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A maximum entropy method for analytic continuation is extended by introducing quantum relative entropy.
This method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary
transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward.
Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the
conventional maximum entropy method. The applications of our generalized formalism to a model spectrum and
a real material demonstrate its usefulness and superiority.
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I. INTRODUCTION

An imaginary time Green’s function method such as quan-
tum Monte Carlo (QMC) is a main workhorse for various
finite temperature many-body problems [1–3]. While it has
been successful for both impurity and periodic systems, the
output data on the imaginary axis [e.g., Matsubara Green’s
function G(iωn)] should be transformed to the real-frequency
spectrum A(ω) in order to be compared with experimental
results. Namely, physical observables can only be accessed
indirectly via analytic continuation. While the calculation of
G(iωn) from A(ω) is straightforward, its inverse is an ill-
posed problem due to the large conditional number of the
kernel matrix. The small noise in G(iωn) can lead to large
fluctuations in A(ω), and the double precision is far from
being enough [4]. Among well-established methods, such
as Pade [5,6], stochastic method [7], and others [8–13], the
maximum entropy method (MEM) is one of the most widely
used [14–17].

One obvious limitation of conventional MEM is about the
nondiagonal components of Matsubara functions. Since the
conventional formalism is rigorous only for non-negative and
additive functions [18], it has been a challenge to make the
continuation of off-diagonal matrix elements which can be
negative or complex. This limitation becomes particularly se-
rious when one tries to understand the real materials based on,
for example, dynamical mean-field theory (DMFT) [19–21]
combined with QMC impurity solver [22–26]. No matter how
correctly the Matsubara function or self-energy is computed,
severely limited is to understand the electronic property, es-
pecially the effect of spin-orbit coupling (SOC), crystal-field
effect, or any other factors that can generate nondiagonal parts
of the functions [27,28].

One possible way to overcome this limitation is to trans-
form the imaginary frequency data to a “good basis set” on
which the Green’s function can be represented as diagonal as
possible and the off-diagonal elements be neglected. Another
approach tries to relax the non-negativity conditions or to
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construct the auxiliary functions with positive definite prop-
erty [29–31]. Recently, a notable idea has been suggested
[32]. In order to apply MEM to the off-diagonal elements
of spectral function Aoff (ω), Kraberger et al. decomposed
Aoff (ω) so that the positive definite condition is satisfied. It
is noted, however, that in this element-wise approach SU(N )
invariance is hardly preserved in the sense that the resulting
spectrum is dependent on the basis choice.

In the current study we generalize MEM by reformulating
it with quantum relative entropy. It can be regarded as a quan-
tum version of MEM. Within this maximum quantum entropy
method (MQEM), the matrix is not decomposed nor treated
element wise, but is directly continued as a single object.
Thus our formalism is guaranteed to be basis independent.
This outstanding feature enables us to perform the analytic
continuation for the off-diagonal parts. We apply MQEM to
a model spectrum, whose ideal spectrum can be known by
construction, and to a realistic material example of Sr2IrO4,
for which the full matrix information is essential due to strong
SOC and structural distortion. The results demonstrate the
usefulness and superiority of our formulation.

II. FORMALISM

A. Quantum entropy

Matsubara frequency Green’s function G(iωn) [or self-
energy �(iωn)] is analytically continued to real-frequency
G(ω) [or �(ω)]. For a given G(iωn), spectral function
A(ω) = − 1

π
ImG(ω + i0+) is obtained by inverting the inte-

gral equation

G(iωn) =
∫

dω
A(ω)

iωn − ω
(1)

=
∫

dωK(iωn, ω)A(ω). (2)

Note that both G(iωn) and A are in general matrix-valued
functions. A kernel K (iωn, ω) is ill-conditioned and the direct
inverse of A = K−1G is not quite feasible, due to the large
conditional number (i.e., the large ratio between minimum
and maximum eigenvalues), likely leading to the violation of

2469-9950/2018/98(20)/205102(7) 205102-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.205102&domain=pdf&date_stamp=2018-11-01
https://doi.org/10.1103/PhysRevB.98.205102


JAE-HOON SIM AND MYUNG JOON HAN PHYSICAL REVIEW B 98, 205102 (2018)

non-negativity condition [A(ω) > 0] and sum rule
[
∫
dωA(ω) = 1].
To solve this ill-posed problem, MEM introduces entropy

S for diagonal components,

S[A(ω)||D(ω)] =
∫

dωA(ω) ln
A(ω)

D(ω)
, (3)

which is also known as Kullback-Leibler distance [33]. D(ω)
is a default model providing the essential features of spec-
tra, which can be determined by the “annealing” procedure
[15,33] or by making use of high-frequency behavior of input
data [15]. The latter is used in the current study. In MEM, it
is the “free energy” F = χ2 + αS that is minimized with a
fitting parameter α, the goodness-of-fit functional

χ2[A; G] = 1

2

∑
n

1

σ 2
n

∥∥∥∥G(iωn) −
∫

dωK(iωn, ω)A(ω)

∥∥∥∥
2

,

(4)

and the variance σ 2
n . In the case of nondiagonal covari-

ance, one can introduce the uncorrelated variables G̃i =∑
n U†

inG(iωn), where U is the eigenvectors of the covariance
matrix, such that C̃ = U†CU is diagonal. We stress that the
entropy S requires the positiveness of the spectrum [32].

Hereafter, we use a hat (ˆ) notation to emphasize the matrix
values. In order to consider the whole matrix continuation
(not element decomposed) and not to lose any off-diagonal
information, we first renormalize Matsubara function by
Ĝ → Ĝ/Tr[M̂0]. Here M̂0 = ∫

dωÂ(ω) is zeroth moments
of the spectrum. With a renormalized Matsubara function,
the asymptotic behavior can be written as Ĝ(iωn → ∞) =
M̂0/iωn with TrM̂0 = 1. Second, we divide Â(ω) into two
parts, Â(ω) = P (ω)ρ̂(ω) and P (ω) = TrÂ(ω). Here the sum
rule is written as∫

dωTrÂ =
∫

dωP (ω) = TrM̂0 = 1. (5)

Thus, within this formalism, P (ω) can be interpreted as a
classical probability distribution and ρ̂(ω) as a density matrix.

Now we extend the entropy of Eq. (3) to quantum relative
entropy, which is widely used in the nonequilibrium thermo-
dynamics [34,35] as well as the information science [36]:

SQ(Â||D̂) =
∫

dωTrÂ(ω)[ln Â(ω) − ln D̂(ω)]

= S[P (ω)||D(ω)] +
∫

dωP (ω)SQ[ρ̂(ω)||σ̂ (ω)].

(6)

Here the default model is further decomposed into D(ω) =
TrD̂(ω) and σ̂ (ω) = D̂(ω)/D(ω); D̂(ω) = D(ω)σ̂ (ω).
While the first term in the second line, S[P (ω)||D(ω)], is the
classical entropy used in MEM [see Eq. (3)], the second term
is introduced to regularize matrix elements. In our formalism,
the free energy functional to be minimized is defined by the
matrix-valued functions F [Â; Ĝ] = χ2 − αSQ(Â||D̂). We
stress that this free energy functional is SU(N ) invariant, i.e.,

F [UÂU †; UĜU †] = F [Â; Ĝ] (7)

for unitary matrix U .

While our formalism assumes that the spectrum Â is Her-
mitian, any non-Hermitian spectrum ÂnonH can be divided into
two Hermitian matrices:

ÂR
nonH = (ÂnonH + Â

†
nonH)/2, (8)

ÂI
nonH = (ÂnonH − Â

†
nonH)/2i. (9)

And therefore, ÂR
nonH and ÂI

nonH can be dealt with separately.

B. Iterative equation

The key task is to minimize free energy F :

� = min
A(ω)

F [Â(ω)]

= min
A(ω)

[
1
2χ2 + αSQ(Â||D̂)

]
. (10)

This minimization can be conducted by using the stationary
condition δF/δÂ = 0. With a trace norm ‖M̂‖ = Tr(M̂†M̂ )
for Eq. (4), a set of self-consistent equations is given as
follows:

Ĥω|ψω〉 = εω|ψω〉, (11)

where

Ĥω[Â(ω)]

= 1

2

∑
iω

K∗(iωn, ω)

(
Ĝ(iωn)−

∫
dω′K (iωn, ω

′)Â(ω′)
)

+ α

2
ln D̂(ω) + H.c. (12)

and

Â(ω) =
∫

dε
1

Z
e−εw/α|ψω〉〈ψω|. (13)

Then Eq. (11) can be solved iteratively. For more details, see
Appendix A. Note that these equations represent a quantum
system described by Hamiltonian Ĥω[Â(ω)], and its spectrum
is given by a density matrix of the canonical ensemble with
temperature α. We would like to note that the MEM is closely
related to stochastic approximation (SA) [37]. Also, the self-
consistent form of Eq. (11) is not surprising since MEM can
be regarded as a mean-field realization of SA [37].

Equation (11) represents the matrix diagonalization proce-
dure for all ω-grid points. This is the only part that requires the
additional computation compared to the conventional MEM.
Considering that the size of the Hamiltonian matrix is typi-
cally less than 10 × 10, this extra cost is not significant.

We used Pulay mixing scheme [38] and its generalization
[39] to achieve the stable convergence. The results were
compared to the solution of the reduced independent variables
in the singular space [32,40]. To minimize the real-frequency
grid size, cubic splines in combination with nonuniform real-
frequency grids have been adopted [15]. For more details, see
Appendix B.

C. Default model

We take a Gaussian shape of the default model to avoid the
data noise. The asymptotic behavior of high-frequency data
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determines the first a few moments of spectra [15]:

Ĝ(iωn) = M̂0

iωn

+ M̂1

(iωn)2
+ M̂2

(iωn)3
+ · · · , (14)

where M̂j = ∫
ωj Â(ω)dω is the j th moment of Â(ω). To

define Gaussian curves for given moments Mj (j = 0, 1, 2)
are straightforward in the scalar version of MEM. In the
matrix formalism of our MQEM, on the other hand, finding
out the analytic solution is not quite feasible due to the
fact that M̂j does not commute in general with each other;
[Mj,Mj ′] 	= 0.

Here we propose a way to find out the “featureless” default
models for a few given moments, Mj (j = 0, 1, 2). Recalling
that Gaussian curve has the maximum entropy among the
distributions with a specified variance, we define a default
model that maximizes

SD =
∫

dωD̂(ω) ln D̂(ω) +
2∑

j=0

Trμ̂j

∫
ωjD̂(ω)dω, (15)

where μ̂j is Lagrange multiplier introduced by the
constraint

∫
ωjD̂(ω)dω = Mj . The stationarity condition

∂SD/∂D̂(ω) = 0 reads

D̂(ω) = exp

⎛
⎝ 2∑

j=0

μ̂jω
j

⎞
⎠. (16)

D. Fitting parameter α

A popular approach to calculate spectral functions is to
optimize the parameter α by a statistical method within the
probabilistic interpretation of MEM [16]. Alternatively, an
average value of the spectra calculated by many different α

values can be taken [40]. Recently, a different approach has
been suggested [15]. In this approach log χ2 is computed
as a function of log α, and two different regions (namely,
“information-fitting” and “noise-fitting” region) are consid-
ered. The optimal α is then determined at the maximum
curvature of log χ2[log(α)]. We used a similar approach in
our MQEM implementation. We fit the log χ2[log(α)] curve
by Fermi-Dirac function as shown in Fig. 1. The optimal α

is determined by the maximum second deviation of the fitting
function. A clear advantage of this technique is the numerical
stability against the grid changes.

III. RESULT AND DISCUSSION

A. Simple model spectrum

As the first example, we apply our method to a simple
model system. The Green’s function Ĝin(iωn) is obtained
from a model spectral function which is given by a 2 × 2
matrix:

Â(ω) = R̂

[(
1 0
0 0

)
(e− 1

2 ( ω+ω0
2 )2 + e− 1

2 ( ω−ω0
2 )2

)

]
R̂†. (17)

Note that obtaining Ĝin(iωn) from Â(ω) is not ill-conditioned.
Here the two-peak Gaussian spectrum centered at ω0 = ±1.5
is rotated by a rotation matrix R̂ = ( cos(θ ) i sin(θ )

i sin(θ ) cos(θ ) ) with

Default 
model

Information-
fittingNoise-

fitting

-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

-8 -6 -4 -2  0  2  4  6  8  10

lo
gχ

2

logα

FIG. 1. The green line presents log χ 2 as a function of log α in
the case of model spectrum discussed in Sec. III A. Gaussian noise of
σ = 10−3 is introduced to each element of Green’s function matrix.
Yellow line is the fitting curve with optimal log αopt = −3.09 (black
vertical line).

θ = (2πω/Tω )2. For Tω = ∞ (θ = 0), the spectral function
corresponds to the trivial case that off-diagonal elements are
all zero. At finite Tω, Â(ω) has nonzero off-diagonal values.
In performing MEM continuation, we also introduced random
Gaussian noises to the Green’s functions with a standard
deviation of σ = 10−4 in order to mimic a realistic QMC
situation.

Figure 2 shows the calculated spectra from the input of
Eq. (17). The conventional MEM and the generalized MQEM
results are presented in magenta and blue lines, respectively,
along with the ideal spectrum (green) from which the input
Green’s function Ĝin(iωn) is generated. It is noted that the
conventional MEM does not well reproduce the off-diagonal
part of spectral function [Fig. 2(b)] while the diagonal part
is in good agreement with the ideal spectrum [Fig. 2(a)].
This is a well-known limitation of MEM. Here the results
of conventional MEM are obtained from the properly chosen
basis set in which the off-diagonal components of Ĝin(iωn)
are minimized; i.e., min

∑
iωn

∑
i 	=j |Ĝin

ij (iωn)|2 (θ = 0.972
rad). Note that, even with this “best” basis, the off-diagonal
elements are significantly deviated from the ideal result as
shown in Fig. 2(b). The same feature is also observed in
G(iωn), see Fig. 2(c). The conventional MEM result shows
the noticeable deviation from the ideal (or original) curve
especially for the off-diagonal part. Note that, in this exam-
ple, there is no unitary transformation for the basis set on
which the matrix-valued Â(ω) [or equivalently Ĝin(iωn)] is
diagonalized at all frequencies, and therefore the conventional
MEM has no way to be satisfactory.

A remarkable improvement is clearly noticed in our result
of MQEM. Even for the off-diagonal components, the gen-
eralized MQEM results are in good agreement with the ideal
spectrum; see Figs. 2(a) and 2(b). The excellent agreement
is also found for G(iωn) as shown in Fig. 2(c). This result of
simple model spectrum demonstrates the capability of MQEM
for the continuation of matrix-valued functions.
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FIG. 2. (a) and (b) The calculated default model D̂(ω) (black
solid) and spectral function Â(ω) by using the conventional MEM
(magenta) and our method (blue). The ideal spectra, from which
G(iωn) is calculated, are also presented for comparison (green).
The diagonal and off-diagonal components are presented in (a) and
(b), respectively. The off-diagonal components are dominated by
imaginary part due to the form of the rotation matrix R̂. (c) The
input Green’s function in Matsubara frequency axis (green) and the
Green’s function reconstructed from Â(ω) using Eq. (1) (blue and
magenta). The solid (below) and dashed lines (above) correspond to
Im[G11(iωn)] and Re[G12(iωn)], respectively.

B. Real material example: Sr2IrO4

As a real material example, we consider Sr2IrO4. The local
Green’s function and self-energy of this material are featured
by the significant off-diagonal components caused by strong
SOC and structural distortions. Thus, dealing properly the
off-diagonal elements is of crucial importance to describe
its electronic structure. We calculate Matsubara functions by
LDA+DMFT (local density approximation plus dynamical
mean-field theory) method based on Wannier-projected t2g

orbitals [41,42]. The interaction parameter of U = 2.2 eV is
adopted [28]. Further computation details can be found in
Appendix C. Analytic continuation of impurity self-energy
�(iωn) is conducted to obtain Im�(ω), and the real part is
obtained by Kramers-Kronig transformation.

Real frequency self-energy can be obtained via the analytic
continuation of Weiss field G0(iωn) and impurity Green’s
function Gimp(iωn). Self-energy on the real-frequency axis is
then given by Dyson’s equation �(ω) = G−1

0 (ω) − G−1
imp(ω)

[43]. In practice, widely used to perform the continuation
of auxiliary Green’s functions which are constructed from

FIG. 3. The calculated DMFT spectral function of Ir-t2g states
obtained by (a) our generalized MEM and (b) the conventional
MEM. The chemical potential is set to be zero energy.

the self-energy [28,32,43–46]. While there are many different
ways to construct the auxiliary Green’s functions, we perform
the continuation of �̂dyn(iωn) = �̂(iωn) − �̂(i∞) [43], as-
suming diagonal covariance with constant noise. It is noted
that the element-wise MEM is not quite feasible for �̂dyn

due to the fact that the high-frequency behavior of the off-
diagonal components of �̂dyn is proportional to 1/iωn with
the finite norm of the spectral function [32]. We emphasize
that our formalism is free from this deficiency and provides
the full matrix information of high-frequency coefficients, see
Eqs. (5) and (14).

The result of MQEM is presented in Fig. 3(a). The cal-
culated spectral function A(k, ω) is in reasonable agreement
with the well-known features of this material including the
relative position of so-called jeff = 1/2 and jeff = 3/2 bands
[47–49].

MQEM result is significantly different from that of con-
ventional MEM. By comparing Figs. 3(a) and 3(b), the differ-
ences are clearly noticed. For example, the separation between
the conduction and valence band states is markedly enhanced
in MQEM [Fig. 3(a)] and therefore the band gap becomes
larger. While jeff = 1/2 states (upper and lower Hubbard
band) move away from the Fermi level, the jeff = 3/2 states
do not show a significant change. It is likely due to that �dyn is
dominated by the static Hartree terms in these fully occupied
states.

Our results show that taking the full account of off-
diagonal matrix elements is important to correctly describe
the electronic structure. While the effect of ignoring the off-
diagonal part can be minimized by taking a better basis set
rather than Ir-t2g [28,44], it is not always straightforward to
make the right choice. In many different situations and due to
many different reasons, the off-diagonal elements can become
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non-negligible. Therefore it is important to take all matrix
information through the continuation process.

It can be an interesting future direction to further extend the
idea of MQEM. Introducing quantum entropy can extend the
physical implication and the applicability of currently avail-
able methods or techniques, especially in our case for dealing
with the off-diagonal information. The similar idea might be
applicable to the other non-Hermitian matrix-valued functions
such as Gorkov’s Green’s function for superconducting order
parameter [29,45].

IV. SUMMARY

By introducing quantum relative entropy we resolve a long-
standing issue of analytic continuation, namely, the continua-
tion of off-diagonal matrix elements. Based on quantum rela-
tive entropy, the functions are treated as being matrix valued
and the non-negativity condition as well as the sum rule are
extended. The invariance under unitary transformation and the
Hermiticity of spectral function Â(ω) are inherently satisfied
in the general context. As a result, it becomes straightforward
to perform analytic continuation of the off-diagonal as well
as diagonal components without any further approximation or
ad-hoc treatment. The capability and usefulness of our method
is demonstrated by two examples. In both of model spectrum

and a real material example of Sr2IrO4, our MQEM provides
a reliable description of off-diagonal elements which cannot
be well treated within the conventional schemes.
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APPENDIX A: DERIVATION OF EQ. (11)

The minimization of F [Â] can be achieved by solving the
variational equation

δ

δÂ(ω)

{
1

2
χ2 + αSQ(Â||D̂) − αμ

∫
dω[Â(ω)]

}
= 0,

(A1)

where Lagrange multiplier αμ is required to ensure the nor-
malization of the spectrum

∫
dωTrÂ(ω) = 1. First, let us

consider the differentiation:

δχ2 = χ2[Â + δÂ] − χ2[Â] (A2)

= 1

2

∑
n

1

σ 2
n

∥∥∥∥Ĝ(iωn) −
∫

dωK(iωn, ω)[Â(ω) + δÂ(ω)]

∥∥∥∥
2

− χ2[Â] (A3)

= 1

2

∑
n

1

σ 2
n

Tr

[∫
dωK∗(iωn, ω)δÂ†(ω)

{
Ĝ(iωn) −

∫
dωK(iωn, ω)Â(ω)

}]
+ H.c. + O(δA2) (A4)

=
∫

dω
∑
ij

δÂij (ω)ĥω[Â]ji + O(δA2), (A5)

where ‖·‖ refers to the trace norm. From the last equality we have

δχ2

δÂ(ω)
= ĥω[Â], (A6)

with

ĥw[Â] =
∑

n

1

σ 2
n

Tr

[∫
dωK∗(iωn, ω)

{
G(iωn) −

∫
dωK(iωn, ω)A(ω)

}]
. (A7)

Similarly, the derivative of entropy terms is
δ

δÂ(ω)
SQ(Â||D̂) = ln Â(ω) − ln D̂(ω) + Î . (A8)

Now the variational equation (A1) can be rewritten as

ĥω[Â] + α ln Â(ω) − α ln D̂(ω) + α(1 − μ)Î = 0 (A9)

from Eqs. (A6) and (A8). Solving Eq. (A9) about Â(ω), we
arrive at

Â(ω) = exp −Ĥω[Â]/α + f . (A10)

Here f = 1 − μ = ln Z is adjusted to satisfying the nor-
malization condition, i.e., Z is the partition function.

Diagonalizing Ĥω[Â], it can be shown that the Eq. (A10) is
equivalent to Eqs. (11), (12), and (13).

APPENDIX B: IMPLEMENTATION DETAILS

1. Kernel matrix for cubic spline spectral function

For a given discrete grid set of frequencies ωj ∈ [−W,W ],
Eq. (1) reads

G(iωn) ≈
Nω+1∑
j=1

A(ωj )

iωn − ωj

�ωj . (B1)
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In order to achieve a high accuracy with a decent number of
grids, we adopted the cubic spline interpolation. The coeffi-
cients of cubic polynomials Sj (ω) = aj (ω − ωj )3 + bj (ω −
ωj )2 + cj (ω − ωj ) + dj (for ωj < ω < ωj+1) are the solu-
tion of the linear equations:

Sj (ωj ) = dj = A(ωj ), (B2)

Sj (ωj+1) = aj�ω3
j + bj�ω2

j + cj�ωj + dj = A(ωj+1),

(B3)

S ′
j (ωj+1) − S ′

j+1(ωj+1)

= 3aj�ω2
j + 2bj�ωj + cj − cj+1 = 0, (B4)

S ′′
j (ωj+1) − S ′′

j+1(ωj+1) = 6aj�ωj + 2bj − 2bj = 0.

(B5)

Here j = 1, . . . , Nω in (A2) and (A3), and j = 1, . . . , Nω −
1 in (A4) and (A5), providing (4Nω − 2) equations. Two more
equations are from boundary conditions:

S ′′
1 (ω1) = S ′′

Nω

(
ωNω+1

) = 0. (B6)

Thus the transformation matrix T is obtained and it gives rise
to a vector � = T A for the spline coefficients in terms of the
spectral function A at the grid points [15]; Ai = A(ωi ) and
� = (a1, b1, c1, d1, . . . , dNω

).
With the known coefficients, Eq. (1) can be rewritten as

G(iωn) =
Nω∑
j=1

∫ ωj+1

ωj

dω
Sj (ω)

iωn − ω
(B7)

= K�. (B8)

Here K is the matrix obtained by integrating Eq. (B7) [15].
Finally, we have

G = KA = KT A. (B9)

This procedure provides us the more stable and efficient
numerics for MQEM.

2. Nonuniform real-frequency gird

To reduce the number of grid points, a nonuniform real-
frequency grid technique [15,25,50] can be used. For the
details of implementation, we follow Ref. [15] in which
three different regions are considered as the grid sections:
WL = [ωmin, wl ), WC = [wl, ωr ], and WR = (ωr, ωmax]. For
the central region WC , we take a regular grid spacing of �ω.
For WL, on the other hand, the grid is defined by

ωj = 1

uj

+ ω0l ∈ WL, (B10)

where j = 1, . . . , NL. The free parameters NL, uj , and ω0l

are to be determined. By assuming a constant step �u, ωl =
1

uNL+1
+ ω0l , and ωNL

= ωl − �ω, we have

�u = uNL+1 − uNL
(B11)

= 1

ωl − ω0l

− 1

ωl − �ω − ω0l

, (B12)

uj = j�u, and NL�u = 1
ωl−�ω−ω0l

. With a given �u,

ωmin = 1

�u
+ ω0l (B13)

= − (ωl − �ω − ω0l )(ωl − ω0l )

�ω
+ ω0l , (B14)

and ω0l = ωl + √
�ω(ωl − ωmin). Since we have an integer

value of

NL = ceil

(
1

(ωl − �ω − ω0l )�u

)
= ceil

(
ω0l − ωl

�ω

)
,

(B15)

we redefine ω0l = ωl + NL�ωl and ωmin. The same numeri-
cal approach is also used for WR .

APPENDIX C: CALCULATIONAL DETAILS
OF LDA+DMFT

First-principles electronic structure calculations have been
carried out based on DFT (density functional theory) within
LDA (local density approximation) [51]. We used our DFT
software package OpenMX [52–55] for Sr2IrO4. 8 × 8 × 1 k
points for the slab geometry have been taken. SOC is treated
within a fully relativistic j -dependent formalism [56]. To
describe the electronic correlation, single-site DMFT has been
adopted [20,21]. The correlated subspace was constructed
by maximally localized Wannier functions starting from the
initial projections onto the atomic Ir-t2g orbitals [41,42]. This
Hamiltonian serves as the noninteracting H0 for the multiband
Hubbard Hamiltonian H = H0 + Hint. The interaction part is
expressed in the Slater-Kanamori form of Hint = ∑

i hi,int:

hi,int =
∑

α

Uniα↑niα↓ +
∑
α 	=β

U ′niα↑niβ↓, (C1)

where U and U ′ refers to the intraorbital and interorbital
interaction, respectively, and U ′ = U = 2.2 eV. Hund
interaction JH is set to zero which does not change any of our
main conclusions. The Hamiltonian is solved within single-
site DMFT (dynamical mean-field theory) by employing a
hybridization expansion continuous-time quantum Monte
Carlo (CT-QMC) [23,24] as implemented in Ref. [26] with
2.24 × 108 measurements. In this procedure, local Green’s
functions are calculated using momentum-independent
self-energy:

Gloc(iωn) = 1

Nk

∑
k

1

iωn + μ − H0(k) − �(iωn)
, (C2)

where H0(k) and �(iωn) are given by 12 × 12 matrices.
Self-energy is decomposed into 6 × 6 matrices corresponding
to two Ir sites, �(iωn) = �Ir(1)(iωn) ⊕ �Ir(2)(iωn). We would
like to note that the self-energy was sampled in the “inter-
mediate representation” [57] to reduce the fluctuation in the
high-frequency region.
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