (127)

where we introduced the partition function of the bath system

Zbath =
∫
D[b†b]e−Sbath . (128)

Therefore the ratio of the partition functions between the
original and reference systems is

Z

Zref
= Zaux

Zref

1

Zbath
. (129)

Note that the auxiliary system consists of the original system
and bath orbitals but they are decoupled, as schematically
shown in Fig. 13(b). Since the bath system does not contain
the interaction terms, Zbath can be readily evaluated numer-
ically or even analytically. Therefore, in the following, we
focus on the ratio Zaux/Zref . The ratio Zaux/Zref can be treated
within the path-integral formalism because the auxiliary sys-
tem Saux(c†, c, b†, b) has the same degrees of freedom with
the reference system S′(c†, c, b†, b). This is precisely the
reason why we have introduced the auxiliary system [163].

5. Ratio of partition functions

The ratio of the two partition functions can be written as

Zaux

Zref
= 〈e−(Saux−Sref )〉′, (130)

where

〈· · · 〉′ = 1

Zref

∫
D[c†c]D[b†b] · · · e−Sref (131)

denotes the expectation value with respect to the reference
system. To simplify the notation, we now denote the Grass-
mann fields c† and b† (c and b) simply as a single symbol γ †

(γ ). The expectation value is thus shortly written as 〈· · · 〉′ =∫
D[γ †γ ] · · · e−Sref /Zref and the action in the exponent of

Eq. (130) can be written as

Saux − Sref =
∫ β

0
dτ

⎡
⎣∑

ij

γ
†
i (τ )(tij − t ′ij − vij )γj (τ )

⎤
⎦

=
∫ β

0
dτ

∫ β

0
dτ ′γ †(τ )V (τ − τ ′)γ (τ ′)

≡ γ †Vγ , (132)

where

[V (τ − τ ′)]ij = [V ]ij δ(τ − τ ′) = (tij − t ′ij − vij )δ(τ − τ ′),

(133)
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γ †(τ ) = (γ †
1 (τ ), γ †

2 (τ ), . . .), and γ (τ ) = (γ1(τ ), γ2(τ ), . . .)T.
We also follow the convention that the integration over τ and
τ ′ is implicitly assumed in Eq. (132). Notice in Eq. (133)
that the bath energy εk does not appear in V matrix because
V represents the difference between the Hamiltonian of the
auxiliary system and the Hamiltonian of the reference system.
Equation (133) thus clarifies another subtlety of the CDIA
regarding the bath energy discussed in Sec. IV A of Ref. [13].

Although Saux − Sref is quadratic in γ † and γ , Eq. (130)
cannot be evaluated in general because the interaction term
of the cluster is exponentiated in the definition of average
〈· · · 〉′ in Eq. (131). To proceed the calculation further, we
follow the previous studies [19,161,162] by applying the
Hubbard-Stratonovich transformation of the Grassmann vari-
ables [8,160] to the residual single-particle part e−(Saux−Sref ) =
e−γ †Vγ , i.e.,

Zaux

Zref
= 〈eγ †(−V )γ 〉′

= Det(−V )
∫
D[ψ†ψ]eψ†V −1ψ 〈e(ψ†γ+γ †ψ )〉′, (134)

where Det(· · · ) represents the functional determinant and is
carried out over all the indices of the Grassmann fields, as
explicitly shown later in Eq. (144). We note that the auxiliary
Grassmann fields, ψ† and ψ in Eq. (134), introduced by
the Hubbard-Stratonovich transformation play a key role in
the so-called dual fermions approach, a recent extension of
the DMFT [164]. We also note that in the preceding studies
[19,162,165] the prefactor similar to that in Eq. (134) is de-
rived but the argument of the determinant is opposite. The sign
of the argument in Det(−V ) is crucial for the present study to
obtain the final form of the approximate grand potential [see
the first line in Eq. (143)].

6. Cumulant expansion

In the right-hand side of Eq. (134), the expectation value
of the exponential can be written as the exponential of the
cumulant average,

〈e(ψ†γ+γ †ψ )〉′ = exp

[ ∞∑
n=1

1

n!
〈(ψ†γ + γ †ψ )n〉′c

]
, (135)

where 〈· · · 〉′c denotes the cumulant average [166]. For
instance, the first three cumulant averages are given as
〈A〉′c = 〈A〉′, 〈A2〉′c = 〈A2〉′ − 〈A〉′2, and 〈A3〉′c = 〈A3〉′ −
3〈A〉′〈A2〉′ + 2〈A〉′3. Note that odd cumulants are zero as they
involve products of the odd numbers of the Grassmann fields
γ † and γ , while even cumulants are nonvanishing in general.
The nth cumulants (n: even) can be expressed as

〈(ψ†γ + γ †ψ )n〉′c

=
(

n

n/2

) ∫ β

0

n/2∏
k=1

dτk

∫ β

0

n/2∏
l=1

dτ ′
l

∑
i1,...,in/2

∑
j1,...,jn/2

×ψ
†
i1

(τ1) · · · ψ†
in/2

(τn/2)ψjn/2 (τ ′
n/2) · · · ψj1 (τ ′

1)

× 〈
γi1 (τ1) · · · γin/2 (τn/2)γ †

jn/2
(τ ′

n/2) · · · γ †
j1

(τ ′
1)

〉′
c, (136)

where
(

n

n/2

) = n!/(n/2)!2 is the binomial coefficient. Notice
that the nth cumulant involves n/2-body correlation func-
tions. The cumulant expansion in Eq. (135) with Eq. (136)
allows one to systematically approximate the original sys-
tem, depending on the selection of the reference system and
the expansion order [19,161,162,165]. Note also that n/2
in Eq. (136) corresponds to the expansion order “R” in
Refs. [19,161,162,165].

7. Lowest-order approximation

So far, no approximation has been made. Here, as in the
CPT [19], we make an approximation by taking the cumulant
expansion in Eq. (135) only up to the lowest order (n = 2).
The exponent in Eq. (135) for n = 2 is given as

1

2!
〈(ψ†γ + γ †ψ )2〉′c

=
∫ β

0
dτ

∫ β

0
dτ ′ ∑

i

∑
j

ψ
†
i (τ )ψj (τ ′)〈γi (τ )γ †

j (τ ′)〉′,

(137)

and Eq. (135) is now approximated as

〈e(ψ†γ+γ †ψ )〉′ ≈ e−ψ†Grψ , (138)

where [Gr (τ − τ ′)]ij = −〈γi (τ )γ †
j (τ ′)〉′ is the imaginary-

time single-particle Green’s function of the reference system
Ĥref and can be evaluated numerically exactly. Note that the
quadratic form ψ†Grψ can be diagonalized with respect to the
Matsubara frequency as

ψ†Grψ =
∫ β

0
dτ

∫ β

0
dτ ′ ∑

ij

ψ
†
i (τ )[Gr (τ − τ ′)]ijψj (τ ′)

=
∞∑

ν=−∞

∑
ij

ψ
†
i (iων )[Gr (iων )]ijψj (iων ), (139)

where Gr (iων ) is the Fourier transformation of Gr (τ − τ ′),
i.e.,

Gr (τ − τ ′) = 1

β

∞∑
ν=−∞

Gr (iων )e−iων (τ−τ ′ ), (140)

and the Fourier transformations of the Grassmann fields

ψi (iων ) = 1√
β

∫ β

0
dτψi (τ )eiωντ (141)

and

ψ
†
i (iων ) = 1√

β

∫ β

0
dτψ

†
i (τ )e−iωντ (142)

are introduced. Since V is a static quantity, ψ†V −1ψ

is diagonalized either in the imaginary-time or
Matsubara-frequency representation, i.e., ψ†V −1ψ =∫ β

0 dτψ†(τ )V −1ψ (τ ) = ∑∞
ν=−∞ ψ†(iων )V −1ψ (iων ), where

β−1
∫ β

0 ei(ων−ων′ )τ = δν,ν ′ is used.
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Substituting the approximation (138) into Eq. (134) yields

Zaux

Zref
≈ Det(−V )

∫
D[ψ†ψ]e−ψ†(Gr−V −1 )ψ

=
∞∏

ν=−∞
det [I − V Gr (iων )], (143)

where all the Grassmann fields (γ , γ †, ψ , and ψ†) are assumed
to be in the Matsubara-frequency representation and thus
Det(· · · ) is given as

Det(· · · ) =
∞∏

ν=−∞
det[· · · ], (144)

and det[· · · ] is the determinant with respect to the remaining
single-particle indices. The Gaussian integral with respect to
ψ† and ψ is performed in Eq. (143). Note that the Jacobians
for the Grassmann-variable transformation are not necessarily
to be considered here because they cancel out between the
numerator and the denominator of Zaux/Zref .

8. Grand-potential functional in CDIA

Taking the logarithm of Eq. (129) with the approximation
in Eq. (143) yields the grand potential � of the system as

� ≈ �r − �bath

− 1

β

∞∑
ν=−∞

∑
k̃

ln det[I − V (k̃)G′(iων )], (145)

where �r is the grand potential of the reference system and

�bath = − 1

β
ln Zbath (146)

is the grand potential of the isolated bath system. In Eq. (145),
assuming the reference system being composed of the identi-
cal clusters and thus the translational symmetry of the super-
lattice of clusters, we decomposed the single-particle indices
into the wave vector k̃ belonging to the reduced Brillouin zone
of the superlattice and the remaining indices for the cluster
and bath orbitals which are considered in det[· · · ]. G′(iων ) is
the single-particle Green’s function of a single cluster in the
reference system.

The grand-potential functional in the CDIA is obtained
from the approximate grand potential in Eq. (145). Since
the auxiliary system and the reference system have the same
degrees of freedom and the same interaction term, the VCA
can be made between these two systems. Thus the CDIA
evaluates approximately the grand potential � of the original
system as follows. First, apply the VCA to the auxiliary
system defined in Eq. (125) with the reference system given
in Eq. (122) [also see Figs. 13(b) and 13(c)] to evaluate the
grand-potential functional of the auxiliary system

�aux[�r,λ] = �r[�r,λ] − 1

β
Tr ln(I − V Gr ), (147)

where �r,λ is the self-energy of the reference system
parametrized by the single-particle parameter λ, and find the

stationary condition

∂�aux[�r,λ]

∂λ

∣∣∣∣
λ=λ∗

= 0 (148)

to obtain the grand potentials �aux and �bath with the opti-
mized single-particle parameters λ∗. Next, subtract �bath from
�aux to finally obtain the approximate grand-potential of the
original system [see Figs. 13(a) and 13(b)]:

�[�r,λ∗ ] = �aux[�r,λ∗ ] − �bath. (149)

Note that �bath = −T ln Zbath has to be subtracted at finite
temperatures in Eq. (149), although this term is irrelevant at
T = 0.

B. Application of finite-temperature CDIA

1. Setting up

Having formulated the finite-temperature CDIA, we now
apply the method to examine the finite-temperature phase di-
agram and the single-particle excitations for the paramagnetic
Mott metal-insulator transition of the 2D Hubbard model at
half filling.

For this purpose, here we consider the reference sys-
tem composed of the clusters of Lc = 2 × 2 correlated sites
connected to four bath orbitals, as schematically shown in
Fig. 13(c). Because of bath orbitals, the CDIA can induce the
density fluctuations within the correlated sites in the cluster,
which is absent in the VCA. Each correlated site in the cluster
is connected to a single bath orbital with the hybridization
parameter V ′, which is treated as a variational parameter to
be optimized. The cluster Hamiltonian Ĥ ′ is thus given as

Ĥ ′ = ĥ + ĥbath + ĥhyb, (150)

where ĥ is the single-band Hubbard Hamiltonian Ĥ in Eq. (1)
defined on the correlated sites within the cluster under open
boundary conditions,

ĥbath =
4∑

k=1

∑
σ=↑,↓

εkb̂
†
kσ b̂kσ (151)

is the bath Hamiltonian with b̂
†
kσ being the electron creation

operator with spin σ (=↑,↓) at bath orbital k, and

ĥhyb = V ′
4∑

i=1

4∑
k=1

∑
σ=↑,↓

δi,k (ĉ†iσ b̂kσ + H.c.) (152)

represents the hybridization between the correlated sites and
the bath orbitals. Here, δi,k is the Kronecker delta. Since we
consider the particle-hole symmetric case at half filling, the
bath energy can be fixed at εk = 0 as in Eq. (151) even at finite
temperatures. Therefore the hybridization V ′ in Eq. (152) is
the only variational parameter to be optimized.

2. Finite-temperature phase diagram

Figure 14 shows the V ′ dependence of the grand-potential
functional �aux(V ′) per site of the auxiliary system at dif-
ferent temperatures for three values of U representative for
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FIG. 14. The grand-potential functional �aux(V ) per site of the auxiliary system as a function of the variational parameter V ′ for (a)
U/t = 5.4 in the metallic phase, (b) U/t = 5.8 in the vicinity of the Mott metal-insulator transition, and (c) U/t = 6.2 in the paramagnetic
Mott insulating phase at temperatures T/t = 0.001, 0.005, 0.01, 0.015, . . . , 0.055, and 0.06 (from violet to red lines). The cluster composing
Lc = 2 × 2 correlated sites connected to four bath orbitals is used. Dots (crosses) indicate the solutions of nonzero V ′ with the lowest (second-
lowest) grand potential satisfying the stationary condition in Eq. (148).

the metallic phase (U/t = 5.4), the vicinity of the Mott
metal-insulator transition (U/t = 5.8), and the Mott insulat-
ing phase (U/t = 6.2). The increment of V ′/t is set to be
0.01. For comparison with the zero-temperature results in
Ref. [22], we plot �aux(V ′) + μNp − �bath/Lc, where Np (=
1) is the particle number density with the chemical potential
μ = U/2 for the particle-hole symmetric case at half filling,
and �bath = −T ln Wbath = −T Lc ln 4 is the grand potential
of the bath system (Wbath = 4Lc is the degeneracy of the bath
system with Lc orbitals). The results in Fig. 14 should be
compared with the internal-energy functional calculated in
Ref. [22] at zero temperature. Note also that �aux(V ′) − �bath

is the grand-potential functional �(V ′) of the system for a
given V [see Eq. (149)].

The CDIA grand-potential functional depends sensitively
on T specially at low temperatures, as compared with the T

dependence of the VCA grand-potential functional shown in
Fig. 6. This is due to the fact that many low-lying excited
states exist in Ĥ ′ for the CDIA because of the bath orbitals.
At low temperatures, �aux(V ′) exhibits two minima at V ′∗ �=
0. The minimum of the grand-potential functional with the
smaller V ′∗ corresponds to the insulating solution, while
the larger V ′∗ corresponds to the metallic one. The coexistence
region in the U -T phase diagram is thus identified as the
parameter region in which �aux(V ′) shows the two minima
at V ′∗ �= 0.

The metal-insulator transition takes place at a critical in-
teraction strength Uc(T ) where the metallic and insulating
solutions have the same value of the grand potential for a
given temperature T . The solution jumps from one to the other
by varying U across Uc(T ). Therefore the metal-insulator
transition is discontinuous. The discontinuity of the transition
persists down to the zero-temperature limit, thus in good
agreement with the previous CDIA result at zero temperature
[22]. Similarly, the solution jumps from one to the other by
varying T across the transition temperature [see Fig. 14(b)]. It
is also found in Fig. 14 that one of the two solutions vanishes
above a certain temperature, indicating that the metallic and
insulating states become no longer distinguishable.

Figure 15 shows the finite-temperature phase diagram in
the U -T plane. The phase diagram contains the three bound-
aries, Uc(T ), Uc1(T ), and Uc2(T ). Uc(T ) is the critical U for
the metal-insulator transition at temperature T , while Uc1(T )
and Uc2(T ) bound the (U, T ) region in which the metallic
and the insulating solutions coexist. The three boundaries
terminate at a critical point (U ∗/t, T ∗/t ) ≈ (5.95, 0.061).
The finite-temperature phase diagram expected in the zero-
temperature CDIA study [22] is in qualitative agreement with
our result, but the Uc2(T ) boundary is more complicated
“S-shape”-like in the region of 5.85 � U/t � 5.95 at 0.04 �
T/t � 0.061 in Fig. 15.

3. Single-particle excitations

Figure 16 summarizes the single-particle excitation spec-
trum A(k, ω) and the imaginary part of the self-energy

FIG. 15. The finite-temperature phase diagram for the para-
magnetic Mott metal-insulator transition obtained by the finite-
temperature CDIA. The cluster composing Lc = 2 × 2 correlated
sites connected to four bath orbitals is used. The three lines with
dots represent Uc1(T ), Uc(T ), and Uc2(T ), which terminate at a
critical point (U ∗/t, T ∗/t ) = (5.95, 0.061). Black dots denote the
first-order transition boundary separating the metallic and insulating
phases. The metallic and insulating phases coexist in the region
surrounded by blue dots.
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FIG. 16. Single-particle excitation spectrumA(k, ω) [(a)–(c)] and the imaginary part S(k, ω) of the self-energy [(d)–(f)] for the half-filled
Hubbard model at [(a) and (d)] U/t = 5.4 and T/t = 0.02 in the metallic phase, [(b) and (e)] U/t = 5.95 and T/t = 0.061 at the critical
point, and [(c) and (f)] U/t = 6.2 and T/t = 0.02 in the paramagnetic Mott insulating phase. The horizontal line at ω = 0 denotes the Fermi
level. The Lorentzian broadening of η/t = 0.2 is used. The CDIA is employed with the cluster of Lc = 2 × 2 correlated sites connected to
four bath orbitals. Note that different figures use different intensity scales as indicated in the color bars.

S(k, ω) for three representative sets of parameters at
(U/t, T /t ) = (5.4, 0.02) in the metallic phase, (5.95, 0.061)
at the critical point, and (6.2, 0.02) in the paramagnetic
Mott insulating phase. As shown in Fig. 16(a), A(k, ω)
in the metallic phase exhibits a three-peak structure, i.e.,
the coherent quasiparticle dispersion near the Fermi level at
ω = 0, the upper Hubbard band around ω/t ∼ 4, and the
lower Hubbard band around ω/t ∼ −4. Accordingly, S(k, ω)
shown in Fig. 16(d) does not have a finite spectral weight
around the Fermi level but instead has a sizable spectral
weight with a less-dispersive structure around ω/t ∼ ±2.5,
separating the quasiparticle dispersion from the upper and the
lower Hubbard bands inA(k, ω).

In the insulating phase, the coherent quasiparticle disper-
sion is absent near the Fermi level but a tiny amount of spectral
weight remains, as shown in Fig. 16(c). This tiny spectral
weight is due to the finite hybridization between the correlated
sites and the bath orbitals. On the other hand, the upper
and lower Hubbard bands appearing around 2 � |ω/t | � 5
acquire a sizable spectral weight. As shown in Fig. 16(f),
S(k, ω) around the Fermi level in |ω/t | � 2 is more disper-
sive, as compared with that in the Hubbard-I approximation
[see Fig. 8(j)], and rather similar to that in the SDW mean-
field theory [see Fig. 8(f)]. This implies the presence of
the antiferromagnetic fluctuations in the paramagnetic Mott
insulating state.

The results at the critical point are shown in Figs. 16(b)
and 16(e). Although there appears a finite single-particle
excitation spectrum around the Fermi level as in the metallic

state, it is no longer coherent and thus quasiparticles do not
exist. In contrast, the upper and lower Hubbard bands can
be clearly observed as in the insulating state. As shown in
Figs. 16(e), S(k, ω) exhibits a clear structure at ω/t ∼ ±1.5,
which separates the low-energy incoherent excitations around
the Fermi level and the upper and lower Hubbard bands
in A(k, ω). The similar structure is found in the metallic
state at ω/t ∼ ±2.5 shown in Fig. 16(d). It is also noticed
in Fig. 16(e) that S(k, ω) shows incoherent spectra around
4 � |ω| � 6, similar to that in the insulating state, although
the intensity is quite smaller. The overall feature of A(k, ω)
and S(k, ω) at the critical point is thus characterized by the
average over the metallic and insulating states.

VII. SUMMARY AND DISCUSSION

A finite-temperature VCA algorithm suitable for the exact-
diagonalization cluster solver has been formulated. The major
difficulty of the current finite-temperature VCA is overcome
by analyzing the analytical properties of logarithm of the com-
plex determinant function which appears in the SFT grand-
potential functional. Explicit formulas of the thermodynamic
quantities in the SFT have been derived. These quantities
include the grand potential, entropy, and specific heat. The
block-Lanczos method has also been proposed to efficiently
calculate the single-particle Green’s function of the cluster.

The finite-temperature VCA developed here is applied to
the single-band Hubbard model on the square lattice at half
filling. We have obtained the finite-temperature phase diagram
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containing the paramagnetic and antiferromagnetic phases.
Although we have found a finite Néel temperature, this is
due to the mean-field-like treatment of the spatial correlations
beyond the size of clusters in the VCA. Moreover, we have
examined the temperature dependence of the single-particle
excitations and the results are compared with the Hubbard-I
approximation and the SDW mean-field theory. In order to
characterize the crossover between the weak-coupling Slater-
type insulator and the strong-coupling Mott-type insulator in
the U -T plane, we have calculated various thermodynamic
quantities such as the entropy S, the double occupancy 〈D̂〉,
the specific heat C, the double-occupancy susceptibility χD ,
and the mixed derivative ∂US = ∂U∂T � = −∂T 〈D̂〉 of the
grand potential. The entropy and the specific heat show a kink
and a jump at the Néel temperature, respectively, indicating
that the antiferromagnetic transition is second ordered. We
have also examined the third law of the thermodynamics
within the VCA and shown rigorously that the third law of
the thermodynamics is guaranteed if and only if the ground
state of the cluster is unique.

Furthermore, we have extended the finite-temperature
VCA scheme to the finite-temperature CDIA to investigate the
finite-temperature paramagnetic Mott metal-insulator transi-
tion for the single-band Hubbard model on the square lattice
at half filling. After formulating the finite-temperature CDIA,
we have demonstrated that the systematic evaluation of the
grand-potential functional as a function of the hybridization
parameter V ′ allows us to clearly identify the metallic phase,
the Mott insulating phase, the coexisting region, and the
crossover region in the U -T phase diagram. We have shown
that the first-order metal-insulator transition boundary Uc(T )
is terminated at a critical point (U ∗/t, T ∗/t ). We have also
calculated the single-particle excitation spectrum and found
that the coherent quasiparticle dispersion exists near the Fermi
level in the metallic phase, while only the upper and lower
Hubbard bands have a sizable spectral weight in the Mott insu-
lating phase. At the critical point, no quasiparticle dispersion
crossing the Fermi level is found but the incoherent excitations
with a small spectral weight are observed around the Fermi
level, in addition to the upper and lower Hubbard bands.

The finite-temperature VCA scheme developed here is
particularly suitable for low to intermediate temperatures be-
cause it has to truncate the high-energy excited states when
the large clusters are employed. However, as demonstrated
in Secs V and VI, the method can be applied successfully
to obtain the finite-temperature phase diagrams and examine
the single-particle excitations across the transitions for the
two-dimensional single-band Hubbard model at half filling.

The finite-temperature VCA can treat exactly the thermal
and quantum fluctuations on an equal footing within the
clusters. Therefore it is highly interesting to apply the method
to various strongly interacting fermions. The immediate ap-
plication is to investigate the carrier-doped Mott insulator and
an emergent d-wave superconductivity, and to elucidate the
pseudogap phenomena in cuprates [167].

One- or two-atom-thick-layer 3He atoms on graphite sur-
face are also interesting strongly correlated spin-1/2 fermion
systems [168,169]. Here, 3He atoms repel each other due
to their hard core potentials with each 3He atom hold-
ing a nuclear-spin 1/2. Experimental measurements of the

thermodynamic quantities at low temperatures are valuable
to reveal the ground-state and low-lying excitation properties
of these systems. Theoretically, the nuclear magnetism of the
monolayer 3He system has been studied by analyzing the
Heisenberg or t-J models on the triangular lattice with cyclic
exchange interactions [170–174]. The bilayer 3He system has
also been studied theoretically using a periodic Anderson
model on a stacked triangular lattices [175], for which the
finite-temperature VCA can also be adopted.

Another interesting class of systems to which the finite-
temperature VCA can be applied is organic frustrated Mott
insulating materials [176,177]. In these materials, various
thermodynamic quantities are measured experimentally with
controlling the electron correlation parameters [178], the de-
gree of geometric frustration [179], and the electron filling
[95,180–182]. Recently, it has been observed in an organic
Mott insulator EtMe3Sb[Pd(dmit)2]2 [183] that the first-order
nature of the correlation-induced metal-insulator transition
is obscured by disorders and instead an intermediate region
called an electronic Griffiths phase [184] emerges. One pos-
sible way to treat the disorder effect based on the scheme
developed here is the finite-temperature CDIA method based
on the SFT formalism for disordered systems [185].

Finally, ultracold atoms now allow us to study not only
the static quantities [141,142] but also the dynamical ones
[186,187] of interacting fermions at finite temperatures. Al-
though there are still experimental difficulties with lowering
the temperature down to extremely low temperatures, they
can reach to relatively low temperatures where the short-range
correlations are important. There, the finite-temperature VCA
scheme can be used, as a complement or an extension of the
DMFT-like methods, to make comparison with the experiment
for better understanding the finite-temperature properties of
interacting fermions.

In order to reach the higher temperatures, stochastic
sampling techniques for the many-body-state vectors in the
Krylov subspace would be promising, instead of directly
solving the eigenvalue problems of the large Hamiltonian ma-
trix. These stochastic methods include the finite-temperature
Lanczos method [49,109,188,189], the low-temperature Lanc-
zos method [80], and the thermal-pure-quantum-state-based
method [190]. A block extension of these stochastic methods
would also be of technical interest to reduce the computational
cost. In particular, a block-Lanczos extension of the finite- and
low-temperature Lanczos methods would be straightforward
by following the description in Sec. IV.
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APPENDIX A: ANOTHER EXPRESSION
OF THERMODYNAMIC QUANTITIES

In this Appendix, we derive an analytical expression of
the second term of the right-hand side in Eq. (13) and dis-
cuss briefly a possible application of the KPM [90] to the
VCA.

Substituting Eq. (25) into the second term of the right-hand
side in Eq. (13) yields

� − �′

Lc
= − 1

NLc

∑
k̃,p

∮
�′

dz

2π i
nF(z) ln

(
z − ωk̃,p

z − ωp

)
(A1)

= 1

NLc

∑
k̃,p

∮
�

dz

2π i
nF(z)

(∫ ωk̃,p

ωp

dx

z − x

)
(A2)

= 1

NLc

∑
k̃,p

∫ ωk̃,p

ωp

dxnF(x) (A3)

= − 1

Lcβ

⎡
⎣ 1

N

∑
k̃,p

ln(1 + e−βωk̃,p )

−
∑

p

ln(1 + e−βωp )

]
, (A4)

where contour �′ in Eq. (A1) encloses all the poles of nF(z)
in a clockwise manner and can be deformed into contour �

since the integrand nF(z) ln det [I − V (k̃)G′(z)] is analytical
in the complex region surrounded by contours �′ and �

(see Fig. 17). We can therefore convert the contour integral
into the real-valued integral of the Fermi-distribution function
nF(x) over [ωp, ωk̃,p] in Eqs. (A2) and (A3). The real-

FIG. 17. Contour �′ (dashed lines) encloses the fermionic Mat-
subara frequencies (solid circles) in a clockwise manner. Contour �

(solid lines) enclosing the real axis is obtained by deforming contour
�′. The branch cuts and the branch points of ln det [I − V (k̃)G′(z)]
are indicated by magenta dotted lines and black crosses on the real
axis, respectively (see also Figs. 1 and 2).

valued integral in Eq. (A3) can be performed by noticing
that nF(x) = − 1

β
d
dx

ln(1 + e−βx ), as shown in Eq. (A4). The
analytical expression of the grand-potential functional derived
in Eq. (A4) is formally similar to the grand potential for the
ideal Fermi gas [158], and is identical to that in Refs. [10,43]
obtained in different ways.

Differentiating Eq. (A4) with respect to T yields another
expression for the entropy, i.e.,

S − S ′

Lc
= − d

dT

(
� − �′

Lc

)

= −1

Lc

⎡
⎣ 1

N

∑
k̃,p

(nF(−ωk̃,p ) ln nF(−ωk̃,p ) + nF(ωk̃,p ) ln nF(ωk̃,p )) −
∑

p

(nF(−ωp ) ln nF(−ωp ) + nF(ωp ) ln nF(ωp ))

⎤
⎦,

(A5)

where nF(−ω) = 1 − nF(ω) and βω = ln [nF(−ω)/nF(ω)] are used. By definition, the internal energy is obtained as

E − E′

Lc
=

(
� − �′

Lc

)
+ T

(
S − S ′

Lc

)
= 1

Lc

⎡
⎣ 1

N

∑
k̃,p

ωk̃,pnF(ωk̃,p ) −
∑

p

ωpnF(ωp )

⎤
⎦. (A6)

The specific heat is evaluated as the T derivative of the entropy in Eq. (A5), i.e.,

C − C ′

Lc
= β2

Lc

⎡
⎣ 1

N

∑
k̃,p

ω2
k̃,p

nF(ωk̃,p )nF(−ωk̃,p ) −
∑

p

ω2
pnF(ωp )nF(−ωp )

⎤
⎦, (A7)

where the temperature dependence of the variational parame-
ter is ignored [see Eq. (39)] and this is justified, e.g., in the

paramagnetic state when the variational parameter is zero.
Equations (A4)–(A7) show that the thermodynamic quantities
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�, S, E, and C within the VCA involve only the single-
particle excitation energies ωk̃,p and ωp, in addition to the
corresponding quantities �′, S ′, E′, and C ′ of the cluster,
which can be calculated numerically exactly.

The expression of the grand-potential functional in
Eq. (A3) is remarkably simple because it is expressed solely
by the integral of the real-valued Fermi-distribution function.
This is further simplified in the zero-temperature limit, where
the Fermi-distribution function is replaced by the step func-
tion, i.e.,

lim
T →0

1

NLc

∑
k̃,p

∫ ωk̃,p

ωp

dxnF(x)

= 1

Lc

⎡
⎣ 1

N

∑
k̃,p

ωk̃,p�(−ωk̃,p ) −
∑

p

ωp�(−ωp )

⎤
⎦, (A8)

with �(x) = 0 (1) for x < 0 (x > 0). This can also be derived
by taking the the zero-temperature limit directly in Eq. (A4)
[79] and indeed agrees with the zero-temperature limit of the
internal energy in Eq. (A6).

Recently, Weiße has reported the Green-function-based
Monte Carlo method for a double-exchange model with clas-
sical local spins [191], where the change of the effective
action is calculated efficiently by the Chebyshev expansion
of the Green’s function based on the KPM [90]. The KPM
is an efficient method to calculate the dynamical correlation
functions including the single-particle Green’s function on the
real-frequency axis. The similarity between Eq. (A4) and the
change of the effective action expressed in Refs. [191,192]
suggests that the KPM can also be used to calculate the grand-
potential functional in the finite-temperature VCA. Indeed,
the free-fermion-like formulas of the SFT thermodynamic
functions in Eqs. (A4)–(A7) suggest that if the sum of the δ

functions

ρ̃(ω) = 1

N

∑
k̃,p

[δ(ω − ωk̃,p ) − δ(ω − ωp )] (A9)

can be evaluated accurately by, e.g., the KPM, these thermo-
dynamic quantities are obtained as

� − �′

Lc
= − 1

βLc

∫ ∞

−∞
dωρ̃(ω) ln(1 + e−βω ), (A10)

S − S ′

Lc
= − 1

Lc

∫ ∞

−∞
dωρ̃(ω)[nF(−ω) ln nF(−ω)

+ nF(ω) ln nF(ω)], (A11)

E − E′

Lc
= 1

Lc

∫ ∞

−∞
dωρ̃(ω)ωnF(ω), (A12)

and

C − C ′

Lc
= β2

Lc

∫ ∞

−∞
dωρ̃(ω)ω2nF(ω)nF(−ω). (A13)

Note that ρ̃(ω) in Eq. (A9) is not the difference of density
of states between the original and reference systems. Instead,
ρ̃(ω) can be expressed as a sum of the logarithmic derivative

of det(I − V G′(z)) [see Eq. (25)], i.e.,

ρ̃(ω) = − lim
η→0

Im
1

πN

∑
k̃,p

[
1

ω − ωk̃,p + iη
− 1

ω − ωp + iη

]

= − lim
η→0

Im
1

πN

∑
k̃,p

[
∂

∂z
ln det(I − V G′(z))

]
z=ω+iη

= lim
η→0

Im
1

πN

∑
k̃,p

tr[(I − V G′(z))−1V∂zG′(z)]z=ω+iη.

(A14)

In this study, the block-Lanczos method is used to efficiently
calculate the single-particle Green’s function as described in
Sec. IV and the complex contour integral is employed for the
thermodynamic quantities in Sec. III. However, it is highly
interesting to explore the efficiency of the KPM for the finite-
temperature VCA in the future.

APPENDIX B: ANOTHER DERIVATION OF ENTROPY

In this Appendix, we show another derivation of the en-
tropy given in Eq. (36).

1. Contour integrals involving the derivatives
of the Fermi-distribution function

First, we recall the formula for the Fermi-distribution func-
tion

nF(z) = 1

2
+ 1

β

∞∑
ν=−∞

1

iων − z
, (B1)

where ων = (2ν + 1)π/β and ν is integer [6]. The nth deriva-
tive of nF(z) with respect to z is thus given as

n
(n)
F (z) = n!

β

∞∑
ν=−∞

1

(iων − z)n+1
. (B2)

Note that n(n)
F (z) has poles of (n + 1)st order at each fermionic

Matsubara frequency iων . From the Cauchy’s integral for-
mula, one can easily show that

g(n)(z′) = n!

2π i

∮
P

dz
g(z)

(z − z′)n+1
(B3)

for any regular function g(z) in a complex z domain contain-
ing a non-self-intersecting continuous loop P which encloses
z′. The contour integral in Eq. (B3) is directed in a counter-
clockwise manner along contour P . We thus finally obtain that

1

2π i

∮
�′

dzn
(n)
F (z)g(z) = (−1)n

β

∞∑
ν=−∞

g(n)(iων ), (B4)

where contour �′ is shown in Fig. 17 and g(z) is assumed
to be analytic on and inside contour �′. Note that contour �′
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in Fig. 17 encloses the fermionic Matsubara frequencies in a
clockwise manner.

2. Derivation of Eq. (36)

The frequency sum in the second term of the right-hand
side in Eq. (13) can be evaluated using the contour integral,
i.e.,

1

β

∞∑
ν=−∞

g(iων ) =
∮

�′

dz

2π i
nF(z)g(z), (B5)

where g(z) = N−1 ∑
k̃ ln det [I − V (k̃)G′(z)] and is analytic

on and inside contour �′ defined in Fig. 17. The temperature
derivative of the right-hand side in Eq. (B5) is

1

2π i

∮
�′

dz

[
∂nF(z)

∂T
g(z) + nF(z)

∂g(z)

∂T

]
. (B6)

Because of the relation

∂nF(z)

∂T
= −βz

∂nF(z)

∂z
(B7)

and Eq. (B4), Eq. (B6) can be written as

1

β

∞∑
ν=−∞

[
βg(iων ) + iωνβ

∂g(z)

∂z

∣∣∣∣
z=iων

+ ∂g(z)

∂T

∣∣∣∣
z=iων

]
,

(B8)

which proves Eq. (36).
Note that the same result in Eq. (B8) can be obtained

simply by taking into account the T dependence of the Mat-
subara frequency when the T derivative is performed on the
left-hand side in Eq. (B5), which is equivalent to replacing the
differential operator as

∂

∂T
→ D

DT
:= ∂

∂T
+ ∂iων

∂T

∂

∂ (iων )
. (B9)

Similarly, we can obtain the second derivative of the grand-
potential functional with respect to T and the result is given
in Eq. (40).

APPENDIX C: SINGLE-PARTICLE GREEN’S FUNCTION
IN THE CONTINUED-FRACTION REPRESENTATION

In this Appendix, we describe how to calculate ∂zG′(z)
and ∂2

z G′(z) numerically using the coefficients appearing in
the continued-fraction representation of G′(z) obtained by the
standard Lanczos method with a single initial vector. The
method described here corresponds to a direct calculation
of the (selected) matrix element and its derivatives of the
inversion of the tridiagonal matrix generated by the Lanczos
iteration.

Let us first consider the particle-addition part of the single-
particle Green’s function G+

ij,s (z) of the cluster given in
Eq. (49). In order to evaluate ∂zG

+
ij,s (z) and ∂2

z G+
ij,s (z) using

the standard Lanczos method, we define the following auxil-
iary single-particle Green’s function:

X+
ij,s (z) = 〈�s |x̂ij [z − (Ĥ ′ − Es )]−1x̂

†
ij |�s〉, (C1)

where

x̂ij = ĉi + ĉj (C2)

and the subscripts i and j (= 1, 2, . . . , L) are the generalized
single-particle indices including the site and spin indices (see
Sec. IV). |�s〉 is the sth eigenstate of the cluster Hamiltonian
Ĥ ′ with the eigenvalue Es .

The auxiliary single-particle Green’s function X+
ij,s (z) can

be calculated from the tridiagonal matrix representation of Ĥ ′
obtained iteratively by the Lanczos method starting with the
normalized initial vector

|q1〉 = x̂
†
ij |�s〉/B0, (C3)

where

B2
0 = 〈�s |x̂ij x̂

†
ij |�s〉 (C4)

is the static correlation function [49,106,107]. The continued-
fraction representation of X+

ij,s (z) reads

X+
ij,s (z) = B2

0

z + Es − A1 − B2
1

z+Es−A2−···
, (C5)

where Ak and Bk are, respectively, the diagonal and sub-
diagonal elements of the real-symmetric tridiagonal matrix
obtained by the standard Lanczos method at kth iteration.
Here, the procedure of the standard Lanczos method can be
obtained simply by setting the block size L = 1 in Eqs. (66)–
(68). In particular, the QR factorization of Xk in Eq. (68)
is now merely the normalization of Xk and Bk corresponds
to the norm of Xk . Once X+

ij,s (z) is obtained after M times
of Lanczos iterations, the particle-addition part of the single-
particle Green’s function G+

ij,s (z) is easily evaluated as

G+
ij,s (z) = 1

2X
+
ij,s (z) − 1

8 [X+
ii,s (z) + X+

jj,s (z)]. (C6)

We now show how to evaluate ∂zX+
ij,s (z). For this purpose,

it is important to notice that the continued fraction in Eq. (C5)
can be written as a rational function

X+
ij,s (z) = − PM (z)

QM (z)
, (C7)

where the polynomials Pk (z) and Qk (z) (k = 1, 2, . . . , M) are
given via the following recurrence formulas:

Pk (z) = Ãk (z)Pk−1(z) + B̃k−1Pk−2(z) (C8)

and

Qk (z) = Ãk (z)Qk−1(z) + B̃k−1Qk−2(z), (C9)

where Ãk (z) = z + Es − Ak and B̃k−1 = −B2
k−1 with P−1 =

1, Q−1 = 0, P0 = 0, and Q0 = 1 [193–195]. Differentiating
Eq. (C7) with respect to z yields

∂zX+
ij,s (z) = −X

+
ij,s (z)∂zQM (z) + ∂zPM (z)

QM (z)
, (C10)

where ∂zPk (z) and ∂zQk (z) are also given recursively as

∂zPk (z) = Pk−1(z) + Ãk∂zPk−1(z) + B̃k−1∂zPk−2(z) (C11)

and

∂zQk (z) = Qk−1(z) + Ãk∂zQk−1(z) + B̃k−1∂zQk−2(z).

(C12)
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TABLE II. Ground-state energy per site of the Hubbard model on the square lattice with different sizes Lc of clusters at half filling
for U/t = 4 calculated using the exact diagonalization method and the VCA. EED is the exact ground-state energy of the cluster under
the open-boundary conditions. E(h′∗) is obtained by optimizing one variational parameter h′ and E(h′∗, δt ′∗) by optimizing two variational
parameters h′ and δt ′. The optimal variational parameters h′∗ and (h′∗, δt ′∗) are also shown.

U/t = 4

Lc 1/Lc 1/
√

Lc 1 − Q EED/t E(h′∗)/t E(h′∗, δt ′∗)/t h′∗/t (h′∗/t, δt ′∗/t )

2 × 1 0.5 0.7071 0.75 −0.414214 −0.789850 −0.813333 0.352469 (1.474002, 1.750708)
2 × 2 0.25 0.5 0.5 −0.525687 −0.816607 −0.831151 0.218936 (0.361820, 0.918256)
2 × 3 0.1667 0.4082 0.4167 −0.603220 −0.827991 −0.838147 0.188001 (0.391725, 0.577525)
2 × 4 0.125 0.3536 0.375 −0.626563 −0.831151 −0.839467 0.173734 (0.336096, 0.496004)
10 0.1 0.3162 0.35 −0.642306 −0.833671 −0.841210 0.151529 (0.285646, 0.446568)
2 × 6 0.0833 0.2887 0.3333 −0.653863 −0.835492 −0.842223 0.155622 (0.281362, 0.413290)
2 × 8 0.0625 0.25 0.3125 −0.666924 −0.837667 −0.843579 0.146469 (0.255994, 0.372645)
3 × 4 0.0833 0.2887 0.2917 −0.679842 −0.839112 −0.844663 0.130976 (0.227668, 0.351127)
4 × 4 0.0625 0.25 0.25 −0.702877 −0.841893 −0.846322 0.114508 (0.179996, 0.301982)

Similarly, the second derivative of X+
ij,s (z) with respect to z is

evaluated as

∂2
zX

+
ij,s (z)

= −2∂zX+
ij,s (z)∂zQM (z) + X+

ij,s (z)∂2
z QM (z) + ∂2

z PM (z)

QM (z)

(C13)

with the recurrence formulas

∂2
z Pk (z) = 2∂zPk−1(z) + Ãk∂

2
z Pk−1(z) + B̃k−1∂

2
z Pk−2(z)

(C14)
and

∂2
z Qk (z) = 2∂zQk−1(z) + Ãk∂

2
z Qk−1(z) + B̃k−1∂

2
z Qk−2(z).

(C15)

Using Eqs. (C10) and (C13), we can now easily evaluate
∂zG

+
ij,s (z) and ∂2

z G+
ij,s (z). The same procedure can be applied

for the particle-removal part of the single-particle Green’s
function G−

ij,s (z) of the cluster given in Eq. (50) to evaluate
∂zG

−
ij,s (z) and ∂2

z G−
ij,s (z), and therefore we can calculate

∂zG′(z) and ∂2
z G′(z).

Finally, we should note that G+
ij,s (z) = G+

ji,s (z) is assumed
in Eq. (C6). However, even if G+

ij,s (z) �= G+
ji,s (z), we can

easily generalize the above derivation by introducing an ad-
ditional auxiliary single-particle Green’s function

Y+
ij,s (z) = 〈�s |ŷij [z − (Ĥ ′ − Es )]−1ŷ

†
ij |�s〉, (C16)

where ŷij = ĉi − iĉj and ŷ
†
ij = ĉ

†
i + iĉ†j . Indeed, using

X+
ij,s (z) and Y+

ij,s (z), the particle-addition part of the single-
particle Green’s function G+

ij,s (z) is obtained as

G+
ij,s (z) = 1

2
X+

ij,s (z) − 1

4
(Y+

ij,s (z) +Y+
ji,s (z))

− i

4
(Y+

ij,s (z) −Y+
ji,s (z)). (C17)

A similar procedure was employed to evaluate the anomalous
single-particle Green’s function using the Lanczos method
[196]. Note that, similarly to Eq. (C5), the auxiliary single-
particle Green’s function Y+

ij,s (z) can be represented in the

continued-fraction form but now with the initial Lanczos
vector |q1〉 = ŷ

†
ij |�s〉/B0 with B2

0 = 〈�s |ŷij ŷ
†
ij |�s〉.

APPENDIX D: BENCHMARK RESULTS OF THE ENERGY

In this Appendix, we show benchmark results of the en-
ergy of the half-filled Hubbard model within the VCA at
zero temperature. Recently, an extensive numerical study on
the two-dimensional Hubbard model has reported the energy
and other static quantities such as the expectation values of
the double occupancy and the magnetization with several
unbiased methods and approximate methods [197]. Here, we
show the finite-size scaling analysis of the ground-state energy
for the two-dimensional Hubbard model at half filling within
the VCA. We note that a benchmark of the VCA for the
one-dimensional Hubbard model has already been reported in
Ref. [198].

Compared to the one-dimensional system [198], the finite-
size scaling of the energy in two dimensions is more difficult
because the finite-size effect due to the open-boundary con-
ditions is more significant [13]. Following Refs. [13,199], we
introduce a scaling factor Q which is defined as the number of
links connecting neighboring sites though the hopping within
the cluster divided by the total number of links of the original
lattice within a unit cell of the superlattice of clusters. Taking
the cluster size in the thermodynamic limit corresponds to
Q → 1, or equivalently 1 − Q → 0. Note that 1 − Q behaves
similarly to 1/

√
Lc for clusters whose aspect ratio is close

to unity, and in particular these two quantities are identical
for Lc = l × l, i.e., 1 − Q = 1/

√
Lc = 1/l, where l is an

integer (see the third and fourth columns of Tables II or III).
A nice property of 1 − Q, as compared to 1/

√
Lc, is that

1 − Q can distinguish clusters with the same Lc but with the
different shape because Q takes into account the boundary
effect. Moreover, 1 − Q can even reverse the order of 1/

√
Lc

for some particular values of Lc, e.g., for Lc = 3 × 4 and
Lc = 2 × 8 clusters.

Before showing the results obtained by the VCA, we
first study the finite-size scaling of the exact ground-state
energy of small clusters under open-boundary conditions,
denoted as EED. Tables II and III show the energy per
site at zero temperature for U/t = 4 and U/t = 8 with
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TABLE III. Same as Table II but for U/t = 8.

U/t = 8

Lc 1/Lc 1/
√

Lc 1 − Q EED/t E(h′∗)/t E(h′∗, δt ′∗)/t h′∗/t (h′∗/t, δt ′∗/t )

2 × 1 0.5 0.7071 0.75 −0.236068 −0.474032 −0.479400 0.292618 (0.847075, 0.698321)
2 × 2 0.25 0.5 0.5 −0.330059 −0.492911 −0.496630 0.195523 (0.334300, 0.345593)
2 × 3 0.1667 0.4082 0.4167 −0.362966 −0.498704 −0.501105 0.159398 (0.242098, 0.229336)
2 × 4 0.125 0.3536 0.375 −0.378240 −0.500951 −0.502899 0.149863 (0.215346, 0.195757)
10 0.1 0.3162 0.35 −0.385580 −0.502058 −0.503551 0.134032 (0.183029, 0.161724)
2 × 6 0.0833 0.2887 0.3333 −0.394188 −0.503697 −0.505236 0.135106 (0.184715, 0.162582)
2 × 8 0.0625 0.25 0.3125 −0.402132 −0.505126 −0.506483 0.127109 (0.169825, 0.147633)
3 × 4 0.0833 0.2887 0.2917 −0.409438 −0.505953 −0.507042 0.113759 (0.147501, 0.128113)
4 × 4 0.0625 0.25 0.25 −0.425526 −0.508044 −0.508827 0.102302 (0.126727, 0.103465)

various clusters, respectively. Figures 18(a) and 18(b) show
EED as a function of 1/Lc, 1/

√
Lc, and 1 − Q for U/t =

4 and U/t = 8, respectively. As expected for small-sized
and open-boundary clusters, the energy depends strongly on

FIG. 18. Ground-state energy EED per site for (a) U/t = 4 and
(b) U/t = 8 at half filling calculated by the exact-diagonalization
method for different size of clusters under the open-boundary con-
ditions. The pluses, crosses, and dots represent the energies plotted
with respect to 1/Lc, 1/

√
Lc, and 1 − Q, respectively. The blue

horizontal line is the ground-state energy in the thermodynamic limit
obtained by the auxiliary-field QMC method taken from Ref. [197].

the size and the shape of the cluster. No systematic de-
pendence of the energy on 1/Lc or 1/

√
Lc can be found,

while the energy scales nicely with respect to 1 − Q. By
a linear fit to the data with excluding the smallest three

FIG. 19. Ground-state energy E per site for (a) U/t = 4 and
(b) U/t = 8 at half-filling. The empty and the filled circles de-
note E(h′∗) and E(h′∗, δt ′∗), respectively. The dots are obtained by
the exact-diagonalization method for the clusters under the open-
boundary conditions, as shown also in Fig. 18. The blue horizontal
line is the ground-state energy in the thermodynamic limit obtained
by the auxiliary-field QMC method taken from Ref. [197].
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clusters, we obtain lim1−Q→0 EED/t = −0.8579(40) for
U/t = 4 and lim1−Q→0 EED/t = −0.5216(31) for U/t = 8,
where the numbers in the parentheses indicate the uncer-
tainty due to the extrapolation in the last digits. Although
the uncertainties are larger by an order of magnitude than
those reported in Ref. [197], these extrapolated values are
consistent with the ones in the literature [197,200–202]. The
reasonable extrapolation of the energy with 1 − Q scaling is
rather surprising because the clusters used are quite small.

Next, we show the results for the VCA. Here, in addition
to the variational magnetic field h′ defined in Eq. (46), we
introduce a variational intracluster nearest-neighbor hopping
parameter δt ′ as

Ĥδt ′ = −δt ′
∑
〈i,j〉

∑
σ

(ĉ†iσ ĉjσ + H.c.). (D1)

Tables II and III show the ground-state energy per site for
U/t = 4 and 8 with various clusters, respectively. We denote
as E(h′∗) the energy obtained by optimizing only h′, and as
E(h′∗, δt ′∗) the energy obtained by optimizing both h′ and δt ′.
The importance for optimizing δt ′, especially for small U/t

regime, has been reported in Refs. [149,198,203,204]. Indeed,
it is found in Tables II and III that the variation of δt ′ provides
the larger energy gain for the smaller cluster and the smaller
U/t .

Figures 19(a) and 19(b) show the finite-size scaling of
the energy within the VCA for U/t = 4 and 8, respectively.
Here, only the scaling factor 1 − Q is employed since, as
in the exact-diagonalization study, only 1 − Q allows for a
reasonable finite-size scaling. The dependence of the energy

on 1 − Q obtained by the VCA is weaker than that of EED.
By optimizing both h′ and δt ′, the energies are extrapo-
lated to lim1−Q→0 E(h′∗, δt ′∗)/t = −0.8605(10) for U/t =
4 and lim1−Q→0 E(h′∗, δt ′∗)/t = −0.5247(9) for U/t = 8,
being consistent with those reported, although the uncer-
tainties are still large. Here, the data corresponding to the
smallest three clusters are excluded from the linear fit for
U/t = 4, while all the data are included in the linear fit
for U/t = 8. With the same extrapolation scheme but by
optimizing only h′, the energies are extrapolated to the lower
values lim1−Q→0 E(h′∗)/t = −0.8641(17) for U/t = 4 and
lim1−Q→0 E(h′∗)/t = −0.5263(8) for U/t = 8, which are
inconsistent with those reported in the literature. This might
be because the optimization of δt ′ reduces the finite-size effect
by providing the more energy gain (compared to the one
without optimizing δt ′) for the smaller clusters and thereby
decreases the slope of the energy with respect to 1 − Q.

Finally, we remind that the VCA grand potential, which
corresponds to the energy up to the constant shift μ = U/2
in the zero-temperature limit at half filling, consists of the
cluster term �′/Lc and the intercluster term −Tr ln(I −
V G′)/βNLc. Although the cluster term should contribute
dominantly for large Lc, it is not obvious whether the sum
of the two can be scaled well with 1 − Q for the small
clusters studied here. Our results suggest that the scaling of
the VCA energy with respect to 1 − Q is reasonable, at least,
for U/t = 4 and 8 with the cluster sizes studied here when
the two variational parameters h′ and δt ′ are optimized. The
similar analysis could be useful also at finite temperatures and
can be done straightforwardly.
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