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Fermi liquid theory works very well in most normal metals, but is found violated in many strongly correlated
electron systems, such as cuprate and heavy-fermion superconductors. A widely accepted criterion is that the
Fermi liquid theory is valid when the interaction-induced fermion damping rate approaches zero more rapidly
than the energy. Otherwise, it is invalid. Here, we demonstrate that this criterion breaks down in topological
double- and triple-Weyl semimetals. Renormalization group analysis reveals that, although the damping rate
of double- and triple-Weyl fermions induced by the Coulomb interaction approaches zero more rapidly than
the energy, the quasiparticle residue vanishes and the Fermi liquid theory is invalid. This behavior indicates
a weaker-than-marginal violation of the Fermi liquid theory. Such an unconventional non-Fermi liquid state
originates from the special dispersion of double- and triple-Weyl fermions, and is qualitatively different from
all the other Fermi liquid and non-Fermi liquid states. The predicted properties of the fermion damping rate and
the spectral function can be probed by the angle-resolved photoemission spectroscopy. The density of states,
specific heat, and conductivities are also calculated and analyzed after incorporating the corrections induced by
the Coulomb interaction.
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I. INTRODUCTION

Fermi liquid (FL) theory [1,2], originally proposed by
Landau, provides a qualitatively correct and even quantita-
tively precise description of a plethora of interacting fermion
systems. In a FL, the interaction-induced fermion damping
becomes progressively unimportant as the energy is lowered.
The fermionic excitations are long lived near the Fermi sur-
face, and can be described by the model of free-fermion gas.
Usually, the only quantum many-body effect is the regular
renormalization of a few number of parameters, such as the
fermion mass, which greatly simplifies theoretical treatment.

To judge whether the FL theory is applicable in an interact-
ing fermion system, one needs to first develop an effective cri-
terion. The interparticle interaction leads to a fermion damp-
ing rate, defined as �(ω) = |Im�R (ω)|, where Im�R (ω) is
the imaginary part of retarded fermion self-energy [1–4].
Pauli’s exclusion principle guarantees that �(ω) must vanish
at the Fermi surface, namely, �(ω → 0) → 0. However, �(ω)
might go to zero quickly or slowly, depending on the nature
and the strength of the interparticle interaction. According to
the traditional quantum many-body theory, the FL theory is
valid if the fermion damping rate approaches to zero more
rapidly than the energy ω in the limit ω → 0 [4], namely,

lim
ω→0

�(ω)

ω
→ 0. (1)

*Corresponding author: gzliu@ustc.edu.cn
†Corresponding author: zhangcj@hmfl.ac.cn

If this criterion is not satisfied, the fermion damping is be-
lieved to be strong enough to destroy the coherent quasiparti-
cles, leading to the breakdown of FL description [3,4].

In ordinary metals, the Coulomb interaction is short ranged
due to Debye screening, and only causes weak damping. It is
well established [1–4] that the fermion damping rate behaves
as �(ω) ∝ ω2 in three-dimensional (3D) metals and �(ω) ∝
ω2 ln (ω0/ω) in two-dimensional (2D) metals, respectively. In
both cases, the criterion (1) is satisfied, and the FL theory
works well. When fermions couple to some gapless bosonic
mode, such as U(1) gauge boson [5,6] or the quantum critical
fluctuation of a local order parameter [7–11], the damping rate
might take the form �(ω) ∝ ωa with 0 < a � 1. For instance,
the damping rate is �(ω) ∝ ω2/3 at the ferromagnetic (FM)
quantum critical point (QCP) [4,8] and nematic QCP [9],
and �(ω) ∝ ω1/2 at the antiferromagnetic (AFM) QCP [7,8].
When 0 < a � 1, the criterion (1) is no longer satisfied and
the FL theory becomes invalid. The case of a = 1 is very
special and defines a marginal Fermi liquid (MFL) [4,12,13],
which offers a good phenomenological description of the
unusual normal state of cuprate superconductors. In a MFL,
�(ω) and ω approach to zero in the same way. MFL has
long been regarded as the weakest imaginable violation of FL
theory [4,12,14,15].

Although the criterion (1) has been commonly used to
judge whether or not the FL theory is valid in all the previ-
ously studied fermion systems, we will demonstrate in this pa-
per that this criterion is not always efficient. Remarkably, we
find that this criterion breaks down in both double- and triple-
Weyl semimetals (WSMs), which carry multiple monopole
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charges and are thus topologically nontrivial [16–44]. In these
two types of semimetal (SM), the valence and conduction
bands touch only at isolated points. When the Fermi level is
adjusted to the band-touching points, the fermion density of
states (DOS) vanishes and the Coulomb interaction remains
long ranged. Owing to the special dispersion of double- and
triple-Weyl fermions, the Coulomb interaction may induce
highly unusual low-energy behaviors that do not occur in other
interacting fermion systems. To address this issue, we per-
form a renormalization group (RG) analysis [45] beyond the
instantaneous approximation to obtain the scale dependence
of all the model parameters. The fermion damping rate �(ω)
obtained in our RG analysis satisfies the criterion (1), thus
the Landau damping of double- and triple-Weyl fermions is
weaker than that of MFL. Based on the traditional criterion,
one would naively conclude that the FL theory is valid. This
is actually incorrect. Indeed, we find that the quasiparticle
residue Zf decreases all the way upon approaching to the
Fermi level, albeit at a small speed. In the zero-energy limit,
Zf vanishes. Obviously, there is no overlap between the
interacting and free fermions, and both double- and triple-
WSMs exhibit an unconventional non-FL ground state. This
non-FL state is qualitatively distinct from all the other FLs and
non-FLs, and provides an example of weaker-than-marginal
violation of the FL theory.

We thus see that the widely adopted criterion for the
validity of FL theory is actually incomplete. It is necessary
to develop a more complete formalism to define and classify
non-FL states. The unconventional violation of FL theory
originates from the special energy dispersion of fermions
in double- and triple-WSMs. Our work provides important
insight into the intriguing quantum many-body effects.

The unconventional non-FL state predicted in this work
is experimentally detectable. The damping rate and spec-
tral function of double- and triple-Weyl fermions exhibit
unique and distinguishable features, which could be explored
by performing angle-resolved photoemission spectroscopy
(ARPES) experiments [46–54] in several candidate double-
and triple-WSM materials, provided that the system is tuned
close to the band-touching point. Moreover, the fermion DOS,
specific heat, and conductivities can also be used to character-
ize such a non-FL state. We will calculate these observable
quantities and analyze the interaction corrections.

The rest of the paper will be organized as follows. The
model Hamiltonian and the propagators for Weyl fermions are
described in Sec. II. In Sec. III, we present the coupled RG
flow equations for the model parameters, and analyze the nu-
merical results. On the basis of the solutions, we demonstrate
that double- and triple-Weyl fermions exhibit unconventional
non-FL behaviors, which is distinct from all the other types
of fermion. We then calculate a number of observable quanti-
ties in Sec. IV and analyze their low-energy properties. We
discuss how to experimentally probe the observable effects
of the non-FL state and give a brief remark on the impact of
finite chemical potential in Sec. V. We summarize the main
results of this paper and compare to previous relevant works
in Sec. VI. All the computational details are presented in
Appendices A–F.

II. MODEL HAMILTONIAN

The Hamiltonian for free double-Weyl fermions is

Hd =
N∑

j=1

∫
d3x ψ

†
d,j (x)Hd (x)ψd,j (x),

(2)
Hd (x) = Ad1(x)σx + Ad2(x)σy + vd3(x)σz,

where d1(x) = −(∂2
x − ∂2

y ), d2(x) = −2∂x∂y , and d3(x) =
−i∂z. The Hamiltonian for the free triple-Weyl fermions is
written as

Ht =
N∑

j=1

∫
d3x ψ

†
t,j (x)Ht (x)ψt,j (x),

(3)
Ht (x) = Bg1(x)σx + Bg2(x)σy + vg3(x)σz,

where g1(x) = i(∂3
x − ∂x∂

2
y ), g2(x) = i(∂3

y − ∂y∂
2
x ), and

g3(x) = −i∂z. Here, we use ψd,j and ψt,j to represent the
two-component spinor fields for double- and triple-Weyl
fermions, respectively. The index j is j = 1, 2, . . . , N with
N being the number of fermion flavor. σx,y,z are the standard
Pauli matrices. Two model parameters A and v are introduced
to characterize the spectrum of double-Weyl fermions,
satisfying

Ed (k) =
√

A2k4
⊥ + v2k2

z . (4)

The energy spectrum of triple-Weyl fermions is given by

Et (k) =
√

B2k6
⊥ + v2k2

z , (5)

where B is another independent model parameter. For double-
and triple-Weyl fermions, the monopole charges are known to
be ±2 and ±3 [16–44], respectively. As a comparison, the
monopole changes are ±1 for usual Weyl fermions [16]. The
interesting topological properties of double- and triple-WSMs
are directly related to the above fermion dispersions.

The fermions are subject to the long-range Coulomb inter-
action, which is described by

HC = 1

4π

N∑
j=1

∫
d3x d3x′ρj (x)

e2

ε|x − x′|ρj (x′), (6)

where the fermion density operator is given by ρj (x) =
ψ

†
j (x)ψj (x). We use e to denote electron charge and ε di-

electric constant. The total model will be treated by making
perturbative expansion in powers of 1/N .

The free propagator of double-Weyl fermions reads as

Gd0(iω, k) = 1

iω − Ad1(k)σx − Ad2(k)σy − vkzσz

, (7)

where d1(k) = (k2
x − k2

y ) and d2(k) = 2kxky , and the free
propagator of triple-Weyl fermions is

Gt0(iω, k) = 1

iω − Bg1(k)σx − Bg2(k)σy − vkzσz

, (8)
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where g1(k) = (k3
x − 3kxk

2
y ) and g2(k) = (k3

y − 3kyk
2
x ). Inde-

pendent of fermion dispersion, the bare Coulomb interaction
function has the form in momentum space

V0(q) = 4πe2

ε
(
q2

⊥ + ζq2
z

) = 4παv

q2
⊥ + ζq2

z

, (9)

where α = e2/εv serves as an effective interaction strength.
Since the fermion dispersion is anisotropic, the momentum
components q⊥ and qz should be rescaled differently under
RG transformations. To facilitate RG calculation, we intro-

duce the parameter ζ and require that q⊥ and
√

ζqz scale in the
same way. After including the dynamical screening caused by
the polarization function, one can write the dressed Coulomb
interaction function as

Vd,t (i�, q) = 1

V −1
0 (q) + �d,t (i�, q)

, (10)

in which the polarization functions for double- and triple-
Weyl fermions are defined as

�d (i�, q) = −N

∫
dω

2π

d3k
(2π )3

Tr[Gd0(iω, k)Gd0(iω + i�, k + q)] (11)

and

�t (i�, q) = −N

∫
dω

2π

d3k
(2π )3

Tr[Gt0(iω, k)Gt0(iω + i�, k + q)]. (12)

These two functions are computed in Appendix A. They can be well approximated by the following analytical expressions:

�d (i�, q⊥, qz) = N

[
q2

⊥
3π2v

ln

( √
A�UV

(�2 + A2q4
⊥)1/4

+ 1

)
+ 1

64A

vq2
z√

�2 + v2q2
z

]
(13)

and

�t (i�, q⊥, qz) = N

[
3q2

⊥
4π2v

ln

(
B

1
3 �UV

(�2 + B2q6
⊥)1/6

+ 1

)
+ ct

1

B2/3

vq2
z(

�2 + v2q2
z

)2/3

]
, (14)

where ct is a constant satisfying

ct = 21/3π1/2

90�(5/6)�(2/3)
. (15)

The Coulomb interaction remains long ranged because
�d,t (0, q) vanish in the limit q → 0.

III. RENORMALIZATION GROUP STUDY

To determine how model parameters flow with varying
energy scale, we will employ the perturbative RG method
[20,21,40,42,45,55–65]. Different from previous works on re-
lated topic [20,21,40,42], we will not adopt the instantaneous
approximation and incorporate the dynamical screening of
Coulomb interaction in our RG calculations.

A. Flow equations

The self-energy of double-Weyl fermions induced by the
Coulomb interaction is formally given by

�d (iω, k) =
∫ ′ d�

2π

d3q
(2π )3

Gd0(iω + i�, k + q)Vd (i�, q),

(16)

where the notation
∫ ′ implies that a momentum shell will be

properly chosen in the calculation. Here, it is convenient to
choose the momentum shell b� < Ed (k) < �, where b =
e−� with � being a flow parameter. According to the calcu-
lations detailed in Appendix B 1, �d can be approximated

as
�d (iω, k)

≈ {iωCd1 − A[d1(k)σx + d2(k)σy]Cd2 − vkzσzCd3}�,
(17)

to the leading order. The expressions of Cd1, Cd2, and Cd3 are
shown in Eqs. (B12)–(B15) in Appendix B 1.

According to the calculations of Appendix C 1, we find that
the coupled RG equations are

dZf

d�
= −Cd1Zf , (18)

dA

d�
= (Cd2 − Cd1)A, (19)

dv

d�
= (Cd3 − Cd1)v, (20)

dα

d�
= (Cd1 − Cd3)α, (21)

dβd

d�
= (Cd1 + Cd2 − 2Cd3 − 1)βd, (22)

dγd

d�
= 1

2
(Cd2 − Cd1)γd. (23)

Here, the quasiparticle residue Zf measures the overlap be-
tween free and interacting fermions, and α = e2/vε char-
acterizes the Coulomb interaction strength. The other two
parameters are defined as

βd = ζA�

v2
, γd =

√
A�UV√

�
. (24)
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As shown in Appendix B 2, the self-energy of triple-Weyl
fermions caused by Coulomb interaction can be written as

�t (iω, k) =
∫ ′ d�

2π

d3q
(2π )3

Gt0(iω + i�, k + q)Vt (i�, q)

≈ {iωCt1 − B[g1(k)σx + g2(k)σy]

×Ct2 − vkzσzCt3}�. (25)

The momentum shell is taken as b� < Et (k) < �. The ex-
pressions of Ct1, Ct2, and Ct3 are given by Eqs. (B27)–
(B30) in Appendix B 2. As shown in Appendix C 2, the RG
equations for triple-Weyl fermions are

dZf

d�
= −Ct1Zf , (26)

dB

d�
= (Ct2 − Ct1)B, (27)

dv

d�
= (Ct3 − Ct1)v, (28)

dα

d�
= (Ct1 − Ct3)α, (29)

dβt

d�
=

(
4

3
Ct1 + 2

3
Ct2 − 2Ct3 − 4

3

)
βt , (30)

dγt

d�
= 1

3
(Ct2 − Ct1)γt , (31)

where βt and γt are defined as

βt = ζB2/3�4/3

v2
, γt = B1/3�UV

�1/3
. (32)

B. Quasiparticle residue and damping rate

The coupled flow equations can be solved numerically. The
flow of quasiparticle residue Zf (�) for double-Weyl fermions
is presented in Figs. 1(a)–1(c). According to Fig. 1(a), we
find that Zf (�) eventually flows to zero in the limit � → ∞,
albeit at a small speed. Thus, the FL description is invalid, and
the double-Weyl fermions are not well-defined Landau-type
quasiparticles.

It is necessary to determine how rapidly Zf (�) vanishes.
We observe from Fig. 1(b) that

lim
�→∞

ln(1/Zf )

�
→ 0. (33)

Based on Fig. 1(c), we find that Zf (�) exhibits the asymptotic
behavior

lim
�→∞

ln(1/Zf )

ln(�)
→ η, (34)

where η is a constant satisfying 0 < η < 1. For physical flavor
N = 2, η ≈ 0.18. For large values of �, Zf (�) behaves as

Zf (�) ∼ �−η. (35)

It is known that Zf is connected to the real part of the retarded
fermion self-energy Re�R (ω) via the relation

Zf (ω) = 1∣∣1 − ∂
∂ω

Re�R (ω)
∣∣ . (36)

FIG. 1. Low-energy behavior of Zf for double-Weyl fermions.
The blue, red, green, black, and magenta lines correspond to α0 =
0.1, 0.5, 1, 1.5, and 2, respectively. βd0 = 1 and γd0 = 0.2. Here,
N = 2.

The ω dependence of Zf can be obtained from Zf (�) by
making the transformation ω = ω0e

−�, where ω0 is some
initial value of ω. On the basis of Eq. (36), it is now easy
to obtain

Re�R (ω) ∼ ω

[
ln

(
ω0

ω

)]η

. (37)

Employing the Kramers-Kronig relation [1], we get the imag-
inary part

Im�R (ω) ∼ ω

[ln (ω0/ω)]1−η
, (38)

which directly gives the fermion damping rate. The two
equations (37) and (38) are the main results of this paper.

The asymptotic behavior of Zf (�) for triple-Weyl fermions
can be similarly obtained by solving the flow equations.
Results are shown in Figs. 2(a)–2(c). We find that Zf (�),
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FIG. 2. Low-energy behavior of Zf for triple-Weyl fermions.
The blue, red, green, black, and magenta lines correspond to α0 =
0.1, 0.5, 1, 1.5, and 2, respectively. βt0 = 1, and γt0 = 0.2. Here,
N = 2.

Re�R (ω), and Im�R (ω) exhibit almost the same qualita-
tive low-energy behaviors as those of double-Weyl fermions,
namely, they are also descried by Eqs. (35), (37), and (38). For
N = 2, we find η can be also approximated by η ≈ 0.18.

C. Fate of fermionic excitations in various interacting systems

To gain a better understanding of the uniqueness of the
non-FL revealed in this work, we compare this state to a
number of typical FLs and non-FLs, as summarized in Fig. 3.
In many cases, the fermion damping rate can be expressed by
a power law, i.e., Im�R (ω) ∼ ωa . One can verify that (i) for
0 < a < 1, Zf ∼ ω1−a → 0 as ω → 0; (ii) for a = 1, Zf ∼
1/ ln(ω0/ω) → 0 as ω → 0; (iii) if a > 1, Zf flows to a
nonzero constant as ω → 0. An obvious conclusion is that FL
theory is valid when a > 1, but breaks down when 0 < a � 1.
In 2D metal and graphene (2D DSM), the fermion damping

FIG. 3. Schematic illustration for traditional classification of FL,
non-FL, and MFL. Interacting fermion system with damping rate
weaker than MFL is believed to be a FL.

rate is found to, respectively, depend on ω as ω2 ln(ω0/ω)
[1] and ω/ ln2(ω0/ω) [55], which are actually not power
functions. However, the condition (1) is still satisfied in these
two cases, and the corresponding residue Zf 
= 0. Therefore,
the condition (1) does provide an effective criterion to judge
the validity of FL theory in all previously studied interacting
fermion systems.

There is an interesting possibility that the damping rate
vanishes at exactly the same speed as the energy, namely,
�(ω) ∼ ω. The residue Zf decreases down to zero logarith-
mically as ω → 0. This behavior is broadly identified as the
weakest violation of FL theory [4,12,14,15], which is the
reason why an interacting fermion system displaying such a
damping rate is called MFL. According to this notion, any
system in which the Landau damping effect is weaker than
MFL is usually regarded as a normal FL.

We emphasize here that, although the criterion (1) is widely
utilized to judge the validity of FL theory in various interact-
ing fermion systems, its efficiency has never been rigorously
justified. There can be exceptions. It is in principle possible
for Zf to vanish more slowly than a logarithmic decrease. In
this work, we demonstrate that this criterion breaks down in
two concrete physical systems, namely, topological double-
and triple-WSMs. Although the damping rate of multi-Weyl
fermions satisfies the criterion (1), the residue Zf vanishes in
the limit ω → 0 more slowly than the logarithmic decrease.
Thus, these two systems display a weaker-than-marginal vi-
olation of FL theory. An important indication of this result
is that the FL theory could be spoiled even though the in-
terparticle interaction does not induce a stronger-than-energy
Landau damping. In this regard, the ground state of double-
and triple-WSMs is distinct from all the other interacting
fermion systems.
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D. Comparing with usual Weyl semimetal

In this section, we study the residue and damping rate
of fermions in usual WSM, and compare the results with
double- and triple-WSMs. The free propagator of usual Weyl
fermions is G−1

u0 (iω, k) = iω − vk · σ . The dressed Coulomb
interaction takes the form

Vu(i�, q) = 1

V −1
0 (q) + �u(i�, q)

, (39)

where V0(q) = 4παv
|q|2 , and the polarization is given by

�u(i�, q)

= −N

∫
dω

2π

∫
d3k

(2π )3
Tr[Gu0(iω, k)Gu0(iω + i�, k + q)]

≈ N |q|2
12π2v

ln

(
v�UV +

√
�2 + v2|q|2√

�2 + v2|q|2
)

. (40)

Considering the self-energy induced by the Coulomb inter-
action

�u(iω, k) =
∫ ′ d�

2π

d3q
(2π )3

Gu0(iω + i�, k + q)Vu(i�, q)

≈ (iωCu1 − vk · σCu2)�, (41)

and performing the RG analysis, we obtain the RG equations
as follows:

dZf

d�
= −Cu1Zf , (42)

dv

d�
= (Cu2 − Cu1)v, (43)

dα

d�
= (Cu1 − Cu2)α, (44)

dγu

d�
= (Cu2 − Cu1)γu, (45)

where

Cu1 = 1

4π3

∫ +∞

−∞
dx

x2 − 1

(x2 + 1)2
Gu(x), (46)

Cu2 = 1

4π3

∫ +∞

−∞
dx

x2 + 1
3

(x2 + 1)2
Gu(x), (47)

with

G−1
u (x) = 1

4πα
+ N

12π2
ln

(
γue

� + √
x2 + 1√

x2 + 1

)
. (48)

The parameter γu is given by γu = v�UV
�

.
We have solved the above flow equations and plot the �

dependence of Zf in Fig. 4. As � grows, Zf approaches
to some finite value as � → ∞. An immediate conclusion
is that the unusual Weyl fermions are ordinary Landau-type
quasiparticles, and the FL theory is well applicable. It is clear
that usual WSM exhibits distinct behaviors than double- and
triple-WSMs. The distinction originates from the difference in
the fermion dispersion.

FIG. 4. The residue Zf of interacting usual Weyl fermions flows
to certain finite constant as � → ∞. Therefore, the Coulomb interac-
tion does not violate the FL theory.

IV. OBSERVABLE QUANTITIES

As demonstrated in the last section, the non-FL state
of double- and triple-WSMs is qualitatively different from
normal FLs and conventional non-FLs. In this section, we
discuss the possible experimental signatures of this state. The
residue Zf is not directly measurable. Here, we will compute
a number of observable quantities, including the spectral
function, DOS, specific heat, and conductivities, and analyze
their low-energy properties. The calculational details can be
found in Appendices E and F.

A. Spectral function

We first consider the fermion spectral function A(ω, k) and
the damping rate �(ω). In the noninteracting limit, the spectral
function is just a δ function, namely,

A0(ω, k) = δ(ω − ξk ),

where ξk is the kinetic energy, which displays an infinitely
sharp peak. After including quantum many-body effects, it
becomes

A(ω, k) = 1

π

|Im�R (ω)|
[ω + Re�R (ω) − ξk]2 + [Im�R (ω)]2

. (49)

In Fig. 5, we list four different cases: 3D metal as a normal
FL; unconventional non-FL state revealed in this paper; MFL;
conventional non-FL. As shown in Fig. 5(a), the energy dis-
tribution curve (EDC) for 3D metal has a very sharp peak.
Around an AFM QCP, depicted in Fig. 5(f), the EDC exhibits
an obviously asymmetric shape with a long tail. We observe
from Fig. 5(e) that the EDC of MFL still displays a weak
asymmetry. For the unusual non-FL states demonstrated in
Figs. 5(b)–5(d), the asymmetry of EDC is even weaker than
that of MFL, and the asymmetry is gradually weakened as
η decreases. Nevertheless, the peak width is larger than that
of normal FLs, which is consistent with the fact that Zf =
0. Comparing the EDCs shown in Figs. 5(a)–5(f), we can
infer that the non-FL state realized in double- and triple-
WSMs stays in-between MFL and all the normal FLs. ARPES
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FIG. 5. Energy distribution curves in a number of FLs and non-FLs. (a) 3D metal; (b)–(d) unconventional non-FL with η = 0.18
corresponding to physical flavor N = 2; (e) MFL; (f) non-FL realized at an AFM QCP. The blue, red, green, black, and magenta curves
correspond to ξk = 0.001, 0.002, 0.003, 0.004, and 0.005, respectively.

experiments [46–54] could be performed to detect the peculiar
properties of EDCs of the unconventional non-FL state.

The fermion damping rate �(ω) can be extracted from
the ARPES data of EDC or momentum distribution curve
(MDC) [46,47]. It is especially efficient to fit MDC with
the Lorentzian peak [46–53]. High-resolution ARPES mea-
surements have been extensively applied to determine the
fermion damping rate in many correlated electron systems,
including cuprates [46–48], iron pnictides [49,50], graphene
[51], and topological insulators [52,53]. We expect that the
unconventional damping rate, i.e., �(ω) ∼ ω/[ln (ω0/ω)]1−η,
obtained in our work could be investigated by using this
experimental tool in the future.

B. DOS

The DOS of free double-Weyl fermions is linear in energy,
i.e.,

ρd (ω) = N

8πvA
|ω|. (50)

The Coulomb interaction leads to singular renormalization of
the parameters A and v. The flows of A and v can be obtained
from the RG equations, with results shown in Figs. 6(a) and
6(b). Both A and v increase as � is growing, and it is obvious
that A increases more rapidly than v. After incorporating the
anomalous dimension of fermion field and the renormaliza-
tion of A and v, we get the following RG equation for ρd :

d ln(ρd (ω))
d ln(ω)

∼ 1 − Cd1 + Cd2 + Cd3. (51)

As depicted in Fig. 7(a), the double-Weyl fermion DOS is
suppressed by Coulomb interaction.

For free triple-Weyl fermions, the DOS is given by

ρt (ω) = N�(1/3)

12π3/2�(5/6)vB2/3
|ω|2/3. (52)

The � dependence of B and v is plotted in Figs. 6(c) and
6(d). Both B and v increase with growing �, but at different
speeds. Including the interaction corrections modifies ρt (ω),
and yields

d ln(ρt (ω))
d ln(ω)

∼ 2

3
− 2

3
Ct1 + 2

3
Ct2 + Ct3. (53)

The energy dependence of ρt (ω) is depicted in Fig. 7(c).
The DOS of triple-Weyl fermions is also suppressed by the
Coulomb interaction.

FIG. 6. (a), (b) Flows of A and v in double-WSM with βd0 = 1,
γd0 = 0.2, and N = 2. (c), (d) Flows of B and v in triple-WSM with
βt0 = 1, γt0 = 0.2, and N = 2. In (a)–(d), blue, red, green, black, and
magenta lines correspond to α0 = 0.1, 0.5, 1, 1.5, and 2, respectively.
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FIG. 7. DOS and specific heat of double- and triple-WSMs after
including the Coulomb interaction corrections. (a), (b) Results for
double-WSM with βd0 = 1, γd0 = 0.2, and N = 2. (c), (d) Results
for triple-WSM with βt0 = 1, γt0 = 0.2, and N = 2. In (a)–(d), blue,
red, green, black, and magenta lines correspond to α0 = 0.1, 0.5, 1,
1.5, and 2, respectively.

C. Specific heat

The specific heat for free double- and triple-Weyl fermions
is

Cd
v (T ) = 9ζ (3)N

4πvA
T 2, (54)

Ct
v (T ) = 40atN

9π3/2vB2/3
T 5/3, (55)

respectively. Here, at is a constant. Taking into account the
renormalization of parameters A, B, and v, we derive the
following equations:

d ln
(
Cd

v (T )
)

d ln(T )
∼ 2 − 2Cd1 + Cd2 + Cd3, (56)

d ln
(
Ct

v (T )
)

d ln(T )
∼ 5

3
− 5

3
Ct1 + 2

3
Ct2 + Ct3. (57)

The corresponding numerical results are presented in
Figs. 7(b) and 7(d). It is clear that the specific heat is sup-
pressed by the Coulomb interaction in both systems.

D. Conductivities

Transport properties might provide important information
on the experimental signatures of non-FL state. Here, we are
particularly interested in the conductivities. We will first esti-
mate the dc conductivities, and then calculate the dynamical
conductivities.

1. Estimation of dc conductivities

To estimate the dc conductivity, a heuristic method is to
invoke the Einstein relation [1,2,58,66]

σ ∼ e2v2ρ(E)τ (E), (58)

where v is the mean fermion velocity, ρ the DOS, and τ

the mean fermion lifetime. E stands for either energy or

temperature. Since τ is inversely proportional to the damping
rate �, i.e.,

τ ∼ 1

�
, (59)

the Einstein relation can be rewritten as

σ ∼ e2v2ρ(E)/�(E). (60)

In conventional metals, the fermion damping rate is �(E) ∼
E2 [1,2], whereas v and ρ are both constants in the low-energy
regime. Taking E = T , one can easily obtain

σ ∼ T −2. (61)

This indicates that the resistivity

R ∼ 1

σ
∼ T 2, (62)

which is a well-known characteristic of conventional metals
[1,2]. We will utilize this procedure to estimate the dc con-
ductivities of double- and triple-WSMs.

For double-WSM, the DOS is given by ρ(E) ∼ E/(vA).
The damping rate is �(E) ∼ E/[ln(E0/E)]1−η, which can be
further simplified to �(E) ∼ E if the weak logarithmiclike
factor is neglected. The fermion velocity within the x-y plane
takes the form

v⊥ ∼ Ak⊥ ∼
√

AE. (63)

By using the Einstein relation, we find that the conductivity
within the x-y plane can be approximately expressed as

σd
⊥⊥(T ) ∼ T . (64)

The fermion velocity along the z axis is v, thus the corre-
sponding conductivity is independent of T , namely,

σd
zz(T ) ∼ T 0 ∼ const. (65)

For triple-WSM, the DOS depends on energy in the form
ρ(E) ∼ E2/3/(vB2/3). The damping rate behaves as �(E) ∼
E/(ln(E0/E))1−η, which is approximated by �(E) ∼ E. The
fermion velocity within the x-y plane reads as

v⊥ ∼ Bk2
⊥ ∼ B1/3E2/3. (66)

Employing the Einstein relation, we obtain the conductivity
within the x-y plane

σ t
⊥⊥(T ) ∼ T , (67)

which is qualitatively the same as the one for double-WSM.
However, different from double-WSM, the conductivity along
z axis is T dependent, given by

σ t
zz(T ) ∼ T −1/3. (68)

In the above estimation, we neglect the weak logarithmiclike
factor that exists in the damping rate and the renormalized
parameters (A, B, and v). If these corrections are incorpo-
rated, the conductivities could receive weak logarithmiclike
corrections in their temperature dependence.

2. Dynamical conductivities

We next analyze the properties of dynamical conductivities
by including the energy dependence. By using the Kubo
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FIG. 8. Dynamical conductivities of double- and triple-WSMs
considering the influence of Coulomb interaction. (a), (b) σd

⊥⊥ and
σ d

zz for double-WSM with βd0 = 1, γd0 = 0.2, and N = 2. (c), (d)
σ t

⊥⊥ and σ t
zz for triple-WSM with βt0 = 1, γt0 = 0.2, and N = 2.

In (a)–(d), blue, red, green, black, and magenta lines correspond to
α0 = 0.1, 0.5, 1, 1.5, and 2, respectively.

formula, we get the dynamical conductivities for free double-
Weyl fermions within the x-y plane and along the z axis:

σd
⊥⊥(�, T ) = cd

1
e2

v
δ(�)T 2 + cd

2
e2

v
|�| tanh

( |�|
4T

)
, (69)

σd
zz(�, T ) = cd

3
ve2

A
δ(�)T + cd

4
ve2

A
tanh

( |�|
4T

)
. (70)

The constants cd
1 , cd

2 , cd
3 , and cd

4 are given in Appendix E 2 a.
The first terms on the right-hand sides of Eqs. (69) and (70)
indicate the presence of Drude peak. At zero temperature, the
dynamical conductivities become

σd
⊥⊥(�) = cd

2
e2

v
|�|, (71)

σd
zz(�) = cd

4
ve2

A
. (72)

Incorporating the interaction corrections, we derive the RG
equations for σd

⊥⊥ and σd
zz:

d ln
(
σd

⊥⊥(�)
)

d ln(�)
∼ 1 + Cd1 + Cd3, (73)

d ln
(
σd

zz(�)
)

d ln(�)
∼ 2Cd1 + Cd2 − Cd3. (74)

The solutions of these two equations are shown in Figs. 8(a)
and 8(b). Both σd

⊥⊥ and σd
zz are suppressed by the Coulomb

interaction.
For free triple-Weyl fermions, the dynamical conductivities

within the x-y plane and along the z axis are

σ t
⊥⊥(�, T ) = ct

1
e2

v
δ(�)T 2 + ct

2
e2

v
|�| tanh

( |�|
4T

)
, (75)

σ t
zz(�, T ) = ct

3
ve2

B2/3
δ(�)T 2/3 + ct

4
ve2

B2/3

1

|�|1/3 tanh

( |�|
4T

)
.

(76)

The constants ct
1, ct

2, ct
3, and ct

4 are shown in Appendix E 2 b.
At zero temperature, they behave as

σ t
⊥⊥(�) = ct

2
e2

v
|�|, (77)

σ t
zz(�) = ct

4
ve2

B2/3

1

|�|1/3 . (78)

The Coulomb interaction alters the above behaviors and gives
rise to the following equations:

d ln(σ t
⊥⊥(�))

d ln(�)
∼ 1 + Ct1 + Ct3, (79)

d ln
(
σ t

zz(�)
)

d ln(�)
∼ −1

3
+ 7

3
Ct1 + 2

3
Ct2 − Ct3. (80)

The detailed energy dependence of σ t
⊥⊥ and σ t

zz can be found
from Figs. 8(c) and 8(d).

V. EXPERIMENTAL DETECTION

It was recently suggested that HgCr2Se4 [19] and SrSi2

[67] are two candidate materials of double-WSM. Theoretical
studies [68] proposed that cubic-Dirac SM (cubic-DSM), in
which the fermion dispersion is linear in one momentum
component and cubic in the rest two, might be realized in
some materials, including Rb(MoTe)3 and Tl(MoTe)3 that
belong to the A(MoX)3 family. Similar to triple-WSM, such
cubic-DSMs should also display the unconventional non-FL
behavior. The physical fermion flavor is N = 2 in HgCr2Se4

[19], thus η ≈ 0.18. In SrSi2, the flavor of double-Weyl
fermions is N = 8 [67], for which we get η ≈ 0.05. In
Rb(MoTe)3 and Tl(MoTe)3, there is only one type of cubic
Dirac fermion, formed by the degeneracy of two species of
triple-Weyl fermions [68]. Accordingly, we find that η ≈ 0.18
in these two materials.

The unconventional non-FL state is induced by the long-
range Coulomb interaction, thus, its signature is sharpest at
zero chemical potential, i.e., μ = 0, which can be realized
by tuning the Fermi level to the band-touching point. In real
materials, μ is usually not strictly zero, but takes a finite
value. For finite μ, the Coulomb interaction becomes short
ranged due to the static screening caused by finite zero-energy
DOS. It is necessary to emphasize that the unconventional
non-FL state still has observable effects at finite μ. At energies
below μ, namely, ω < μ, the system exhibits ordinary FL
behavior. At energies above μ, namely, ω > μ, the static
screening becomes relatively unimportant, and non-FL behav-
ior reemerges. As ω further grows, the Coulomb interaction
might be surpassed by other interactions, such as electron-
phonon coupling. Thus, non-FL behavior actually occurs in
a finite range of intermediate energies μ < ω < ωc, where
ωc is a material-dependent upper energy scale. This energy
range narrows when μ increases, and finally disappears once
μ becomes large enough. For sufficiently small μ, there are
always observable signatures of the unconventional non-FL
state. To intuitively understand what happens at finite μ, one
could regard μ as a tuning parameter: μ = 0 defines a special
QCP that exhibits an unconventional non-FL ground state
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FIG. 9. Phase diagram for multi-WSM in the parameter space
spanned by μ and T/ω. The unconventional non-FL state can be
probed in the whole quantum critical regime.

at lowest-energy limit. This QCP is broadened into a finite
quantum critical regime at finite T/ω, as schematically shown
in Fig. 9. Unconventional non-FL behavior emerges in this
regime, and can be explored at finite T with T > μ or at finite
ω with ω > μ.

It is technically possible to reduce μ gradually, by either
doping manipulation or gate voltage control [51,69–74]. Some
unusual quantum many-body effects have already been ob-
served in SM samples prepared at small μ [51,69–72,75].
For instance, RG studies predicted that the fermion velocity
is singularly renormalized by long-range Coulomb interaction
in 2D DSM [55,56]. This prediction was recently confirmed in
graphene with small μ by a number of different experimental
tools, including ARPES [51], Shubnikov–de Haas oscillations
[69], scanning tunneling spectroscopy [70], quantum capaci-
tance measurements [71], and Landau level spectroscopy [75].

Remarkably, one could fix the Fermi level of SM at exactly
the band-touching point via the mechanism of symmetry
protection [16,76–79], which naturally realizes ideal SM with
μ = 0. Such symmetry-protected ideal WSM state is pro-
posed to exist in several materials, including strained HgTe
and Heusler compounds [76], some chalcopyrite compounds
[77], GdSI [78], and CuF [79]. If symmetry-protected ideal
double- and triple-WSMs were discovered in the future, it
would be more feasible to probe the unconventional non-FL
behavior.

VI. SUMMARY

In summary, we have studied two important quantities, the
quasiparticle residue and the Landau damping rate, in double-
and triple-WSMs. The result is that the residue Zf flows to
zero in the lowest-energy limit, but at a lower speed than
that of the MFL. Based on the energy dependence of Zf ,
we have obtained the real and imaginary parts of the retarded
fermion self-energy, and then computed the spectral function.
Interestingly, the Landau damping rate is weaker than the one
of MFL. These results imply that the Coulomb interaction
leads to a weaker-than-marginal breakdown of the FL theory
in both double- and triple-WSMs. The unconventional non-FL
state can be experimentally probed by measuring the fermion

self-energy and the spectral function. We have also calculated
several other observable quantities, including DOS, specific
heat, and conductivities, and discussed the impact of the
anomalous interaction corrections. We would emphasize that
this non-FL state has observable effects even at finite chemical
potential.

Notice that the Coulomb interaction is long ranged in all
the DSMs and WSMs that host isolated band-touching points.
However, this new type of non-FL state emerges only in
double- and triple-WSMs, but has never been found neither in
the 2D/3D DSMs nor in the usual WSMs. In order to make
a comparison between different types of WSMs, we have
computed the residue Zf of usual Weyl fermions and found
that it flows to a finite value as the energy is lowered down to
zero. The difference indicates that the influence of long-range
Coulomb interaction in SMs is closely linked to the energy
dispersion of the fermion excitations.

The impact of Coulomb interaction has recently been
studied in double-WSM [20,21] and triple-WSM [40,42] by
means of the RG method. These RG studies are based on the
instantaneous approximation (neglecting the energy depen-
dence of Coulomb interaction), and thus do not provide any
information about the residue Zf and fermion damping rate
�(ω). Different from Refs. [20,21,40,42], we have incorpo-
rated the dynamical screening of Coulomb interaction in our
RG analysis and obtained both the residue and damping rate.
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APPENDIX A: CALCULATION OF
POLARIZATION FUNCTIONS

Although the Coulomb interaction is long ranged at zero
chemical potential, it is dynamically screened by the collec-
tive particle-hole excitations. The dynamical screening effect
is embodied in the energy/momentum dependence of the
polarization functions. The aim of this appendix is to calcu-
late the polarizations �d,t (�, q) for double- and triple-Weyl
fermions.

1. Polarization �d (�, q) of double-Weyl fermions

For double-Weyl fermions, the polarization is given by

�d (i�, q) = −N

∫
dω

2π

∫
d3k

(2π )3
Tr[Gd0(iω, k)

×Gd0(iω + i�, k + q)]. (A1)

Substituting the fermion propagator (7) into Eq. (A1), we get

�d

(
i�,

qx√
A

,
qy√
A

,
qz

v

)
= 2N

Av

∫
dω

2π

∫
d3k

(2π )3

FA
d1

FB
d1

, (A2)
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where

FA
d1 = ω(ω + �) −

3∑
i=1

di (k)di (k + q), (A3)

FB
d1 = (

ω2 + E2
k

)[
(ω + �)2 + E2

k+q

]
, (A4)

with d1(k) = k2
x − k2

y , d2(k) = 2kxky , d3(k) = kz, and Ek =√
k4
⊥ + k2

z . This expression is obtained by making the follow-
ing rescaling transformations:

kx → kx√
A

, qx → qx√
A

, ky → ky√
A

,

(A5)

qy → qy√
A

, kz → kz

v
, qz → qz

v
.

Employing the Feynman integral

1

XY
=

∫ 1

0
dx

1

[xX + (1 − x)Y ]2 , (A6)

the polarization can be further written as

�d

(
i�,

qx√
A

,
qy√
A

,
qz

v

)

= 2N

Av

∫ 1

0
dx

∫
dkx

2π

dky

2π
FA

d2

∫
d2K

(2π )2

1(
FB

d2

)2 , (A7)

where

FA
d2 = −x(1 − x)

(
�2 − q2

z

) − d1

(
k − q

2

)
d1

(
k + q

2

)

− d2

(
k − q

2

)
d2

(
k + q

2

)
, (A8)

FB
d2 = K2 + x(1 − x)

(
�2 + q2

z

) + (1 − x)

(
k − q

2

)4

⊥

+ x

(
k + q

2

)4

⊥
, (A9)

and K = (ω, kz). The transformations kx → kx − qx

2 and
ky → ky − qy

2 have been made in the above derivation. We
then integrate over K by using the formula∫

ddQ

(2π )d
1(

Q2 + �
)n = �(n − d/2)

(4π )d/2�(n)

1

�n−d/2
, (A10)

and obtain

�d

(
i�,

qx√
A

,
qy√
A

,
qz

v

)

= N

2πAv

∫ 1

0
dx

∫
dkx

2π

dky

2π

(
FA

d3

FB
d3

+ 1

)
, (A11)

where

FA
d3 = −x(1 − x)

(
�2 − q2

z

) −
(

k2
⊥ − q2

⊥
4

)2

+ (kyqx − kxqy )2, (A12)

FB
d3 = x(1 − x)

(
�2 + q2

z

) +
(

k2
⊥ + q2

⊥
4

)2

+ (kxqx + kyqy )2

− 2(1 − 2x)

(
k2
⊥ + q2

⊥
4

)
(kxqx + kyqy ). (A13)

This polarization has already been regularized by re-
placing �d (i�,

qx√
A
,

qy√
A
,

qz

v
) with �d (i�,

qx√
A
,

qy√
A
,

qz

v
) −

�d (0, 0, 0, 0). We now introduce the polar coordinates, and
rewrite the polarization as

�d

(
i�,

q⊥√
A

, qz

)
= N

8π3Av

∫ 1

0
dx

∫ �UV

0
dk⊥k⊥

×
∫ 2π

0
dθ

(
FA

d4

FB
d4

+ 1

)
, (A14)

where

FA
d4 = −x(1 − x)

(
�2 − q2

z

) −
(
k2
⊥ − q2

⊥
4

)2

+ k2
⊥q2

⊥ sin2(θ ),

(A15)

FB
d4 = x(1 − x)

(
�2 + q2

z

) +
(

k2
⊥ + q2

⊥
4

)2

+ k2
⊥q2

⊥ cos2(θ )

− 2(1 − 2x)

(
k2
⊥ + q2

⊥
4

)
k⊥q⊥ cos(θ ). (A16)

θ is the angle between k⊥ and q⊥, and �UV is an UV cutoff.
This polarization is formally very complicated, and cannot
be directly used to calculate fermion self-energy. To proceed,
we will analyze its asymptotic behaviors in several different
limits, and then obtain an appropriate approximate expression.
This strategy is widely employed in the study of interacting
fermion systems [1,2,4,64].

a. q⊥ = 0

In the limit q⊥ = 0, the polarization takes the form

�d

(
i�, 0,

qz

v

)
= N

2π2Av
q2

z

∫ 1

0
dx x(1 − x)

×
∫ �UV

0
dk⊥k⊥

1

x(1 − x)
(
�2 + q2

z

) + k4
⊥

.

(A17)

The upper limit of the integration over k⊥ can be taken to be
infinity, which leads to

�d

(
i�, 0,

qz

v

)
= N

64Av

q2
z√

�2 + q2
z

. (A18)

b. � = 0 and qz = 0

Setting � = 0 and qz = 0, integrating over x, and then
making the transformation k⊥ = q⊥y, we obtain

�d

(
0,

q⊥√
A

, 0

)
= Nq2

⊥
8π3Av

∫ π
2

0
dθ

∫ �UV
q⊥

0
dy Fd5, (A19)
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where

Fd5 = 4y + 2
y2 sin2(θ ) − (

y2 − 1
4

)2(
y2 + 1

4

)
cos(θ )

× ln

(
y2 + 1

4 + y cos(θ )

y2 + 1
4 − y cos(θ )

)
. (A20)

In the limit y → ∞, it is easy to verify that

Fd5 → 16 − 8 cos(2θ )

3y
. (A21)

In the low-energy regime, �(0,
q⊥√
A
, 0) is given by

�d

(
0,

q⊥√
A

, 0

)
≈ Nq2

⊥
8π3Av

[
a1 + a2 + 8π

3
ln

(
�UV

q⊥

)]
,

(A22)

where

a1 =
∫ π

2

0
dθ

∫ 1

0
dy Fd5, (A23)

a2 =
∫ π

2

0
dθ

∫ +∞

1
dy

[
Fd5 − 16 − 8 cos(2θ )

3y

]
. (A24)

Through numerical calculation, we find that

a1 ≈ 3.835 04, a2 ≈ −1.4367. (A25)

Retaining the leading contribution yields

�d

(
0,

q⊥√
A

, 0

)
= Nq2

⊥
3π2Av

ln

(
�UV

q⊥

)
. (A26)

c. qz = 0 and q2
⊥ � �

In the limit qz = 0 and q2
⊥ � �, the polarization can be

approximated by

�d

(
i�,

q⊥√
A

, 0

)
= Nq2

⊥
2π2Av

∫ �UV

0
dk⊥k3

⊥

[(
1 + 2

k4
⊥

�2

)

×
∫ 1

0
dx

1

x(1 − x)�2 + k4
⊥

− 2

�2

]
.

(A27)

Carrying out the integration over x and using the transforma-
tion k⊥ = √|�|y, we get

�d

(
i�,

q⊥√
A

, 0

)
= Nq2

⊥
π2Av

∫ �UV√|�|

0
dy Fd6, (A28)

where

Fd6 = y3

[
1 + 2y4√
1 + 4y4

ln

(√
1 + 4y4 + 1√
1 + 4y4 − 1

)
− 1

]
. (A29)

As y → ∞, the integrand becomes

Fd6 → 1

3y
, (A30)

which allows us to express �d (i�,
q⊥√
A
, 0) in the form

�d

(
i�,

q⊥√
A

, 0

)
≈ Nq2

⊥
π2Av

[
a3 + a4 + 1

3
ln

(
�UV√|�|

)]
,

(A31)

where

a3 =
∫ 1

0
dy Fd6, (A32)

a4 =
∫ +∞

1
dy

(
Fd6 − 1

3y

)
. (A33)

Numerical calculations show that

a3 ≈ 0.192 007, a4 ≈ −0.011 451 9. (A34)

Retaining the leading term, we approximately obtain

�d

(
i�,

q⊥√
A

, 0

)
≈ Nq2

⊥
3π2Av

ln

(
�UV√|�|

)
. (A35)

d. Ansatz for �d (i�, q)

Based on the polarization calculated in different limits,
as shown in Eqs. (A18), (A26), and (A35), we find that the
polarization can be approximated by the following ansatz:

�d

(
i�,

q⊥√
A

,
qz

v

)

≈ N

[
q2

⊥
3π2Av

ln

(
�UV

(�2 + q4
⊥)1/4

+ 1

)
+ 1

64Av

q2
z√

�2 + q2
z

]
.

(A36)

Making the rescaling transformations

qx√
A

→ qx,
qy√
A

→ qy,
�UV√

A
→ �UV,

qz

v
→ qz,

(A37)

we further have

�d (i�, q⊥, qz) ≈ N

[
q2

⊥
3π2v

ln

( √
A�UV

(�2 + A2q4
⊥)1/4

+ 1

)

+ 1

64A

vq2
z√

�2 + v2q2
z

]
. (A38)

This function will be used to compute the fermion self-energy.
In Fig. 10, we present a direct comparison between the ap-

proximate analytical expression (A38) and the exact one-loop
polarization (A14). One can see that Eq. (A38) is very close
to the exact one-loop polarization of double-Weyl fermions in
the low-energy region.
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FIG. 10. Comparing the approximate expression of polarization with the exact polarization for double-Weyl fermions. �A
d represents the

approximate expression of polarization given by Eq. (A38). �N
d is the numerical result of the polarization as shown in Eq. (A14). Dependence

of �A
d , �N

d , and �N
d /�A

d on q⊥ and qz with �/A�2
UV = 10−5 are shown in (a), (b), and (c). Dependence of �A

d , �N
d , and �N

d /�A
d on � and

q⊥ with qz/(A�2
UV/v) = 10−5 are displayed in (d), (e), and (f). Dependence of �A

d , �N
d , and �N

d /�A
d on � and qz with q⊥/�UV = 10−5 are

presented in (g), (h), and (i).

2. Polarization �t (i�, q) of triple-Weyl fermions

For triple-WSM, the polarization is given by

�t (i�, q) = −N

∫
dω

2π

∫
d3k

(2π )3
Tr[Gt0(iω, k)

×Gt0(iω + i�, k + q)]. (A39)

Substituting the fermion propagator Eq. (8) into Eq. (A39),
we find that

�t

(
i�,

qx

B1/3
,

qy

B1/3
,
qz

v

)
= 2N

B2/3v

∫
dω

2π

∫
d3k

(2π )3

FA
t1

FB
t1

,

(A40)

where

FA
t1 = ω(ω + �) −

3∑
i=1

gi (k)gi (k + q), (A41)

FB
t1 = (

ω2 + E2
k

)[
(ω + �)2 + E2

k+q

]
. (A42)

Here, g1(k) = (k3
x − 3kxk

2
y ), g2(k) = (k3

y − 3kyk
2
x ), g3(k) =

kz, and Ek =
√

k6
⊥ + k2

z . The above calculations are com-
pleted by using the following rescaling manipulations:

kx → kx

B1/3
, ky → ky

B1/3
, qx → qx

B1/3
,

(A43)

qy → qy

B1/3
, kz → kz

v
, qz → qz

v
.

Introducing Feynman integral, we further rewrite the polariza-
tion as

�t

(
i�,

qx

B1/3
,

qy

B1/3
,
qz

v

)

= 2N

B2/3v

∫ 1

0
dx

∫
dkx

2π

dky

2π
FA

t2

∫
d2K

(2π )2

1(
FB

t2

)2 , (A44)
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where K = (ω, kz) and

FA
t2 = −x(1 − x)

(
�2 − q2

z

) − g1

(
k − q

2

)
g1

(
k + q

2

)
− g2

(
k − k

2

)
g2

(
k + q

2

)
, (A45)

FB
t2 = K2 + x(1 − x)

(
�2 + q2

z

) + (1 − x)

(
k − q

2

)6

⊥
+ x

(
k + q

2

)6

⊥
. (A46)

Transformations kx → kx − qx

2 and ky → ky − qy

2 have been adopted in the above calculation. Making use of Eq. (A10), we
integrate over K and obtain

�t

(
i�,

qx

B1/3
,

qy

B1/3
,
qz

v

)
= N

2πB2/3v

∫ 1

0
dx

∫
dkx

2π

dky

2π

(
FA

t3

FB
t3

+ 1

)
, (A47)

where

FA
t3 = −x(1 − x)

(
�2 − q2

z

) −
(

k2
⊥ − q2

⊥
4

)3

+ 3

(
k2
⊥ − q2

⊥
4

)
(kxqy − kyqx )2, (A48)

FB
t3 = x(1 − x)

(
�2 + q2

z

) +
(

k2
⊥ + q2

⊥
4

)3

+ 3

(
k2
⊥ + q2

⊥
4

)
(kxqx + kyqy )2

− (1 − 2x)

[
3

(
k2
⊥ + q2

⊥
4

)2

(kxqx + kyqy ) + (kxqx + kyqy )3

]
. (A49)

In order to regularize the polarization, we have used �t (i�,
qx

B1/3 ,
qy

B1/3 ,
qz

v
) − �t (0, 0, 0, 0) to replace �t (i�,

qx

B1/3 ,
qy

B1/3 ,
qz

v
). In

the polar coordinates, the polarization can be further converted to

�t

(
i�,

q⊥
B1/3

,
qz

v

)
= N

8π3B2/3v

∫ 1

0
dx

∫ �UV

0
dk⊥k⊥

∫ 2π

0
dθ

(
FA

4t

F B
4t

+ 1

)
, (A50)

where

FA
4t = −x(1 − x)

(
�2 − q2

z

) −
(

k2
⊥ − q2

⊥
4

)3

+ 3

(
k2
⊥ − q2

⊥
4

)
k2
⊥q2

⊥ sin2(θ ), (A51)

FB
4t = x(1 − x)

(
�2 + q2

z

) +
(

k2
⊥ + q2

⊥
4

)3

+ 3

(
k2
⊥ + q2

⊥
4

)
k2
⊥q2

⊥ cos2(θ )

− (1 − 2x)

[
3

(
k2
⊥ + q2

⊥
4

)2

k⊥q⊥ cos(θ ) + k3
⊥q3

⊥ cos3(θ )

]
. (A52)

Similar to the case of double-WSM, we need to analyze the asymptotic behavior of the above polarization in several limits.

a. q⊥ = 0

In the limit q⊥ = 0, the polarization takes the form

�t

(
i�, 0,

qz

v

)
= N

2π2B2/3v
q2

z

∫ 1

0
dx x(1 − x)

∫ �UV

0
dk⊥k⊥

1

x(1 − x)
(
�2 + q2

z

) + k6
⊥

. (A53)

Extending the upper limit of the integration over k⊥ to infinity,
we find that

�t

(
i�, 0,

qz

v

)
= ct

N

B2/3v

q2
z(

�2 + q2
z

)2/3 , (A54)

where

ct = 21/3π1/2

90�(5/6)�(2/3)
. (A55)

b. � = 0 and qz = 0

When � = 0 and qz = 0, after integrating over x

and making the transformation k⊥ = q⊥y, the polarization

becomes

�t

(
0,

q⊥
B1/3

, 0

)
= Nq2

⊥
4π3B2/3v

∫ π
2

0
dθ

∫ �UV
q⊥

0
dy Ft5, (A56)

where

Ft5 = 2y + 3
−(

y2 − 1
4

)3 + 3
(
y2 − 1

4

)
y2 sin2(θ )

3
(
y2 + 1

4

)2
cos(θ ) + y2 cos3(θ )

× ln

(
y2 + 1

4 + y cos(θ )

y2 + 1
4 − y cos(θ )

)
. (A57)
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As y → ∞, the integrand can be simplified as

Ft5 → 6 − 3 cos (2θ )

y
. (A58)

In the low-energy region, this polarization is simplified to

�t

(
0,

q⊥
B1/3

, 0

)
≈ Nq2

⊥
4π3B2/3v

[
a5 + a6 + 3π ln

(
�UV

q⊥

)]
,

(A59)

where

a5 =
∫ π

2

0
dθ

∫ 1

0
dy Ft5, (A60)

a6 =
∫ π

2

0
dθ

∫ +∞

1
dy

[
Ft5 − 6 − 3 cos(2θ )

y

]
. (A61)

Numerical calculations lead to

a5 ≈ 1.9333, a6 ≈ −3.289 25. (A62)

Retaining the leading term, we get

�t

(
0,

q⊥
B1/3

, 0

)
= 3Nq2

⊥
4π2B2/3v

ln

(
�UV

q⊥

)
. (A63)

c. qz = 0 and q3
⊥ � �

For qz = 0 and q3
⊥ � �, the polarization can be approxi-

mated by

�t

(
i�,

q⊥
B1/3

, 0
)

= 9Nq2
⊥

8π2B2/3v

∫
dk⊥k5

⊥

[(
1 + 2

k6
⊥

�2

) ∫ 1

0
dx

1

x(1 − x)�2 + k6
⊥

− 2

�2

]
. (A64)

Performing the integration over x and employing the transfor-
mation k⊥ = |�|1/3y, we further obtain

�t

(
i�,

q⊥
B1/3

, 0

)
= 9Nq2

⊥
4π2B2/3v

∫ �UV
|�|1/3

0
dy Ft6, (A65)

where

Ft6 = y5

[
1 + 2y6√
1 + 4y6

ln

(√
1 + 4y6 + 1√
1 + 4y6 − 1

)
− 1

]
. (A66)

As y → ∞, the integrand becomes

Ft6 → 1

3y
, (A67)

thus, we simplify the polarization to

�t

(
i�,

q⊥
B1/3

, 0

)
≈ 9Nq2

⊥
4π2B2/3v

[
a7 + a8 + 1

3
ln

(
�UV

|�|1/3

)]
,

(A68)

where

a7 =
∫ 1

0
dy Ft6, (A69)

a8 =
∫ +∞

1
dy

(
Ft6 − 1

3y

)
. (A70)

The values of a7 and a8 are

a7 ≈ 0.128 005, a8 ≈ −0.007 634 6. (A71)

Keeping the leading contribution, the polarization is finally
given by

�t

(
�,

q⊥
B1/3

, 0

)
≈ 3Nq2

⊥
4π2B2/3v

ln

(
�UV

|�|1/3

)
. (A72)

d. Ansatz for �t (i�, q)

Based on the polarization calculated in different limits, as
shown in Eqs. (A54), (A63), and (A72), the polarization can
be approximated by the ansatz

�t (i�, q⊥, qz) = N

[
3q2

⊥
4π2v

ln

(
B1/3�UV

(�2 + B2q6
⊥)1/6

+ 1

)

+ ct

1

B2/3

vq2
z(

�2 + v2q2
z

)2/3

]
. (A73)

According to the numerical results shown in Fig. 11, we can
see that the above approximate analytical expression (A73) is
very close to the exact one-loop polarization of triple-Weyl
fermions in the low-energy region.

APPENDIX B: FERMION SELF-ENERGY

We now compute the fermion self-energy functions caused
by the Coulomb interaction, first for double-Weyl fermions
and then for triple-Weyl fermions.

1. Self-energy of double-Weyl fermions

To the leading order of 1/N expansion, the self-energy of
double-Weyl fermions due to Coulomb interaction is defined
as

�d (iω, k) =
∫ ′ d�

2π

d3q
(2π )3

Gd0(iω + i�, k + q)Vd (i�, q),

(B1)
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FIG. 11. Comparing the approximate expression of polarization with the exact polarization for triple-Weyl fermions. �A
t represents the

approximate expression of polarization given by Eq. (A73). �N
t is the numerical result of the polarization as shown in Eq. (A50). Dependence

of �A
t , �N

t , and �N
t /�A

t on q⊥ and qz with �/B�3
UV = 10−5 are shown in (a), (b), and (c). Dependence of �A

t , �N
t , and �N

t /�A
t on � and

q⊥ with qz/(B�3
UV/v) = 10−5 are displayed in (d), (e), and (f). Dependence of �A

t , �N
t , and �N

t /�A
t on � and qz with q⊥/�UV = 10−5 are

presented in (g), (h), and (i).

where the dressed Coulomb interaction function is

Vd (i�, q) = 1

V −1
0 (q) + �d (i�, q)

= 1
q2

⊥+ζq2
z

4παv
+ Nq2

⊥
3π2v

ln
( √

A�UV

(�2+A2q4
⊥ )1/4 + 1

) + N
64A

vq2
z√

�2+v2q2
z

. (B2)

We then substitute Eq. (7) into Eq. (B1), and expand �d (iω, k) in powers of small values of iω, kx , ky , and kz. To the leading
order, the self-energy can be expressed as

�d (iω, k) ≈ iω�d1 − A[d1(k)σx + d2(k)σy]�d2 − vkzσz�d3, (B3)

where

�d1 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

�2 − A2q4
⊥ − v2q2

z(
�2 + A2q4

⊥ + v2q2
z

)2 Vd (i�, q), (B4)

�d2 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

[
�2 − 4A2q4

⊥ + v2q2
z(

�2 + A2q4
⊥ + v2q2

z

)2 + 4A4q8
⊥(

�2 + A2q4
⊥ + v2q2

z

)3

]
Vd (i�, q), (B5)

�d3 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

�2 + A2q4
⊥ − v2q2

z(
�2 + A2q4

⊥ + v2q2
z

)2 Vd (i�, q). (B6)
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Here, we adopt the following integration ranges:

−∞ < � < ∞, b� < Ed < �, (B7)

with Ed =
√

A2q4
⊥ + v2q2

z where b = e−�. If we define

E =
√

A2q4
⊥ + v2q2

z , κ = Aq2
⊥

v|qz| , (B8)

then we can write q⊥ and qz as

q⊥ =
√

κ
√

E√
A(1 + κ2)1/4

, |qz| = E

v
√

1 + κ2
. (B9)

Therefore, the integration over q⊥ and qz can be converted to the integration over E and κ , by invoking the relation

dq⊥d|qz| =
∣∣∣∣∣
∣∣∣∣∣

∂q⊥
∂E

∂q⊥
∂κ

∂|qz|
∂E

∂|qz|
∂κ

∣∣∣∣∣
∣∣∣∣∣dE dκ =

√
E

2v
√

A
√

κ (1 + κ2)3/4
dE dκ. (B10)

Using the transformations given by Eqs. (B9) and (B10), we calculate Eqs. (B4)–(B6) along with the RG scheme (B7), and
eventually obtain

�d1 = Cd1�, �d2 = Cd2�, �d3 = Cd3�, (B11)

where

Cd1 = 1

8π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1(
1 + κ2

)1/2

x2 − 1(
x2 + 1

)2 Gd (x, κ ), (B12)

Cd2 = 1

8π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1

(1 + κ2)3/2

[
x2(1 + κ2) − 4κ2 + 1

(x2 + 1)2
+ 4κ4

(1 + κ2)(x2 + 1)3

]
Gd (x, κ ), (B13)

Cd3 = 1

8π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1

(1 + κ2)3/2

x2(1 + κ2) + κ2 − 1

(x2 + 1)2
Gd (x, κ ), (B14)

with

G−1
d (x, κ ) = 1

4πα

(
κ + βd

(1 + κ2)1/2

)
+ N

[
κ

3π2
ln

(
γde

�
2 (1 + κ2)1/4

[x2(1 + κ2) + κ2]1/4
+ 1

)
+ 1

64

1√
x2(1 + κ2) + 1

]
. (B15)

Here, βd and γd are defined by βd = ζA�

v2 and γd =
√

A�UV√
�

, respectively.

2. Self-energy of triple-Weyl fermions

To the leading order of 1/N expansion, the self-energy of triple-Weyl fermions induced by the long-range Coulomb
interaction is given by

�t (iω, k) =
∫ ′ d�

2π

d3q
(2π )3

Gt0(iω + i�, k + q)Vt (i�, q), (B16)

where

Vt (i�, q) = 1

V −1
0 (q) + �t (i�, q)

= 1
q2

⊥+ζq2
z

4παv
+ 3Nq2

⊥
4π2v

ln
(

B1/3�UV

(�2+B2q6
⊥)1/6 + 1

) + ct
N

B2/3

vq2
z

(�2+v2q2
z )2/3

. (B17)

After substituting Eq. (8) into Eq. (B16), and expanding �t (ω, k) in powers of small iω, kx , ky , and kz up to the leading order,
we get

�t (iω, k) ≈ iω�t1 − B[g1(k)σx + g2(k)σy]�t2 − vkzσz�t3, (B18)
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where

�t1 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

�2 − B2q6
⊥ − v2q2

z(
�2 + B2q6

⊥ + v2q2
z

)2 Vt (i�, q), (B19)

�t2 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

[
�2 − 18B2q6

⊥ + v2q2
z(

�2 + B2q6
⊥ + v2q2

z

)2 + 45B4q12
⊥(

�2 + B2q6
⊥ + v2q2

z

)3 − 27B6q18
⊥(

�2 + B2q6
⊥ + v2q2

z

)4

]
Vt (i�, q),

(B20)

�t3 = 1

8π3

∫ ′
d� dq⊥q⊥dqz

�2 + B2q6
⊥ − v2q2

z(
�2 + B2q6

⊥ + v2q2
z

)2 Vt (i�, q). (B21)

To make RG analysis, we consider the following ranges in energy:

−∞ < � < ∞, b� < Et < �, (B22)

with Et =
√

B2q6
⊥ + v2q2

z . Making use of the definition

E =
√

B2q6
⊥ + v2q2

z , κ = Bq3
⊥

v|qz| , (B23)

we reexpress q⊥ and qz as

q⊥ = κ1/3E1/3

B1/3(1 + κ2)1/6
, |qz| = E

v
√

1 + κ2
. (B24)

Now, the integration over q⊥ and qz can be transformed to the integration over E and κ through the relation

dq⊥d|qz| =
∣∣∣∣∣
∣∣∣∣∣

∂q⊥
∂E

∂q⊥
∂κ

∂|qz|
∂E

∂|qz|
∂κ

∣∣∣∣∣
∣∣∣∣∣dE dκ = E1/3

3vB1/3κ2/3(1 + κ2)2/3
dE dκ. (B25)

By virtue of Eqs. (B24) and (B25), we calculate Eqs. (B19)–(B21) and obtain

�t1 = Ct1�, �t2 = Ct2�, �t3 = Ct3�, (B26)

where

Ct1 = 1

12π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1

κ1/3(1 + κ2)1/2

x2 − 1

(x2 + 1)2
Gt (x, κ ), (B27)

Ct2 = 1

12π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1

κ1/3(1 + κ2)3/2

[
x2(1 + κ2) − 18κ2 + 1

(x2 + 1)2
+ 45κ4

(x2 + 1)3(1 + κ2)
− 27κ6

(x2 + 1)4(1 + κ2)2

]
Gt (x, κ ),

(B28)

Ct3 = 1

12π3

∫ +∞

−∞
dx

∫ +∞

0
dκ

1

κ1/3(1 + κ2)3/2

x2(1 + κ2) + κ2 − 1

(x2 + 1)2
Gt (x, κ ), (B29)

with

G−1
t (x, κ ) = 1

4πα

(
κ2/3 + βt

(1 + κ2)2/3

)
+ N

[
3κ2/3

4π2
ln

(
γte

�
3 (1 + κ2)1/6

[x2(1 + κ2) + κ2]1/6
+ 1

)
+ ct

1

[x2(1 + κ2) + 1]2/3

]
. (B30)

Here, βt and γt are defined by βt = ζB2/3�4/3

v2 and γt = B1/3�UV
�1/3 , respectively.

APPENDIX C: DERIVING RG EQUATIONS

We derive the coupled RG equations for double- and triple-WSMs in order.

1. Double-WSM

We rewrite the free action of double-Weyl fermions as

S0
ψd

=
∫

dω

2π

d3k
(2π )3

ψ
†
d (ω, k)[iω − A[(d1(k)σx + d2(k)σy] − vkzσz]ψd (ω, k). (C1)
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Including the fermion self-energy induced by the Coulomb interaction, this action becomes

Sψd
=

∫
dω

2π

d3k
(2π )3

ψ
†
d (ω, k)[iω − A[d1(k)σx + d2(k)σy] − vkzσz + �d (iω, k)]ψd (ω, k)

≈
∫

dω

2π

d3k
(2π )3

ψ
†
d (ω, k)[iωeCd1� − A[d1(k)σx + d2(k)σy]eCd2� − vkzσze

Cd3�]ψd (ω, k). (C2)

We then make the following scaling transformations:

kx = k′
xe

− �
2 , (C3)

ky = k′
ye

− �
2 , (C4)

kz = k′
ze

−�, (C5)

ω = ω′e−�, (C6)

ψd = ψ ′
de

(2− Cd1
2 )�, (C7)

A = A′e(Cd1−Cd2 )�, (C8)

v = v′e(Cd1−Cd3 )�, (C9)

which leads to

Sψ ′
d

=
∫

dω′

2π

d3k′

(2π )3
ψ

′†
d (ω′, k′)[iω′ − A′[d1(k′)σx

+ d2(k′)σy] − v′k′
zσz]ψ

′
d (ω′, k′). (C10)

This action has the same form as the free action.
From Eq. (C7), the flow equation for the residue Zf is

dZf

d�
= −Cd1Zf . (C11)

According to Eqs. (C8) and (C9), we find that the flow
equations of A and v are

dA

d�
= (Cd2 − Cd1)A, (C12)

dv

d�
= (Cd3 − Cd1)v. (C13)

The flow equations of other parameters α, βd , and γd are

dα

d�
= (Cd1 − Cd3)α, (C14)

dβd

d�
= (Cd1 + Cd2 − 2Cd3 − 1)βd, (C15)

dγd

d�
= 1

2
(Cd2 − Cd1)γd. (C16)

2. Triple-WSM

By repeating the same computational procedure employed
in the case of double-WSM, we add the self-energy of triple-

Weyl fermions to the free action and then obtain

Sψt
=

∫
dω

2π

d3k
(2π )3

ψ
†
t (ω, k)[iωeCt1� − B[g1(k)σx

+ g2(k)σy]eCt2� − vkzσze
Ct3�]ψt (ω, k). (C17)

Making use of the scaling transformations

kx = k′
xe

− �
3 , (C18)

ky = k′
ye

− �
3 , (C19)

kz = k′
ze

−�, (C20)

ω = ω′e−�, (C21)

ψt = ψ ′
t e

( 11
6 − Ct1

2 )�, (C22)

B = B ′e(Ct1−Ct2 )�, (C23)

v = v′e(Ct1−Ct3 )�, (C24)

the above action is converted to

Sψ ′
t
=

∫
dω′

2π

d3k′

(2π )3
ψ

′†
t (ω′, k′)[iω′ − B ′[g1(k′)σx

+ g2(k′)σy] − v′k′
zσz]ψ

′
t (ω

′, k′), (C25)

which recovers the same form as the free action. From the
transformations (C22)–(C24), we get the flow equations for
Zf , B, and v:

dZf

d�
= −Ct1Zf , (C26)

dB

d�
= (Ct2 − Ct1)B, (C27)

dv

d�
= (Ct3 − Ct1)v. (C28)

The flow equations of α, βt , and γt are given by

dα

d�
= (Ct1 − Ct3)α, (C29)

dβt

d�
=

(
4

3
Ct1 + 2

3
Ct2 − 2Ct3 − 4

3

)
βt , (C30)

dγt

d�
= 1

3
(Ct2 − Ct1)γt . (C31)
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APPENDIX D: IMPACT OF FINITE
CHEMICAL POTENTIAL

As discussed in the main text, the unconventional non-
FL state can by experimentally explored by measuring the
fermion damping rate and spectral function in several candi-
date materials for double- and triple-WSMs. To observe the
predicted non-FL behavior, the sample needs to be carefully
prepared. In particular, the chemical potential μ should be
made sufficiently small because the signature is sharpest at
μ = 0. At finite μ, the fermion DOS takes a finite value,
and as such leads to static screening of long-range Coulomb
interaction. We now make a brief remark on the impact of
finite μ on the unconventional non-FL behavior.

For a double-WSM prepared at finite μ, the Matsubara
fermion propagator becomes

Gd0(iωn, k) = 1

iωn + μ − Hd (k)
, (D1)

where Hd (k) = Ad1(k)σx + Ad2(k)σy + vkzσz. The retarded
fermion propagator has the form

Gret
d0(ω, k) = 1

ω + μ − Hd (k) + iδ
, (D2)

which gives rise to the following spectral function:

Ad (ω, k) = − 1

π
Tr

[
Im

[
Gret

d0(ω, k)
]]

= 2|ω + μ|δ((ω + μ)2 − E2
d (k)

)
, (D3)

where Ed (k) =
√

A2k4
⊥ + v2k2

z . The fermion DOS is given by

ρd (ω) = N

∫
d3k

(2π )3
Ad (ω, k) = N

8πvA
|ω + μ|. (D4)

Here, we have carried out the transformations shown in
Eqs. (B8)–(B10). In the limit ω → 0, we have

ρd (0) = N |μ|
8πvA

. (D5)

In the limits of � = 0 and q = 0, the polarization function
behaves as

�d (0, 0) = N

∫
d3k

(2π )3

1

Ed (k)
θ [|μ| − Ed (k)]. (D6)

Substituting Ed (k) into this formula and employing the trans-
formations (B8)–(B10), we obtain

�d (0, 0) = N |μ|
8πvA

= ρd (0). (D7)

In the case of triple-WSM, one can similarly get the
retarded fermion propagator

Gret
t0 (ω, k) = 1

ω + μ − Ht (k) + iδ
, (D8)

where Ht (k) = Bg1(k)σx + Bg2(k)σy + vkzσz. The spectral
function is

At (ω, k) = − 1

π
Tr

[
Im

[
Gret

t0 (ω, k)
]]

= 2|ω + μ|δ((ω + μ)2 − E2
t (k)

)
, (D9)

where Et (k) =
√

B2k6
⊥ + v2k2

z . The fermion DOS is

ρt (ω) = N

∫
d3k

(2π )3
At (ω, k) = N�(1/3)|ω + μ|2/3

12π3/2�(5/6)vB2/3
,

(D10)

which reduces to

ρt (0) = N�(1/3)|μ|2/3

12π3/2�(5/6)vB2/3
(D11)

in the lowest-energy limit. Therefore, we have

�t (0, 0) = N

∫
d3k

(2π )3

1

Et (k)
θ [|μ| − Et (k)] = 3

2
ρt (0).

(D12)

From the above results, we know that the polarizations
�d,t always take certain finite value in the zero-energy (long-
wavelength) limit. Consequently, the Coulomb interaction,
described by the dressed function

Vd,t (i�, q) = 1

V −1
0 (q) + �d,t (i�, q)

, (D13)

is statically screened and becomes short ranged. Here, we
provide a qualitative analysis for the behavior of fermion
self-energy �d,t (iω, k) at μ 
= 0.

At energies below the scale set by μ, the screened Coulomb
interaction is relatively unimportant and only produces ordi-
nary FL behavior. In contrast, at energies beyond the scale
of μ, the static screening effect is unimportant, and the
Coulomb interaction still induces unconventional non-FL be-
havior. Thus, increasing the energy scale drives a crossover
from the FL regime to the non-FL regime. If one varies the
temperature T , there is an analogous crossover between the
FL and non-FL regimes: the system exhibits FL behavior at
kT < μ and non-FL behavior kT > μ. We notice that the
crossover from a usual FL state to a singular FL state, in which
Zf approaches to a finite value in the lowest-energy limit but
the fermion velocity receives singular renormalization, has
been studied in DSMs at finite chemical potential [80,81].
In the double- and triple-WSMs considered in this paper, the
unconventional non-FL state always has observable effects
as long as the chemical potential is not large enough, as
explained in Sec. V in more detail.

APPENDIX E: OBSERVABLE QUANTITIES
FOR FREE FERMIONS

We now calculate the specific heat and dynamical con-
ductivities for free double- and triple-Weyl fermions. The
interaction-induced corrections will be included later.

1. Specific heat

a. Double-WSM

In the Matsubara formalism, the propagator of free double-
Weyl fermions reads as

Gd0(iωn, k) = −iωn + Hd (k)

ω2
n + E2

d (k)
, (E1)
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where ωn = (2n + 1)πT with n being integers. The corre-
sponding free energy is given by

Fd
f (T ) = −2NT

∑
ωn

∫
d3k

(2π )3
ln

[[
ω2

n + E2
d (k)

] 1
2
]
. (E2)

Carrying out frequency summation, one obtains

Fd
f (T ) = −2N

∫
d3k

(2π )3

[
Ed (k) + 2T ln

(
1 + e− Ed (k)

T

)]
, (E3)

which is divergent due to the first term in the brackets. To
regularize this divergence, we redefine Fd

f (T ) − Fd
f (0) as

Fd
f (T ) and then get

Fd
f (T ) = −4NT

∫
d3k

(2π )3
ln

(
1 + e− Ed (k)

T

)
= −2NT

π2

∫
dk⊥d|kz|k⊥ ln

(
1 + e− Ed (k)

T

)
. (E4)

Utilizing the integration transformations shown in Eqs. (B8)–
(B10), the free energy becomes

Fd
f (T ) = − NT

π2vA

∫ +∞

0
dE E ln

(
1 + e− E

T

)

×
∫ +∞

0
dκ

1

(1 + κ2)

= −3ζ (3)N

8πvA
T 3. (E5)

Then, it is easy to get the specific heat

Cd
v (T ) = −T

∂2Fd
f (T )

∂T 2
= 9ζ (3)N

4πvA
T 2. (E6)

b. Triple-WSM

For triple-WSM, the free energy can be expressed as

F t
f (T ) = −2NT

π2

∫
dk⊥d|kz|k⊥ ln

(
1 + e− Et (k)

T

)
. (E7)

Carrying out the transformations of Eqs. (B23)–(B25), we
rewrite F t

f (T ) in the form

F t
f (T ) = − 2NT

3π2vB2/3

∫ +∞

0
dE E2/3 ln

(
1 + e− E

T

)

×
∫ +∞

0
dκ

1

κ1/3
(
1 + κ2

)5/6

= − atN

π3/2vB2/3
T 8/3, (E8)

where the constant at is

at = 1

18
(4 − 21/3)ζ (8/3)

�(1/3)�(2/3)

�(5/6)
. (E9)

The specific heat is

Ct
v (T ) = −T

∂2F t
f (T )

∂T 2
= 40atN

9π3/2vB2/3
T 5/3. (E10)

2. Dynamical conductivities

The energy-dependence dynamical conductivities will be
computed by using the Kubo formula.

a. Double-WSM

In the Matsubara formalism, the current-current correlation
function for double-Weyl fermions can be written as

�d
ij (i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ d

i (k)Gd0(iωn, k)

× γ d
j (k)Gd0(iωn + i�m, k)

]
. (E11)

Here, γ d
i is given by

γ d
i = ∂Hd

∂ki

, (E12)

with Hd being the Hamiltonian density

Hd = A
(
k2
x − k2

y

)
σx + 2Akxkyσy + vkzσz. (E13)

It is easy to verify that

γ d
x = ∂Hd

∂kx

= 2Akxσx + 2Akyσy, (E14)

γ d
y = ∂Hd

∂ky

= −2Akyσx + 2Akxσy, (E15)

γ d
z = ∂Hd

∂kz

= vσz. (E16)

Symmetry consideration reveals that the following identity

�d
xx = �d

yy ≡ �d
⊥⊥ (E17)

is satisfied. Therefore, we only need to calculate �d
xx and �d

zz,
which are defined as follows:

�d
xx (i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ d

x Gd0(iωn, k)γ d
x Gd0(iωn + i�m, k)

]
, (E18)

�d
zz(i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ d

z Gd0(iωn, k)γ d
z Gd0(iωn + i�m, k)

]
. (E19)

Employing the spectral representation

Gd0(iωn, k) = −
∫ +∞

−∞

dω1

π

Im
[
Gret

d0(ω1, k)
]

iωn − ω1
, (E20)
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we rewrite �d
xx and �d

zz as follows:

�d
xx (i�m) = −4A2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π

∫ +∞

−∞

dω2

π

{
k2
xTr

[
σxIm

[
Gret

d0(ω1, k)
]
σxIm

[
Gret

d0(ω2, k)
]]

+ k2
yTr

[
σyIm

[
Gret

d0(ω1, k)
]
σyIm

[
Gret

d0(ω2, k)
]]}nF (ω1) − nF (ω2)

ω1 − ω2 + i�m

, (E21)

�d
zz(i�m) = −v2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π

∫ +∞

−∞

dω2

π
Tr

[
σzIm

[
Gret

d0(ω1, k)
]
σzIm

[
Gret

d0(ω2, k)
]]nF (ω1) − nF (ω2)

ω1 − ω2 + i�m

, (E22)

where nF (x) = 1
ex/T +1 . The expression of Im[Gret

d0(ω, k)] is given by

Im
[
Gret

d0(ω, k)
] = −π sgn(ω)(ω + Hd )

1

2Ed (k)
[δ[ω + Ed (k)] + δ[ω − Ed (k)]]. (E23)

We then carry out analytical continuation i�m → � + iδ, and get the imaginary parts:

Im
[
�d,ret

xx (�, T )
] = 4A2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π

{
k2
xTr

[
σxIm

[
Gret

d0(ω1, k)
]
σxIm

[
Gret

d0(ω1 + �, k)
]]

+ k2
yTr

[
σyIm

[
Gret

d0(ω1, k)
]
σyIm

[
Gret

d0(ω1 + �, k)
]]}

[nF (ω1) − nF (ω1 + �)], (E24)

Im
[
�t,ret

zz (�, T )
] = v2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π
Tr

[
σzIm

[
Gret

d0(ω1, k)
]
σzIm

[
Gret

d0(ω1 + �, k)
]]

[nF (ω1) − nF (ω1 + �)]. (E25)

The formula 1
x+iδ

= P 1
x

− iπδ(x), where P stands for principal value, has been used in the above computation. According to
Kubo formula, the dynamical conductivities are defined as

σd
xx (�, T ) = Im

[
�d,ret

xx (�, T )
]

�
, (E26)

σd
zz(�, T ) = Im

[
�d,ret

zz (�, T )
]

�
. (E27)

After carrying out analytical calculations, we arrive at the following compact expressions of conductivities:

σd
xx (�, T ) = cd

1
e2

v
δ(�)T 2 + cd

2
e2

v
|�| tanh

( |�|
4T

)
, (E28)

σd
zz(�, T ) = cd

3
ve2

A
δ(�)T + cd

4
ve2

A
tanh

( |�|
4T

)
, (E29)

where

cd
1 = 1

6π

∫ +∞

0
dx x2 1

sinh2
(

x
2

) , (E30)

cd
2 = 1

12π
, (E31)

cd
3 = 1

32

∫ +∞

0
dx x

1

sinh2
(

x
2

) , (E32)

cd
4 = 1

64
. (E33)

The first term in the right-hand side of Eqs. (E28) and (E29) represents the Drude peak.

b. Triple-WSM

In the Matsubara formalism, the current-current correlation function for triple-Weyl fermions is

�t
ij (i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ t

i Gt0(iωn, k)γ t
j Gt0(i(ωn + �m), k)

]
, (E34)
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where γ t
i = ∂Ht

∂ki
with the Hamiltonian density being Ht = B(k3

x − 3kxk
2
y )σx + B(k3

y − 3kyk
2
x )σy + vkzσz. It is easy to get

γ t
x = ∂Ht

∂kx

= 3B
(
k2
x − k2

y

)
σx − 6Bkxkyσy, (E35)

γ t
y = ∂Ht

∂ky

= −6Bkxkyσx + 3B
(
k2
y − k2

x

)
σy, (E36)

γ t
z = ∂Ht

∂kz

= vσz. (E37)

Due to the relation �t
xx = �t

yy ≡ �t
⊥⊥, we only calculate �t

xx and �t
zz, which take the form

�t
xx (i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ t

xGt0(iωn, k)γ t
xGt0(iωn + i�m, k)

]
, (E38)

�t
zz(i�m) = −e2T

∑
ωn

∫
d3k

(2π )3
Tr

[
γ t

z Gt0(iωn, k)γ t
z Gt0(iωn + i�m, k)

]
. (E39)

After performing a series of calculations, we find that the imaginary parts of retarded correlation functions �t
xx and �t

zz have
the forms

Im
[
�t,ret

xx (�, T )
] = 9B2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π

{(
k2
x − k2

y

)2
Tr

[
σxIm

[
Gret

t0 (ω1, k)
]
σxIm

[
Gret

t0 (ω1 + �, k)
]]

+4k2
xk

2
yTr

[
σyIm

[
Gret

t0 (ω1, k)
]
σyIm

[
Gret

t0 (ω1 + �, k)
]]}

[nF (ω1) − nF (ω1 + �)], (E40)

Im
[
�t,ret

zz (�, T )
] = v2e2

∫
d3k

(2π )3

∫ +∞

−∞

dω1

π
Tr

[
σzIm

[
Gret

t0 (ω1, k)
]
σzIm

[
Gret

t0 (ω1 + �, k)
]]

[nF (ω1) − nF (ω1 + �)]. (E41)

The expression of Im[Gret
t0 (ω, k)] reads as

Im
[
Gret

t0 (ω, k)
] = −π sgn(ω)(ω + Ht )

1

2Et (k)
[δ[ω + Et (k)] + δ[ω − Et (k)]]. (E42)

The conductivities are given by

σ t
xx (�, T ) = Im

[
�t,ret

xx (�, T )
]

�
, (E43)

σ t
zz(�, T ) = Im

[
�t,ret

zz (�, T )
]

�
. (E44)

Substituting Eq. (E42) into Eqs. (E40), (E41), (E43), and
(E44) leads to the following expressions:

σ t
xx (�, T ) = ct

1
e2

v
δ(�)T 2 + ct

2
e2

v
|�| tanh

( |�|
4T

)
, (E45)

σ t
zz(�, T ) = ct

3
ve2

B2/3
δ(�)T

2
3 + ct

4
ve2

B2/3

1

|�|1/3 tanh

( |�|
4T

)
,

(E46)

where

ct
1 = 1

4π

∫ +∞

0
dx x2 1

sinh2
(

x
2

) , (E47)

ct
2 = 1

8π
, (E48)

ct
3 = �(1/3)

40�(5/6)
√

π

∫ +∞

0
dx x2/3 1

sinh2
(

x
2

) , (E49)

ct
4 = 21/3�(1/3)

120�(5/6)
√

π
. (E50)

APPENDIX F: INTERACTION CORRECTIONS
TO OBSERVABLE QUANTITIES

Now, we compute the interaction corrections to observable
quantities by using the RG solutions of model parameters.

1. DOS

a. Double-WSM

For free double-Weyl fermions, the DOS is

ρd (ω) ∼ ω

vA
. (F1)

Upon including interaction corrections, the constants A and v

become ω dependent. We derive the following RG equation
for ρd (ω):

d ln(ρd (ω))
d ln(ω)

∼ 1 + Cd1 + d ln
(

1
vA

)
d ln(ω)

. (F2)
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On the right-hand side, the second term comes from the
anomalous dimension of fermion field, and the third term
is induced by the fermion dispersion renormalization. Recall
that A and v satisfy the flow equations:

dA

d�
= (Cd2 − Cd1)A, (F3)

dv

d�
= (Cd3 − Cd1)v. (F4)

Using the transformation ω = ω0e
−�, where ω0 is certain

high-energy scale, the above equations are converted to

d ln(A)

d ln(ω)
= −(Cd2 − Cd1), (F5)

d ln(v)

d ln(ω)
= −(Cd3 − Cd1). (F6)

We then substitute Eqs. (F5) and (F6) into Eq. (F2), and obtain
the RG equation for ρd (ω):

d ln(ρd (ω))
d ln(ω)

∼ 1 − Cd1 + Cd2 + Cd3. (F7)

b. Triple-WSM

For free triple-Weyl fermions, the DOS satisfies

ρt (ω) ∼ ω2/3

vB2/3
. (F8)

The Coulomb interaction results in the following equation:

d ln(ρt (ω))
d ln(ω)

∼ 2

3
+ Ct1 + d ln

(
1

vB2/3

)
d ln(ω)

. (F9)

We employ the transformation ω = ω0e
−� again, and get the

RG equations for B and A:

d ln(B )

d ln(ω)
= −(Ct2 − Ct1), (F10)

d ln(v)

d ln(ω)
= −(Ct3 − Ct1). (F11)

Substituting Eqs. (F10) and (F11) into Eq. (F9) yields

d ln(ρt (ω))
d ln(ω)

∼ 1 − 2

3
Ct1 + 2

3
Ct2 + Ct3. (F12)

2. Specific heat

a. Double-WSM

The specific heat of free double-Weyl fermions exhibits the
following T dependence:

Cd
v (T ) ∼ T 2

vA
. (F13)

The Coulomb interaction renormalized A and v, and as such
leads to

d ln(Cd
v (T ))

d ln(T )
∼ 2 + d ln

(
1

vA

)
d ln(T )

. (F14)

It is worth mentioning that the anomalous dimension of
fermion field does not qualitatively modify the specific heat.

The qualitative interaction correction to specific heat origi-
nates merely from the fermion dispersion renormalization. To
get the T dependence of A and v, we need to use the trans-
formation T = T0e

−�, where T0 is certain high-temperature
scale. It is easy to convert Eqs. (F3) and (F4) into

d ln(A)

d ln(T )
= −(Cd2 − Cd1), (F15)

d ln(v)

d ln(T )
= −(Cd3 − Cd1). (F16)

Substituting Eqs. (F15) and (F16) into Eq. (F14), we obtain

d ln
(
Cd

v (T )
)

d ln(T )
∼ 2 − 2Cd1 + Cd2 + Cd3. (F17)

b. Triple-WSM

The specific heat for free triple-Weyl fermions is

Ct
v (T ) ∼ T 5/3

vB2/3
. (F18)

One can show that the renormalized B and v satisfy the
following equations:

d ln(B )

d ln(T )
= −(Ct2 − Ct1), (F19)

d ln(v)

d ln(T )
= −(Ct3 − Ct1). (F20)

The renormalized specific heat is found to have the form

d ln(Ct
v (T ))

d ln(T )
∼ 5

3
+ d ln

(
1

vB2/3

)
d ln(T )

∼ 5

3
− 5

3
Ct1 + 2

3
Ct2 + Ct3. (F21)

3. Dynamical conductivities

The dynamical conductivities can be calculated by follow-
ing the steps adopted to compute DOS.

a. Double-WSM

The dynamical conductivity for free double-Weyl fermions
within the x-y plane is

σd
⊥⊥(�) ∼ e2

v
|�|. (F22)

After incorporating the corrections due to the Coulomb in-
teraction, we find that σd

⊥⊥(�) satisfies the following RG
equation:

d ln(σd
⊥⊥(�))

d ln(�)
∼ 1 + 2Cd1 + d ln

(
e2

v

)
ln(�)

∼ 1 + Cd1 + Cd3. (F23)

The dynamical conductivity along the z axis is

σd
zz(�) ∼ ve2

A
, (F24)
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which is altered by the Coulomb interaction to become

d ln(σd
zz(�))

d ln(�)
∼ 2Cd1 + d ln

(
ve2

A

)
ln(�)

∼ 2Cd1 + Cd2 − Cd3. (F25)

b. Triple-WSM

The dynamical conductivities for free triple-Weyl fermions
within the x-y plane and along the z axis are given by

σ t
⊥⊥(�) ∼ e2

v
|�|, (F26)

σ t
zz(�) ∼ ve2

B2/3

1

|�|1/3 . (F27)

After including the interaction corrections, we find that

d ln(σ t
⊥⊥(�))

d ln(�)
∼ 1 + 2Ct1 + d ln

(
e2

v

)
d ln(�)

∼ 1 + Ct1 + Ct3, (F28)

and that

d ln(σ t
zz(�))

d ln(�)
∼ −1

3
+ 2Ct1 + d ln

(
ve2

B2/3

)
d ln(�)

∼ −1

3
+ 7

3
Ct1 + 2

3
Ct2 − Ct3. (F29)
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