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We study the two-dimensional t-J model with second-neighbor hopping parameter t ′ and in a broad range
of doping δ using a closed set of equations from the extremely correlated Fermi liquid theory. We obtain
asymmetric energy distribution curves and symmetric momentum distribution curves of the spectral function,
consistent with experimental data. We further explore the Fermi surface and local density of states for different
parameter sets. Using the spectral function, we calculate the resistivity, Hall number, and spin susceptibility.
The curvature change in the resistivity curves with varying δ is presented and connected to intensity loss in
angle-resolved photoemission spectroscopy experiments. We also discuss the role of the superexchange J in the
spectral function and the resistivity in the optimal to overdoped density regimes.
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I. INTRODUCTION

The t-J model where extreme correlations are manifest
plays a fundamentally important role in understanding the
physics of correlated matter, including high-Tc superconduc-
tors [1,2]. Despite the large progress [3–10] made in numer-
ically solving the t-J model and the related Hubbard model,
very few analytical techniques are reliable to obtain the low-
temperature physics in this model for a broad range of dopings
due to its inherent difficulties including noncanonical algebra
for Gutzwiller projected fermions and the lack of an obvious
small parameter for perturbation expansion.

To tackle this challenge, we have recently developed the
extremely correlated Fermi liquid (ECFL) theory [11,12]. It
is a nonperturbative analytical theory employing Schwinger’s
functional differential equations of motion to deal with lattice
fermions under extreme correlation U → ∞. The ECFL the-
ory uses a systematic expansion of a bounded parameter λ ∈
[0, 1], analogous to the expansion parameter 1

2S
in the Dyson-

Maleev representation of spins [13] via canonical bosons, and
therefore provides a controlled calculation for the t-J model.
With recent advances in the theory [14], it is possible to
represent the ECFL equations to any order in λ in terms of
diagrams which are generalizations of the Feynman graphs,
without having to consider previous orders.

The second-order O(λ2) ECFL theory gives a closed set
of equations for the Green’s function and has been described
in detail in Ref. [15]. It has been benchmarked successfully
[16,17] against the exact results from the single-impurity
Anderson model and the dynamical mean field theory
(DMFT) [3,18–20], in the case of the infinite-dimensional
large-U Hubbard model. The benchmarking has also been
carried out in the one-dimensional t-J model, where k-
dependent behavior is inevitable, against the density matrix
renormalization group (DMRG) technique. ECFL and DMRG
compare well [21] in describing the spin-charge separation
in a Tomonaga-Luttinger liquid and the relevant strongly k-
dependent self-energy.

Recently in Ref. [15], we have applied the second-order
ECFL theory to studying the 2D t-J model with a second-

neighbor hopping parameter t ′. We calculated the spectral
function peak, quasiparticle weight, and resistivity from hole
doping (t ′ � 0) to electron doping (t ′ > 0). The high thermal
sensitivity in the spectral function and small quasiparticle
weight indicate a suppression of an effective Fermi liquid
temperature scale. The curvature of resistivity vs T changes
between concave and convex upon a sign change in t ′, imply-
ing a change of the effective Fermi liquid temperature [17].
We also compute the optical conductivity and the nonresonant
Raman susceptibilities in Ref. [22].

In the present work, we perform a more detailed study
in the 2D t-J model. Apart from the spectral function peak
height, we compute the energy distribution curves (EDCs) and
momentum distribution curves (MDCs) which are measured
in angle-resolved photoemission spectroscopy (ARPES) [23].
For the first time from a microscopic theory, we obtain an
asymmetric EDC line shape and a rather symmetric MDC line
shape, which are consistent with experimental observation
[23]. The self-energy is also calculated. It is independent
of k in the infinite-dimensional limit [16] and has strong
k-dependence in 1D [21]. In 2D our calculation gives a weakly
k-dependent self-energy in the normal (metallic) state. For
this reason, we expect the vertex correction to be modest.
Then we compute the resistivity within the bubble scheme
neglecting the vertex corrections. Unlike Ref. [15], here we
focus on the doping dependence of resistivity vs T curves
at different t ′, corresponding to experimental observation
[24]. Spin susceptibility and the NMR spin-lattice relaxation
rate are also calculated with the ECFL Green’s function and
related to experiment [25,26]. At the end, we discuss the
effect of the superexchange interaction and justify our choice
of J .

This work is organized as follows: First we summarize the
ECFL formalism to calculate the electron Green’s function
and introduce the parameter region in Sec. II. In Sec. III,
we discuss the ECFL spectral properties, resistivity, Hall
response, and spin susceptibility at a fixed typical superex-
change J , as well as the effect of changing J . Section IV
includes a conclusion and some remarks.
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FIG. 1. EDC line shapes at different fixed values of momentum k in nodal direction (� → X). All figures including insets share the same
legend. The parameters are set as δ = 0.15, T = 105 K or 400 K (inset) and t ′ as specified. The line peak and width in the vicinity of the Fermi
surface depends strongly on temperature. The peak magnitude at ω = 0 goes down as t ′ decreases due to stronger correlation. (a) t ′ = 0.4.
(b) t ′ = 0.2. (c) t ′ = 0. (d) t ′ = −0.2. (e) t ′ = −0.4.

II. METHOD AND PARAMETERS

A. Summary of second-order ECFL theory

In the ECFL theory [11] the one-electron Green’s function
in momentum space is expressed as the product of an auxiliary
Green’s function g and a caparison function μ̃:

G(k) = g(k) × μ̃(k), (1)

where k ≡ (�k, iωn) and ωn = (2n + 1)πkBT is the Matsubara
frequency. Here g(k) is a canonical fermion propagator van-
ishing as 1/ω as ω → ∞, and μ̃(k) plays a role of adaptive
spectral weight due to the noncanonical nature of the problem.

In the minimal version of second-order theory [16] including
superexchange J , they can be written explicitly as

μ̃(k) = 1 − λ
n

2
+ λ�(k), (2)

g−1(k) = iωn + μ − u0

2
+ λ

4
nJ0 − μ̃(k)ε′

k − λχ (k), (3)

where μ is the chemical potential, and ε′
k = εk − u0

2 . Here
u0 is a Lagrange multiplier [27] guaranteeing the shift in-
variance of the t-J model at every order of λ. To elab-
orate, u0 absorbs any arbitrary uniform shift of the band
εk → εk + c, a constant shift which should not change
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FIG. 2. EDC line shapes at different fixed values of momentum k in antinodal direction (� → M). All figures including insets share the
same legend. The parameters are set as δ = 0.15, T = 105 K or 400 K (inset), and t ′ as specified. The line peak and width in the vicinity
of the Fermi surface depend strongly on temperature. The peak magnitude at ω = 0 goes down as t ′ decreases due to stronger correlation.
(a) t ′ = 0.4. (b) t ′ = 0.2. (c) t ′ = 0.

the results. The band dispersion including next-nearest-
neighbor hopping is εk = −2t[cos(kxa0) + cos(kya0)] −
4t ′ cos(kxa0) cos(kya0), and � and χ are two self-energy
parts. These are given by [16]

�(k) = −
∑
pq

(ε′
p + ε′

q + Jk−p )g(p)g(q )g(p + q − k), (4)

χ = χ0 + λχ1 with χ0 = −∑
p g(p)(ε′

p + 1
2Jk−p ), and

χ1(k) = −
∑
pq

[
ε′
p + ε′

q + 1

2
(Jk−p + Jk−q )

]
× (ε′

p+q−k + Jk−q )g(p)g(q )g(p + q − k), (5)

where
∑

k ≡ kBT
Ns

∑
kx ,ky ,ωn

, Ns is the number of sites, and
Jk = 2J (cos kxa0 + cos kya0) is the nearest-neighbor ex-
change.

Denoting the particle and hole density per site by n and
δ = 1 − n, respectively, the two chemical potentials μ and u0

are determined through the number sum rules∑
k

g(k) eiωn0+ = n

2
=

∑
k

G(k) eiωn0+
. (6)

After analytically continuing iωn → ω + i0+ we deter-
mine the interacting electron spectral function ρG (�k, ω) =
− 1

π
ImG(�k, ω). The set of equations (1)–(6) was solved it-

eratively on L × L lattices with L = 61, 131, 181 and a

frequency grid with Nω = 214 points. L > 61 is usually for
t ′ � 0 at low temperatures where the spectral function peak
is higher and sharper than the negative t ′ cases; therefore it
requires better k resolution.

B. Parameters in the programs

In this calculation, we set t = 1 as the energy scale and
t ′ is varied between −0.4 and 0.4. We fix the superexchange
to J = 0.17 unless otherwise specified because J usually is
estimated to be in the region from 0 to 0.4, and has a small
effect on the k-dependent behavior and barely influences the
averaged physical quantities like resistivity, since the calcula-
tion includes a summation in k space. This argument will be
further justified in the last part of Sec. III. Besides, we also
explore a large region of doping δ from 0.11 to 0.3, where
the second-order ECFL theory is reliable [16], and present the
δ-dependent behavior at different t ′. If not specified, ω is in
units of t . According to Ref. [2], we assume t = 0.45 eV when
using the absolute temperature scale.

C. The sign of t ′

The significance of the sign of t ′ should be kept in
mind, and the case t ′ > 0 is believed to correspond to
electron-doped cuprate superconductors whereas t ′ < 0 is the
hole-doped cuprates. The hole-doped case appears highly
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FIG. 3. (a)–(e) The negative imaginary part of self-energy ρ� at different k in nodal (� → X) direction with several t ′. Here δ = 0.15,
T = 105 K and 400 K (inset). In all cases, ρ� has a weak k dependence and differs mostly at high energy on the unoccupied side. Increasing
temperature raises the bottom of the self-energy while leaving its high-energy part almost unchanged. (f) ρ� at fixed k = kF in nodal direction
varying t ′. Increasing t ′ lowers the bottom of ρ� and makes its low-energy part more rounded (Fermi-liquid-like). (a) t ′ = 0.4. (b) t ′ = 0.2.
(c) t ′ = 0. (d) t ′ = −0.2. (e) t ′ = −0.4. (f) Varying t ′.

non-Fermi-liquid-like as compared to the electron-doped case
in experiments, and our earlier calculations as well as the
present ones give a microscopic understanding of this impor-
tant basic fact. We emphasize that despite this, the t ′ > 0 case
is also strongly correlated, when we view the T dependence of
the spectral features, where the effective Fermi scale is much
reduced from the bare (band structure) value.

III. RESULTS

A. Spectral properties

1. Spectral function and self-energy

In earlier studies [23], the ECFL spectral function obtained
phenomenologically [11,23,28] has been compared with

experimental data measured with angle-resolved photoemis-
sion spectroscopy (ARPES) at optimal doping, leading to very
good fits. Later we calculated the spectral function from the
raw second-order ECFL equations in the symmetrized model
[29] but it is only valid for doping δ � 0.25. Here we present
the result at optimal doping δ = 0.15 from a microscopic
calculation of ECFL by numerically solving the improved set
of second-order equations [15,16].

We display the energy distribution curves (EDCs) in Fig. 1
and Fig. 2, obtained by fixing k and scanning ω at optimal
doping and various t ′. These quantities can be measured in
ARPES experiments. Figure 1 shows the EDCs for several
constant k along the nodal (� → X) and Fig. 2 for the
antinodal direction (� → M for t ′ > 0). Note that the value of
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FIG. 4. The spectral functions at ω = 0: ρG and ρ� at kF (in nodal and antinodal directions) vs T with varying t ′ at δ = 0.15; legend is the
same for each figure. (a) ρG(kF nodal ). (b) ρG(kF antinodal ). (c) ρ� (kF nodal ). (d) ρ� (kF antinodal ).

kF depends on t ′ and direction in k space. The fixed value of
k is given in terms of kF based on the specific t ′ and direction.
The antinodal (M → X) kF for t ′ � −0.2 is close to zero. The
corresponding EDCs are too close to resolve clearly; hence
they are not presented.

We observe that at low temperatures the EDC peak gets
sharper as k approaches the Fermi surface. The insets show
that a small heating (�T ∼ 0.06t) strongly suppresses the
region around the Fermi surface k ∼ kF while it leaves the re-
gion away from Fermi surface almost unchanged. As a result,
a weaker k dependence of peak height can be viewed in the
higher temperature. It also shows that the EDC line shape is
asymmetric for k < kF , consistent with ARPES experiments.
As t ′ decreases from positive (electron doped) to negative
(hole doped), the correlation becomes stronger, and therefore
the spectral peak gets lower. Slight anisotropy is found for
t ′ � 0.2 in that the peak at the Fermi surface is a bit higher in
the nodal direction than in the antinodal direction, indicating
a weak k dependence of self-energy.

The spectral function of the Dyson self-energy is defined
as

ρ� (�k, ω) = − 1

π
Im �(�k, ω). (7)

It is calculated from the spectral function obtained from
solving the set of ECFL equations (1)–(6):

ρ� (�k, ω) = ρG(�k, ω)

π2ρ2
G(�k, ω) + [ReG(�k, ω)]2

, (8)

where ReG is calculated through Hilbert transform of ρG. As
observed in Figs. 3(a)–3(e), the self-energy shows asymmetry
from intermediate frequencies at essentially all values of t ′
and k, which is consistent with previous studies [16,29],
unlike the symmetric curves in standard Fermi liquid the-
ory. Further they all appear to depend weakly on k. This is
qualitatively different from the strong k dependence of the
low-energy behaviors of the self-energy in one dimension
[21]. This weak k dependence supports our approximation
of resistivity formula ignoring vertex correction in the next
section. The inset indicates that the heating makes the most
difference in the low-energy region by lifting the bottom. In
Fig. 3(f), ρ� at kF for different t ′ are put together. As t ′
increase from negative to positive, its minimum goes down,
indicating a lower decay rate, and the bottom region becomes
rounded and more Fermi-liquid-like.

We also study the temperature-dependent ρG(kF ) and
ρ� (kF ) at ω = 0 for kF in the nodal and antinodal direction in
Fig. 4. Also, panels (a) and (b) show that the spectral function
peak is very sensitive to temperature changes. A sharp drop
happens over a small temperature region (<1% bare band-
width), wiping out the quasiparticle peak for T > 400 K in
either direction. Another angle to observe this phenomenon is
through the self-energy, ρ� (kF ) = 1/[π2ρG(kF )], describing
the decay rate of a quasiparticle. The huge increase of ρ� (kF )
upon small warming shows a rapid drop in the lifetime of
a quasiparticle. Note that the ρ� curvature dependence on
t ′ is similar to that of the plane resistivity in Fig. 4 of
Ref. [15].
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FIG. 5. MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share the legend. Here the
parameters are set as δ = 0.15, T = 105 K and 400 K (inset). k is scanned along the nodal (� → X) direction. In all cases, they have a highest
peak with a symmetric shape at ω = 0. Consistently, the peak height decreases with smaller t ′, or stronger correlation. (a) t ′ = 0.4, nodal
(� → X). (b) t ′ = 0.2, nodal (� → X). (c) t ′ = 0, nodal (� → X). (d) t ′ = −0.2, nodal (� → X). (e) t ′ = −0.4, nodal (� → X).

The momentum distribution curves (MDCs) are plotted in
Fig. 5 and Fig. 6, obtained by fixing ω and scanning k in nodal
and antinodal directions, respectively, at optimal doping and
various t ′. As expected from the EDC case, the MDC peak
is highest at the Fermi surface ω = 0, which gets broadened
the most upon warming. However, unlike the EDC case, the
MDC peaks that are far away from k = 0 or π look more
symmetric. This difference is consistent with experimental
findings. The spectral function in the early phenomenological
versions of ECFL, Refs. [23,28], leads to a somewhat exag-
gerated asymmetry in MDC curves, and has been the subject
of further phenomenological adjustments in Ref. [30], to
reconcile with experiments. The present microscopic results

show that the greater symmetry of the MDC spectral lines
comes about naturally, without the need for any adjustment
of the parameters.

2. Fermi surface

The Fermi surface (FS) structure can be observed in
the momentum distribution of spectral function peak height.
We present the case for t ′ = −0.2, which is roughly the
parameter describing the LSCO cuprate material [31], and
vary the doping δ in Fig. 7. The FS is hole-like (open) for
low doping [panels (a) and (b)] and becomes electron-like
(closed) for high doping in panels (d) and (e). The transition
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FIG. 6. MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share the same legend. Here
the parameters are set as δ = 0.15, T = 105 K and 400 K (inset). k is scanned along the antinodal (� → M for t ′ � 0 or M → X for
t ′ < 0) directions. (a) t ′ = 0.4, antinodal (� → M). (b) t ′ = 0.2, antinodal (� → M). (c) t ′ = 0, antinodal (� → M). (d) t ′ = −0.2, antinodal
(M → X). (e) t ′ = −0.4, antinodal (M → X).

point δ ≈ 0.17 can be explicitly seen in Fig. 8(a) which is
close to the noninteracting case with the tight-binding model
in Fig. 8(e), consistent with experimental findings [31–33].
At higher (hole) doping which leads to a weaker effective
correlation [15], the quasiparticle peak height increases and
becomes more Fermi-liquid-like.

The FS is only well defined at zero temperature. Following
Ref. [34] we can define a pseudo-FS at finite temperature, by
examining a specifically weighted first moment of the energy:

γkσ (μ, T ) = −
∫

ρG(k, ω)

× dω ω

cosh(βω/2)

/∫
ρG(k, ω)

dω

cosh(βω/2)
. (9)

We define a pseudo-FS as the surface in �k space where γkσ

changes sign from positive to negative. Shastry has recently
shown [34] that at T = 0, the pseudo-FS becomes the exact
Luttinger-Ward FS. It is further suggested that it is useful to
study a T -dependent effective carrier density

Neff =
∑
kσ

�(γkσ (μ, T )), (10)

where � is the Heaviside step function, such that Neff = N at
zero temperature. At finite temperatures we expect that Neff 
=
N , and the difference between the two gives insights into
the different T scales at play. This is especially applicable in
strongly correlated materials, where it is well known [17–19]
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(a) (b) (c)

(d) (e)

FIG. 7. The 3D plot of the spectral function peak height at several dopings at t ′ = −0.2, T = 63 K. The ridge in the spectral function peak
tracks the Fermi surface. As δ increases, we find that the Fermi surface changes from open (hole-like) to close (electron-like), with the critical
δ ≈ 0.17. The ridge height increases generally as δ goes up, showing decreasing correlation strength. (a) δ = 0.11. (b) δ = 0.14. (c) δ = 0.17.
(d) δ = 0.2. (e) δ = 0.23.

that Gutzwiller correlations result in the Fermi liquid regime,
the strange-metal regime, and the bad-metal regime, followed
by a high-T regime, with three crossover temperatures. In
Fig. 9, we show how Neff/N changes with temperature for
different t ′. For t ′ � 0, Neff increases monotonically toward
N as T goes down. And for t ′ < 0, Neff decreases from larger
to smaller than N upon cooling. With further lowering T one
expects that Neff equals N .

At low temperatures (T � t), we find that the roots of γk

are close to the location of the ridge of spectral peak height
shown in Fig. 11, and hence it can be taken as an approximate
or a pseudo-finite-temperature FS. Figure 10 shows that the
pseudo-FS is getting close to the true FS at zero temperature as
T goes down for both electron-doped and hole-doped systems.

To understand better the deviations at finite T seen in
Fig. 9, Fig. 10, and Fig. 11, it is helpful to recall a phenomeno-
logical spectral function [48] (see Eq. (9) and Eqs. (SI-20) and
(SI-21) in Ref. [48]). This function is obtained by expanding
the two self-energies in Eq. (2) and Eq. (3) at low energies
in a power series. It captures many features of the ECFL
calculations in terms of a few parameters, and is given as

A(k̂, ω) = z0

π

�(ω)

�(ω)2 + (ω − VLk̂)2

(
1 − ξ√

1 + cαξ 2

)
, (11)

where k̂ is the component of �k normal to the FS; ξ = 1
�0

(ω −
r VLk̂); �(ω) = η + π

��
(ω2 + π2k2

BT 2); �0 and �� are the
low- and high-energy scales; VL is the Fermi velocity; and
z0, r , and cα are numerical constants. The important variable
r ∈ [0, 2] determines the location of a feature in the dispersion

known as the “kink.” It is analyzed using this model spectral
function in Ref. [48]. Here r = 1 is at the border of two
regimes r < 1 with kinks in the unoccupied side, and r > 1
with kinks in the occupied side of the distribution. In Fig. 12
we plot the location of the peak in the spectral function
Eq. (11) against T , for three values r = 0.5, 1, and 1.5. From
this we see that these regimes display either a shrinking or an
enlargement of the FS with increasing T . This corresponds to
the types of behavior seen in Fig. 10 and Fig. 11.

3. Local density of states

The local density of states (LDOS) is calculated by∑
�k (1/Ns )ρG(�k, ω) and plotted in Figs. 13 and 14, varying

t ′ with fixed δ = 0.15 and varying δ with fixed t ′ = 0,−0.4,
respectively. This quantity can be measured by scanning tun-
neling microscopy [35–39].

In Fig. 13, comparing panels (a) and (c), we observe that
the LDOS peak gets smoothened and also broadened by the
electron-electron interaction. Although the relative position
for different t ′ remains unchanged after turning on interaction,
the strong correlation brings them closer by renormalizing
the bare band into the effective one, as shown in the inset of
Fig. 22. From panel (a) to (b), raising temperature tends to
have a stronger suppression on the peak with lower t ′. This
means the system with higher t ′ has a higher Fermi liquid
temperature scale, and therefore it is more robust to heating,
which is consistent with the previous findings of the spectral
function.
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FIG. 8. The spectral function peak height in typical directions of momentum space at several dopings at t ′ = −0.2 and T = 63 K. All
panels share the same legend. Panel (a) shows evidence of Lifshitz transition (Fermi surface changed from opened to closed) at δ ≈ 0.17,
similar to the tight-binding model case shown in panel (e). Panels (b), (c), (d) provide other angles to observe this transition, in complementarity
with the 3D plots in Fig. 7. (a) ρG(π, ky ), M → X. (b) ρG(π/2, ky ). (c) ρG(0, ky ), � → M . (d) ρG(k, k), nodal (� → X). (e) Tight-binding
model.

In Fig. 14, from the electron-like panels [(a), (c), (e)] to the
strongly hole-like panels [(b), (d), (f)], the LDOS peak shifts
from ω > 0 to ω < 0. In contrast to the noninteracting tight-
binding model in (e) and (f) where the peak height is indepen-
dent of doping, (a)–(d) have smaller peaks in general and show
that the height decreases at smaller doping with more weight
in the lower Hubbard band (insets). This is again a feature of
strong correlation. As the system approaches the half-filling
limit (δ → 0), the correlation enhances and further suppresses
the quasiparticle peak, which contributes to the central peak
of the LDOS. We also observe that (a) is similar to the
density dependence of the location of Kondo or Abrikosov-
Suhl resonance in the Anderson impurity problem [16]. It can
be understood as a generic characteristic in strongly correlated
matter given the relation between density and the effective
interaction.

B. Resistivity

We next present the resistivity under strong electron-
electron interaction. The popular bubble approximation is
used and the current correlator is writen as 〈J (t )J (0)〉 ∼∑

k v2
kG2(k). Here the velocity h̄vα

k = ∂εk

∂kα
represents the

bare current vertex. In tight-binding theory the sign

oscillation in vα
k leads to a reduction in the average over

the Brillouin zone and therefore diminishes the magnitude
of the vertex corrections. Also the weak k dependence
of self-energy in Fig. 3 reduces the importance of vertex
corrections.

In our picture of a quasi-two-dimensional metal, there
are 2D well-separated sheets, by a distance c0 in the c

FIG. 9. Neff/N vs T at δ = 0.15 and various t ′. For electron-
doped (t ′ � 0) case, Neff increases as one lowers the temperature,
while in the hole-doped (t ′ = −0.2) case, Neff decreases upon cool-
ing down. At lower temperature, one expects that Neff equals N .
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FIG. 10. Comparison between the noninteracting FS and pseudo-FS at low and high temperature. Here we fix δ = 0.15 and vary t ′.
Generally, as we cool down the system, the pseudo-FS approaches the noninteracting system or FS from the right (t ′ = −0.2) or left (t ′ =
0, 0.2) side. The exception is that at T = 105 K and t ′ = −0.2 the pseudo-FS turns out to be closed (electron-like). This delicate effect is a
consequence of the redistribution of weight in the spectral function, and its thermal sensitivity is presumably related to the nearby Lifshitz
transition point for the choice of t ′ = −0.2. We cannot access very low T for our system sizes, but it is expected that the pseudo-FS flips back
to being hole-like at a low T .

direction. Thus each sheet can be effectively characterized
by the 2D t-J model. Its dc resistivity ρxx can be written as
follows:

ρxx = ρ0ρ̄xx = ρ0

σ̄xx

, (12)

σ̄xx = (2π )2
∫ ∞

−∞
dω

(
− ∂f

∂ω

)〈
ρ2

G(�k, ω)

(
h̄vx

k

)2

a2
0

〉
k

, (13)

where ρ̄xx and σ̄xx represent dimensionless resistivity and
conductivity, respectively; ρ0 ≡ c0h/e2 (∼ 1.718 m� cm)

FIG. 11. Comparison between the pseudo-FS from γk (blue), the spectral peak (red), and the noninteracting FS (dashed) at various t ′ and
fixed δ = 0.15. Note that the spectral peak (location) curve and the pseudo-FS are not exactly the same, but deviate from the noninteracting FS
in the same direction. As T decreases, the difference between them gets smaller. (a) t ′ = 0.2, T = 400 K. (b) t ′ = 0, T = 400 K. (c) t ′ = −0.2,
T = 440 K. (d) t ′ = −0.4, T = 420 K. (e) t ′ = 0.2, T = 105 K. (f) t ′ = 0, T = 105 K. (g) t ′ = −0.2, T = 270 K. (h) t ′ = −0.4, T = 105 K.
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FIG. 12. The location of the peak of the spectral function A(k̂, ω)
in Eq. (11) in units of k̂P VL versus T , at three values of r . The
model spectral function, Eq. (11), is from Ref. [48]. It is obtained
by a low-energy expansion of the two ECFL self-energies � and �

(equivalently χ ) in Eq. (2) and Eq. (3). As T → 0 all the curves move
towards k̂ = 0 as one expects, but the approach from finite T displays
significant differences depending on the value of r . The values of the
parameters used here are η = 0.01, �0 = 50, �� = 5000 (in meV),
and cα = 10. An estimated [48] VL ∼ 2 eV Å gives the shift in wave
vector �k̂ ∼ .05 Å, at 500 K for r = 1.5.

serves as the scale of resistivity; 〈A〉k ≡ 1
Ns

∑
�k A(�k); f is

the Fermi distribution function. We present our results in
absolute units in Fig. 15 by putting the measured values of the
lattice constant into the formula and converting the energy unit
using t = 0.45 eV ≈ 5220 K. The scale of ECFL resistivity is
consistent with the experimental findings in cuprates [24].

TABLE I. The Fermi liquid temperature TFL obtained from
fitting the data with Eq. (14). Increasing either t ′ (horizontally) or
doping δ (vertically) increases TFL, signaling weaker correlations.

Fermi liquid temperature TFL (K)

↓ δ → t ′ −0.2 −0.1 0 0.1 0.2

0.12 10.0 18.4 33.1 68.2 117.6
0.15 15.8 31.1 66.3 135.4 218.0
0.18 24.4 53.7 117.4 245.2 420.9
0.21 37.3 78.8 189.5 360.3 618.4
0.24 56.8 145.2 274.4 569.5 820.5

In our previous study [15], a significant finding was that
the curvature of resistivity changes when t ′ varies. Here
we focus more on the δ-dependent behavior of resistivity
as shown in Fig. 15. For a given t ′, decreasing the hole
doping changes the curves from concave to linear then to
convex and varying t ′ shifts the crossover doping region.
This phenomenon signals a change of the effective Fermi
temperature scale. In higher hole doping (lower electron
density), there is less influence of the Gutzwiller projection.
Hence the system has less correlation effectively and displays
more Fermi-liquid-like behavior, namely, T 2 dependence, and
hence positive curvature. In the case with low hole doping,
i.e., closer to the Mott-insulating limit, the correlation is
relatively stronger and suppresses the Fermi liquid state into
a much lower temperature region, which is usually masked

FIG. 13. Local density of states with varying t ′ while fixing δ = 0.15, at T = 105 K and 400 K from ECFL and at T = 0 from the bare
case. All figures share the same legend. (a) T = 105 K. (b) T = 400 K. (c) Tight-binding model for reference, T = 0.
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FIG. 14. Local density of states with varying δ while fixing t ′ = 0 and −0.4, at T = 105 K and 400 K from ECFL and at T = 0 from the
bare case. All figures share the same legend. (a) t ′ = 0, T = 105 K. (b) t ′ = −0.4, T = 105 K. (c) t ′ = 0, T = 400 K. (d) t ′ = −0.4, T = 400
K. (e) t ′ = 0, tight-binding model for reference, T = 0. (f) t ′ = −0.4, tight-binding model for reference, T = 0.

by superconductivity. In the displayed temperature range of
Fig. 15, the system shows strange-metal or even bad-metal
behaviors [17] instead, and hence negative curvature. The
curvature can be explicitly calculated as the second deriva-
tive of ρxx with respect to T shown in Fig. 16, which
displays features qualitatively similar to the experiments
[24,40–43].

To explore the crossover from the Fermi liquid (ρxx ∝ T 2)
at low T to the strange metal (ρxx ∝ T ) at higher T , we define
a simple fitting model:

ρapprox = const. × T 2

TFL + T
. (14)

This fit gives Fermi liquid behavior for T � TFL and then
crosses over to strange-metal linear behavior at T � TFL.
Thus, TFL serves as a crossover scale describing the boundary
of the Fermi liquid region as well as estimating the strength
of correlation. We find our data fit into this model well
up to intermediate temperature with fitted coefficient and
TFL.

Table I shows the value of TFL in various sets of δ and t ′.
In all cases, the TFL is considerably smaller than the Fermi
temperature in the noninteracting case at the order of the
bandwidth, as a result of strong correlation. In experiment, a
small enough TFL prevents the observation of the Fermi liquid
because at low enough temperature the superconducting state
shows up instead [24]. Relatively, TFL is further suppressed
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FIG. 15. Resistivity versus T for varying hole doping δ and t ′ = −0.2, −0.1, 0, 0.2 (some data in (a), (b), and (d) can be found in Ref. [15]).
The curvature tends to change from negative (convex) to positive (concave) with increasing doping. (a) t ′ = −0.2. (b) t ′ = −0.1. (c) t ′ = 0.
(d) t ′ = 0.2.

by smaller second-neighbor hopping t ′ or smaller doping δ,
either of which strengthens the effective correlation. Negative
t ′ increases the resistivity and shrinks the temperature region
for the Fermi liquid. In this sense, decreasing t ′ turns up
the effective correlation by depressing the hopping process.
On the other hand, decreasing doping leaves less space for
electron movement, which also effectively increases the cor-
relation and suppresses TFL. δ and t ′ both control the effective
correlation strength and hence TFL, as shown in Table I.
Their similar role can also be understood in the fact that
they both change the geometry of the Fermi surface which
determines the conductivity at T � W , where W = 8t is the
bare bandwidth. In general, either increasing δ with fixed t ′
or increasing t ′ with fixed δ changes the Fermi surface from
hole-like to electron-like.

C. Hall number

Within the bubble scheme, we also calculate the Hall
conductivity [19,44–46] as σxy = (−2π2/ρ0)( �

�0
)(σ̄xy ). The

dimensionless conductivity can be written as

σ̄xy = 4π2

3

∫ ∞

−∞
dω (−∂f /∂ω)

〈
ρ3

G(k, ω)η(k)
〉
k
, (15)

where η(k) = h̄2

a4
0
{(vx

k )2 ∂2εk

∂k2
y

− (vx
k v

y

k ) ∂2εk

∂kx∂ky
}; � = Ba2

0 is the

flux [47], and �0 = hc/(2|e|) is the flux quantum. In these

terms, we can compute the Hall number as

nH = − 1

4π2

σ̄ 2
xx

σ̄xy

. (16)

Note that in this definition, the sign of the Hall number is
opposite to that in Ref. [15]. In this definition, nH shares the
same sign with the Hall coefficient RH , consistent with
the experimental convention [24,40–43,49–53]. We present
the ECFL Hall number nH in Fig. 17 together with the non-
interacting one nH0 for comparison. In all cases of different
t ′, nH is around 60% of nH0 and decreasing t ′ suppresses the
scale of nH . This indicates the reduction of effective charge
carrier due to strong correlation. Therefore, the Hall number
increases when the effective correlation turns down either by
increasing t ′ or increasing δ, as shown in Fig. 17. In panel
(d), nH remains smooth when crossing the Lifshitz transition
δ ≈ 0.17, where the Fermi surface changes from opened to
closed as presented in Sec. III A, while nH0 shows a crossover
to a steeper region.

D. Spin susceptibility and the NMR relaxation rate

The imaginary part of spin susceptibility can also be calcu-
lated in the Bubble approximation:

χ ′′(k, ω) =
∫ ∞

−∞
dy〈ρG(p, y)ρG(p + k, y + ω)〉p

× [f (y) − f (y + ω)], (17)
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FIG. 16. Curvature of resistivity versus T for a range of doping δ and t ′ = −0.2, −0.1, 0, and 0.2. For most values of t ′, there is a blue
area towards the right bottom representing positive (concave) curvature akin to a Fermi liquid. Towards the left top we find a red area with
negative (convex) curvature resembling a strange (or bad) metal [17]. This trend is consistent with experimental results [24]. (a) t ′ = −0.2.
(b) t ′ = −0.1. (c) t ′ = 0. (d) t ′ = 0.2.

while the real part χ ′ can be obtained from calculating the
Hilbert transform of χ ′′. χ ′′ is shown in Fig. 18 for hole-doped
(t ′ = −0.2) and electron-doped (t ′ = 0.2) cases at various
fixed k. In both cases, we see the quasielastic peaks in the
occupied region for small k which disappears gradually as k

increases.
Figure 19 presents the k-dependent χ ′ at zero frequency,

in comparison with the noninteracting χ ′
0 in the inset. We ob-

serve that χ ′ is much smaller than χ ′
0 due to the broadening in

the spectral function as a result of strong interaction. Despite
the scale difference, the k-dependent χ seems closer to χ0 in
the electron-doped case (t ′ = 0.2) than the hold-doped case
(t ′ = −0.2), consistent with the previous discussion that the
system is more Fermi-liquid-like for positive t ′. The Knight
shift χ ′(k = 0, ω = 0) of the system is almost independent of
temperature and therefore not shown specifically in figure.

The relaxation rates for cuprates are given by [25,26,55]

1

T1
= γ 2kBT

μ2
B

∑
q

A2
q

χ ′′(q, ω0)

ω0
, (18)

where Aq is a form factor that is determined by the lo-
cal geometry of the nucleus [25,26,55], and ω0 is nuclear

frequency which is assumed to be very small. Our scheme of
calculation is not yet refined enough to capture the detailed
difference between the copper and oxygen relaxation rates in
cuprates. Hence, we will content ourselves by presenting the
case with Aq = 1, which should correspond to the inelastic
neutron scattering (INS) derived relaxation rate in Ref. [25]
from Walstedt et al. We plot 1/T1 vs T at δ = 0.15 and various
t ′ in Fig. 20. For t ′ = −0.2, 1/T1 increases sublinearly with
temperature. It shows roughly the same trend as the copper
rates shown in Ref. [25], but is somewhat steeper than the
derived INS rate therein.

E. J variation

Above we have discussed the ECFL results at J = 0.17.
We next address the question of variation with J . Figure 21
shows the EDCs and MDCs at different J fixing t ′ = 0. Turn-
ing on J raises the peak in EDC [(a) → (c) → (e)] and MDC
[(b) → (d) → (f)] slightly. Also, increasing J separates the
other EDC lines farther away from k = kF while bringing the
other MDC lines closer to ω = 0.

We find that J has an effect on the effective bandwidth.
This can be seen in the EDC and MDC dispersion relation in
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FIG. 17. Hall number vs doping at different t ′ and T = 105 K, where t ′ controls the scale of nH . (a) t ′ = −0.4. (b) t ′ = −0.3. (c) t ′ =
−0.25. (d) t ′ = −0.2.

FIG. 18. χ ′′ at different k for δ = 0.15, T = 63 K, and t ′ = ±0.2. (a) t ′ = −0.2. (b) t ′ = 0.2.

FIG. 19. χ ′ at ω = 0 for δ = 0.15, T = 63 K, and t ′ = ±0.2. Inset shows the corresponding noninteracting χ ′
0. χ ′ is largely suppressed

from the bare case due to strong interaction. (a) t ′ = −0.2. (b) t ′ = 0.2.
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FIG. 20. Relaxation rate from Eq. (18) (arb. units) at δ = 0.15
and different t ′. The curve becomes more sublinear as t ′ decreases
from positive to negative. The sublinear curve at t ′ = −0.2 looks
similar to the copper relaxation rate in Ref. [25].

Fig. 22. As J increases, the EDC and MDC bands separate
out more widely, though they are still very narrow (due to
strong correlations) compared to the bare bandwidth. The
MDC dispersion shows a high-energy feature, namely the
kink (or waterfall). Due to the finite lattice size and to the
second-order approximation made in the present work, the
low-energy kink discussed in Ref. [48] cannot be resolved
clearly. Another angle to view the effect of J is through the
3D plot of the nodal direction spectral function ρG(k, k, ω)
in Fig. 23. It appears that turning on J rotates the spectral
function counterclockwise with respect to the z axis with
k = kF and ω = 0 if viewed from above. In other words,
increasing J extended the renormalized bandwidth with no
effect on the Fermi surface location since all curves cross
at the same kF . That said, small variation of J does not
change the system behavior qualitatively, and only slightly in

FIG. 21. EDC and MDC line shapes at different values of superexchange J . All EDC figures [(a), (c), (e)] or MDC figures [(b), (d), (f)]
share the same respective legend. Here the parameters are set as δ = 0.15, t ′ = 0, T = 105 K, and J = 0, 0.17, 0.4, in the nodal (� → X)
direction. Increasing J , the peak at the chemical potential becomes somewhat higher, but it remains qualitatively similar at all J . Besides,
increasing J separates the EDC lines farther away from k = kF and brings the MDC lines closer to ω = 0. (a) J = 0, EDC. (b) J = 0, MDC.
(c) J = 0.17, EDC. (d) J = 0.17, MDC. (e) J = 0.4, EDC. (f) J = 0.4, MDC.
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FIG. 22. (a) EDC and (b) MDC dispersion relation at different values of superexchange J . In both cases, increasing J expands the
renormalized bandwidth, consistent with Fig. 21 of EDC and MDC lines. Both insets show that the renormalized band is strongly suppressed
by correlation compared with the bare one. The energy and k resolution in the present study is not fine enough to deduce the detailed properties
of the low-energy kinks (for ω ∼ 0.07 eV) discussed phenomenologically within ECFL in Ref. [48].

quantitative detail. Therefore it is reasonable to set J = 0.17
from experiment as a representative number and to explore the
k, ω, t ′, and δ dependence of the system.

From the discussion above, we expect the k-average phys-
ical quantity like resistivity with significant contribution from
the area around the Fermi surface to be insensitive to J

variation. Figure 24 shows the resistivity at different J for
fixed t ′. As expected, varying J from 0 to 0.4 does not make
a qualitative difference in the resistivity of the normal state,

although it has a relatively stronger effect on the case with
larger |t ′|.

IV. CONCLUSION

We apply the recently developed second-order ECFL
scheme [15,16] to studying the 2D t-J model with second-
nearest-neighbor hopping t ′. We have presented the spectral
function, self-energy, LDOS, resistivity, Hall number, and dy-

(a) (b)

(c) (d)

FIG. 23. 3D plot of the nodal direction spectral function ρG(k, k, ω). Consistent with Fig. 21, turning on J increases the peak height and
rotates ρG counterclockwise with respect to the z axis with k = kF and ω = 0 if viewed from above. This is another facet of the steeper
dispersion with J noted in Fig. 22. (a) J = 0, T = 105 K. (b) J = 0, T = 400 K. (c) J = 0.4, T = 105 K. (d) J = 0.4, T = 400 K.
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FIG. 24. Resistivity at δ = 0.15 versus T for various J and t ′ (same legend for all panels). In all t ′, we observe that J variation of
the resistivity is small. As |t ′| becomes large J has a somewhat larger influence on the resistivity. (a) t ′ = −0.4. (b) t ′ = −0.2. (c) t ′ = 0.
(d) t ′ = 0.2. (e) t ′ = 0.4.

namical susceptibility at low and intermediate temperatures,
with t ′ varying from −0.4 to 0.4 and within a large density
region around optimal doping.

The spectral properties are shown to be consistent with
ARPES experiments [56–60] on correlated material. The
asymmetric EDCs and more symmetric MDCs are observed
as expected from the previous study on the phenomeno-
logical model of simplified ECFL theory [23]. The weak
k dependence of self-energy indicates the relative unimpor-
tance of vertex corrections at the densities considered, and
gives credence to the use of the bubble approximation for
transport.

The curvature change on the resistivity ρ-T curve arises
from varying t ′ and δ, signaling different strength of effective

correlation. Both t ′ and δ affect the effective electron-electron
correlation because t ′ controls the second-neighbor hopping
process and δ leaves more or less space for electron move-
ment. As a feature in 2D, the combination of them determines
the geometry of the Fermi surface and therefore the low-
energy behaviors.
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Lett. 117, 197001 (2016).

[44] P. Voruganti, A. Golubentsev, and S. John, Phys. Rev. B
45, 13945 (1992); H. Fukuyama, H. Ebisawa, and Y. Wada,
Prog. Theor. Phys. 42, 494 (1969); H. Kohno and K. Yamada,
ibid. 80, 623 (1988).

[45] For this we additionally assume that the magnetic field vertex
also assumes its bare value. This assumption requires further
validation in 2 dimensions within the t-J model; hence the
results for the Hall conductivity are less reliable than the
longitudinal conductivity.

[46] L.-F. Arsenault and A. M. S. Tremblay, Phys. Rev. B 88, 205109
(2013).

[47] The numerics assume a bct unit cell (a, a, c) with a = 3.79 Å
and c = 13.29 Å. In the expression for ρ0, c0 corresponds to the
interlayer separation c0 = c/2.

205106-19

https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1209/0295-5075/77/27007
https://doi.org/10.1209/0295-5075/77/27007
https://doi.org/10.1209/0295-5075/77/27007
https://doi.org/10.1209/0295-5075/77/27007
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.085112
https://doi.org/10.1103/PhysRevB.76.085112
https://doi.org/10.1103/PhysRevB.76.085112
https://doi.org/10.1103/PhysRevB.76.085112
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevLett.114.016402
https://doi.org/10.1103/PhysRevLett.114.016402
https://doi.org/10.1103/PhysRevLett.114.016402
https://doi.org/10.1103/PhysRevLett.114.016402
https://doi.org/10.1103/PhysRevB.84.014530
https://doi.org/10.1103/PhysRevB.84.014530
https://doi.org/10.1103/PhysRevB.84.014530
https://doi.org/10.1103/PhysRevB.84.014530
https://doi.org/10.1103/PhysRevLett.107.056403
https://doi.org/10.1103/PhysRevLett.107.056403
https://doi.org/10.1103/PhysRevLett.107.056403
https://doi.org/10.1103/PhysRevLett.107.056403
https://doi.org/10.1016/j.aop.2014.02.005
https://doi.org/10.1016/j.aop.2014.02.005
https://doi.org/10.1016/j.aop.2014.02.005
https://doi.org/10.1016/j.aop.2014.02.005
https://doi.org/10.1016/j.aop.2016.08.015
https://doi.org/10.1016/j.aop.2016.08.015
https://doi.org/10.1016/j.aop.2016.08.015
https://doi.org/10.1103/PhysRev.102.1230
https://doi.org/10.1103/PhysRev.102.1230
https://doi.org/10.1103/PhysRev.102.1230
https://doi.org/10.1103/PhysRev.102.1230
https://doi.org/10.1016/j.aop.2015.03.010
https://doi.org/10.1016/j.aop.2015.03.010
https://doi.org/10.1016/j.aop.2015.03.010
https://doi.org/10.1016/j.aop.2015.03.010
https://doi.org/10.1088/1367-2630/aa9b74
https://doi.org/10.1088/1367-2630/aa9b74
https://doi.org/10.1088/1367-2630/aa9b74
https://doi.org/10.1088/1367-2630/aa9b74
https://doi.org/10.1103/PhysRevB.94.045138
https://doi.org/10.1103/PhysRevB.94.045138
https://doi.org/10.1103/PhysRevB.94.045138
https://doi.org/10.1103/PhysRevB.94.045138
https://doi.org/10.1103/PhysRevB.88.235132
https://doi.org/10.1103/PhysRevB.88.235132
https://doi.org/10.1103/PhysRevB.88.235132
https://doi.org/10.1103/PhysRevB.88.235132
https://doi.org/10.1103/PhysRevB.88.205108
https://doi.org/10.1103/PhysRevB.88.205108
https://doi.org/10.1103/PhysRevB.88.205108
https://doi.org/10.1103/PhysRevB.88.205108
https://doi.org/10.1103/PhysRevB.96.054114
https://doi.org/10.1103/PhysRevB.96.054114
https://doi.org/10.1103/PhysRevB.96.054114
https://doi.org/10.1103/PhysRevB.96.054114
https://doi.org/10.1103/PhysRevB.96.115153
https://doi.org/10.1103/PhysRevB.96.115153
https://doi.org/10.1103/PhysRevB.96.115153
https://doi.org/10.1103/PhysRevB.96.115153
https://doi.org/10.1103/PhysRevLett.110.086401
https://doi.org/10.1103/PhysRevLett.110.086401
https://doi.org/10.1103/PhysRevLett.110.086401
https://doi.org/10.1103/PhysRevLett.110.086401
https://doi.org/10.1103/PhysRevLett.111.036401
https://doi.org/10.1103/PhysRevLett.111.036401
https://doi.org/10.1103/PhysRevLett.111.036401
https://doi.org/10.1103/PhysRevLett.111.036401
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.98.035108
https://doi.org/10.1103/PhysRevB.98.035108
https://doi.org/10.1103/PhysRevB.98.035108
https://doi.org/10.1103/PhysRevB.98.035108
https://doi.org/10.1103/PhysRevB.98.115101
https://doi.org/10.1103/PhysRevB.98.115101
https://doi.org/10.1103/PhysRevB.98.115101
https://doi.org/10.1103/PhysRevB.98.115101
https://doi.org/10.1103/PhysRevLett.107.056404
https://doi.org/10.1103/PhysRevLett.107.056404
https://doi.org/10.1103/PhysRevLett.107.056404
https://doi.org/10.1103/PhysRevLett.107.056404
https://doi.org/10.1103/PhysRevLett.93.267001
https://doi.org/10.1103/PhysRevLett.93.267001
https://doi.org/10.1103/PhysRevLett.93.267001
https://doi.org/10.1103/PhysRevLett.93.267001
https://doi.org/10.1103/PhysRevB.84.024530
https://doi.org/10.1103/PhysRevB.84.024530
https://doi.org/10.1103/PhysRevB.84.024530
https://doi.org/10.1103/PhysRevB.84.024530
https://doi.org/10.1103/PhysRevB.84.165112
https://doi.org/10.1103/PhysRevB.84.165112
https://doi.org/10.1103/PhysRevB.84.165112
https://doi.org/10.1103/PhysRevB.84.165112
https://doi.org/10.1103/PhysRevB.86.079911
https://doi.org/10.1103/PhysRevB.86.079911
https://doi.org/10.1103/PhysRevB.86.079911
https://doi.org/10.1103/PhysRevB.87.245101
https://doi.org/10.1103/PhysRevB.87.245101
https://doi.org/10.1103/PhysRevB.87.245101
https://doi.org/10.1103/PhysRevB.87.245101
https://doi.org/10.1103/PhysRevLett.111.246401
https://doi.org/10.1103/PhysRevLett.111.246401
https://doi.org/10.1103/PhysRevLett.111.246401
https://doi.org/10.1103/PhysRevLett.111.246401
https://doi.org/10.1103/PhysRevB.78.205103
https://doi.org/10.1103/PhysRevB.78.205103
https://doi.org/10.1103/PhysRevB.78.205103
https://doi.org/10.1103/PhysRevB.78.205103
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1103/PhysRevB.74.224510
https://doi.org/10.1103/PhysRevB.74.224510
https://doi.org/10.1103/PhysRevB.74.224510
https://doi.org/10.1103/PhysRevB.74.224510
https://doi.org/10.1103/PhysRevB.63.220501
https://doi.org/10.1103/PhysRevB.63.220501
https://doi.org/10.1103/PhysRevB.63.220501
https://doi.org/10.1103/PhysRevB.63.220501
http://arxiv.org/abs/arXiv:1808.00405
https://doi.org/10.1103/PhysRevLett.119.266802
https://doi.org/10.1103/PhysRevLett.119.266802
https://doi.org/10.1103/PhysRevLett.119.266802
https://doi.org/10.1103/PhysRevLett.119.266802
https://doi.org/10.1103/PhysRevX.5.041018
https://doi.org/10.1103/PhysRevX.5.041018
https://doi.org/10.1103/PhysRevX.5.041018
https://doi.org/10.1103/PhysRevX.5.041018
https://doi.org/10.1103/PhysRevB.96.174523
https://doi.org/10.1103/PhysRevB.96.174523
https://doi.org/10.1103/PhysRevB.96.174523
https://doi.org/10.1103/PhysRevB.96.174523
https://doi.org/10.1103/PhysRevLett.114.217002
https://doi.org/10.1103/PhysRevLett.114.217002
https://doi.org/10.1103/PhysRevLett.114.217002
https://doi.org/10.1103/PhysRevLett.114.217002
https://doi.org/10.1143/JPSJ.81.011005
https://doi.org/10.1143/JPSJ.81.011005
https://doi.org/10.1143/JPSJ.81.011005
https://doi.org/10.1143/JPSJ.81.011005
https://doi.org/10.1103/PhysRevLett.60.2194
https://doi.org/10.1103/PhysRevLett.60.2194
https://doi.org/10.1103/PhysRevLett.60.2194
https://doi.org/10.1103/PhysRevLett.60.2194
https://doi.org/10.1103/PhysRevB.40.2254
https://doi.org/10.1103/PhysRevB.40.2254
https://doi.org/10.1103/PhysRevB.40.2254
https://doi.org/10.1103/PhysRevB.40.2254
https://doi.org/10.1103/PhysRevB.69.024504
https://doi.org/10.1103/PhysRevB.69.024504
https://doi.org/10.1103/PhysRevB.69.024504
https://doi.org/10.1103/PhysRevB.69.024504
https://doi.org/10.1103/PhysRevLett.117.197001
https://doi.org/10.1103/PhysRevLett.117.197001
https://doi.org/10.1103/PhysRevLett.117.197001
https://doi.org/10.1103/PhysRevLett.117.197001
https://doi.org/10.1103/PhysRevB.45.13945
https://doi.org/10.1103/PhysRevB.45.13945
https://doi.org/10.1103/PhysRevB.45.13945
https://doi.org/10.1103/PhysRevB.45.13945
https://doi.org/10.1143/PTP.42.494
https://doi.org/10.1143/PTP.42.494
https://doi.org/10.1143/PTP.42.494
https://doi.org/10.1143/PTP.42.494
https://doi.org/10.1143/PTP.80.623
https://doi.org/10.1143/PTP.80.623
https://doi.org/10.1143/PTP.80.623
https://doi.org/10.1143/PTP.80.623
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109


PEIZHI MAI AND B. SRIRAM SHASTRY PHYSICAL REVIEW B 98, 205106 (2018)

[48] K. Matsuyama, E. Perepelitsky, and B. S. Shastry, Phys. Rev. B
95, 165435 (2017).

[49] H. Y. Hwang, B. Batlogg, H. Takagi, H. L. Kao, J. Kwo, R. J.
Cava, J. J. Krajewski, and W. F. Peck Jr., Phys. Rev. Lett. 72,
2636 (1994).

[50] Y. Ando, Y. Kurita, S. Komiya, S. Ono, and K. Segawa, Phys.
Rev. Lett. 92, 197001 (2004).

[51] F. F. Balakirev, J. B. Betts, A. Migliori, S. Ono, Y. Ando, and
G. S. Boebinger, Nature (London) 424, 912 (2003).

[52] F. F. Balakirev, J. B. Betts, A. Migliori, I. Tsukada, Y.
Ando, and G. S. Boebinger, Phys. Rev. Lett. 102, 017004
(2009).

[53] J. Takeda, T. Nishikawa, and M. Sato, Phys. C (Amsterdam,
Neth.) 231, 293 (1994) (see especially Fig. 4 therein).

[54] J. Town, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson,
R. Roskies, J. R. Scott, N. W-Diehr, Comput. Sci. Eng. 16, 62
(2014).

[55] B. S. Shastry, Phys. Rev. Lett. 63, 1288 (1989).
[56] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.

75, 473 (2003).
[57] W. S. Lee, I. M. Vishik, D. H. Lu, and Z.-X. Shen, J. Phys.:

Condens. Matter 21, 164217 (2009).
[58] J. D. Koralek, J. F. Douglas, N. C. Plumb, Z. Sun, A. V. Federov,

M. M. Murnane, H. C. Kapteyn, S. T. Cundiff, Y. Aiura, K.
Oka, H. Eisaki, and D. S. Dessau, Phys. Rev. Lett. 96, 017005
(2006).

[59] T. Yoshida, X. J. Zhou, D. H. Lu, S. Komiya, Y. Ando,
H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, Z.-X. Shen,
and A. Fujimori, J. Phys.: Condens. Matter 19, 125209
(2007).

[60] N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen,
F. Ronning, D. L. Feng, P. Bogdanov, X. J. Zhou, W. L. Yang,
Z. Hussain, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y.
Taguchi, Y. Tokura, and Z.-X. Shen, Phys. Rev. B 68, 064517
(2003).

205106-20

https://doi.org/10.1103/PhysRevB.95.165435
https://doi.org/10.1103/PhysRevB.95.165435
https://doi.org/10.1103/PhysRevB.95.165435
https://doi.org/10.1103/PhysRevB.95.165435
https://doi.org/10.1103/PhysRevLett.72.2636
https://doi.org/10.1103/PhysRevLett.72.2636
https://doi.org/10.1103/PhysRevLett.72.2636
https://doi.org/10.1103/PhysRevLett.72.2636
https://doi.org/10.1103/PhysRevLett.92.197001
https://doi.org/10.1103/PhysRevLett.92.197001
https://doi.org/10.1103/PhysRevLett.92.197001
https://doi.org/10.1103/PhysRevLett.92.197001
https://doi.org/10.1038/nature01890
https://doi.org/10.1038/nature01890
https://doi.org/10.1038/nature01890
https://doi.org/10.1038/nature01890
https://doi.org/10.1103/PhysRevLett.102.017004
https://doi.org/10.1103/PhysRevLett.102.017004
https://doi.org/10.1103/PhysRevLett.102.017004
https://doi.org/10.1103/PhysRevLett.102.017004
https://doi.org/10.1016/0921-4534(94)90635-1
https://doi.org/10.1016/0921-4534(94)90635-1
https://doi.org/10.1016/0921-4534(94)90635-1
https://doi.org/10.1016/0921-4534(94)90635-1
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1103/PhysRevLett.63.1288
https://doi.org/10.1103/PhysRevLett.63.1288
https://doi.org/10.1103/PhysRevLett.63.1288
https://doi.org/10.1103/PhysRevLett.63.1288
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1088/0953-8984/21/16/164217
https://doi.org/10.1088/0953-8984/21/16/164217
https://doi.org/10.1088/0953-8984/21/16/164217
https://doi.org/10.1088/0953-8984/21/16/164217
https://doi.org/10.1103/PhysRevLett.96.017005
https://doi.org/10.1103/PhysRevLett.96.017005
https://doi.org/10.1103/PhysRevLett.96.017005
https://doi.org/10.1103/PhysRevLett.96.017005
https://doi.org/10.1088/0953-8984/19/12/125209
https://doi.org/10.1088/0953-8984/19/12/125209
https://doi.org/10.1088/0953-8984/19/12/125209
https://doi.org/10.1088/0953-8984/19/12/125209
https://doi.org/10.1103/PhysRevB.68.064517
https://doi.org/10.1103/PhysRevB.68.064517
https://doi.org/10.1103/PhysRevB.68.064517
https://doi.org/10.1103/PhysRevB.68.064517



